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ABSTRACT
Multirotor Aerial Vehicles may be fault-tolerant by design when rotor-failure is possible to mea-
sure or identify, especially when a large number of rotors are used. For instance, an octocopter
canbe capable to complete somemissions evenwhenadouble-rotor fault occurs during theexe-
cution. In this paper, we study how a rotor-failure reduces the vehicle control admissible set and
its importancewith respect to the selectedmission, i.e. we performmission-related fault-tolerant
analysis. Furthermore, we propose a risk-sensitive motion-planning algorithm capable to take
into account the risks during the planning stage by means of mission-related fault-tolerant
analysis.We show that the proposed approach ismuch less conservative in terms of selected per-
formance measures than a conservative risk planner that assumes that the considered fault will
certainly occur during the mission execution. As expected, the proposed risk-sensitive motion
planner is also readier for accepting failuresduring themissionexecution than the risk-insensitive
approach that assumes no failure will occur.
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1. Introduction

Nowadays, there exist different design solutions for
Multirotor Aerial Vehicle (MAV) from micro and mini
MAVs to heavyMAVs with large endurance [1]. Due to
characteristics such as small geometries, vertical takeoff
and landing, low cost, simple construction, degrees of
freedom, their inherent manoeuvrability, ability to per-
form tasks that are difficult for humans where the risks
of injury are high,MAVs have become themost popular
type of unmanned aerial vehicles.

MAVs perform various types of tasks including
search and rescuemissions in indoor and outdoor envi-
ronments [2,3], aerial construction [4], precision agri-
culture [5], disaster management [6], power line and
structural inspection [7–9], exploration and mapping
of unknown environments [10–13], remote sensing
[14], aerial transportation [15], monitoring and anal-
ysis of traffic [16], surveillance [17,18], swarming [19]
and use as educational platforms [20]. The requirement
of each of these applications is that the MAV correctly
and reliably performs the task for which it is designed.

Regardless of the structural design type, different
faults on a MAV may occur. The fault can affect actu-
ators, sensors, controller or can be of a structural
nature. If a failure occurs, themission executionmay be
stopped. To increase the likelihood of mission accom-
plishment, different redundancy can be implemented
including redundancy in propulsion system aswell. The

paper [21] shows that it is possible to control all degrees
of freedom of the octocopter except the yaw angle for
any potential double-rotor-fault scenario (the yaw con-
trollability is preserved even in 89% of those scenarios).
In [22–26], the authors addressed possibility of preserv-
ing the controllability of a system for different rotor
faults by increasing the number of rotors, or using a
rotor with a possibility to tilt motors [27,28]. In [29,30],
the authors have investigated a control strategy for a
quadcopter in the case of losing a single, two opposing,
or three propellers.

On the other hand, regardless of whether the config-
uration of a MAV is redundant, the control algorithm
has a significant role in improving fault-tolerance of
the MAV system. If a control algorithm is fault-
ignorant, having redundant components does not nec-
essary increase reliability of the MAV system or proba-
bility of completing themission. The control algorithms
that inherently posses a certain level of robustness with
respect to possible failures increase reliability of the
system. There is a large number of methods devel-
oped within the framework of fault-tolerant control
including sliding mode control [31], adaptive fault-
tolerant control [32,33], control allocation method for
MAVs [34,35], reconfigurable control [36], backstep-
ping method [37], model predictive control [38], con-
trol based on linear quadratic regulator [39], fuzzy
predictive control [40] and many others.
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In this paper, we propose a novel motion planning
algorithm which takes into account potential rotor-
failures of the MAV during the planning stage, named
here as risk-sensitive planner (RSP). The RSP plan-
ner is much more prepared for rotor-faults during the
mission execution than the planner ignorant to those
potential faults, named here as risk-insensitive planner
(RIP). Additionally, the proposed planner is much less
conservative comparing to the approach which plans
the mission assuming the faults will certainly occur
during the execution, named as risk-conservative plan-
ner (RCP). To do so, we propose a procedure for (i)
finding a reduced fault-dependent control admissible
region, (ii) replacing that region with a set of inequality
constraints, (iii) carefully selecting some of the inequal-
ity constraints based on fault-tolerant analysis of the
given mission, and (iv) forming the final optimization
framework which includes the selected constraints.

The paper is organized as follows. The octocopter
model is presented in Section 2 as an illustrative exam-
ple ofMAV systems. Section 3 includes a controllability
test for extracting the fault-dependent control admis-
sible set for any fault considered. An RLS-based fault-
tolerant tracking control is included in Section 4 to use
a unique control framework for different planners and
faults during the validation stage. Section 5 introduces
the proposed risk-sensitive motion planner and pro-
vides a validation of the approach for a given mission.
Section 6 concludes the paper.

2. MAVmodel

In order to achieve satisfactory control of a MAV and
to eventually improve reliability of the mission execu-
tion during the planning stage as well, it is necessary
to understand all stability-influential elements of its
design. To that purpose, the octocopter model derived
and analysed in [41] and [42] will be presented as a
representative MAV example in order to easily deduce
a generalized UAV model in the planar plane with a
symmetrical configuration design consisting of 2n DC
motors, where for n = {2, 3, 4} we have well-known
MAV designs including quadcopter, hexacopter and
octocopter, respectively.

2.1. Frames of reference and control inputs

The octocopter system with a PNPNPNPN configura-
tion design, where P and N indicate clockwise (CW)
and counter-clockwise (CCW) directions of rotation
of a related DC motor, and its body and ground fixed
frames are shown in Figure 1.Octocopter is constructed
with eight DC motors accompanied by the propellers.
Each motor with propeller is mounted on arm with
length l. The adjacent arms are equally distant from
each other by 45◦ angles (360◦/n).

Two reference frames are used to derive the model,
one for a local coordinate system {o} attached to the
UAV and one representing a global coordinate system
{g} fixed to the ground. For {g}, the ENU convention
is used to represent the axes, meaning that the axes XB,
YB and ZB are pointing to the north, east and up, where
x = [x y z]T and� = [φ θ ψ]T indicate the position
and the Euler-based orientation. The linear velocity v =
[u v w]T and the angular velocity P = [P Q R]T are
represented in {o}. The positive directions of φ, θ and
ψ are chosen to coincide with the positive directions of
P, Q and R, respectively.

The MAV rotors together generate the total thrust
force T and torques τ = [τx τy τz] acting around the
axes of the local coordinate system. One can approxi-
mately calculate generated forces Fi by using the expres-
sion Fi = b�2

i (i = 1, . . . , 8) [43], where b [Ns2/rad2]
is the rotor thrust constant and �i [rad/s] the angular
velocity of the ith rotor. From the Newton’s third law
one can obtain all generated counter torques, Mi (i =
1, . . . , 8), in the formMi = d�2

i , where d [Nms2/rad2]
represents the rotor drag coefficient.

The system control input can be expressed as:

u = A�s = [
T τ

]T = [
T τx τy τz

]T , (1)

where �s represents the squared rotor velocity vector
given as �s = [�2

1 �
2
2 �

2
3 �

2
4 �

2
5 �

2
6 �

2
7 �

2
8 ]T and A being

the system actuation matrix defined as:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

b b b b

bl
√
2
2

bl 0 −
√
2
2

bl

0 −
√
2
2

bl −bl −
√
2
2

bl
−d d −d d

b b b b

−bl −
√
2
2

bl 0
√
2
2

bl

0
√
2
2

bl bl
√
2
2

bl
−d d −d d

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2)

Changing the rotor velocity of the motors in range 0 ≤
Ωi ≤ �max, i = 1, . . . , 8, the different thrust force (T)
and the torque (τx, τy and τz) about the x, y and z axes
can be achieved.

2.2. Octopcopter kinematics and dynamics

The octocopter kinematic model of the linear motion
along the XB, YB and ZB axes of the global coordinate
system as ẋ, ẏ and ż, respectively, can be represented as

ẋ = [
ẋ ẏ ż

]T = R(φ, θ ,ψ) v, (3)
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Figure 1. Body and ground fixed frames for a PNPNPNPN octocopter system, where P and N indicate counter (motors M1, M3, M5
and M7) and clockwise (motors M2, M4, M6 and M8) directions [41].

where for the ZY X convention (which is used in this
paper), the rotation matrix R(φ, θ ,ψ) is defined as

R(φ, θ ,ψ)

=
⎡
⎣cψ cθ cψ sθ sφ − sψ cφ cψ sθ cφ + sψ sφ
sψ cθ sψ sθ sφ + cψ cφ sψ sθ cφ − cψ sφ
−sθ cθ sφ cθ cφ

⎤
⎦ ,

(4)

where c and s indicate cosine and sine functions.
The octocopter kinematic model of the angular

motion can be represented as

�̇ = R−1
A (φ, θ ,ψ)P, (5)

with the angular rotation matrix R−1
A being

R−1
A (φ, θ ,ψ) =

⎡
⎢⎣
1 sφtθ cφtθ
0 cφ −sφ
0

sφ
cθ

cφ
cθ

⎤
⎥⎦ , (6)

where t indicates tangens function.
The dynamics of the octocopter linearmotion can be

described by

v̇ =

⎡
⎢⎢⎣

0
0
T
mo

⎤
⎥⎥⎦ + g

⎡
⎣ sθ

−sφ cθ
−cφ cθ

⎤
⎦ − Sv, (7)

where mo represents the mass of the system, g is the
gravitational acceleration and S is the skew-symmetric
matrix

S =
⎡
⎣ 0 −R Q

R 0 −P
−Q P 0

⎤
⎦ . (8)

The dynamics of the angular motion of the octo-
copter can be described by

Ṗ = J−1 (τ − SJP) , (9)

where J = diag
([
Ixx Iyy Izz

])
represents the inertia

tensor with components Ixx, Iyy and Izz determined by
Huygens-Steiner theorem [44].

Equations (3)–(9) represent the kinematic and
dynamic motion of any MAV with 2n DC motors
mounted in a planar plane providing a parametrized
model dependent onmo and J.

2.3. Model generalization

Equations (3)–(9) that describe the kinematic and
dynamic motion of the octocopter can be used for any
MAV with 2n (n ≥ 2) rotors in the planar plane with
a symmetrical configuration, where the dimension of
the activation matrix A is 4 × 2n and b, l and d depend
on the selected MAV design parameters. For instance,
in case of a quadcopter with PNPN configuration the
actuation matrix is

A =

⎡
⎢⎢⎣

b b b b
bl 0 −bl 0
0 −bl 0 bl

−d d −d d

⎤
⎥⎥⎦ , (10)

while for a hexacopter with PNPNPN and PPNNPN
configurations, the related actuation matrices become

A =

⎡
⎢⎢⎢⎢⎢⎣

b b b b b b

bl
bl
2

−bl
2

−bl −bl
2

bl
2

0 −
√
3
2

bl −
√
3
2

bl 0
√
3
2

bl
√
3
2

bl
−d d −d d −d d

⎤
⎥⎥⎥⎥⎥⎦
(11)
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A =

⎡
⎢⎢⎢⎢⎢⎣

b b b b b b

bl
bl
2

−bl
2

−bl −bl
2

bl
2

0 −
√
3
2

bl −
√
3
2

bl 0
√
3
2

bl
√
3
2

bl
−d −d d d −d d

⎤
⎥⎥⎥⎥⎥⎦
.

(12)

By observing these three examples, one can determine
the actuation matrix of any MAV in the planar plane
with a symmetrical configuration consisting of 2n DC
motors, where the first motor coincides with the posi-
tive direction of y axis and all subsequent DC motors
are equally distant by 360

2n
◦. Namely, the first row con-

sists the parameter b only. The elements of the second
and the third row affect the rotation about the x and y
axes, respectively. They are formed as cosine and sine
values of the angles by which the related DC motor
is displaced with respect to the origin of the x and
y axes, respectively. The elements of the fourth row
depend on the drag coefficient d and the direction of
DC motor rotation, where the positive sign reflects
clockwise direction. For instance, if the successive DC
motors have different directions the related actuation
matrix can be represented in a generalized form by

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

b · · · b

bl · cos
(
360 · k1

2n

)
· · · bl · cos

(
360 · ki
2n

)

−bl · sin
(
360 · k1

2n

)
· · · sin

(
360 · ki
2n

)

−d · · · d

· · · b

· · · bl · cos
(
360 · k2n

2n

)

· · · −bl · sin
(
360 · k2n

2n

)

· · · d

⎞
⎟⎟⎟⎟⎟⎟⎠
, (13)

where ki = i − 1, i = 1, 2, . . . , 2n. This type of model is
used in paper [41,42,45,46].

2.4. Simple PD tracking controller with control
allocation

The task of the tracking controller is to ensure that
a MAV follows the mission-related trajectory. In this
section we briefly present the proportional-differential
(PD) control scheme depicted in Figure 2, which is a
classical control architecture [43,47] presented in more
details in [45].

The controlled variables are the vehicle position x,
y, z and its attitude � , while the overall architecture
includes xy, altitude, attitude and motor controllers
as well as the control allocation and system dynam-
ics consisted of the motor, actuation and MAV (e.g.
octocopter) dynamics (see Figure 2).

The desired linear motion reference values along
mission trajectory are applied to the xy controller, while
the corresponding desired attitude and altitude refer-
ence values are handled by the related controllers. The
outputs of these controllers form the desired values of
the total force and torques to the control allocation
algorithm to deal with the over-actuated system. This
algorithm then distributes these desired values onto
the desired velocity vector �ref to provide speeds for
each motor. For the purpose of this work, we use a
pseudo-inverse control allocation [21,48]. The motor
controller is used as a low-level controller to force the
motor velocity vector � to follow the reference values
from �ref .

To design a PD tracking controller, it is common
practice to linearize the octocopter dynamics around
the hover configuration

(xe, ye, ze) = (x, y, z),

(ue, ve,we) = (0, 0, 0),

(Pe,Qe,Re) = (0, 0, 0),

(φe, θe,ψe) = (0, 0,ψ).

(14)

By the linearization of the nonlinear system model
presented in Section 2, one can obtain

ẋ = R(Z,ψe) v (15)

�̇ = P (16)

v̇ =

⎡
⎢⎢⎣

0
0
T
mo

⎤
⎥⎥⎦ + g

⎡
⎣ θ

−φ
−1

⎤
⎦ (17)

Ṗ = J−1τ , (18)

where R(Z,ψe) represents the rotation matrix around
the z-axis. Substitution of (17) in (15) yields

[
ẍ
ÿ

]
= g

[
cψe −sψe

sψe cψe

] [
θ

−φ
]

(19)

and

z̈ = T
m

− g. (20)

As it can be noticed from (20), altitude can be
directly controlled with thrust T. If ez = zref − z is
now the altitude tracking error, the control law can be
chosen as

Tdes = mo
(
g + z̈ref + Kdzėz + Kpzez

)
, (21)

where zref is the reference altitude, Kpz is the propor-
tional gain,Kdz the derivative gain. In a similarmanner,
substitution of (18) in (16) yields

�̈ = J−1τ . (22)

It can be observed from (22) that the attitude can be
directly controlled with torque vector τ . If now e� =
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Figure 2. Control architecture.

�ref − � is the attitude tracking error, the control law
can be chosen as

τdes = J
(
�̈ref + Kdė� + Kpe�

)
, (23)

where �ref is the reference attitude, Kp is the propor-
tional gain, Kd the derivative gain.

Clearly, all generalized forces are stand for attitude
and altitude control. Therefore, in order to achieve
tracking of the x and y position coordinates, we need
a flat mapping between those positions and the altitude
and attitude coordinates. For that reason, let the track-
ing errors ex = xref − x and ex = yref − y be intro-
duced, where xref and yref are the reference values. If
one wants the tracking errors to decay exponentially, it
is sufficient that the following holds

[
ëx
ëy

]
+ Kd

[
ėx
ėy

]
+ Kp

[
ex
ey

]
= 02×1, (24)

which can be rewritten as (25)
[
ẍ
ÿ

]
=

[
ẍref
ÿref

]
+ Kd

[
ėx
ėy

]
+ Kp

[
ex
ey

]
. (25)

From (19) and assuming that �e = �ref = const, the
reference values of the roll φref and pitch θref become

[
φref
θref

]
= 1

g

[
sψref −cψref
cψref sψref

] [
ẍ
ÿ

]
. (26)

The attitude controller (23) needs the first and the
second derivation of the roll and pitch reference values.
By differentiating (26), we get

[
φ̇ref
θ̇ref

]
= 1

g

[
sψref −cψref
cψref sψref

] [...x...y
]
,

[
φ̈ref
θ̈ref

]
= 1

g

[
sψref −cψref
cψref sψref

] [....x....y
]
.

(27)

If
...x ,

...y ,
....x ,

....y are known, then one can obtain φ̇ref , θ̇ref ,
φ̈ref and θ̈ref from (27). By additional differentiation

of (25), we get (
...x ,

...y ) and (
....x ,

....y ) as follows
[...x...y

]
=

[...x ref...y ref

]
+ Kd

[
ëx
ëy

]
+ Kp

[
ėx
ėy

]
,

[....x....y
]

=
[....x ref....y ref

]
+ Kd

[...e x...e y
]

+ Kp

[
ëx
ëy

]
.

(28)

Equations (25)–(28) represent the xy position con-
troller and the flat mapping between (x, y) and (φ, θ).
The proposed controller is able to track the reference
xref , yref , and zref as well as ψref . The proposed archi-
tecture has been exploited in [45] to control the position
and orientation of the octocopter.

It is necessary to emphasize that the reference tra-
jectories of the x and y position coordinates must be at
least four times differentiable, while trajectories for the
altitude z and orientation ψ must have the first and the
second derivation. These trajectories are provided by an
adequate motion planning algorithm, while references
for φ and θ orientation coordinates are provided as the
output of the xy controller.

To illustrate the proposed control architecture for
the position and orientation tracking, we can con-
sider tracking the Vivian curve (octocopter with PPN-
NPPNN configuration) in the three-dimensional space
represented in Figure 3. One can observe a small-error
tracking of the referent trajectory. It is important to note
that the simulation was conducted with a healthy sys-
tem, that is without any fault. For the case when the 3rd
DC motor is in a fault state, it can be seen from Fig-
ures 4 and 5 that the presented control architecture fails
to track the reference trajectory.

3. Analysis of fault-dependent MAV
manoeuvrability

For the purpose of developing a motion planner and
estimating the possibility of completing a pre-planned
mission, it is necessary to determine whether the sys-
tem is capable of generating necessary thrust and
torques, to be able to reach the points generated by the
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Figure 3. Trajectory tracking with a healthy system (an octo-
copter with the PPNNPPNN configuration).

Figure 4. Trajectory tracking with a faulty system (an octo-
copter with the PPNNPPNN configuration and the 3rd motor in
a faulty state).

Figure 5. Trajectory tracking with a faulty system presented
for each position and orientation (an octocopter with the PPN-
NPPNN configuration and the 3rd motor in a faulty state). Left:
reference and achieved values, Right: tracking errors.

motion planner with available DCmotors. As shown in
Section 2.4, regardless whether the system has a redun-
dant actuator or not, it is possible to have a case when
the control algorithm is not able to track the referent
trajectory (fault state caused by a failure occurred on
one of themotors). This problem has been addressed in
[21–26] for a MAV with a fixed rotor and classical con-
figurations (quadcopter, hexacopter and octocopter). In
addition, in [27] and [28], the controllability analysis
has been considered for a MAV designed with a tilted
rotor, while for non-classical (coaxial) octocopters the
analysis has been given in [49]. In this paper, an empir-
ical method is developed which can be used for any
MAV configuration designed with different number of
rotors and their directions of rotation.

3.1. Fault-dependent admissible set of thrust force
and torques

To find the admissible set of thrust force and torques
in control space, it is necessary to check whether the
system can reach and stay in hovering point without
any rotation. For illustration purposes, consider again
an octocopter with the PNPNPNPN configuration. The
relation between the control inputs u (the reference
thrust force T and torques τ ) and the rotation velocity
�s of DCmotors is given with u = A�s (see Section 2),
where the control vector u is represented by

u = [
T τ

]T = [
T τxo τyo τzo

]T , (29)

where �s ∈ D�s ⊂ R
8 and u ∈ Du ⊂ R

4. The set D�s

is defined based on the velocity constraints of DC
motors

0 ≤ �2
i ≤ �2

max, i = 1, . . . , 8. (30)

Knowing that the DC motor velocity is limited
between 0 and ωmax (30) and the mapping is defined
by the linear relation u = A�s, it means that the set
Du represents a polytope in space R

4. If velocities of
all DC motors are equal to zero when all components
of the control input are zero-valued, we get the first
point in control space. If we now set the rotation veloc-
ity of the first DC motor to its maximum value, we
get the second point in control space. The number of
these combinations is 22n, where n is the number of
DC motors. For the octocopter example, it is possible
to construct one hyper-plane for each tuple (4 con-
trol components) of the total of 256 points. However,
only those hyper-planes that form an outer region are
of interest. In this way, one can construct a convex
polytope-like admissible region in four-dimensional
space. Since the obtained region is constructed in four-
dimensional control space, we consider the case for
τz = 0 for illustration purposes. In this case, an orthog-
onal projection of the polytope of the set Du (with
coordinates T, τx and τy) is shown in Figure 6.
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Figure 6. Representation of the four-dimensional admissible
region in three-dimensional space when τz = 0.

Figure 7. The projection of torques τx , τy onto the plane,
T = mg, along its orthogonal direction for a healthy octocopter
with the PNPNPNPN configuration.

Figure 8. The projection of torques τx and τy onto the
plane, T = mg, along its orthogonal direction, when a failure
occurred on 1st DC motor for octocopter with the PNPNPNPN
configuration.

In order for the octocopter system to be stable at the
hovering point, it is obvious that the thrust force should
be T = mg. If the represented three-dimensional set
from Figure 6 is projected onto the plane T = mg, then
the projection is shown in Figure 7. It can be observed
that the torques τx and τy have symmetric values and
that they are linearly dependent, meaning that is not
possible to simultaneously reach maximal values of the
torques τx and τy. Consider now that the DCmotor 1 is
in a fault state. The projection of the torques τx and τy
onto the planeT = mg is shown in Figure 8. In case of a
double fault (DC motors 1 and 2), the projection of the
torques onto the plane T = mg is shown in Figure 9.

It can be seen from Figure 8 and 9 that the admissi-
ble set for τx and τy is reduced with respect to a healthy
system shown in Figure 7. Depending on the type and

Figure 9. The projection of torques τx and τy onto the plane,
T = mg, along its orthogonal direction, when a double fault
occurs onDCmotors 1 and 2 for octocopterwith the PNPNPNPN
configuration.

combination of faults occurred, some of the planned
manoeuvers for stabilizing a hovering state will not be
possible. The obtained admissible sets have been illus-
trated only to understand that each DC motor has a
different effect on the generation of thrust T and the
torques τx, τy and τz.

3.2. Fault-dependent controllability test
procedure

To understand whether an MAV is controllable (or
at least stabilizable) in case of a single fault (or any
multiple faults combination), we propose a testing pro-
cedure to check whether a hovering state is reachable or
not. We say that a MAV is controllable with respect to a
certain state in case there is a control input that moves
theMAV to that state. In case the controller is not capa-
ble to influence yaw-torque, τz we say it is stabilizable
in that state. The latter means that the vehicle is capable
to remain at the given position only by rotating around
z-axes.

The task of the control allocation algorithm is to dis-
tributeDCmotor velocities�s to eachmotor in order to
achieve the referent thrust force and torques for reach-
ing a waypoint generated by a motion planner. For all
MAVs for which n>2, there is an infinite number of
realization to achieve the same result in case a feasi-
ble solution exists. To check whether a feasible solution
exists, we define the optimization problem to generate
the optimal solution �∗

s that minimizes the square-
error between the reference uref and achieved control
over the feasible control region (0 ≤ �s ≤ ω2

max)

�∗
s = argmin

0≤�s≤ω2
max

(‖ep‖2)

= argmin
0≤�s≤ω2

max

(‖uref − A�s‖2). (31)

In case there is no solution to the optimization prob-
lem (31), the MAV is unstable. In case (31), with a
feasible solution yielding zero-valued ep, the MAV is
controllable. In case there is a feasible solution without
zero-valued ep, we have two additional cases. If we allow
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Table 1. Quadcopter: Analysis of single-fault cases.

Fault ep = u − A�s

Motor 1
[
0.0 −0.03 0.0 0.21

]T
Motor 2

[
0.0 0.0 0.03 −0.21

]T
Motor 3

[
0.0 0.03 0.0 0.21

]T
Motor 4

[
0.0 0.0 −0.03 −0.21

]T

freemovements around z-axis, we exclude the torque τz
from uref and repeat the optimization. In case we get a
zero-valued error, the MAV is stabilizable, although it
will be rotating around z-axis. Otherwise, the system
will be unstable.

By checking whether the hovering point is reach-
able or not, we can understand if the MAV is capable
for given mission regardless the faults occurred. In the
following subsection, we thoroughly analyse controlla-
bility of different types of MAVs by examining different
single and multiple faults.

3.3. Fault-dependent controllability analysis for
quadcopter, hexacopter and octocopter

3.3.1. Quadcopter
First, we consider quadcopter with DC motors without
fault states. The quadcopter has the following param-
eters [42]: mo = 1.32 [kg], l = 0.211 [m], Ixx = Iyy =
0.0128 [kgm2], Izz = 0.0239 [kgm2], Izzm = 4.3 · 10−5

[kgm2], b = 9.9865 · 10−6 [N s2/rad2], d = 1.5978 ·
10−7 [Nm s2/rad2], ωmax = 840 [rad/s].

Solving the optimization problem (31)where the ref-
erent thrust force and the torques are given with u =
[ T τ ]T = [mg 0 0 0 ]T , we get ω1 = ω2 = ω3 = ω4 =
569.35 [rad/s] and ep = [ 0 0 0 0 ]T . This means that the
hovering point is reached and it is possible to stabilize
the MAV at this point. Let now the same optimiza-
tion problem be considered for the quadcopter case
for each possible single fault with the same reference
u = [ T τ ]T = [mg 0 0 0 ]T . The results of these opti-
mizations are shown in Table 1. As it can be seen, the
quadcopter cannot be fully controlled at the hovering
point for any single failure. Such cases are indicated by
red colour in Table 1. For example, in case of a failure
occurred on the DCmotor 1, quadcopter is stabilizable,
but there is a constant rotation in the negative direction
about the x-axis as well as intense rotation about the
z-axis. The results obtained were expected and are in
line with the state-of-the-art work. In [25], the authors
have shown that the quadcopter does not have a redun-
dant configuration and its controllability will be lost in
case any of DC motors fails.

3.3.2. Hexacopter
In this subsection, we analyse two types of hexa-
copter with PNPNPN and PPNNPN rotation con-
figuration. The remaining parameters of the hexa-
copter are: mo = 1.54 [kg], l = 0.211 [m], Ixx = Iyy =

Table 2. Hexacopter: Analysis of single-fault cases for the
PNPNPN and PPNNPN configurations.

Fault ep for PNPNPN configuration ep for PPNNPN configuration

M1
[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T
M2

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T
M3

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T
M4

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T
M5

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T
M6

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T

Table 3. Hexacopter: Analysis of double-fault cases for the
PNPNPN configuration.

Fault ep = [
0 0 0 0

]T ep = [
0 0 0

]T
M12

[
0.0 −0.44 0.25 0.0

]T [
0.0 −0.44 0.25

]T
M13

[
0.0 0.0 0.03 0.13

]T [
0.0 0.0 0.0

]T
M14

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M15

[
0.0 −0.2 0.0 0.12

]T [
0.0 0.0 0.0

]T
M16

[
0.0 −0.6 −0.3 0.0

]T [
0.0 −0.44 −0.25

]T
M23

[
0.0 0.0 0.51 0.0

]T [
0.0 0.5 0.0

]T
M24

[
0.0 0.24 0.42 −0.13

]T [
0.0 0.0 0.0

]T
M25

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M26

[
0.0 −0.04 0.0 −0.12

]T [
0.0 0.0 0.0

]T
M34

[
0.0 0.64 0.36 0.0

]T [
0.0 0.44 0.25

]T
M35

[
0.0 0.04 0.0 0.12

]T [
0.0 0.0 0.0

]T
M36

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M45

[
0.0 0.04 −0.25 0.12

]T [
0.0 0.61 −0.35

]T
M46

[
0.0 0.02 −0.03 −0.12

]T [
0.0 0.0 0.0

]T
M56

[
0.0 0.0 −0.5 0.0

]T [
0.0 0.0 −0.51

]T

0.0168 [kgm2], Izz = 0.0308 [kgm2], Izzm = 2 · 10−5

[kgm2], b = 8.5485 · 10−6 [N s2/rad2], d = 1.3678 ·
10−7 [Nms2/rad2], ωmax = 874 [rad/s].

First, we consider the controllability of both config-
urations without fault states by using the same control
reference u = [

T τ
]T = [

mg 0 0 0
]T . As it can

be seen from Table 2, both versions of the hexacopter
are inherently fault-tolerant with respect to a single DC
motor failure. For this reason, we will consider different
double-fault cases (left columns in Tables 3 and 4) and
the cases where the hovering point is stabilizable but
not controllable when the reference is used in the form
u = [

T τx τy
]T = [

mg 0 0
]T (right columns in

Tables 3 and 4). Although theMAVmay loose controla-
bility, the latter case is important to be discovered since
a safety landing can be performedwhich can protect the
vehicle and its equipment from potential damage.

From the results presented in Tables 3 and 4 related
to the two different hexacopter orientation configura-
tions, 80% of total double-fault cases lead to the loss
of controllability (cases with at least one non-zero val-
ues in left columns), while 40% cases are unstable with-
out possibility for a safe landing (cases with at least one
non-zero values in right columns). This further means
that the hexacopter will have a potential to continue the
mission only in three cases (cases with all zero values in
left columns) and to be safe in 60% (cases with all zero
values in right columns). One can also conclude that
the hexacopter is single-fault-tolerant, while it is quite
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Table 4. Hexacopter: Analysis of double-fault cases for the
PPNNPN configuration.

Fault ep = [
0 0 0 0

]T ep = [
0 0 0

]T
M12

[
0.0 −0.43 0.27 0.18

]T [
0.0 −0.44 0.25

]T
M13

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M14

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M15

[
0.0 0.0 −0.01 0.07

]T [
0.0 0.0 0.0

]T
M16

[
0.0 −0.44 −0.25 −0.15

]T [
0.0 −0.44 −0.25

]T
M23

[
0.0 0.0 0.51 0.0

]T [
0.0 0.0 0.5

]T
M24

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M25

[
0.0 0.0 0.0 0.04

]T [
0.0 0.0 0.0

]T
M26

[
0.0 0.0 0.0 −0.05

]T [
0.0 0.0 0.0

]T
M34

[
0.0 0.43 0.27 −0.02

]T [
0.0 0.44 0.25

]T
M35

[
0.0 0.0 0.0 0.05

]T [
0.0 0.0 0.0

]T
M36

[
0.0 0.0 0.0 −0.05

]T [
0.0 0.0 0.0

]T
M45

[
0.0 0.44 −0.25 0.14

]T [
0.0 0.44 −0.25

]T
M46

[
0.0 0.0 0.0 −0.08

]T [
0.0 0.0 0.0

]T
M56

[
0.0 −0.51 0.0 0.0

]T [
0.0 0.0 −0.51

]T

sensitive to double faults in terms of mission execution.
However, it possesses some safety robustness. Since the
results are equal, there is no advantage for using any
particular hexacopter configuration.

3.3.3. Octocopter
In this subsection we address two different orienta-
tion configurations, PNPNPNPN and PPNNPPNN,
for different single and double faults. The octo-
copter has the following parameters [41]mo = 1.8 [kg],
l = 0.211 [m], Ixx = Iyy = 0.0429 [kgm2], Izz =
0.0748 [kgm2], Izzm = 2 · 10−5 [kgm2], b = 8.5485 ·
10−6 [N s2/rad2], d = 1.3678 · 10−7 [Nms2/rad2],
ωmax = 874 [rad/s].

The analysis of single-fault cases for both configu-
rations is presented in Table 5, while for double-fault
cases in Tables 6 and 7. It is evident that both octo-
copter configurations are fully insensitive with respect
to single failures in terms of their potential to continue
the mission execution. From the results presented in
Table 6 related to PNPNPNPN configurations, 28% of
total double-fault cases lead to the loss of controllability
(cases with at least one non-zero value in left column),
while there are no unstable cases without possibility for
a safe landing. This means that this octocopter config-
uration will have a potential to continue the mission in
72% of cases (cases with all zero values in left columns)
and to be safe in 100% (cases with all zero values in right
columns). For the hexacopter PPNNPPNN configura-
tion we have 14% of controllability loss, no unstable
cases, 86% potential to continue mission and 100%
safety (Table 7). This analysis shows that a careful selec-
tion of the octocopter configuration may additionally
influence the MAV overall manoeuvrability and keep
the MAV ready to execute the mission under variety
of faulty states. For instance, when the probability of
double fault is high, we can increase mission reliabil-
ity by choosing PPNNPPNN configuration. However,
the performed analysis can be generalized for anyMAV

Table 5. Octocopter: Analysis of single-fault cases for the
PNPNPNPN and PPNNPPNN configurations.

Fault ep for PNPNPNPN config. ep for PPNNPPNN config.

M1
[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T
M2

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T
M3

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T
M4

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T
M5

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T
M6

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T
M7

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T
M8

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0 0.0

]T

Table 6. Octocopter: Analysis of double-fault cases for the
PNPNPNPN configuration.

Fault ep = [
0 0 0 0

]T ep = [
0 0 0

]T
M12

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M13

[
0.0 0.0 0.0 0.01

]T [
0.0 0.0 0.0

]T
M14

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M15

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M16

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M17

[
0.0 0.0 0.0 0.01

]T [
0.0 0.0 0.0

]T
M18

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M23

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M24

[
0.0 0.0 0.0 −0.01

]T [
0.0 0.0 0.0

]T
M25

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M26

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M27

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M28

[
0.0 0.0 0.0 0.01

]T [
0.0 0.0 0.0

]T
M34

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M35

[
0.0 0.0 0.0 0.01

]T [
0.0 0.0 0.0

]T
M36

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M37

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M37

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M45

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M46

[
0.0 0.0 0.0 −0.01

]T [
0.0 0.0 0.0

]T
M47

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M48

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M56

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M57

[
0.0 0.0 0.0 0.01

]T [
0.0 0.0 0.0

]T
M58

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M67

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M68

[
0.0 0.0 0.0 −0.01

]T [
0.0 0.0 0.0

]T
M78

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T

with 2n pair of DC motors constructed within a planar
plane. Triple or quadruple faults can be also analysed in
the same way. However, the probability of such occur-
rence is much lower than for single or double faults, so
they are not considered in this paper.

4. RLS-based fault-tolerant tracking control

In order to exploit the results of the fault-dependent
MAV manoeuvrability analysis, presented in Section 3
and to provide a unique testbed for performance anal-
ysis of considered motion planners, a mechanism for
failure detection and fault-tolerant tracking control is
needed. In this section, we briefly describe the approach
we previously presented in [45].
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Table 7. Octocopter: Analysis of double-fault cases for thePPN-
NPPNN configuration.

Fault ep = [
0 0 0 0

]T ep = [
0 0 0

]T
M12

[
0.0 0.0 0.0 0.13

]T [
0.0 0.0 0.0

]T
M13

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M14

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M15

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M16

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M17

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M18

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M23

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M24

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M25

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M26

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M27

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M28

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M34

[
0.0 0.01 0.02 −0.13

]T [
0.0 0.0 0.0

]T
M35

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M36

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M37

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M37

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M45

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M46

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M47

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M48

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M56

[
0.0 0.02 −0.01 0.13

]T [
0.0 0.0 0.0

]T
M57

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M58

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M67

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M68

[
0.0 0.0 0.0 0.0

]T [
0.0 0.0 0.0

]T
M78

[
0.0 −0.01 −0.03 −0.13

]T [
0.0 0.0 0.0

]T

4.1. Fault-tolerant PD tracking control

To design fault-tolerant control, it is necessary to
include information about faulty states of DC motors
into the actuationmatrix. Now we can rewrite the actu-
ation matrix as:

u = Adiag (�s) θ , (32)

where θ = [ θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 ]T represents the faulty
states of DC motors. The coefficients 0 ≤ θi ≤ 1 (i =
1, . . . , 8) represent the failure level of related DCmotor,
where θ = 1 represents fully available motor, θ = 0
failed motor while all values in between represent a
partial loss of DC motor functionality. If we rewrite
the actuation matrix as A = [ AT A1 A2 A3 ]T , the com-
ponents of the τx, τy and τz vectors of the controllable
control signals u can be represented as weighted scalar
products in the form

T = ATdiag (�s) θ

τx = A1diag (�s) θ

τy = A2diag (�s) θ

τz = A3diag (�s) θ . (33)

As we can see from (33), the control output can be
represented by its four components that have a linear

dependence. Based on these values, it is possible to esti-
mate the parameter θ in a least-squares manner. For
the estimation, it is necessary to know all parameters
in (33). The basic requirement is that the values of the
actuation matrix A are a priori known. For the detec-
tion and isolation of failures, we only use gyroscopic
data for their inherent accuracy ofmeasurement so that
the first equality from (33) is not necessary, so the final
prediction is

τx = A1diag (�s) θ

τy = A2diag (�s) θ

τz = A3diag (�s) θ .

(34)

If we have N measurements at time instances 1 to N,
then for each sample i = 1, . . . ,N, based on (34), we
have the following model to predict the output

τ̂x(i) = Ψ r
1(i)θ ,

τ̂y(i) = Ψ r
2(i)θ ,

τ̂z(i) = Ψ r
3(i)θ ,

(35)

where each regressor of output models is defined as

Ψ r
1(i) = A1diag (�s(i)) ,

Ψ r
2(i) = A2diag (�s(i)) ,

Ψ r
3(i) = A3diag (�s(i)) .

(36)

Using the property that each tensor can be repre-
sented as a matrix using the skew-symmetric matrix
S defined with (8), we can represent the inertia tensor
J = diag

([
Ixx Iyy Izz

])
as a symmetricmatrix. Now,

we can rewrite (9) as

τx(i) = IxxṖ(i)− (Iyy − Izz)Q(i)R(i),

τy(i) = IyyQ̇(i)− (Izz − Ixx)P(i)R(i),

τz(i) = IzzṘ(i)− (Ixx − Iyy)P(i)Q(i).

(37)

We can now formulate the FDI technique for the
propulsion system as an recursive least square (RLS)
estimation problem of the rotor capacity vector θ in the
following way:

τ = [
τx(1) τy(1) τz(1) · · · τx(N) τy(N) τz(N)

]T ,
(38)

where the data matrix Ψ r has the form

Ψ r = [Ψ rT
1 (1) Ψ rT

2 (1) Ψ rT
3 (1) · · ·

Ψ rT
1 (N) Ψ rT

2 (N) Ψ rT
3 (N)]

T . (39)

Now, by using a classical non-recursive least-square
method [50], we can express the coefficient θ̂ as

θ̂ =
(
Ψ rTΨ r

)−1
Ψ rTτ (40)

In this paper, we use the RLS method based on (40).
It is necessary to emphasize that the proposed tech-
nique for the RLS problem has a linear configuration,
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while obtaining values for the vector rotor capacity
comes from a MAVmodel, which is nonlinear (9). The
proposed method applies to any type of MAV with
2n rotors mounted in a planar plane. The values for
θi (i = 1, . . . , 8) are not constant all the time. To apply
the proposed technique to an MAV, the RLS with a for-
getting factor is used. The values for θi obtained by
the proposed RLS algorithm are used as a feedback to
update the actuation matrix. Note that θ and �s rep-
resent vectors of the same size, so (32) can be rewrite
as

u = Adiag (θ)�s. (41)

Furthermore, by introducing a new matrix B as B =
Adiag(θ), we can calculate the velocity for all DC
motors that can achieve the reference thrust and the
torques as

�s = B+u, (42)

where B+ = BT(BBT)−1.

4.2. Simulation results for fault-tolerant PD
tracking control

In this subsection, we present the simulation results for
the RLS-based technique for detection and isolation of
DC motor failures on MAVs. We used a fault-tolerant
PD tracking control system around the hovering con-
figuration. To illustrate that the designed controller can
handle a faulty state on MAV, we consider the case
described in Section 2.4 (octocopter with the PPN-
NPPNN configuration). In this case, we have a fail-
ure occurred on the 3rd motor at time t = 5 [s]. This
case can be expressed by the rotor capacity vector θ =
[ 1 1 0 1 1 1 1 1 ]T .

It should be emphasized that the presented approach
was tested for different classes of possible faults (differ-
ent numbers of faulty rotors anddifferent values of rotor
capacity). For the purpose of the RLS algorithm (38),
we need to determine 8 unknowns parameters θi, so
we need at least 8 equations. It follows, that the num-
ber of samples N must be at least N ≥ 8. However, to
eliminate the impact of noise, it is advisable to use a
larger number of equations, that is N 
 8. So, we set
the forgetting factor to 0.8 in order to take into account
the measurements from the previous 0.8 s to provide a
sufficient number of samples for the RLS algorithm.

Figures 10 and 11 depict the performance of the pro-
posed RLS-based PD tracking controller with control
allocation for a failure occurred on the 3rd motor at
t = 5 [s]. Figure 12 shows that the relative capacity of
each rotor is properly diagnosed.

From Figure 11, we can conclude that the pre-
sented RLS controller has an acceptable tracking per-
formance (it is similar to the tracking performance
for a healthy MAV). This can be attributed to the
inherent fault-tolerability of the octocopter platform,

Figure 10. 3D visualization of tracking performance (an octo-
copter with the PPNNPPNN configuration) for a failure occurred
on the 3rd motor at t = 5 [s].

Figure 11. Left: reference values, Right: tracking error for a fail-
ure occurred on the 3rd motor at t = 5 [s].

as can be expected based on the analysis of fault-
dependent manoeuvrability for octocopter provided in
Section 3.3.3).

5. Motion planner algorithm based on
mission-related fault-tolerant analysis

This section presents a novel motion planner for
MAVs based on admissible set of thrust force and
torque obtained through fault-dependent manoeuvra-
bility analysis presented in Section 3.

5.1. Presentation of the admissible set of thrust
force and torques with a set of inequality
constraints

As shown in Section 3.1, the admissible set for thrust
force and torques can be determined depending on the
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Figure 12. Estimation of relative capacity of each rotor during
the tracking task.

number of DC motors used, the orientation configu-
ration and the states of DC motors (with or without
faults). This admissible set has a convex polytope-like
form in four-dimensional space.

Each of the outer sides of the polytope can be rep-
resented by its related hyper-plane based on the four
points that form that side, that is

aT + bτx + cτy + dτz � e, (43)

where a, b, c, d and e are the slope coefficients of the
individual axes. Since the polytope-like admissible set
is composed of a large number of such hyper-planes,
it can be represented as a set of inequalities that fully
describes the admissible set of thrust force and torques
for each specific MAV design. For instance, for an
octocopter without failure, it turned out, the related
polytope can be described by 617 inequalities. In case
any of DC motor is in a fault state, the number of
inequalities decreases, while in an extreme case when
all DC motors are in failure modes, the admissible set
is reduced to a single point at origin, hence the system
is fully uncontrollable.

The obtained inequalities can be further used in
motion planning to generate a feasible trajectory that
depends on the initial admissible set of thrust force and
torques (or the resulting polytope). In the next sub-
section, we describe a novel motion planner named as
risk-sensitive planner (RSP) based on a careful selection
of some of the inequalities that describe the admissi-
ble set (only a few of them), where the selection process
depends on the required mission.

5.2. Selected optimization framework formotion
planning

In Section 2.4, it is shown that for the tracking refer-
ence trajectory the position coordinates x and y must
be at least four times differentiable, and the heights z
and orientationsψ are at least twice differentiable. Ref-
erences to φ and θ orientation coordinates are obtained
as a consequence of the control of the x and y posi-
tion coordinates. Accordingly, the height coordinates z
and the orientation coordinates ψ behave as a double
integrator, that is

q̈ = u, (44)

and the x and y position coordinates can be approxi-
mated by a quadruple integrator

....q = u, (45)

where q, q̇ and q̈ are the generalized coordinate, velocity
and acceleration respectively, and q = [x y z ψ].

The minimization of acceleration (44) and snap (45)
directly yields the minimization of the generalized
forces which act on the system. This further results in
the minimization of energy consumption while taking
into account the constraints imposed on the trajectory.
This consequently means that the battery consumption
during the mission will be minimal. Detailed descrip-
tion of motion planning based onminimal acceleration
and snap can be found in [51].

For this reason, motion planning problem can be
described as a fixed finite-time optimization problem
given as

minimize
0�t�T

(‖q̈‖2)

subject to

qmin � q � qmax

q̇min � q̇ � q̇max

q̈min � q̈ � q̈max,

(46)

where the fixed finite-time represents the mission exe-
cution time T. The waypoints, as part of the given
mission, through which the MAV is supposed to pass
should also be included in the optimization frame-
work as desired constraints. One way to include these
constraints is to impose hard constraints into the opti-
mization. To ensure that the planner can be risk-averse,
if necessary, we need to allow the motion planner to
be capable of generating trajectories that may deviate
from the waypoints. In addition, the deviation from the
waypoints can be also used as a performance measure
for the given mission. To do so, we include these con-
straints into the objective function by penalizing large
deviations from the given waypoints as

minimize
0�t�T

(‖q̈‖2 +
∑
i
αi(‖q − qi‖2))
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subject to

qmin � q � qmax

q̇min � q̇ � q̇max

q̈min � q̈ � q̈max (47)

where weights 0 ≤ αi ≤ 1 are used for describing how
important it is to pass through some of the waypoints
qi during themission execution. For the purpose of this
work, we set αi = 1 for all i.

Since (19), (20) and (22)) give the relation between
T, τx, τy and τz and q, it is now possible to include
the inequalities (or some of them) that describe the
fault-dependent admissible set into the optimization
framework. This gives the final form of the optimiza-
tion framework used for the proposed RSP motion
planner:

minimize
0�t�T

(‖q̈‖2 +
∑
i
αi(‖q − qi‖2))

subject to

qmin � q � qmax

q̇min � q̇ � q̇max

aT + bτx + cτy + dτz � e
i

(48)

In order to take into account any possible failure
during the motion planning stage, one can include all
constraints related to the admissible set of that failure.
In this paper, we call such a planner a risk-conservative
planner (RCP). However, the RCP planner would be
quite conservative, so in the following subsection we
describe how to select some of the inequalities by care-
fully examination of the given mission to form the RSP
planner. It should be noted that the decision on which
failures and their related admissible sets to include
should follow from the failuremode and effects analysis
(FMEA) [21,52].

5.3. Risk-sensitivemotion planner based on
mission-related fault-tolerant analysis

In this subsection we describe how to take possible fail-
ures into account during the motion planning stage by
means of their related admissible sets. By doing so, we
aim to include the associated risk into the planner in
order to increase reliability of the mission execution in
terms of satisfactory performance. This will be done
at the cost of a much smaller performance deteriora-
tion than in case when a RCP planner is used for which
all constraints related to risk-dependent admissible sets
are included. As expected, the planner will require a
bit more time to complete the mission than the RIP
planner.

When a fault occurs the MAV may be in a posi-
tion and orientation such that the control allocation

is capable to produce desired thrust force and torques
for the remaining DC motors without any effect on the
mission performance. Contrary, the MAV may be in
such a position and orientation to significantly deteri-
orate the performance. The idea behind the proposed
RSP motion planner is to carefully select a certain
number of fault-dependent inequalities to retain the
overall performance of a healthy system as much as
possible. By doing so, the planner aims to minimally
reduce the vehicle manoeuvrability (much less than in
case of the RCP motion planner) in order to decrease
those states in which the vehicle might significantly
deteriorate the performance when any of selected fault
occurs.

The overall steps for mission-related fault-tolerant
analysis and for designing the proposed RSP motion
planner can be summarized as follows:

(a) Select the failure modes of interest based on the
FMEA analysis (e.g. single motor failures).

(b) Determine the minimum mission execution time
for the RIP motion planner to achieve a feasible
solution (that is, passing through waypoints).

(c) Determine the minimummission execution times
of the RCP motion planner for all selected failure
modes to achieve feasible solutions (that is, passing
through the waypoints).

(d) Set the maximum time of all minimum times
obtained in step to be the mission time in order
to ensure that the RCP planner provides feasible
solutions for each failure modes.

(e) Find all inequalities associated to the fault depen-
dent admissible sets for each selected failure mode
from step (a), which are not satisfied during the
mission execution obtained with the RIP motion
planer for the given mission time from step (d).

(f) Form the final optimization framework for the RSP
motion planner by including all constraints found
in step (e). Determine the minimum mission exe-
cution time for the RSP motion planner to achieve
a feasible solution. This optimization framework
represents the proposed RSP motion planner.

The presented design steps can be explained as fol-
lows. First, we perform the FMEA analysis in order to
find themost critical failuremode thatwill be taken into
account during the planning stage (step (a)). Second,
we determined the minimum execution time for the
RIP planner (step (b)). The minimum mission execu-
tion time represents a time for which the optimization
framework still gives a feasible solution, that is, the
solution which ensures passing through the waypoints.
Since the proposed design steps can be conducted off-
line, that is before themission execution, thisminimum
value can be easily found by incrementally decreasing
the time and checking whether the related solution is
feasible or not. Then, for all selected failuremodes from
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Table 8. Performance comparison between the RIP and RCP
approaches (Case 1, steps (a), (b) and (c)).

MAV T [s] eR [m] eR/N [m] e� [rad] e�/N [rad]

RIP 16 0.0412 0.0019 4e−12 4e−13
RCP 20 0.0566 0.0027 1e−18 5e−21

step (a), we determine their minimum execution times
(step (c)). In step (d), we select the worst-case (max-
imum time) from step (c) to be the mission time in
order to ensure that all planners provide feasible solu-
tions. This is also important for a fair comparison of
all planners by means of the performance measured by
deviation from the waypoints. Otherwise, some of the
planners would be infeasible. In step (e), we first find
the admissible sets for each failure mode and deter-
mine their related inequality sets. Then, we test the RIP
motion planner, given the mission time from step (d),
in order to find only those inequalities which are not
possible to satisfy for the considered mission. To do so,
we check the thrust force and the torques obtained by
the RIP motion planner against the related admissible
sets for each failure mode. In step (f), we form the final
optimization framework by including a constraint set
consisted of the inequalities extracted from step (e) and
the admissible set for the healthy system.

5.4. Results for a givenmission

Themission is defined in the form of Vivian curve as in
proceeding sections. 21 points have been generated uni-
formly along the curve to define the waypoints. To test
the quality of generated trajectories, we use two errors,
for position eR and orientation e� , as

eR =
∑
i

√
(xi − xrefi)2 + (yi − yrefi)2 + (zi − zrefi)2

(49)

e� =
∑
i

√
(ψi − ψrefi)

2. (50)

Case 1: For illustration purposes, we first consider
only one single failure on DC motor 1 in order to take
it into account in the motion planning stage (step (a)).
In step (b) and (c) we determined the minimum times
to get a feasible solution for the RIP motion planner,
which is 16 [s], and for the RCP motion planner, which
is 20 [s] (Table 8).

In accordance to step (d), we then choose the mis-
sion time to be 20 [s] for the next step. In accordance
with step (e), for the thrust forces and torques obtained
by the RIP planner, we find all inequalities from the
fault-dependent admissible set which are not satisfied
during themission execution. For the considered exam-
ple, in the case of the RIP planner, the obtained thrust
force and torques violate only two inequalities (out
of 440 that describe the admissible set of thrust force

Table 9. Performance comparison between the RIP, RCP and
RSP approaches for T = 20 s (Case 1, steps (d) and (e)).

MAV T eR [m] e� [rad] Violetad constraints

RIP 20 0.038 5e−19 51
RCP 20 0.057 1e−18 0
RSP 20 0.038 1.25e−18 1

Table 10. Performance comparison between the RIP, RCP and
RSP approaches for their minimum execution times (Case 2,
steps (a), (b) and (c)).

MAV T [s] eR [m] eR/N [m] e� [rad] e�/N [rad]

RIP 16 0.0412 0.0019 4e−12 2e−13
RCP M16 26 0.286 0.014 2e−17 1e−19
RSP 18 0.234 0.011 1.2e−9 6e−11

Table 11. The number of violated inequalities related to
double-fault admissible sets (M16) by different planners
(Case 2).

MAV T Violetad constraints

RIP 26 80
RCP M16 26 0
RSP 26 21

and torques) in 111 cases related to 99 discrete posi-
tions along the mission curve (out of possible 210). By
including only these two additional constraints into the
final optimization (step (f)), we get the RSP planner.We
have observed that the RSP planner has violated only
one inequality constraint at only one position (Table 9).
The comparison of all three planners (RIP, RCP and
RSP) for the maximum time obtained (step (d)), is
given in Table 9. It can be seen that the RIP and RSP
planners obtained similar performances, better than in
case of the RCP approach. On the other side, the RIP
planner violated the constraints in 51 positions (which
might lead to a high deterioration of performance if the
fault occurs), while the RSP violated only one inequality
constraint at only one position.

Case 2: Consider now a double-fault case (Motor 1
and 6). As expected, we can see from Table 10, that the
RIP planner obtained the best performance. The RSP
and RCP planner have similar performance, except that
the RCP planner needs a bit more time (T = 26 s vs.
T = 18 s) to complete themission. This is due to amore
restrictive set of inequality constraints included in the
optimization for the RCP planner. However, in the case
when the execution time is set to the maximum time
(see Table 11) obtained from these planners (T = 26 s),
the RIP planner has violated fault-dependent inequal-
ity constraints 80 times at 73 positions, while the RSP
motion planner only 21 times at 21 positions. This indi-
cates that the RSP motion planner is readier than the
RIP planner in case this double fault occurs. Unlike
the RIP motion planner, we note here that any higher
multiple-faults will substantially decrease the manoeu-
vrability space for the RCP planner.
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Table 12. Performance comparison between the RIP, RCP and
RSP planners (Case 3).

MAV T eR [m] eR/N [m] e� [rad] e�/N [rad]

RIP 16 0.0412 0.0019 4e−12 4e−13
RCP M1 20 0.057 0.0027 1e−18 5e−21
RCP M2 20 0.038 0.018 4e−18 2e−19
RCP M3 20 0.038 0.018 7e−12 3.4e−13
RCP M4 28 0.5 0.0238 1.4e−8 6.9e−10
RCP M5 24 0.26 0.012 0.0012 5.9e−4
RCP M6 24 0.43 0.021 9e−12 4.4e−13
RCP M7 20 0.073 0.0035 1.5e−10 7.4e−12
RCP M8 20 0.038 0.018 7e−12 3.4e−13
RSP 28 0.54 0.025 7e−6 3.5e−7

Table 13. The number of violated inequalities related to all
single-fault admissible sets (Mi) by theRIP, RCPandRSPplanners
(Case 3).

MAV M1 M2 M3 M4 M5 M6 M7 M8

RIP 52 0 108 206 0 108 24 136
RCP M1 0 0 107 179 0 89 20 116
RCP M2 52 0 110 205 0 108 24 136
RCP M3 53 0 0 185 0 87 23 137
RCP M4 52 0 99 0 0 99 24 136
RCP M5 52 0 101 197 0 99 24 136
RCP M6 52 0 101 197 0 0 24 136
RCP M7 52 0 101 191 0 95 0 134
RCP M8 52 0 108 197 0 108 24 0
RSP 0 0 118 15 0 5 0 0

Case 3: In this case we address all possible single
faults (8 for an octocopter). Table 12 shows the results
obtained by the RIP, RCP and RSP planners. The RIP
andRSPplanners aswell as different variants of theRCP
planner related to different single-faults, that is RCPMi,
i = 1, . . . , 8. The RCP Mi planner takes into account
only the admissible set related to the fault on the ith
motor, meaning that the planner is conservatively pre-
pared only for that fault. It should be noted that the RCP
planner is not able to take all 8 single faults simultane-
osly into account during the planning stage since the
final admissible set would be an empty set. However,
the RSP planner is capable to address allMi single faults
simultaneously. As previously explained, this is possible
since the RSP planner takes only a few inequality con-
straints for the admissible sets related to all Mi faults,
in order to form the optimization framework. For this
reason, the RSP is capable to provide a feasible solu-
tion, unlike the RCP planner. One can observe from
Table 12 that the RSP planner needs more time (T =
28 s) to complete the mission in a satisfactory manner.
This is due to the fact that it is the only planner that
takes all 8 single-faults into account. However, for the
mission execution time set to the maximum T = 28 s,
one can see from Table 13 that the number of vio-
lated inequalities related to all single-fault admissible
sets (Mi) was significantly smaller for the RSP motion
planner with respect to other planners. As expected, the
RIP planner violated the largest number of those con-
straints which makes it unprepared for any single-fault
occurrence during the mission executions. It is worth
mentioning that the constraints of the admissible set

M3 are violated in a huge number except by the RCP
planner (RCP M3) that takes into account those con-
straints in the planning stage. This is probably due to
the selected mission which requires such manoeuvers
sensitive to those constraints. An additional interesting
observation regarding the admissible setsM2 andM5 is
that all planners havemanaged to satisfy all related con-
straints during the whole mission. Finally, as expected,
all RCP planners, RCPMi, have satisfied all constraints
related to their own admissible setsMi.

6. Conclusions

In order to understand how an unexpected rotor-fault
may influence the considered MAV mission, we have
provided a procedure for obtaining the reduced con-
trol admissible set and illustrated it with three most
frequently used types of vehicles, quad-, hexa-, and
octocopter for different combinations of rotor-faults.
We have also briefly presented an RLS tracking con-
troller used to handle every fault which might poten-
tially occur during the mission execution in order to
provide a unique testbed for performance analysis of
considered motion planners. We have also shown how
the reduced control admissible set can be described by
a set of inequality constraints and which optimization
framework can be appropriate to design the RSP plan-
ner. However, we have illustrated that only a subset
from those constraints, which is directly related to the
given mission, can be used within the optimization to
get a less-restricted form of risk-averse motion planner
than in case of a highly conservative approach (RCP).
We have also devised steps to design such a risk-motion
planner for any MAV.
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