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ABSTRACT
Accurate and fast fault-diagnosis is the foundation of fault-tolerance. To develop the fault-
tolerance of magnetic-levitated bearing system, this paper presents an online fault-diagnosis
approach of electromagnetic actuator based on variation characteristics of sampled load cur-
rent in the modulation to identify the time constant of the electromagnetic coil, and then to
diagnose the broken circuit or partial short-circuit faults. After analysing the variation character-
istics of the load current theoretically, the simulation is constructed to verify the effectiveness of
the proposed approach. Considering the real-time requirement of fault-diagnosis, we develop a
fast sampling and calculatingmethod for the equivalent slope of the load current in themodula-
tion, which represents the variation characteristics of the load current. The experimental results
demonstrate that the proposed approach is effective for diagnosing broken circuit and par-
tial short-circuit faults, and the execution time for the fault-diagnosis is about 2ms, proving its
excellent real-time performance.
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1. Introduction

Magnetic-levitated actuator, with the advantages of no
mechanical friction, no lubrication and controllable
supporting characteristics [1,2], has two forms of plane
and rotary motion mainly. MLPAs (magnetically lev-
itated planar actuators) [1,3–6], which belong to the
former category, are mainly used in the ultra-precision
multi-DOF (degree of freedom) stage [7]. Magnetic-
levitated bearings, belonging to the latter, are the key
equipment in the aero engine, turbine generator, energy
storage flywheel, etc. [8,9].

To the rolling bearing or gear, the most common
mechanical components in rotating machines, numer-
ous vibration-based fault-diagnosis or health indica-
tors [10] have been constructed from mechanical sig-
nal processing [11,12], modelling [13,14], or stochastic
process [15], and provides a basis for predicting the
remaining useful life of bearings and gears. However,
magnetic-levitated bearing system is a highly nonlinear
and open-loop unstable system, the rotor is supported
by controlled EMF (electromagnetic forces) generated
by symmetrical electromagnetic actuators. The basic
control theory is based on the bias current lineariza-
tion in the equilibrium position, namely, displacement-
force and current-force stiffness coefficient are used to
realize the linearization of EMF [2], which has the sym-
metry constraints on the stator structure. Therefore,

the actuator failure is one of the most common faults,
and it will destroy the original symmetry of the sta-
tor structure, resulting in the control failures of related
free degree. As a result, the rotor will fall, leading to
the serious damages to the whole bearing system [16].
Therefore, it is difficult to adopt health indicators to
estimate the lifetime of the magnetic-levitated bearing
system.

Design of the redundant actuators is an effective
means to deal with the failures in themagnetic-levitated
bearing system, but accurate and fast fault-diagnosis
of electromagnetic actuators is the crucial foundation.
However, the controlled currents for the electromag-
netic actuators are usually provided by PA (Power
amplifier); moreover, a close-loop control of current is
designed, including the current sensor, controller, and
electromagnetic coil. The fault of any one will cause the
failure of the corresponding electromagnetic actuator.
The common forms of faults include the broken cir-
cuits, short circuits and the partial insulation damage
of the electromagnetic coil, leading to the deviation of
the EMFmodel [17], or even the damage to the bearing
system.

The fault detection and diagnosis of electromagnetic
actuators can be mainly categorized into the following
approaches. The first one is based on the mathemati-
cal model to analyse different faults, but it is difficult to
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establish sufficiently accuratemodels of various faults at
various operations [18]. The second approach uses sig-
nal processing-based methods. The currents and vibra-
tion signals can be obtained most easily and they have
been used for the detection of stator, rotor and bear-
ing faults [19, 20]. Machine current signature analysis
(MCSA) is a popular approach used in fault-diagnosis
of induction motor, which monitors current in time
and frequency-domain characteristics, from healthy to
faulty condition, can detect faults by using only cur-
rent sensors [21]. However, this method fails to detect
broken faults under a no-load condition because load
current is comparatively small, not available enough
for fault analysis. To overcome this problem, discrete
wavelet analysis and higher order spectra were pro-
posed in an unloaded condition [22,23]. In addition, a
modified bispectrum based on the amplitude modula-
tion feature of the current signal was then adopted in
[24] to combine both lower sidebands and higher side-
bands simultaneously, and an effective diagnostic fea-
ture was developed for fault classification based on this
new bispectrum analysis. A fault detection approach
based on GLRT (Gaussian generalized likelihood ratio
test) was proposed in [25] to detect the faults in the
electromagnet, and the accuracy of this approach had
been proved by numerical analysis, however, usually
the effective thresholds from experiences were needed
in this approach; while in [26], the Hilbert transform
was used to process the current signal and extract a
signature related to a broken rotor bar fault under a
no-load condition, but its actual effectiveness needs to
be proved. Moreover, some intelligent approaches for
fault-diagnosis in a single-input, single-output active
magnetic bearing system was developed and experi-
mentally demonstrated in [27] by using an augmented
linear model of the plant dynamics together with a
Kalman filter to estimate fault states; and in [28] by
using state estimator and parameter estimator to detect,
identify and analyse faults of actuators in magnetic-
levitated bearing system. A fuzzy decision tree was
designed to detect broken rotor bars and broken con-
nector faults by the measuring of one phase current
signal to construct the phase space representation [29].
A robust adaptive sliding mode thau observer is pro-
posed to estimate the time-varyingmagnitudes of actu-
ator faults based on the dynamics of the quadcopter in
[30,31], and then a fault-tolerant control scheme based
on sliding mode control and reconfiguration technique
is designed in [31]. Glowacz [32] proposed an acoustic-
based fault detection of the commutator motors by
using nearest mean (NM) and support vector machine
(SVM) classifiers for data classification. Although the
efficiency of above approaches has been proved, the rel-
evant algorithms are complex, leading to the real-time
performance difficult to satisfy the requirement of high-
speed magnetic bearing applications. Freddi et al. [33]
investigated a model-based fault-diagnosis which can

be used to monitor sensor faults and detect actuator
faults. In this method, residuals are used to distinguish
between system and observer outputs, but these meth-
ods are inaccurate and unsuitable for quantifying the
magnitude of a fault. By using a bank of filters, with
thresholds defined in a way that they explicitly account
for the effect of uncertainty, a fault detection and iso-
lation (FDI) approach was proposed to the actuator
and sensor fault-diagnosis for nonlinear uncertain sys-
tems [34]; another simple and useful approach based on
threshold was proposed in [35] bymonitoring the error
between the load current and current set point, but it is
also difficult to find the effective thresholds.

A new scheme of reconstructing current sensor
faults and estimating unknown load disturbance for
a permanent magnet synchronous motor (PMSM)-
driven system in [36]. Two sliding mode observers
(SMOs) are designed: the unknown load disturbance
is estimated by the first SMO in the subsystem, which
has unknown load disturbance, and the sensor faults
can be reconstructed using the second SMO in the aug-
mented subsystem, which has sensor faults. However,
an immediate response should be made by the con-
trol system if the failures of some actuators happen,
or the drop of the magnetic-levitated rotor will cause
the damages to the bearing system. Eric and Meeker
[37] proposed the generalized bias current lineariza-
tion, which can compensate the loss of magnetic flux
due to the failures of the actuators by the way of cur-
rent distribution to achieve the fault-tolerance. Relying
on the coupled magnetic circuit between the adjacent
magnetic poles, the loss of magnetic flux caused by the
failures of some actuators can be compensated by the
fault-tolerant controller discussed in [37]. Based on this
idea, the subsequent researches [38–42]were developed
to reconfigure the support structure.

This paper presents a novel online FDD (fault detec-
tion and diagnosis) approach of the electromagnetic
actuator based on the variation characteristics of the
load current in themodulation to identify the time con-
stant of the electromagnetic coil. With respect to the
literature, the proposed approach has the advantages of
(1) theoretic thresholds and (2) excellent real-time per-
formance. Experimental results prove the effectiveness
and real-time performance of the proposed approach.
This novel FDD approach can be combined with the
generalized bias current linearization in [37] to real-
ize an effective design of the fault-tolerant controller
of magnetic-levitated bearings under the failures of the
electromagnetic actuators.

2. Mathematical proof of variation
characteristics of load current

The block diagram of digital PA is shown in Figure 1.
The desired current of the electromagnetic coil will
be produced under the close-loop control. CT1 and
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Figure 1. Block diagram of power amplifier.

Figure 2. Current flows under bi-state modulation, (a) current
increasing process, (b) current deceasing process.

CT2, respectively, drive the upper and lower sides of
the power bridge, with the duty cycle implied to con-
trol the change of the current in the coil. Under the
control of current controller (usually PID), the error
of current loop will be close to zero, making the load
current in coil equalling to the desired one. The cur-
rent controller can be realized in a DSP (digital signal
processor), and the controlled duty cycle can be trans-
ferred into PWM signal by the PWM module of DSP.
There are two kinds of processes (in bi-state mode) in
Figure 2(a,b), respectively.

2.1. Current increasing process

When CT1 and CT2 are enabled synchronously, the
load current i in the electromagnetic coil will increase,
and the differential equation of the circuit can be
expressed as

Ud = L
di(t)
dt

+ Ri(t) + 2Us (1)

where Ud is the bus power supply voltage; Us is the
conduction voltage drop of the switch tube, which is
a constant for a certain type of switch tube. L and R
are the equivalent inductance and resistance of the coil,
respectively. By solving Equation (1), we can have

i(t) = Ud − 2Us

R
(1 − e−

t
τ ) + i0e−

t
τ (2)

kinc, the slope of load current in the increasing process,
can be obtained as

kinc = di(t)
dt

= Ud − 2Us

L
e−

t
τ − i0

τ
e−

t
τ (3)

We must note that kinc describes the variation char-
acteristics of load current in the modulation, and
will change in different phase theoretically. However,
τ = L/R, the time constant of the electromagnetic coil,

Figure 3. The slopes of the load current in the switchingperiod.

is much larger than switching period T, so Equation (3)
can be approximated as

kinc = Ud − 2Us

L
− i0

τ
= Ud − 2Us − i0R

L
(4)

where i0 is the initial current of the electromagnetic coil
in the switching period.

2.2. Current deceasing process

When CT1 and CT2 are disabled synchronously, the
load current will decrease, and the differential equation
is as

− Ud = L
di(t)
dt

+ Ri(t) + 2Uc (5)

where Uc is the conduction voltage drop of free-
wheeling diode D1 or D2. We can have

i(t) = −Ud + 2Uc

R
(1 − e−

t
τ ) + i0e−

t
τ (6)

kdec = di(t)
dt

= −Ud + 2Uc

L
e−

t
τ − i0

τ
e−

t
τ (7)

Similarly, kdec, the slope of load current in the
decreasing process, can be approximated as

kdec = −Ud + 2Uc

L
− i0

τ
= −Ud + 2Uc + i0R

L
(8)

Obviously, from Equations (3) and (7), either kinc or
kdec will change in different phase theoretically, but they
all have the limiting values. Taking kinc as an example,
we can have its limiting values in Equation (9) at t = 0
or T/2, as in Figure 3.

kmax = Ud − 2Us

L
− i0

τ

kmin = Ud − 2Us

L
· e−

(
T
2

)
/τ − i0

τ
· e−

(
T
2

)
/τ (9)

Considering the τ (ms level) is much larger than
switching period T (us level), we can have

kmin ≈ kmax ≈ kinc = Ud − 2Us − i0R
L

(10)
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Figure 4. Simulation results: (a) excitation signal, (b) load current.

From Equation (10), R is coil resistor (usually m�

level), so i0R can be ignored compared with bus volt-
age Ud in most of the application, which means that
the variation characteristics of the load current are the
inherent characteristics of the electromagnetic coil in
the switching period, and the influence of load current
to the slopes can be very small.

In short, kinc and kdec can almost be one constant
in the switching period, and decided by the time con-
stant of the electromagnetic coil directly, namely, FDD
can be applied by identifying the variation character-
istics of load current. Figure 3 illustrates the slopes of
the load current in the switching period, the first phase
from t = 0 toT/2 corresponds to the current increasing
process in Section 2.1 while another phase (T/2, T) to
the current decreasing process in Section 2.2.We define
the equivalent slope k to approximate the slope of the
load current in the each phase, and it will be very close
to the average value of kinc.

3. Simulation verification and analysis

From Figure 3, ignoring theUs andUc, the load voltage
is

Uab ≈
{

+Ud, nT ≤ t ≤ nT + t1
−Ud, nT + t1 ≤ t ≤ (n + 1)T

(11)

and t1 = TUf /Ut (12)

where Uf is the modulated signal input by the PWM
generator, Ut is the unilateral amplitude of the trian-
gular carrier, T is the switching period, and nT is the
nth switching period. In the [nT, (n+ 1) T],Uab can be
expanded by Fourier series, as

Uab = a0
2

+
∞∑
k=1

akcos(kω t) +
∞∑
k=1

bksin(kω t) (13)

The expressions of a0, ak and bk are as

a0 = 2
T

(n+1)T∫
nT

Uabdt =
(
4
Uf

Ut
− 2

)
Ud (14)

ak = 2
T

(n+1)T∫
nT

Uabcos(kωt)dt = 2Ud

kπ
sin

(
2kπ

Uf

Ut

)

(15)

bk = 2
T

(n+1)T∫
nT

Uabsin(kωt)dt

= 2Ud

kπ

[
1 − cos

(
2kπ

Uf

Ut

)]
(16)

By introducing Equations (14)–(16) into the (17), we
can have

Uab =
(
2
Uf

Ut
− 1

)
Ud

+
∞∑
k=1

2Ud

kπ

[
sin

(
2kπ

Uf

Ut
− kω t

)
+ sin(kωt)

]
(17)

iab
Uab

= 1
R + Ls

(18)

We establish the simulation model with the switch-
ing frequency of 25 kHz, the bus voltage of 30V, and
an electromagnetic coil of 0.5�, 2mH. By applying a
step, amplitude of 1A excitation signal as the desired
current, we have the simulation results in Figure 4.
The load current can follow the desired current with
its variation characteristics consistent with the theo-
retical analysis. Selecting another electromagnetic coil
of 0.2�, 1mH, the comparable simulation results are
shown in Figure 5, where the slope of current variation
changes with different coils.

Generally, the slope of a series of discrete sampling
points can be obtained by linear fitting, in order to
improve the real-time performance, a more effective
and simpler method is designed in this paper through
the average of the slopes between every two adjacent
sampling points. Setting an as the digital value of load

Figure 5. Simulation results under different time constant. The
slope of k corresponds to 0.5�, 2 mH coil, while k′ corresponds
to 0.2�, 1 mH coil.
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Figure 6. Slope of current variation between two adjacent
sampling points.

Figure 7. Singularity in the sampling points.

current sampled currently, and the next is an+1, n = 1,
2 . . . . The slope of two adjacent sampling points can
be expressed as

kn = Gf (an+1 − an)Uref

2mRaTn
(19)

where Gf is the attenuation coefficient of the current
sensor, Ra is the sampling resistance, Tn,Uref andm are
the sampling period, reference voltage and resolution of
AD (analogue–digital) converter, respectively. A series
of slopes values can be obtained, as shown in Figure 6.

Taking the current increasing process as an example,
k1, k2, ki−1 and ki are a series of slopes, and the average
value can be calculated as

k = k1 + k2 + · · · ki−1 + ki
i

(20)

According to the theoretical analysis in Section 2,
these slopes, representing the kinc in different time, will
change from the kmin to kmax, and repeat the same pro-
cess in every switching period. Actually, for the kmin and
kmax are very close in the switching period, the ki can

almost be a constant like kinc. Therefore, we can adopt
the k to approximate the slope of the load current in
each phase, as in Figure 3, and faults can be detected
by comparing k with the thresholds in Equation (9)
theoretically.

It is important to note that the singularities in the
sampling points will be likely an error factor in the cal-
culation of k. Therefore, it is necessary tomake an effec-
tive judgment to cancel the singularities. The algorithm
is designed by the following rules: (1) k′

i is positive and
its two adjacent k′

i−1 and k′
i+1 are also positive, or (2)

k′
i is negative and its two adjacent k′

i−1 and k′
i+1 are

also negative, otherwise ki should be cancelled as the
singularity included, as shown in Figure 7.

The proposed FDD can be realized by adding the
FDD part (in the dashed line) into the PA (power
amplifier), as shown in Figure 8. As the same as in
Figure 1, the upper part include a current control loop,
and will provide electromagnetic coil with the load cur-
rent equalling to the desired current i*. The inputs of
proposed FDDare the current sampling points from the
current sensor, and these points will be restored in the
queue, used to calculate the slope, as in Equation (19).
A k calculating module is designed to cancel the singu-
larities (if exist) and get the k value. The flow chart of
the algorithm is shown in Figure 9. Theoretically, the
k should be within the thresholds in Equation (9), or a
fault of the electromagnetic actuator will be reported to
upper controller. However, an adjustment can improve
the accuracy of FDD, the detailed adjustment is dis-
cussed in the next Section 4.1.

4. Experimental results and analysis

The Experimental platform was built based on DSP
(digital signal processor) TMS320F28335, as shown in
Figure 10. We developed the controller and power cir-
cuit board, and employed the excitation signal genera-
tor, DS1302, controllable DC supply, and oscilloscope
with 1G samples/s.

Considering the sampling rate should be high
enough, the switching period was set as 40 us @ 25 kHz,

Figure 8. Block diagram of proposed FDD.
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Figure 9. Algorithm flow chart of k calculating.

Figure 10. Experimental platform.

while the sampling rate of current was 2.22ms @
450 kHz, therefore we can have 18 points sampled to
calculate an equivalent slope k in the modulation. the
operation cycle of the algorithm in DSP was about
1.75ms.

In the experiment, we selected different electro
magnetic coils to test the fault-diagnosis performance
under different load condition, especially the variation
characteristics under the change of the load. The initial
coil was 1.75mH, 0.5�, corresponding to the time con-
stant of 3.5ms, which was much larger than the switch-
ing period of 40 us, proving the assumption in Section
2. In addition, the bus voltage Ud was 30V, i0 was
0.5 A and T was 40 us, so the theoretical range of slope
of the load current is 16,761–16,857A/s, according to
Equation (9).

Figure 11. The histogram of k in a continuous 2000 sampling
statistics.

4.1. Error analysis

There are some factors to influence the identifica-
tion accuracy of equivalent slope, and the main error
sources are as follows: (1) the drift and noise of the ana-
logue signals, and the gain error of circuit. The total
error caused was about 20mV, corresponding to about
12A/s error of equivalent slope. (2) Considering the
electromagnetic coil as an energy storage element, a
bus pumping will lead to bus voltage fluctuation, which
is related to the configuration of power circuit. The
measured peak was about 1V, and the corresponding
error (Δk) was about 570A/s. (3) The variation of the
air gap between the rotor and the magnetic pole will
make influences to the equivalent inductance of the coil.
Although the basis of the proposed approach is how to
identify the time constant of electromagnetic coil, but
not themodel of actuator, wemust still consider that the
equivalent inductance of the coil will change under the
variation of the air gap length g(x, y)j. We can find the
relationship between the air gap length and equivalent
inductance of the electromagnetic coil in the following
equation:

Li = μ0AN2

2(g0 ± �)
(21)

where g0 and � are the initial air gap length and the
variation, respectively. μ0, A and N are the vacuum
magnetic permeability, the area of magnetic pole and
the number of the coil windings, respectively. Usu-
ally, we design auxiliary bearings to avoid the colli-
sion and friction between rotor and stator even when
electromagnetic actuators fail, which will maintain air
gap within a fixed range after the bearing structures
designed. The maximum change of inductance value
is 0.011mH in the experiment, and the correspond-
ing Δk is about 120A/s. In summary, the total error is
about 700A/s, and Figure 11 is the histogram of k in a
continuous 2000 sampling statistics.

The error sources above influence the identifica-
tion accuracy of equivalent slope and it is difficult to
have an accurate error model, so the measurement
results in healthy electromagnetic actuators are only
the ways to help to verify the effect of adjustment, in
order to improve the accuracy of fault-diagnosis, but
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Figure 12. Broken circuit currentwaveformunder pulse excita-
tion signal at normal stage (A), fault stage (B), and fault-tolerant
stage (C).

it does not mean that the theoretical thresholds were
untrusted. Compared with theoretical thresholds of
16,761–16,857A/s from Equation (9), the total adjust-
ment was about 700A/s only.

4.2. FDD of broken circuit

Figure 12 shows the current waveformmeasured in the
experiment, which illustrates the normal stage, fault
stage and fault-tolerant stage. Figure 13(a,b) plots the
sampling points of load current at the normal stage (A)
and fault stage (B), respectively, in which the obvious
differences of current variation can be seen. Figure 14
illustrates the range of k from k′

min to k′
max at the nor-

mal stage, whose threshold values are determined by
the theoretical values of Equation (9), and adjusted
according to the actual statistics in Figure 11. k1 and k2
correspond to themaximum andminimum slope value
under broken circuit condition, respectively, obviously
those values are far away from the ones at the normal
range.

Time for fault-diagnosis, td, is illustrated in
Figure 15, in which the upper line is the fault-diagnosis
flag, low-level for fault generated by the GPIO of DSP;
lower line is the load current, obviously the td is about
2ms for the broken circuit fault.

4.3. FDD of partial short circuit

In order to generate the partial short circuit of the elec-
tromagnetic coil, as in Figure 16, a switch was designed
to change the load. Figure 17 shows the partial short-
circuit current waveform measured in the experiment,

Figure 14. Range of slope, k′
min to k

′
max correspond to normal

stage, while the k1 and k2 correspond to broken circuit fault
stage.

Figure 15. Time for fault-diagnosis, td under broken circuit.

Figure 16. Load in experiment.

in which the range of the current ripple changes obvi-
ously. Figure 18 plots the sampling points of load cur-
rent at normal stage and fault stage.

Figure 19 illustrates the k′
min, k

′
max, k1 and k2 under

partial short circuit, obviously there is a clearance
between the ranges of normal stage and fault stage.
Figure 20 illustrates the td of about 2ms similarly.

Figure 13. Sampling points of load current at the normal stage (A) and the fault stage (B) under broken circuit.
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Figure 17. Partial short-circuit current waveform under pulse
excitation signal at normal stage (A), fault stage (B), and fault-
tolerant stage (C).

Figure 18. Samplingpoints of load current at normal stage and
fault stage under partial short circuit.

Figure 19. Range of slope, k′
min and k′

max correspond to nor-
mal stage,while the k1 and k2 correspond to partial short-circuit
fault stage.

Figure 20. Time for fault-diagnosis, td under partial short
circuit.

5. Conclusions

In this paper, an online fault-diagnosis approach of
electromagnetic actuator is proposed, which is based on
variation characteristics of load current in the switching

period to identify the time constant of the electro-
magnetic coil. The experimental results demonstrate
that:

(1) The proposed approach is effective to diagnose the
broken circuit and partial short circuit of electro-
magnetic coil, and the fault-diagnosis time is about
2ms for both faults.

(2) The variation characteristics of load current can
be analysed in theory, the effectiveness of theoret-
ical thresholds of range in normal stage has been
proved. Equation (9) provides an effective way to
get the theoretical thresholds. But what has to be
admitted is that, some adjustments to theoretical
thresholds will help to improve the accuracy of
fault-diagnosis.

Future work should be focus on the follows:

(1) For both loosely and tightly coupled magnetic-
levitated bearings, the proposed approach can pro-
vide a new idea for on-line fault-diagnosis of
the electromagnetic actuators. Accurate and fast
fault-diagnosis is the crucial foundation of fault-
tolerance of magnetic-levitated bearings, and also
the bottleneck of improving the real-time perfor-
mance of the fault-tolerant controller. Therefore,
a fault-tolerant controller with excellent real-time
performance should be designed by combing the
generalized bias current linearization in [37] with
The proposed approach.

(2) Some adjustments to the theoretical thresholds can
help to improve the accuracy of fault-diagnosis.
However, we can only realize the adjustment cal-
culation off-line in the different applications. The
on-line adjustment calculation should be an inter-
esting work in the future.
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