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Monte Carlo localization algorithm based on particle swarm optimization

Cuiran Li, Jianli Xie, Wei Wu, Haoshan Tian and Yingxin Liang

School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China

ABSTRACT
In wireless sensor networks, Monte Carlo localization for mobile nodes has a large positioning
error and slow convergence speed. To address the challenges of low sampling efficiency and
particle impoverishment, a time sequence Monte Carlo localization algorithm based on parti-
cle swarm optimization (TSMCL-BPSO) is proposed in this paper. Firstly, the sampling region is
constructed according to the overlap of the initial sampling region and the Monte Carlo sam-
pling region. Then, particle swarmoptimization (PSO) strategy is adopted to search the optimum
position of the target node. The velocity of particle swarm is updated by adaptive step size
and the particle impoverishment is improved by distributed estimation and particle replication,
which avoids the local optimum caused by the premature convergence of particles. Experiment
results indicate that the proposed algorithm improves the particle fitness, increases the particle
searching efficiency, and meanwhile the lower positioning error can be obtained at the node’s
maximum speed of 70m/s.
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1. Introduction

Wireless sensor network (WSN) is a technology that
integrates communication, sensor, micro-electronics
and computer, which has broad application prospects
in industry, agriculture, military and commercial fields
[1]. Generally, the WSN node is composed of sensor
module, energy supply module, processor module and
wireless communicationmodule [2]. In the monitoring
area, a large number ofWSNnodes are deployed, which
can realize the data acquisition of the target, and report
the related location information of the acquired target
to the observer.

The highmobility of the target nodes in themonitor-
ing field provides the research background for mobile
WSN node localization and has been widely used in
various industries. The existing positioning algorithms
include Monte Carlo Localization (MCL) [3], Monte
Carlo localization Boxed (MCB) [4], Mobile and Static
sensor network Location (MSL) [5], Received Signal
Strength-based MCL (RSS-MCL) [6] and Orientation
Tracking-based MCL (OTMCL) [7], etc. The MCL
algorithm has poor positioning accuracy when the
number of the anchor nodes is small. In addition, it
has too many sampling regions, which leads to a lower
sampling rate and the degeneracy of the particle. The
MCB algorithmputs forward the concept of anchor box
and sampling box. By the concepts, the sampling rate
is greatly improved while the sampling area is reduced.
But the observationmodel in the anchor box has a small
distribution proportion, which will cause very low suc-
cess rate of sampling [8, 9]. The MSL algorithm uses

the neighbouring information of the target nodes to
assist the localization, which brings very complex com-
putation and large energy consumption. After that, the
RSSI ranging technique is introduced into theMCL, i.e.
the RSS-MCL algorithm, which adopts the lognormal
model of the received signal strength in the target node
prediction and filtering phase. The OTMCL algorithm
uses the angle information between nodes to build a
more accurate sampling area, which improves the sam-
pling efficiency and has better positioning results.

In recent years, with the application of WSN in vari-
ous fields, some improved algorithmshave been put for-
ward. In [10], the iterative MCL algorithm is proposed
to solve the problem of large positioning error caused
by the low density of the anchor nodes. In [11], the least
square method is combined with the MCL to get the
sampling area with high posterior density distribution
using curve fitting. It achieves the rapid sampling and
filtering, and the performances of the sampling success
rate and positioning error are improved greatly. At the
same time, the ant colony algorithm is considered in
[12], and the influence of the anchor node density on
positioning error is analysed. In [13], an MCL local-
ization algorithm based on fuzzy theory is proposed,
which shortens the positioning time and improves the
positioning accuracy. However, in the environments of
high node mobility and frequently changing network
topology, the positioning accuracy and convergence of
localization algorithm still need to be improved. In [14],
a localization method named APMCL (Active Particle
in MCL) is proposed, which is based on the idea of
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active particles. The active particles are not passively
waiting for being filtered in Sequential Monte Carlo
process. In contrast, they will actively adapt themselves
to muchmore valuable pose (with higher fitness value).
Based on the mutation mechanism and memory pool
of IA and the high convergent speed and precision of
PSO, APMCL results in an effective, robust and efficient
solution for globally localizing the robot’s pose. Chien
et al. [15] propose a global localization algorithm for
mobile robots based on MCL, which employs multi-
objective particle swarm optimization (MOPSO) incor-
porating a novel archiving strategy, to deal with the
premature convergence problem in global localization
in highly symmetrical environments. These two algo-
rithms did not consider the high mobility of the sensor
node.

To address the challenges of low sampling effi-
ciency and particle impoverishment, a Time Sequence
MCL algorithm Based on Particle SwarmOptimization
(TSMCL-BPSO) is presented in this paper. On the basis
of previous work [16], the different sampling regions
are obtained by analysing the relative position between
the target node and the anchor nodes. In the sampling
region, particle swarm optimization (PSO) strategy is
adopted to search the optimum position of the tar-
get node. The velocity of particle swarm is updated by
adaptive step size and the particle impoverishment is
improved by distributed estimation and particle repli-
cation. We have evaluated our proposed algorithm in
high mobility environment. Simulation results demon-
strate that it achieves much lower positioning error
and higher convergence level, as compared to existing
algorithms.

The paper is organized as follows. In Section 2,
we discuss the determination of sampling region in
TSMCL-BPSO algorithm. In Section 3, an improved
PSO strategy is presented and the node localization pro-
cedure is offered.We evaluated our proposed algorithm
in Section 4. Section 5 concludes the paper and outlines
the future work.

2. Sampling region of TSMCL-BPSO algorithm

2.1. Initial sampling region

TheWSN anchor node sends out scanning signals peri-
odically, and the period of the scanning wave is

T = 2r/Vmax, (1)

where r is the communication radius of anchor node,
and Vmax is the maximum moving speed of the target
node. The node receiving the scanning wave feedback
immediately and the anchor node sorts the neighbour
nodes according to the time when the feedback signal
is received. Theoretically, if the number of neighbour
anchor nodes of the target node is more, the feed-
back information will be more comprehensive. Thus,

the smaller sampling region can be constructed and the
higher sampling accuracy is achieved. However, with
the increasing number of the anchor nodes, it will lead
to a dramatic increase in the complexity of localization
algorithm. We take three anchor nodes as an example
to analyse the determination of the sampling region in
TSMCL-BPSO algorithm.

Suppose that the anchor nodes (denoted as A, B,
and C) are the neighbour nodes of the target node
(denoted as Q). The feedback timing of nodes A, B, and
C are assumed to be as QBC, AQC and QAB. Figure 1
shows the sampling region of the target node deter-
mined by different number of the anchor nodes. In
Figure 1(a), node Q is in the circle with node A as the
centre and the distance between the nodes A and B as
the radius. In Figure 1(b), the sampling region of node
Q, predicted by nodes A and B, is the shadow region.
And, in Figure 1(c), with the feedback timing of the
three anchor nodes, the initial sampling region of the
target node in TSMCL-BPSO algorithm is determined,
i.e. the shadow region.

According to the topology relation between the
target node and three anchor nodes, there are eight
possible sampling regions, illustrated in Figures 1(c)
and 2(a–g).

2.2. MCL sampling region

The final sampling region of TSMCL-BPSO algorithm
is formed by overlapping the initial sampling region
withMCL sampling region. In theMCL algorithm, each
particle is given a certain weight, and the particle set is
used to represent the posterior distribution of the pos-
sible location of the target node at the next moment.
Its emphasis is not on the measuring relative distance
between the target node and the anchor nodes, but
reducing the possible region of the target node [17, 18].
The MCL algorithm includes node initialization, pre-
diction and filtering. The sampling region of the target
node is determined in the prediction phase.

Initialization: Assume that time is split into equal
length segments, and t = {1, 2, 3, . . .} is represented as
discrete time. At first, there is no any information about
the location of the target node, andN sample points are
selected randomly in the given region to construct the
sample set L0 = {l00, l10, . . . , lN−1

0 }.
Prediction: Let Vmax be the maximummoving speed

of the target node, and d(lt|lt−1) is the Euclidean dis-
tance of the target node at moments T and T−1.
If the moving speed of the target node is uniformly
distributed, the probability density function (PDF) of
the node location also obeys uniformly distributed,
expressed by [19]

p(lt|lt−1) =
{
1/πV2

max if d(lt|lt−1) < Vmax,
0 if d(lt|lt−1) ≥ Vmax.

(2)
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Figure 1. Initial sampling region determined by three anchor nodes.

Figure 2. Possible sampling region for different topology.

The sampling region is a shadow region, shown in
Figure 3(a).

Filtering: The target node filters the sampling points
according to the observed information of one-hop and
two-hop anchor nodes of the target node. Assume S1 is
the one-hop anchor node set, S2 is the two-hop anchor
node set, l is the sampling particle, and s represents
the anchor node. Then, the filter condition of sampling

point l can be written as

filter(lit) = [∀s ∈ S1, d(lit , s) ≤ r
]

∩ [∀s ∈ S2, r < d(lit , s) ≤ 2r
]
. (3)

The restricted sampling region is a shadow region,
shown in Figure 3(b,c).

Figure 3. Sampling region of MCL.
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2.3. Final sampling region

Assume the coordinates of the anchor nodes A, B and
C are (xA, yA ), (xB, yB) and (xC, yC) respectively, and
the distances between A and B, A and C, B and C are r1,
r2 and r3, respectively. In Figure 1(c), let (X, Y ) be the
coordinates of the node in the shadow region, then we
have

(X − xA)2 + (Y − yA)2 ≤ r21,

r21 ≤ (X − xB)2 + (Y − yB)2 ≤ r23,

(X − xC)2 + (Y − yC)2 ≤ r22. (4)

The sampling region is related to the number of rings
determined by the feedback timing of the anchor nodes.
It is assumed that the number of rings is h, then the
number of vertices of the sampling region is written as

3 ≤ k ≤ h + 3, h ∈ [0, 2]. (5)

The intersection of the two circles is at most 2, and
only one is the vertices in the shadow region. So, the
vertices outside the shadow sampling region need to
be eliminated. In Figure 1(c), the coordinates of the
vertices 1, 2, 3, and 4 can be expressed as

(x1, y1) :

{
(x1 − xA)2 + (y1 − yA)2 = r21,
(x1 − xB)2 + (y1 − yB)2 = r21,

(6)

(x2, y2) :

{
(x2 − xB)2 + (y2 − yB)2 = r21,
(x1 − xC)2 + (y2 − yC)2 = r22,

(7)

(x3, y3) :

{
(x3 − xB)2 + (y3 − yB)2 = r23,
(x3 − xC)2 + (y3 − yC)2 = r22,

(8)

(x4, y4) :

{
(x4 − xA)2 + (y4 − yA)2 = r21,
(x4 − xB)2 + (y4 − yB)2 = r23.

(9)

According to the constraint equation (4), the inter-
section points outside the sampling region are filtered
out. In Figure 4(a), there are three lines in (or tan-
gent to) the shadow sampling region, which can be
represented as

l1 : x = xB + r1,

l2 : x = xA + r1,

l3 : y = yB − r1. (10)

The shadow sampling region determined by the feed-
back timing of the anchor nodes is irregular. For con-
venience, its enclosing rectangular is regarded as the
initial sampling region of the target node, denoted as
R1. Then, the coordinates of vertices E and F of the

enclosing rectangular are obtained by

E(xE, yE) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xE = min {min (xi) ,
xB + r1, x A + r1} ,
yE = min

{
min

(
yi

)
,

y B − r1} ,

i = 1, 2, . . . 4,

(11)

F(xF , yF) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xF = max {max (xi) ,
x B + r1, xA + r1} ,
yF = max

{
max

(
yi

)
,

y B − r1} ,

i = 1, 2, . . . 4.

(12)

In the MCL algorithm, the sampling region of the
target node is a circle. Similarly, the circumscribing
square of the sampling circle is regarded as the pos-
sible MCL sampling region R2. Therefore, the overlap
of R1 and R2 is the final sampling region R of the tar-
get node, i.e. the rectangle with H and I as its vertex in
Figure 4(b). The coordinates of vertices H and I of this
are written as

H(xH , yH) :

{
xH = max {xE,Xt−1 − Vmax} ,
yH = max

{
yE,Yt−1 − Vmax

}
,

(13)

I(xI , yI) :

{
xI = min {xE,Xt−1 + Vmax} ,
yI = min

{
yE,Yt−1 + Vmax

}
.

(14)

3. Particle optimization and node localization

After the final sampling region is determined, the tar-
get localization is implemented. In the localization, the
target node is represented by particles, and the real
location of the target node can be searched by PSO
strategy.

3.1. Principle of PSO strategy

The PSO algorithm is an intelligent optimization
method to simulate the predatory behaviour of birds
[20]. It can be widely used in many engineering
fields, such as target tracking, navigation guidance,
state monitoring, fault detection, parameter estima-
tion and system identification, etc. [21]. In PSO
strategy, a group of particles are initialized. The fit-
ness of particle is determined by objective function,
and the particle moves in sampling region at a cer-
tain speed and direction. Particles swarm follows the
current optimal particle and search in the solution
space. The particle dynamically adjusts its position
and speed according to the optimal solution searched
by itself and particle swarm. Suppose that there are
M particles in D-dimensional searching region. Let
xid = (xi1, xi2, . . . , xid, i = 1, 2, . . . ,M) indicate the
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Figure 4. Sampling region of TSMCL-BPSO.

position of ith particle, and vid = (vi1, vi2, . . . , vid) indi-
cate the velocity of the ith particle. The individual opti-
mum position of ith particle is pid = (pi1, pi2, . . . , pid),
and the global optimum position of particle swarm is
pgd = (pg1, pg2, . . . , pgd). Then the evolution equations
of the ith particle’s speed and position are [22]

vk+1
id = wvkid + c1r1

(
pkid − xkid

)
+ c2r2

(
pkgd − xkid

)
,

(15)

xk+1
id = xkid + vkid, (16)

wherew is inertia weighting factor, vkid is the speed of ith
particle after k iterations, c1 and c2 are cognitive learn-
ing factors and social learning factors, respectively, r1
and r2 are independent random numbers, pkid and pkgd
are the individual optimum and global optimum for k
iterations, and xkid is the position of ith particle after k
iterations.

3.2. Improved PSO strategy

The PSO strategy has the advantage of less parameter
setting, but the particle is prone to blind phenomenon
in global optimization, easily resulting in premature
convergence and falling into the local optimum. In
order to solve the problem, in the initial searching stage,
particle swarm search in sampling region at a higher
moving speed (step size), so as to speed up searching
process. As the number of iterations increases, parti-
cle swarm will gradually approach the global optimum,
at which time the step size is reduced to enhance the
local searching ability of individual particle. On the
other hand, PSO strategy has the disadvantage ofweight
degradation, and which can be solved by the resam-
pling method [23]. However, resampling only copies
the samples with higher weight, which can lead to par-
ticle impoverishment [24]. Therefore, distributed esti-
mation and particle replication are taken to improve

particle impoverishment, increase population diversity,
and achieve population evolution.

Firstly, the initial step size in particle optimization is
set up, which is usually given according to the empirical
value. The moving step of particle is adjusted adap-
tively according to the initial step size and the number
of iterations, which is written as

vkid = v0id · e((itermax−k)/itermax), (17)

where itermax is the maximum number of iterations.
Substituted Equation (17) into Equations (15) and (16),
and the updated particle velocity and position are
expressed, respectively, by

vk+1
id = wv0id · e((itermax−k)/itermax) + c1r1

(
pkid − xkid

)
+ c2r2

(
pkgd − xkid

)
, (18)

xk+1
id = xkid + v0id · e((itermax−k)/itermax). (19)

Particle replication is designed to increase particle
diversity while avoiding the introduction of particles
with poor fitness into the next generation. The dis-
tributed estimation is a random searching method
based on the probability distribution of variables [25],
which can realize the individual evolution. By sam-
pling and spatial distribution of excellent individuals, a
probabilistic distribution model is constructed to form
the next generation of individuals. Assuming that the
optimization variables are independent and obey the
Gauss distribution, particle replication is performed by
the following Equations (20) and (21), to obtain the
dominant population:

xμ,σ = rnorm · σ + μ, (20)

rnorm =
√

−2 ln r1 · sin (2πr2) , (21)

where r1 and r2 are the random numbers of [0, 1], and
σ and μ are the mean value and standard deviation of
particles.
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Figure 5. Particle optimization process in PSO algorithm.

Let dj represent the distance between the real coor-
dinate of the target node and jth anchor node. The
coordinate of ith particle is (xid, yid), and the coordinate
of the anchor node is (xj, yj), j = 1, 2, . . . , S. Theoreti-
cally, the closer anchor node is to the actual location of
the target node, the more influence it will have on posi-
tioning accuracy of the target node. The inertia weight
factor is defined as

wj =
S∑

j=1
dj

/
dj

(
j = 1, 2, . . . S

)
. (22)

In our algorithm, the particle with minimum fitness
function is the optimum particle. Then, the fitness
function of the particle is defined as

fid = 1
S

S∑
j=1

(1/wj) ·
∣∣∣∣
√(

xid − xj
)2 + (

yid − yj
)2 − dj

∣∣∣∣ .
(23)

The global optimization ability comparison between
TSMCL-BPSO and PSO strategy is shown in Figures 5
and 6. In simulations, the initial position of anchor

nodes and target nodes in the monitoring area is gen-
erated randomly, and the movement of target nodes
is also random. Therefore, the sampling region in
TSMCL-BPSO algorithm is different in each simula-
tion. Assume that the final sampling region R of the
target node is a rectangle with a side length of 10m.
In region R, 30 particles are randomly thrown, and
the PSO and TSMCL-BPSO algorithms are executed
to search the global optimum location of target nodes,
respectively. FromFigures 5 and 6, we can see that com-
pared with the PSO algorithm, the particle in TSMCL-
BPSO algorithm can search the global optimum posi-
tion of target node in a relatively short time.

3.3. Target node localization

In the proposed TSMCL-BPSO algorithm, the node
localization procedure is shown in Figure 7.

Step1: The anchor node sends out scanning signals to
the neighbours periodically.
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Figure 6. Particle optimization process in TSMCL-BPSO algorithm.

Step2: Determine whether the target node meets the
positioning condition. (Does the target node
receive at least 3 anchor node information?) If
the condition is satisfied, turn to Step3, other-
wise return to Step1.

Step3: According to the feedback signal received by
the anchor nodes, determine the initial sam-
pling region of the target node, denoted as R1.

Step4: Let the MCL sampling region, R2, overlap with
R1 to find the final sampling region of the target
node, R.

Step5: Exact sufficient samples (particles) in region R.
Step6: Initialize the parameters in TSMCL-BPSO

algorithm, including the population size, initial
position, initial velocity and fixed step size of
the particle.

Step7: Calculate the fitness function of particle by
Equation (23).

Step8: According to the fitness function of particle,
search the individual and global optimumposi-
tion.

Step9: Judge whether particle meets the position-
ing termination condition. (The particle fit-
ness is within a given range, or the number

of iterations reaches the maximum number.) If
the condition is satisfied, turn to Step14, other-
wise continue with Step10.

Step10: Update the coordinate of the particle by Equa-
tions (18) and (19).

Step11: Particle replication and new population form-
ing by Equations (20) and (21).

Step12: Calculate the fitness function of the particle in
a new population.

Step13: If the current fitness function of the particle
is less than the fitness function it has experi-
enced, then the historical optimum position is
replaced by the current position. Then, return
to Step9.

Step14: Give the coordinates of optimum particle and
terminate the localization procedure of the tar-
get node.

4. Experiment results

Experiments are performed with Intel (R), Core (TM),
i5-2450MCPU, clocked 2.50GHz, 4GB memory plat-
forms, and Matlab7.0 simulation environment. In the
experiment, the anchor nodes are randomly deployed



458 C. LI ET AL.

Figure 7. Node location procedure.

Table 1. Clustering evaluate matrix.

Parameters Values

Monitoring area 200m · 200m
Number of anchor nodes 80
Number of target nodes 20
Node communication radius 50m
Node moving speed [0, 70m/s]
Population size 30
Maximum number of iterations 100
Number of experiments 50
Population size 30
Search dimensions 2
Cognitive learning factors 1.2
Social learning factors 0.5
Initial step size 50
Number of replication 4

in a barrier-free monitoring area. It is assumed that
each anchor node has the capability of measuring and
judging whether other nodes are within its communi-
cation range. The movement of the target node is based
on random waypoint model [26], and independent of
each other. The simulation parameters and its values are
shown in Table 1 [27–29].

4.1. Outlier eliminating and positioning error

According to the fitness function, the position differ-
ence between the particle and the target node can be
calculated. The smaller the particle’s fitness is, the closer
the particle is to the real coordinate of target node.
The localization performance is usually evaluated by
positioning error, which is defined as

err =
P∑
i=1

√
(xi − Xi)

2 + (
yi − Yi

)2/ rP, (24)

where (xi, yi) and (Xi, Yi) are the estimated coordi-
nate and real coordinate of target node, respectively, r
is the communication radius ofWSN node, and P is the
number of experiments.

Gross errors may occur in each experiment. For
example, external shocks, mechanical shocks, and
electromagnetic interference, etc., can result in the
changing position of the target node. The outliers (the
points that reach gross error) greatly affect position-
ing accuracy. The error in range of gross error is an
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Figure 8. Initial nodes distribution.

effective error, and the error produced by outlier is
an invalid error. Outlier eliminating is necessary in
localization algorithm. The common criterion for error
analysis includes 3σ , Grubbs and Dixon criterion, etc.
The 3σ criterion is suitable for the number of experi-
ments more than 30. The Grubbs criterion is generally
applicable for the fewer number of experiments. The
Dixon criterion is complex, and the results need to be
sorted. In the simulations, the 3σ criterion is used to
eliminating outliers. It is assumed that ξ is the coordi-
nates of optimum particle for an experiment, and the
mean and variance of ξ can be expressed, respectively,
by

ξ̄ =
P∑
i=1

ξi

/
P, (25)

σ =
√√√√ P∑

i=1

(
ξi − ξ̄

)2/
(P − 1). (26)

If the condition |ξi − ξ | > 3σ is satisfied, it shows
that ξ is an outlier and should be eliminated.

The initial distribution of the anchor node and the
target node in themonitoring area is shown in Figure 8.
Figure 9 depicts the variation of particle fitness with
the number of iterations in an experiment. The posi-
tioning error of TSMCL-BPSO algorithm is plotted in
Figure 10.

4.2. Comparison of global optimization ability

In simulations, the initial position of the anchor nodes
and the target nodes in themonitoring area is generated
randomly, and the movement of the target nodes is also
random. Therefore, the sampling region in TSMCL-
BPSO algorithm is different in each simulation. Assume
that the final sampling region R of the target node is a

Figure 9. The value of fitness function in an experiment.

Figure 10. Positioning error in TSMCL-BPSO algorithm.

rectangle with a side length of 10m. In regionR, 30 par-
ticles are randomly thrown, and the PSO and TSMCL-
BPSO algorithms are executed to search the global opti-
mum location of the target nodes, respectively, illus-
trated in Figures 9 and 10. It is shown that, compared
with the PSO algorithm, the particle in TSMCL-BPSO
algorithm can search the global optimum position of
the target node in a relatively short time.

4.3. Comparison of positioning error and
convergence

Assume that the anchor node density represents the
average number of anchor nodes in range of 1 hop of the
target node in the monitoring area [30]. The relation-
ship between the anchor node density and positioning
error is shown in Figure 11. It is obvious that with
the increase of the anchor node density, positioning
error is reduced. The reason is that the greater anchor
node density is, the more observations node receives,
and the higher positioning accuracy is obtained. Also,
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Figure 11. Relationship between anchor node density and
positioning error.

Figure 12. Relationship between maximum moving speed of
node and positioning error.

we can see that TSMCL-BPSO algorithm has the least
positioning error.

Figure 12 shows the relationship between the maxi-
mummoving speed of nodeVmax andpositioning error.
It can be seen that with the increasingVmax, positioning
error in three algorithms gradually narrowed.

The relationship between the anchor node density
and algorithm execution time is shown in Figure 13.
The higher the anchor nodes density is, themore obser-
vation information the nodes receive, and the shorter
searching time for the target node. Compared with
MCL and MCB algorithms, the proposed TSMCL-
BPSO algorithm reduces the sampling area, which
shortens the particle searching time for the target node.

5. Conclusion

In this paper, a time sequence Monte Carlo node local-
ization algorithmbased on particle swarmoptimization
(TSMCL-BPSO) is proposed. The sampling region of
the target node is constructed according to the feedback
sequence of neighbour anchor nodes of the target node,

Figure 13. Relationship between the anchor node density and
the execution time.

which reduces the sampling region and filtering time.
Experiment results show that the particle fitness and the
searching efficiency are improved by adjusting the par-
ticle searching step, particle replication and eliminat-
ing outliers. Besides, TSMCL-BPSO algorithm has the
lower positioning error for different anchor node den-
sity and higher nodemoving speed. For future research,
we are currently extending this work to the theoretical
analysis of three-dimensional scenes. In addition, the
movement of the target node is based on the random
waypoint model in this paper. In practical applications,
the motion of node follows a certain trajectory. There-
fore, the specific nodemotionmodel can be introduced
to improve the performance of localization algorithm.
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