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ABSTRACT
An approach is presented that combines a statistical test for peak
detection with the estimation of peak positions in time series. Moti-
vated by empirical observations in neuronal recordings, we aim at
investigating peaks of different heights and widths. We use a mov-
ing window approach to compare the differences of estimated slope
coefficients of local regression models. We combine multiple win-
dows and use the global maximum of all different processes as a
test statistic. After rejection, a multiple filter algorithm combines
peak positions estimated from multiple windows. Analysing neu-
ronal activity recorded in anaesthetized mice, the procedure could
identify significant differences between two brain states concern-
ing peak occurrences and intermediate down states showing no
peaks. This suggests that the method can be useful in the analy-
sis of time series showing variability of peak shapes. The method is
implemented in the R-package MFT (available on CRAN).

ARTICLE HISTORY
Received 26 August 2019
Accepted 5 June 2020

KEYWORDS
Brain states; linear
regression; multi-scale;
neuronal ensembles; peak
detection

1. Introduction

In many applications in time series analysis, one can observe more or less regularly occur-
ring fluctuations between periods of lower activity and short peaks of higher activity. We
consider here the context of spiking activity of a local ensemble of neuronal cells in layer
II/III of primary visual cortex, accumulated within a one-dimensional time series. In such
ensembles, spontaneous rhythmic activity can emerge (see Figure 5), consisting of peaks,
and intermediate periods of lower activity which will be called down states here. Such
functional brain states play an important role in the way sensory inputs are processed
and govern neuronal excitability across different spatial scales. We can discern between
an awake-like persistent state [1], and a sleep-like slow wave state [2,3]. In particular, the
variability of neuronal responses results from the interplay between the ensemble brain
state, ongoing spontaneous activity and sensory inputs [4]. Thus, functional brain states
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are possibly confined to local circuits or established as distributed patterns, and may cru-
cially shape the neural processes fromperception to action [5]. To disentangle this complex
interplay, an unbiased, data-driven approach to classify the current ensemble brain state –
as put forward in this study – is mandatory.

It is therefore the aim of the present paper to provide a statistical method with which
differences between such time series can be quantified. To that end, we also require amodel
for time series showing such peaks and down states that should, first, allow for the devel-
opment of rigorous statistical tools. Second, the model should be able to capture a certain
variability in the length and height of peaks and down states present in the data. This is
because the associated widths and heights of the peaks can be variable, particularly across
functional brain states (see Figure 5). It is therefore the aim of this paper to present a
method for the detection of peaks of various heights and widths in sequences of random
variables in order to describe functional differences between different brain states in the
occurrences of peaks and down states within a neuronal ensemble.

There is a vast literature on the statistical analysis and detection of peaks in time series.
On the one hand, procedures for the detection of changes in regression models are well
studied in mathematical statistics, with the aim of consistently detecting single breaks
[6–10] or multiple breaks [11–13] in regression functions, also see the textbook [14].
Particularly the detection of peaks, meaning a jagged deviation from baseline activity, is
studied in various disciplines. For financial time series, [15] proposed an online algorith-
mic approach based on the difference of slope parameters in a moving window analysis
in order to maximize the profitability of investment strategies. We also mention methods
from signal processing which often focus on the design of algorithms for peak detection,
using e.g., neural networks [16], Hidden Markov Models [17] or wavelet transform [18],
to name but a few. For a review in the context of ECG waveform analysis see, e.g., [19]. In
the context of neuronal network rhythmic fluctuations between up states (i.e., peaks) and
down states, Seamari et al. [20] proposed a method that relies on the crossing points of
two moving windows whose optimal size depends on the typical duration of the up state,
or peak, that is to be detected. Such signal processing approaches often evaluate the per-
formance with visual inspection or by application to large data sets in which peaks have
been labelled by expert knowledge. From a statistical point of view we mention [21] who
combine the identification of multiple peaks with a correction for multiple testing in a
kernel-based method, or similarly [22] who estimate changes in regression and then apply
post hoc correction procedures in a filtered-derivative method. The latter two methods
apply a single kernel or bandwidth, which regulates the degree of localization of the data,
and thus determines the preferred width of the peak to be detected.

Here we present a method that combines a statistical test for peak detection with the
estimation of the peak positions. Specifically, we aim at detecting an unknown number of
peaks of unknown and potentially different heights and widths, by application of multiple
bandwidths. The idea of the approach is the following.

First, in order to describe time series with downstates and peaks of different peaks
and heights, we assume the time series to consist of a jagged function ft that adds piece-
wise linear peaks of different heights and widths to a baseline level and is associated with
independent and identically distributed errors (Section 2.1).

Second, for the identification of the positions of the peaks, we use a sliding window
approachwith two adjacent subwindows of fixed size h. In each subwindow, we apply linear
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regression and then study the normed difference of the slope estimates between the left
and right window for every time t (Section 2.2). We show asymptotic properties of the
resulting difference process (Dh,t)t , which allow to define an asymptotic rejection region of
a statistical test that uses the temporalmaximumof this difference process for an individual
window size h.

Third, in order to study peaks of different height andwidth, we use a combined statistical
test that uses multiple bandwidths. This extends the multiple filter test (MFT, Section 2.3)
which was introduced in [23] for the analysis of first-order breaks in stochastic point pro-
cesses. The idea is to use the maximum ofDh,t across time t and all windows h in a window
setH as a test statistic. Because these multiple difference processes originate from the same
time series, it is possible to derive a combined rejection threshold for the resulting test.

Fourth, we discuss an algorithm that locates the peaks in Section 2.4. It starts by search-
ing formaximizers of each difference process (Dh,t)t for individual h, providing sets of peak
candidates. These candidates are then combined over all h ∈ H by elimination of candi-
dates that are likely to refer to the same underlying peak. We also give recommendations
on the choice of the window sizes.

In Section 3,we analyse neuronal ensemble activity recorded using high-speed 2-photon
calcium imaging upon expression of the genetically encoded calcium indicator GCaMP6f,
to assess the optical correlate of spiking activity of the entire local neuronal ensemble with
single-cell-resolution. First, we analyse the occurrences of peaks, fromwhichwe then iden-
tify down states. The results suggest interesting differences between the two investigated
brain states. After the discussion in Section 4, we give proofs and auxiliary results in the
Appendix. The procedure for peak detection is implemented in the R-package MFT ([24]
available on CRAN).

2. Materials andmethods

2.1. Themodel

In order to describe time series with peaks of different height and width, we use a model
that describes a time series as a realization of a sequence of randomvariablesX1,X2, . . . ,XT
following

Xt = γ + ft + εt ,

while γ ∈ R denotes a baseline constant, f denotes a jagged function that adds peaks of
different height and width, and i.i.d. and square-integrable random variables (εt)t with
E[εt] = 0 and Var(εt) = σ 2 for all t (Figure 1 (A)). For the formulation of peaks, we
define the peak function f : [0,T] → R

+
0 as a non-negative, continuous and piecewise

linear jagged function with baseline zero, see Figure 1(A) (red). More precisely, we decom-
pose the domain [0,T] into disjoint, increasingly ordered and right-closed intervals with
bounds in the integers. In each interval we assume f to be a linear function ft = α + βt,
with intercept α and slope β depending on the interval (see Figure 2(A), interval num-
bers i = 1, 2, . . . indicated in the bottom of the figure). Provided the following intervals
exist, we make two assumptions: first, we assume that in all intervals numbered as i ∈
{1 + 3m|m = 0, 1, 2, . . .}, we find α and β to vanish, i.e., f = 0. Second, in the intervals
i ∈ {2 + 3m|m = 0, 1, 2, . . .}, we assume the slope β to be positive. As a consequence of
continuity, the remaining intervals i ∈ {3m|m = 1, 2, . . .} have negative slope, decreasing
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Figure 1. (A) A process (Xt)t with three peaks. The Xt ’s (black points) equal the sum of the baseline con-
stant γ , the peak function f (red) and the random errors εt (blue vertical lines). The double-window of
size 2h (magenta) indicates all Xt ’s fromwhich the differenceDh,t is calculated. (B) The difference process
(Dh,t)t (magenta) derived from the process (Xt)t . Three local maxima lie above the rejection threshold Q
(brown), and their maximizers lie close to the peak points of f .

back to baseline level, such that the endpoint of an interval of the second type describes a
local maximum of f and is thus denoted a peak point c.

For an example with two peaks and seven intervals with constant slope see Figure 2(A).
Note that the construction of f with vanishing slope at zero can be extended naturally to
the case in which f starts within the area of a peak, allowing also for positive or negative
slopes at the origin. The set of peak points is denoted by C. For a peak point c we call fc
the corresponding peak height. In Figure 1(A) we find three peaks. The standard deviation
σ > 0 is assumed to be constant within each section of constant slope, but may change
between intervals of different slope. The set of all processes (Xt)t constructed in this fashion
constitutes the model setM.

One aim is to construct a test of the null hypothesis H0 : f = 0, i.e., C = ∅, in which
(Xt)t describes a sequence of i.i.d. random variables and f shows no peak. The idea of the
statistical test is to fit two simple linear regression models to two adjacent sliding windows
and to use the process (Dh,t)t of the standardized differences of estimated slope coeffi-
cients for peak identification. In Section 2.2, we define this process and recall its elementary
properties.

In Section 2.3, we derive its asymptotic properties, which are used then for the derivation
of the test statistic and its rejection region. In order to enable asymptotic considerations, we
generalize the proposed time series model here first to an asymptotic setting, introducing
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Figure 2. Illustration of the model assumptions. A. The peak function f on [0, T] with peaks at c1 and c2
of heights fc1 and fc2 and the corresponding intervals i = 1, 2, . . . of constant slope used in the definition
of f . B. The generalized peak function f (n) in the situation of a single peak. By increasing n, the lengths
of all linear sections are increased linearly.

(X(n)
t )t=1,...,nT via

X(n)
t := γ + f (n)t + εt (1)

with f (n) : [0, nT] → R
+
0 given by f (n)t := nft/n. This is a triangular setting in which the

time, as well as the peak height grow linearly in n, see Figure 2(B). Over different n we
find a constant number of linear sections within f (n) while also all slopes of f (n) remain
constant. However, by increasing nwe linearly increase the number of time instants within
the respective sections. For asymptotic statements we let n → ∞. Oftentimes we suppress
the dependence of the generalised process (X(n)

t )t on n and simply write (Xt)t .

2.2. Derivation of the difference process

In the described asymptotic setting of the generalized process (Xt)t from (1), we pointwise
fit two linear regressionmodels.We separately consider the random variables in each of the
two adjacent windows. The idea is that the switch from a positive to a negative estimated
slope can indicate a peak point. This will be quantified in the difference process (D(n)

h,t )t
in (9) which represents the standardized difference of the estimated slopes.

In the following, we first discuss the regression model and derive properties of least-
squares estimators. This consideration does not depend on the peak process (Xt)t . In a
second step, we then fit (Xt)t and obtain D(n)

h,t . As a consequence of the linear nature of
the regression models, the properties derived for the estimators will inherit to the fit D(n)

h,t
as long as each of the associated windows entirely lies within a section where the peak
function f is constant.
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Let ε∗
1 , ε

∗
2 , . . . denote a sequence of independent random variables with zero mean and

unit variance. For a time point t ∈ [h,T − h] and n = 1, 2, . . . we assume a regression
model

Yk = ηj + βjk + σjε
∗
k with k ∈ Ij, (2)

where ηj,βj ∈ R and σj > 0 for j ∈ {�, r}, while I� := {�n(t − h)� + 1, . . . , �nt�} and Ir :=
{�nt� + 1, . . . , �n(t + h)�} denote the windows of size nh to the left and right of t and �·�
denotes the floor function.

In order to derive the least-squares estimators β̂j, η̂j and σ̂ 2
j for themodel parameters, we

use the following notation. For j ∈ {�, r}, t ∈ [h,T − h] and n = 1, 2, . . ., we calculate the
empirical means of the random variables in a set of indices Ij via Yj := (1/(nh))

∑
k∈Ij Yk.

The empirical means of the indices are given by

I� := �n(t − h)� + nh + 1
2

and Ir := �nt� + nh + 1
2

(3)

because the nh indices of Ij are equidistantly spaced. The following lemma states the least-
squares estimates for the slope and intercept.

Lemma 2.1: For j ∈ {�, r}, t ∈ [h,T − h] and n = 1, 2, . . . the estimators

β̂j := 12
nh[(nh)2 − 1]

∑
k∈Ij

(k − Ij)Yk, and (4)

η̂j := Yj − β̂jIj. (5)

are the least-squares estimators of the slope and intercept within the regression models (2).

This follows from elementary statistics, as the regression line hits the centre of mass
(Ij,Yj), and because the slope is represented through the correlation of the data Yk and the
explanatory indices Ij. For that we mention the identities

∑
k∈Ij

(k − Ij) = 0 and
∑
k∈Ij

(k − Ij)2 = nh[(nh)2 − 1]
12

, (6)

also noting that the empirical variance of the time indices Ij writes as s2(Ij) =
(1/(nh))

∑
k∈Ij(k − Ij)2 = [(nh)2 − 1]/12 which equals the variance of a fair die with nh

sides, aligning with the equidistant spacing of the elements of Ij.
Let further an estimator of σ 2

j be given by

σ̂ 2
j := 1

nh − 2

∑
k∈Ij

(Yk − (η̂j + β̂jk))2. (7)

This estimator complements the least-squares fit in the sense that
∑

k∈Ij[Yk − (ηj − βjk)]2

states the criterion to be minimized. The estimator σ̂ 2
j is unbiased, and in case of normally

distributed errors, associated standard statistical tests can be applied using Student’s or
Fisher’s distributions.
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Dependence of β̂j, η̂j and σ̂ 2
j on t, h and n is inherited from Yj and Ij. The estimators are

well-defined due to the assumption h ≥ 3. We state asymptotic normality of the slope and
strong consistency of all estimators in Lemma 2.2. A proof can be found in the Appendix.

Lemma 2.2: For β̂j from (4) it holds for j ∈ {�, r}, t ∈ [h,T − h] and n = 1, 2, . . .
that E[β̂j] = βj and Var[β̂j] = 12σ 2

j /[nh((nh)2 − 1)]. Further, as n → ∞ it holds

[Var(β̂j)]−1/2(β̂j − βj)
d−→ N(0, 1).

It denotes d−→ convergence in distribution. Asymptotic normality results from the
Lindeberg–Feller central limit theorem in which respect we rewrite

β̂j = 12
nh[(nh)2 − 1]

∑
k∈Ij

(k − Ij)Yk = βj + σj
12

nh[(nh)2 − 1]

∑
k∈Ij

(k − Ij)ε∗
k . (8)

while the r.h.s. constitutes a sum of independent but not identically distributed random
variables. The second identity in (6) explains the variance of β̂j, mentioning the order
Var(β̂j) = O(1/n3).

Lemma 2.3: For the estimators in (4), (5) and (7) it holds for j ∈ {�, r}, t ∈ [h,T − h] as
n → ∞ that almost surely β̂j → βj, η̂j → ηj and σ̂ 2

j → σ 2
j .

A proof can be found in the Appendix.
We now construct the difference process (D(n)

h,t )t by pointwise fitting the regression
model (2) to the peak process (Xt)t from (1). For every time t and every n, we consider
the time domains I� and Ir, and compare the estimated slopes β̂� and β̂r via

D(n)
h,t := β̂� − β̂r

ŝh,t
(Figure 1B). (9)

The denominator ŝh,t :=ŝ(n)h,t estimates the standard deviation of the numerator, i.e.,
(Var(β̂� − β̂r))

1/2 and is derived separately for every window of size h and every time t.
Specifically, we set

(ŝ(n)h,t )
2 := 12

nh[(nh)2 − 1]
(σ̂ 2

� + σ̂ 2
r ) (10)

because Var(β̂j) = 12σ 2
j /[nh((nh)2 − 1)] when the respective window lies in a section of

constant slope of the underlying peak function f , compare Lemma 2.2. The asymptotic
normality of the β̂j is inherited by the difference process (D

(n)
h,t )t for those time points where

each of the two windows entirely lies in a section of constant slope of f as stated in the
following lemma.

Lemma 2.4: Let (Xt)t ∈ M with peak function f , and t ∈ [h,T − h] such that both win-
dows (t − h, t] and (t, t + h] entirely refer to a section of constant slope of f . Then it holds
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as n → ∞

D(n)
h,t − β� − βr

ŝ(n)h,t

d−→ N(0, 1),

while β� and βr denote the slopes of f in the sections with constant slope, and with D
(n)
h,t in (9)

and ŝ(n)h,t in (10).

The superscript inD(n)
h,t makes the dependence on n explicit. The Lemma first states that

under the null hypothesis f = 0, i.e., β� = βr(= 0), all marginals of the difference process
D(n)
h,t are approximately standard normally distributed. Further, in case of involved peaks,

D(n)
h,t · ŝ(n)h,t is approximatively normally distributed with expectation (β� − βr) at those t

where each of the windows entirely lies within a section of constant slope of f . In particular,
D(n)
h,t will show systematic deviations from zero in the positive direction at peak points,

while being systematically decreased at the on- and offset of a peak, see the form of D(n)
h,t

at the rightmost peaks in Figure 1(B). In contrast, it is constructed not to be sensitive to
potential deviations of the variance parameter, which suggests a certain robustness of the
procedure.

In order to derive a statistical test, we now consider the stochastic process
(D(n)

h,t )t∈[h,T−h]. Because positive deviations from zero indicate peaks, a maximum of this
process will serve as a test statistic. To this end, for let (DR[h,T − h], dSK) denote the space
of all real-valued càdlàg-functions on [h,T − h] endowedwith the Skorokhod topology. As
a consequence of the floor function in (2) we find all estimators in (4), (5) and (7), and thus
(D(n)

h,t )t to constitute step-processes in (DR[h,T − h], dSK). In Section 2.3, we prove weak
convergence of (D(n)

h,t )t , which is then used for the construction of the statistical test.

2.3. The statistical test

The main idea of the statistical test of the null hypothesis of no peaks,H0 : f = 0, is to use
themaximumof the difference process (D(n)

h,t )t as a test statistic, where onemaximizes both
over time t and overmultiple windows h.We therefore first study the asymptotic behaviour
of the process (D(n)

h,t )t for fixed h in Lemma 2.5 and then explain how different window sizes
can be used simultaneously.

Proposition 2.5: Let (Xt)t ∈ M and f = 0. Then it holds in (DR[h,T − h], dSK) as n →
∞

(D(n)
h,t )t

d−→ (Lh,t)t ,

where Lh,t is given in (12). The proof can be found in the Appendix.

The process (Lh,t) is a 2h-dependent Gaussian process with zero mean and unit vari-
ance. It is represented as a functional of a bivariate Gaussian process GP(0,	) which does
not depend on the model parameters as follows. Let GP(0,	) := (G1(t),G2(t))t≥0 be a
Gaussian process with continuous sample paths, expectation zero and covariance matrix
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	 = (	s,t)s,t≥0 given by

	s,t :=
(

(s ∧ t)3/3 (s ∧ t)2/2
(s ∧ t)2/2 s ∧ t

)
, (11)

where both s and t are considered time indices and ∧ denotes the minimum. Note that
the second component (G2(t))t≥0 describes a standard Brownian motion, and that the
components have independent increments Cov([Gi(t4) − Gi(t3)], [Gj(t2) − Gj(t1)]) = 0
for i, j ∈ {1, 2} and 0 < t1 ≤ t2 ≤ t3 ≤ t4. The limit process (Lh,t)t∈[h,T−h] is then given
by

Lh,t :=
(

6
h3

)1/2[(
[G1(t) − G1(t − h)] − (t − h

2
)[G2(t) − G2(t − h)]

)

−
(
[G1(t + h) − G1(t)] − (t + h

2
)[G2(t + h) − G2(t)]

)]
. (12)

Intuitively, we find that the difference of the round brackets corresponds to the comparison
of the left and the right slopes inD(n)

h,t . Also note that the summands of β̂j in (8) areweighted
and rescaled: these are (k − Ij)ε∗

k , while the part kε
∗
k is associated with G1, and in Ijε∗

k the
first factor Ij refers to t ∓ h/2, and the factor ε∗

k is associated with the Brownian motion
G2.

Making use of the described weak process convergence of (D(n)
h,t )t , a rejection thresh-

old Q can be derived as follows. First, to investigate peaks occurring on different time
scales, we considermultiple processes {(D(n)

h,t )t∈[h,T−h]|h ∈ H} induced by a setH of finitely
many window sizes. The statistical test is therefore called Multiple Filter Test (MFT). As
described above, we consider the maximum M across time and window sizes as a test
statistic. Continuous mapping implies convergence of this maximum, i.e.,

M(n) = max
h

max
t

D(n)
h,t

d−→ max
h

max
t

Lh,t ,

while all limit processes {(Lh,t)t∈[h,T−h] | h ∈ H} are functionals of the same Gaussian pro-
cess GP(0,	). For that we mention the joint convergence of the multiple peak processes as
stated in Corollary A.3 given in the Appendix.

Due to independence frommodel parameters, a quantileQ of the distributionM(n) can
be approximated in simulations.M := M(1) serves as a test statistic, and the null hypothesis
f = 0 is rejected ifM > Q. In Figure 3(B), f = 0 is rejected asM exceedsQ (brown dotted
line). After the rejection of the null hypothesis, the estimation of the peak positions relies on
the successive localization of maximizers of (Dh,t)h,t that exceed Q. A respective multiple
filter algorithm is proposed in Subsection 2.4.

Note that Lemma 2.4 implies asymptotic power 1 as the threshold Q is fixed whileM(n)

increases at any peak point with order n3/2 (in case the smallest window does not overlap
neighbouring peaks). Also, power 1 is kept when in the asymptotic setup slopes are allowed
to decrease, but only slower than n−3/2.

2.4. Themultiple filter algorithm

In case of a rejection of the null hypothesis, we propose a multiple filter algorithm (MFA,
Section 2.4.1) for the estimation of the peak positions, which is adapted here from [23]
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Figure 3. Illustration of the MFA for peak detection. (A) A process (Xt)t with three peaks. Peak positions
indicated by vertical bars. Colors as in Figure 1. (B) The test statisticM exceeds the threshold Q, leading
to a rejection of the null hypothesis. Curves indicate the processes (Dh,t)t for windows h ∈ {25, 60, 150}.
(C) Peak candidates of individual windows h, indicated by diamonds in different colours, are derived as
successive maximizers of Dh,t . Peak candidates estimated from window h are included in the set of esti-
mated peaks unless their h-neighbourhood contains a peak candidate already estimated with a smaller
window. Arrows indicate final estimated peaks.

and similar to comparable algorithms [e.g., 25]. In Section 2.4.2, its performance is evalu-
ated in simulations, also establishing rules for an appropriate choice of the set of window
sizes H.

2.4.1. TheMFA
The MFA consists of two steps. First, a separate set of peak candidates is estimated from
each process (Dh,t)t for each individual window h ∈ H as follows. As a peak leads to a
high positive value of (Dh,t)t , the argument of the maximum maxt Dh,t is the first peak
candidate. Then we note that within the h-neighbourhood of a peak, the value of Dh,t will
tend to be positive due to a positive expected slope difference between the two windows.
Therefore, we eliminate the h-neighbourhood of the estimated peak candidate and then
proceed analogously, i.e., add the nextmaximizer of (Dh,t)t to the set of peak candidates and
eliminate its h-neighbourhood, until the process (Dh,t)t stays below the rejection threshold
Q.

In the second part of the algorithm, the sets of peak candidates of the different win-
dow sizes are integrated into one set of accepted peak estimates. As large windows may be
affected by more than one peak, we start with the set of peak candidates estimated with the
smallest window. We then add peak candidates of successively larger windows h if their
respective h-neighbourhood does not contain a peak in the set of previously accepted peak
estimators.
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Figure 4. Empirical significance level, i.e., number of simulations inwhich thenull hypothesiswas falsely
rejected, in simulated time series with T = 1000 i.i.d. random variables as a function of the window size
h ∈ {10, 20, . . . , 70} with distributions N(μ, σ 2) and 	(shape, rate) for different parameter combina-
tions indicated in the legend, 1000 simulations per parameter combination. The rejection threshold Q
was derived separately in 100.000 simulations according to an asymptotic significance level α = 0.05
indicated as a horizontal line.

An example similar to Figure 1 is shown in Figure 3. A process (Xt)t with three
peaks (vertical lines) of different heights, widths and distances are analysed for peaks
(Figure 3(A)). Applying three different window sizes yields three sets of peak candidates
indicated as diamonds in Figure 3(C). Only the smallest window can detect the peaks in
close succession but fails to detect the lower peak, which is estimated by the medium win-
dow here. This stresses the importance ofmultiple window sizes: For narrow peaks in close
succession, a large window may not even exceed threshold when positive and negative
slopes cancel out (see blue curve of (Dh,t)t formediumwindow size). As a consequence, one
should also note that sensitivity to peaks that are narrower than the smallest used window
size is limited.

2.4.2. Choice of window size
Here we use simulations in order to evaluate the performance of the MFA in practical
scenarios with finite data sections and small window choices. In particular, due to the
asymptotic nature of the theoretical results, we aim at deriving guidelines for the choice of
the smallest window that can be used in order to approximate the asymptotic significance
level sufficiently closely.

To that end, we simulated data consisting of T = 1000 realizations of i.i.d. random
variables, distributed according to a Normal N(μ, σ 2) or a Gamma 	(shape, rate) distri-
bution with different parameters. Figure 4 shows the fraction of simulations per parameter
combination in which the null hypothesis was falsely rejected when applying the MFT at
asymptotic significance level α = 0.05, as a function of the chosen window size. According
to the simulations, the smallest window should not be smaller than about h = 50 in order
to approximately keep the asymptotic significance level.
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Figure 5. Data pieces of whole-field measurements of the same animal in the same field of view under
persistent (A) and slow wave (B) brain state. (C,D) The same time series after application of a filter.

3. Results

Here we apply the proposed MFT and the MFA for peak detection to a neurophysiological
data set consisting of two sets of paired whole field ensemble-wide recordings obtained
with high-speed two-photon calcium imaging upon expression of the genetically encoded
calcium indicator GCaMP6f and a sampling rate of 30.5 Hz. Specifically, the whole field
activity of a cortical area in layer II/III of the primary visual cortex of two mice was
recorded under two brain states: persistent state, resembling awake-like condition, and
slow wave state, resembling slow wave sleep condition. The two states were induced by
medethomidine sedation (persistent state) and isoflurane anaesthesia (slow wave state).

While during the slow wave state, whole field ensemble-wide recordings typically
showed prominent alternating activity with few clear peaks that are clearly visible, activ-
ity during the persistent state showed less prominent fluctuations (cmp. Figure 5). It is of
interest to quantify this difference, and also to discriminate periods of up and down states
in order to investigate whether these may impact the timing and occurrence of individual
neuronal spiking. Therefore, we analysed these two sets of paired time series with respect
to differences in their occurrences of estimated peaks. We first applied a simple filtering
routine to the raw data set to eliminate a trend in the mean caused by the fading of the
calcium image. In consequence, the preprocessed time series consist of the residuals of
the original time series from a filtered mean derived with a Gaussian kernel with a large
standard deviation of 400 data points (i.e., about 11.3 s, Figures 5(C,D)).

3.1. Analysis of estimated peak occurrences

We then applied theMFA to the four filtered time series in order to estimate peaks, using a
window set ofH = {50, 75, 100, 150} data points (i.e., about 1.5 − 5 s). Across all four time
series, about 400 peaks were estimated. In slow wave state, these were mostly matching
nicelywith visual inspection (see Figure 6(B)), while in persistent state, detected peakswere
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Figure 6. Examples of detected peaks in persistent (A) and slow wave (B) state. (C,D) Distributions
of intervals between successively estimated peaks in the two recorded mice, in slow wave (red) and
persistent (blue) state.

less pronounced and much more frequent (Figure 6(A)). Serial correlations of successive
interval lengths between estimated peaks were not significantly different from zero. The
empirical distributions of interval lengths between successive estimated peaks are shown
in Figure 6(C ,D) for the twomice in both, persistent (P) and slowwave (SW) state. In both
animals, the mean inter peak interval (IPI) was longer during slow wave state than during
persistent state (mean IPI 14.5 s (SW) vs. 3.6 s (P) in Mouse 1 and 8.2 s (SW) vs. 3.9 s (P)
in Mouse 2). Differences between the distributions of IPIs were highly significant in both
animals (Wilcoxon rank sum test, p < 0.001 for both animals).

3.2. Identification of down states

While one major difference between slow wave and persistent state may be the frequency
of peak occurrences, another may be the dynamic of changes between peaks and baseline
level, or the activity between the peaks. In order tomeasure periods of network quiescence,
i.e., down states in between peaks, we applied a simple algorithm for the estimation of the
shape of the peaks and of the duration between each successive pair of estimated peaks,
which was consistent with the theoretical assumptions for the peak function f in Section 2.

Let the ordered times of the estimated peaks be given by ĉ1, . . . , ĉm. Between a pair
(ĉi, ĉi+1), we fitted a piecewise linear function

gi(t) =

⎧⎪⎨
⎪⎩

βi,0 − βi,1(di,1 − t) t ∈ [ĉi, di,1]
βi,0 t ∈ [di,1, di,2]
βi,0 + βi,2(t − di,2) t ∈ [di,2, ĉi+1]

(13)
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Figure 7. (A) Illustrationof downstate identificationalgorithmvia least squares fittingof apiecewise lin-
ear functionwith negative slopeβi,1 in [ĉi , di,1], with zero slope at baseline levelβi,0 in [di,1, di,2] andwith
positive slopeβi,2 in [di,2, ĉi+1]. The parametersβi,0,βi,1,βi,2 as well as di,1 and di,2 are estimated by least-
squares fitting. (B,C) Examples of fitted functions (red) fitted to data (black) simulated with independent
and normally distributed errors and a mean given by the blue dashed lines.

to the observed process (see Figure 7(A)). This function describes a period of low activity
(denoted here as down state) of height βi,0 in the interval [di,1, di,2] between peaks i and
i + 1, a linear decrease in peak i of slope βi,1 < 0 up to the start of the down state di,1 and
a linear increase at peak i + 1 of slope βi,2 > 0. As all peaks showed a certain width and in
order to reduce variability of parameter estimates, we assumed that ĉi + 10 ≤ di,1 ≤ di,2 ≤
ĉi+1 − 10.

We estimated the parameters βi,0,βi,1,βi,2 and di,1, di,2 for every i by minimizing the
sum of squared residuals between the fitted function and the respective section of the data
X[ĉi,ĉi+1], the estimates are denoted with hats.

Using this algorithm, we fitted all almost 400 IPIs estimated in the four empirical time
series with the above routine. In most cases, the fit corresponded closely to visual inspec-
tion, but about 10% of the IPIs were excluded from further analysis in all cases in which no
clear downstate could be identified, i.e., cases in which β̂i,2 < 0 or β̂i,1 < 0 or in which the
slope coefficients were not statistically significant from zero on the 5%-level under stan-
dard assumptions. As the absolute duration of the down state may potentially depend on
the absolute duration of the respective IPI and is therefore likely to show the same differ-
ences as the IPI lengths between slow wave and persistent state, we then focused on the
relative down state duration, i.e., the relation between the down state duration and the
respective IPI duration, measured as

(d̂i,2 − d̂i,1)
(ĉi+1 − ĉi)

.

As Figure 8 shows, also this relative duration of the down states in relation to the IPI length
was considerably larger in the slow wave state than in the persistent state. While the mean
relative estimated down state duration was about twice as high in slowwave as in persistent
in both animals (0.52 in slow wave and 0.24 in persistent inMouse 1 and 0.34 in slow wave
and 0.17 in persistent in Mouse (2)), the median relative down state duration was even
about five times as high in slow wave as in persistent state (0.58 in slow wave and 0.14 in
persistent state in Mouse 1 and 0.33 in slow wave and 0.04 in persistent state in Mouse (2).
The differences between distributions were statistically highly significant (Wilcoxon rank
sum test, p < 0.0001 in both animals).
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Figure 8. Estimated relative down state durations in the two animals in persistent state (blue) and in
slow wave state (red).

In addition, we measured the fraction of IPIs in which the down state was estimated
shorter than 10% of the IPI duration, i.e., IPIs with practically no estimated intermediate
down state. The fraction of such intervals was as much as about 50% in the persistent state
(43% in Mouse 1 and 54% in Mouse 2), but only about 10% in slow wave state in both
animals (Fisher’s exact test, p < 0.0001 for both animals).

These results suggest that the visual impression of the difference between the slow wave
state and the persistent state can be quantified by application of theMFA for peak detection
together with the algorithm for down state estimation. During slow wave state the signal
shows a smaller number of changes between long ’down states’ and peaks, or up states,
while during persistent state, a higher number of ’peaks’ is estimated, while intermediate
clear ’down states’ cannot always be identified, and if so, they are of much smaller relative
duration.

4. Discussion

This article presents an approach that combines a statistical test for peak detection with
the estimation of the peak positions in time series. Motivated by empirical observations in
neuronal recordings, we aim at simultaneously investigating peaks of different heights and
widths.We use a simplemodel in which discrete and equidistant observations are assumed
independent and with an expectation function given by a piecewise linear jagged function
f . No parametric assumptions on the errors are required.

The test for the null hypothesis of the absence of peaks in f slides two adjacent mov-
ing windows across the time series and compares the scaled difference of estimated slope
coefficients within the two windows. The resulting difference process shows systematic
positive deviations at peaks, i.e., when the slope decreases instantaneously. By a combina-
tion of multiple windows, the procedure allows for an analysis of peaks of different heights
and widths, and we use the global maximum of all difference processes as a test statistic.

Statistical significance is evaluated using a limit result about the difference processes.
As the respective limit processes do not depend on the parameters of the underlying time
series, they can be used to derive the rejection threshold for the test statistic by simula-
tions. After rejection of the null hypothesis, a multiple filter algorithm first estimates peak
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positions for every individual window by successively searching for maximizers of the dif-
ference processes. In a second step, the results are combined across individual windows. An
additional consideration of the growth rates of the parameters could allow for an investiga-
tion of the performance of the algorithm, as in [26]. Here, the exact derivation of the limit
behaviour of the difference process enables the construction of the asymptotic statistical
test.

The chosen test statistic is designed to be sensitive to rapid decreases in the slope, such as
peaks or - similar - short plateaus of themean with a duration of about one window size, or
also to smooth hills. Such patterns are likely to be detected analogously with the proposed
algorithm. In addition, while the peak process used to describe the neurophysiological
data assumes continuity of f , the regression model used for the analysis does not require
this assumption and would therefore provide analogous results also without continuity. In
addition, the test statistic is designed to be robust against changes in the variance.

The asymptotic test procedure requires that the smallest window should not be smaller
than about 50. However, the null hypothesis of i.i.d. random variables can also be tested
using simple bootstrap or permutation procedures for the derivation of the rejection
threshold, which enables the application of smaller windows as well. This will, however,
be considerably more time consuming. In addition, the proposed asymptotic procedure
could also be extended to allow for potential serial correlations in the underlying time
series. Assuming ergodic error sequences preserves, first, functional central limit theory
as in Lemma A.1, and second, functional strong laws of large numbers as in Lemma A.2.
Under such assumptions, serial correlations of the random variables need to be estimated
and incorporated in the denominator ofDh,t . In the present, local method, such parameter
estimation can only capture the correlation in small time lags, compare also [27]. While
in theory, larger time lags can successively be captured as the windows are increased, the
window sizes are necessarily fixed in practice, which limits the reliable estimation of serial
correlations of larger time lags.

The proposed procedure is implemented in the R-package MFT ([24] available on
CRAN), including both the asymptotic and the bootstrap method for derivation of the
rejection threshold. In addition, the method can be used analogously in a two-sided
manner for the detection of both, positive and negative peaks, which is also implemented.

One major advantage of the proposed method is the simultaneous use of multiple win-
dow sizes. In the present data set for example, oscillatory behaviour differs between the
different brain states. This suggests that with the application of only one window, compa-
rability would be limited because a window that is suitable for one time series might not be
for the other, and vice versa. Here, the use of the same set of multiple windows in all data
sets respects peaks of different shape and allows for comparability of the results.

In the statistical analysis of neuronal ensemble activity, the proposed procedure could
identify peaks that are visible to the eye. We also combined it with a simple procedure for
the detection of intermediate down states that was compatible with themodel assumptions
on the underlying function f . The results suggest specific differences between different
brain states. During slow wave state the signal shows a smaller number of changes between
long down states and peaks as compared to the persistent state. Also, during persistent state,
a higher number of peaks is estimated, while intermediate clear down states cannot always
be identified, and if so, they are of much smaller relative duration. In a further step, this
standardized detection of the ensemble-wide functional state could be used to investigate
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how local up and down states impact the firing activity of individual neurons. In summary,
these results suggest that the proposed method for peak detection can be a useful tool in
the analysis of time series showing a variability of different peak phenomena.
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Appendix

We give all proofs and auxiliary results. Recall that for an error εk we abbreviate its scaled version by
ε∗
k := εk/(Var(εk))1/2.

Proof of Lemma 2.2.: We rewrite the sum that occurs for β̂j in (4) as
∑
k∈Ij

(k − Ij)Yk =
∑
k∈Ij

(k − Ij)(ηj + βjk + σε∗
k = βj

∑
k∈Ij

(k − Ij)2 + σ
∑
k∈Ij

(k − Ij)ε∗
k ,

where we used the formulation of the model Yk = ηj + βjk + σεk and that
∑

k∈Ij(k − Ij) =
0, see the first identity in (6). From the second identity in (6) we obtain by definition of β̂j
(cmp. equation (8))

β̂j = 12
nh[(nh)2 − 1]

∑
k∈Ij

(k − Ij)Yk = βj + σj
12

nh[(nh)2 − 1]

∑
k∈Ij

(k − Ij)ε∗
k .
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This yields the expectation and variance as stated since the (ε∗
k )k are i.i.d. with E[ε∗

k ] = 0 and unit
variance for all k. For the asymptotic normality we rewrite the last expression as

β̂j − βj

[Var(β̂j)]1/2
=
∑
k∈Ij

[
12

nh[(nh)2 − 1]

]1/2
(k − Ij)ε∗

k .

For each n, the summands on the latter display are independent with expectation zero while their
variance adds up to unity. Over different n the summands constitute a triangular scheme. Since
|k − Ij| ≤ nh/2, we can bound each summand by cε∗

k/
√
n for some positive constant c and thus the

Lindeberg-Feller central limit theorem applies. �

Proof of Lemma 2.3.: The idea of the proof is to use the strong law of large numbers and first deduce
that |β̂j − βj| = o(1/n) almost surely, and then we use the definition of η̂j and σ̂ 2

j . We recall the
estimated slope β̂j from (8) and mention that |k − Ij| ≤ nh for all k ∈ Ij, such that we can bound

|β̂j − βj| ≤ κ

n

⎛
⎝ 1
nh

∑
k∈Ij

ε∗
k

⎞
⎠ .

for somepositive constant κ (which does not depend on t). Since the (ε∗
k )k are centred and integrable,

the mean in the brackets vanishes almost surely according to the strong law of large numbers, such
that almost surely as n → ∞

|β̂j − βj| = o
(
1
n

)
.

For the estimator of the intercept we recall (5) where we find that η̂j = Yj − β̂jIj. Further, by
definition of themodel we obtainYj = ηj + βjIj + σj(1/(nh))

∑
k∈Ij ε

∗
k . Substituting the latter yields

almost surely as n → ∞

|η̂j − ηj| ≤ |β̂j − βj| Ij + σj
1
nh

∑
k∈Ij

ε∗
k −→ 0,

because Ij = O(n) and |β̂j − βj| = o(1/n) almost surely, and also because the second summand
tends to zero almost surely as stated before. For the estimator of σ 2

j we also recall (7) and find
σ̂ 2
j = (1/(nh − 2))

∑
k∈Ij(Yk − (η̂j + β̂jk))2. Substituting Yk = ηj + βjk + σε∗

k yields

σ̂ 2
j = 1

nh − 2

∑
k∈Ij

[(ηj − η̂j) + (βj − β̂j)k + σjε
∗
k ]

2. (A1)

Solving the square yields six summands of which all but the last vanish almost surely. To see this
we write them as first [1/(nh − 2)]nh(ηj − η̂j)

2, second 2(ηj − η̂j)(βj − β̂j)[1/(nh − 2)]
∑

k∈Ij k,
third (βj − β̂j)

2[1/(nh − 2)]
∑

k∈Ij k
2, fourth 2(ηj − η̂j)σj[1/(nh − 2)]

∑
k∈Ij ε

∗
k and fifth 2(βj −

β̂j)[1/(nh − 2)]
∑

k∈Ij kε
∗
k . Then, the a.s. convergences to zero follow directly from the conver-

gence of the mean of the (ε∗
k )k, the convergence of η̂j and the rate of β̂j as stated before. For that

we also mention that [1/(nh − 2)]
∑

k∈Ij k = O(n), [1/(nh − 2)]
∑

k∈Ij k
2 = O(n2) and also that∑

k∈Ij ε
∗
k = o(n) a.s. and

∑
k∈Ij kε

∗
k = o(n2) a.s.

For the last summand it holds almost surely as n → ∞ that

σ 2
j

1
nh − 2

∑
k∈Ij

ε∗
k
2 −→ σ 2

j ,

according to the strong law of large numbers and because the (ε∗
k )k are centred with unit variance.

�
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Proof of Lemma 2.4.: The Lemma is a consequence of Lemmas 2.2 and 2.3 which state the asymp-
totic normality of the slopes within the regression models and the strong consistency of the
estimators. Fitting the regressionmodels to the process (Xt)t we obtain fromLemma 2.2 for j ∈ {1, 2}
as n → ∞ (

12σ 2
j

nh[(nh)2 − 1]

)−1/2

· (β̂j − βj)
d−→ N(0, 1),

and the term in the left brackets equals the variance of β̂j. In Lemma 2.3 we show that σ̂ 2
j → σ 2

j

almost surely as n → ∞. Thus, by definition of ŝ(n)h,t in (10), we obtain by Slutsky’s Lemma that [(β̂� −
β̂r) − (β� − βr)]/ŝ

(n)
h,t

d−→ N(0, 1), by also using that the independence of β̂� and β̂r implies their
joint convergence. The latter convergence is the statement. �

The proof of Proposition 2.5 requires the following two auxiliary lemmas. Let (DR2 [0,∞), dSK)

denote the R2-valued càdlàg-functions on [0,∞) endowed with Skorokhod topology. �

Lemma A.1: Let ε∗
1 , ε

∗
2 , . . . be i.i.d. random variables with zero mean and unit variance. In

(DR2 [0,∞), dSK) it holds as n → ∞
(

1
n3

)1/2
·

⎛
⎜⎝
∑�nt�

k=1
kε∗

k∑�nt�
k=1

nε∗
k

⎞
⎟⎠

t≥0

d−→ GP(0,	), (A2)

with covariance function 	 given in (11).

Proof: First note that the second component states Donker’s theorem. We state the covariance
matrix of the left-hand side and make use of a bivariate martingale central limit theorem. Let s ≤ t.
We consider three cases. First, we calculate the temporal covariance of the first component

Cov

⎛
⎝�nt�∑

k=1

kε∗
k ,

�ns�∑
k=1

kε∗
k

⎞
⎠ = Cov

⎛
⎝�ns�∑

k=1

kε∗
k +

�nt�∑
k=�ns�+1

kε∗
k ,

�ns�∑
k=1

kεk

⎞
⎠

=
�ns�∑
k=1

k2 = s3

3
· n3 · (1 + o(1)),

as n → ∞. Second, we calculate the temporal covariance of the second component.

Cov

⎛
⎝�nt�∑

k=1

nε∗
k ,

�ns�∑
k=1

nε∗
k

⎞
⎠ =

�ns�∑
k=1

n2 = s · n3 · (1 + o(1)).

Third, we consider the first component at time t and the second component at s

Cov

⎛
⎝�nt�∑

k=1

kε∗
k ,

�ns�∑
k=1

nε∗
k

⎞
⎠ = Cov

⎛
⎝�ns�∑

k=1

kε∗
k ,

�ns�∑
k=1

nε∗
k

⎞
⎠ =

�ns�∑
k=1

kn = s2

2
· n3 · (1 + o(1)),

and analogously for the components interchanged. For s > t replace s by t. This yields 	 as stated
while the factors n3 cancel due to the scaling in (A2). The summands are independent with zero
expectation and the left-hand side constitutes a bivariate martingale, and convergence follows from
central limit theory for martingales, see e.g., [28, Theorem 7.1.4.]. �

Lemma A.2: Within the regression models it holds for j ∈ {�, r} in (DR[h,T − h], dSK) as n → ∞ in
probability (β̂j)t → (βj)t , (η̂j)t → (ηj)t and (σ̂ 2

j )t → (σ 2
j )t .
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Proof: The idea is to state functional laws of large numbers for the errors (ε∗
k )k which are used to

extend themarginal results fromLemma 2.3. For j ∈ {�, r} it holds in (DR[h,T − h], dSK) as n → ∞⎡
⎣ 1
nh

∑
k∈Ij

k − Īj
nh

ε∗
k

⎤
⎦
t

P→ (0)t ,

⎡
⎣ 1
nh

∑
k∈Ij

k
n
ε∗
k

⎤
⎦
t

P→ (0)t ,

⎡
⎣ 1
nh

∑
k∈Ij

ε∗
k

⎤
⎦
t

P→ (0)t ,

⎡
⎣ 1
nh

∑
k∈Ij

ε∗
k
2

⎤
⎦
t

P→ (1)t . (A3)

We comment on the first convergence for j = �. From (A2) we obtain in (DR2 [0,∞), dSK)⎡
⎣ 1
n

⎛
⎝�nt�∑

k=1

k
n
ε∗
k ,

�nt�∑
k=1

ε∗
k

⎞
⎠

t⎤
⎦
t

P−→ (0)t ,

on which we apply the continuous map ϕ : (DR2 [0,∞), dSK) → (DR[h,T − h], dSK) via(
f1(t)
f2(t)

)
t≥0

ϕ�→
(
[f1(t) − f1(t − h)] − [�t − h� + h/2][f2(t) − f2(t − h)]

)
t≥0

.

which yields ⎛
⎝ 1
n

∑
k∈I�

[
k
n

− (�t − h� + h/2)]ε∗
k

⎞
⎠

t

P−→ (0)t ,

and this implies the first statement. The other convergences follow similarly. Nowwe run through the
proof of Lemma 2.3 replacing the marginal estimators for fixed t with their functional counterparts
and making use of (A3). �

Proof of Proposition 2.5.: Recall the formulation of β̂j from (8) given as

β̂j = βj + σj
12

nh[(nh)2 − 1]

∑
k∈Ij

(k − Ij)ε∗
k ,

for j ∈ {�, r}. The set of indices Ij and their means Ij are given in (2) and (3). Since f = 0, we find
β� = βr and σ� = σr =: σ . It follows from Lemma 2.2 that the true variance of the difference of
estimated slopes writes as

Var(β̂� − β̂r) = 12
nh[(nh)2 − 1]

(σ 2
� + σ 2

r ) = 12
(nh)3

· 2σ 2 · (1 + o(1)).

We introduce an auxiliary process (D̃(n)
h,t )t in (DR[h,T − h], dSK) via

D̃h,t :=
(

12
(nh)3

2σ 2
)−1/2

(β̂� − β̂r) =
(

12
2(nh)3

)1/2
⎡
⎣∑
k∈I�

(k − I�)ε∗
k −

∑
k∈Ir

(k − Ir)ε∗
k

⎤
⎦ . (A4)

This process describes the comparison of slopes, but it uses the true order of scaling as compared to
Dh,t in which the scaling is estimated. The purpose is now to show that in (DR[h,T − h], dSK) we
obtain for n → ∞

(D̃(n)
h,t )t

d−→ (Lh,t)t . (A5)
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This is derived in two steps. In Lemma A.1 we stated process convergence of joint rescaled sums to
a Gaussian process limit, i.e., in (DR2 [0,∞), dSK) it holds as n → ∞ that

(
1
n3

)1/2
·

⎛
⎜⎝
∑�nt�

k=1
kε∗

k∑�nt�
k=1

nε∗
k

⎞
⎟⎠

t≥0

d−→
(G1(t)
G2(t)

)
t≥0

= GP(0,	), (A6)

with covariance function 	 given in (11). In the second step, we then apply a continuous function ϕ

that maps the left-hand side of (A6) to (D̃h,t)t (up to a negligible factor) and the right-hand side to
(Lh,t)t , which results in (A5) by continuous mapping. Define ϕ : (DR2 [0,∞), dSK) −→ (DR[h,T −
h], dSK) via(

f1(t)
f2(t)

)
t≥0

ϕ�→
((

6
h3

)1/2 [(
[f1(t) − f1(t − h)] −

(
t − h

2

)
[f2(t) − f2(t − h)]

)

−
(
[f1(t + h) − f1(t)] −

(
t + h

2

)
[f2(t + h) − f2(t)]

)])
t≥0

. (A7)

A comparison with the definition of the limit process in (12) directly shows, that it is obtained by
applying ϕ to the limit of the rescaled sums in (A6). Now we apply ϕ to the left hand side of (A6)
and obtain

ϕ

⎛
⎜⎝
⎛
⎜⎝
∑�nt�

k=1
kε∗

k∑�nt�
k=1

nε∗
k

⎞
⎟⎠

t≥0

⎞
⎟⎠ =

⎛
⎝( 12

2(nh)3

)1/2
⎡
⎣
⎛
⎝∑

k∈I�
kε∗

k −
(
t − h

2

)∑
k∈I�

nε∗
k

⎞
⎠ .

−
⎛
⎝∑

k∈Ir
kε∗

k −
(
t + h

2

)∑
k∈Ir

nε∗
k

⎞
⎠
⎤
⎦
⎞
⎠

t∈[h,T−h]

=
⎛
⎝( 12

2(nh)3

)1/2
⎡
⎣
⎛
⎝∑

k∈I�
(k − I∗�)ε

∗
k

⎞
⎠−

⎛
⎝∑

k∈Ir
(k − I∗r )ε

∗
k

⎞
⎠
⎤
⎦
⎞
⎠

t∈[h,T−h]

.

(A8)

For that we note that I∗j = Ij + o(n) resulting from n�t� = �nt� + o(n) and thus, it can be exchanged
with Ij by Slutsky’s Lemma when letting n → ∞ and considering weak process convergence. But
this then equals the process (D̃(n)

h,t )t such that (A5) holds true. Then we can replace the true order of
scaling with the estimator (ŝ(n)h,t )t by Slutsky’s Lemma using functional consistency((

12
(nh)3

2σ 2
)−1/2

· ŝ(n)h,t

)
t

P−→ (1)t , (A9)

which follows from the consistency of the estimators (σ̂ 2
j )t for (σ 2)t in Lemma A.2. �

Finally, we conclude that the convergence in Proposition 2.5 extends to joint convergence apply-
ing finitely many windows H = {h1, . . . , hm}. For that let (×m

i=1DR[hi,T − hi], dSK) denote the
product space regarding all (DR[hi,T − hi], dSK), i = 1, . . . ,m, endowed with the product metric.

Corollary A.3: Let (Xt)t ∈ M with f = 0 and let H = {h1, . . . , hm} be a set of windows. Then it
holds in (×m

i=1DR[hi,T − hi], dSK) as n → ∞

(D(n)
h1,t , . . . ,D

(n)
hm ,t)t

d−→ (Lh1,t , . . . , Lhm,t)t ,
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where each component of the limit process is given in (12) and all components are evaluated on the
same Brownian motion.

Proof: We follow the proof of Proposition (2.5). Extending ϕ =: ϕh from (A7) to the joint map

(ϕh1 , . . . ,ϕhm) : (DR2 [0,∞), dSK) −→ (×m
i=1DR[hi,T − hi], dSK),

and applying it to (A6) (resp. Lemma A.1) yields via (A8) that in (×m
i=1DR[hi,T − hi], dSK) as n →

∞
(D̃(n)

h1,t , . . . , D̃
(n)
hm ,t)t

d−→ (Lh1,t , . . . , Lhm,t)t ,
which is the extension of (A5). As (A9) directly extends to joint convergence overmultiple windows,
the assertion follows by Slutsky’s lemma. �
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