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ORIGINAL ARTICLE

Investigating the potential of deep learning for patient-specific quality
assurance of salivary gland contours using EORTC-1219-DAHANCA-29 clinical
trial data

Hanne Nijhuisa�, Ward van Rooija�, Vincent Gregoireb, Jens Overgaardc , Berend J. Slotmana,
Wilko F. Verbakela and Max Dahelea

aDepartment of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; bDepartment of
Radiation Oncology, Centre Leon Berard, Lyon, France; cDepartment of Clinical Medicine – Department of Experimental Clinical Oncology,
Aarhus University, Aarhus N, Denmark

ABSTRACT
Introduction: Manual quality assurance (QA) of radiotherapy contours for clinical trials is time and
labor intensive and subject to inter-observer variability. Therefore, we investigated whether deep-learn-
ing (DL) can provide an automated solution to salivary gland contour QA.
Material and methods: DL-models were trained to generate contours for parotid (PG) and submandibu-
lar glands (SMG). Sørensen–Dice coefficient (SDC) and Hausdorff distance (HD) were used to assess agree-
ment between DL and clinical contours and thresholds were defined to highlight cases as potentially sub-
optimal. 3 types of deliberate errors (expansion, contraction and displacement) were gradually applied to
a test set, to confirm that SDC and HD were suitable QA metrics. DL-based QA was performed on 62
patients from the EORTC-1219-DAHANCA-29 trial. All highlighted contours were visually inspected.
Results: Increasing the magnitude of all 3 types of errors resulted in progressively severe deterior-
ation/increase in average SDC/HD. 19/124 clinical PG contours were highlighted as potentially sub-
optimal, of which 5 (26%) were actually deemed clinically sub-optimal. 2/19 non-highlighted contours
were false negatives (11%). 15/69 clinical SMG contours were highlighted, with 7 (47%) deemed clinic-
ally sub-optimal and 2/15 non-highlighted contours were false negatives (13%). For most incorrectly
highlighted contours causes for low agreement could be identified.
Conclusion: Automated DL-based contour QA is feasible but some visual inspection remains essential.
The substantial number of false positives were caused by sub-optimal performance of the DL-model.
Improvements to the model will increase the extent of automation and reliability, facilitating the adop-
tion of DL-based contour QA in clinical trials and routine practice.
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Introduction

Quality assurance (QA) is an integral part of radiotherapy (RT)
clinical trials. However, after an initial evaluation of one or a lim-
ited number of cases from a participating center, contours from
the remainder of their patients may not be reviewed.
Furthermore, especially when there are many contours, not all
contours are necessarily checked. Performing manual QA on clin-
ical contours (CC) is time consuming and requires a substantial
level of anatomical knowledge, significant investment of human
and financial resources and may be influenced by the same
inter-observer variability present in the contouring itself [1].
Nevertheless, contour QA is likely to improve the validity and
reliability of certain trial outcomes, including the relation
between dose and toxicity [2,3], and it is made more important
by the widespread use of highly conformal treatment techniques
that increase the dosimetric impact of delineation errors [4].
Effective automated contour QA could save time and money,

overcome inter-observer variability and make it practical to
assess contours in all study patients. Outside of trials, it could
also facilitate verification of contours/contour in routine clinical
practice [5]. Recently, deep learning (DL)-based organ-at-risk
(OAR) segmentation for treatment planning has been producing
promising results, both with regard to quality and speed [6–13].
Therefore, we investigated if DL-based contours (DC) could be
used to perform automated QA on salivary gland contours in
the clinical trial scenario. We used contours from patients in the
multi-center EORTC-1219-DAHANCA-29-trial to test this approach.

Materials and methods

Data

This work was conducted with EORTC (European
Organization for Research and Treatment of Cancer) approval
and in accordance with local IRB (Institutional Review Board)
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requirements. The right parotid (PG) and submandibular
(SMG) glands were considered. The in-house library used for
training the DL-model, comprised 735 clinically delineated
CT-scans of head and neck cancer (HNC) patients treated
between January 2011 and December 2018. Data was not
further curated. Symmetry was assumed for both glands [14].
Therefore, all left glands were mirrored in the sagittal plane
and added to the right gland data set, effectively doubling
the amount of training data. There were 1418/1152 PG/SMG
contours in total for training and testing the DL-model.

Additionally, we had available CT scans with OAR con-
tours from 100 anonymized EORTC-1219-DAHANCA-29 trial
(https://clinicaltrials.gov/ct/show/NCT01880359) patients, sub-
mitted by 13 centers. Trial QA included a benchmark case to
assess contouring and planning prior to a center being
included and a patient-specific QA program comprising pro-
spective review of the first 5 cases from a site and retro-
spective evaluation of subsequent cases [15]. CT scans from
62 patients with a definitive OAR structure-set, for whom we
could be confident that transverse plane pixel spacing was
consistent with in-house data, were used in this analysis. This
resulted in a test-set with 124/69 PG/SMG contours.

The data consisted of DICOM files containing CT-images
and structure-sets, with average pixel spacing of
1.00 ± 0.08mm and 1.05 ± 0.14mm and average slice thick-
ness of 2.48 ± 0.17mm and 2.43 ± 0.48mm for in-house and
EORTC images respectively. These were cropped to a region
of interest (ROI) of size 96�64�64/64�64�32 voxels for PG/
SMG. The ROI was calculated by creating a bounding box
which at least encompassed all of the clinical contours in all
3 axes, while making sure the resulting dimensions could be
divided by 2 multiple times to be able to use the convolu-
tion operator. A Hounsfield unit (HU) window with an upper/
lower boundary of 330/–170 for PG and 190/–310 for SMG
was applied, after which the data was normalized to [0,1].

Model

For the DL-model, a fully convolutional neural network (CNN)
based on 3D U-Net [16] was used with Sørensen–Dice coeffi-
cient (SDC, defined below) as the loss-function and Adam
[17] as the optimizer. Dropout was applied to all convolu-
tional layers to prevent overfitting. Two models were trained;
one for PG and one for SMG segmentation, using the in-
house data. Hyperparameters, including upper/lower HU win-
dow boundaries, were empirically determined in prior experi-
ments [13]. The models were built with Keras (http://keras.io/
) on top of TensorFlow (https://www.tensorflow.org/). All cal-
culations were done on two GeForce GTX 1080ti graphics
processing units. With this set-up, creating a PG contour for
124 CT-scans took less than 2 s.

Evaluation

After applying the DL-model to a test-set there were two
contours for each cropped image: the CC and the DL-derived
DC. Similarity between these was assessed using (1) SDC, an
overlap-based agreement metric ranging from 0 (no

agreement on any voxels) to 1 (exact agreement on all vox-
els);

SDC ¼ 2TP
2TPþ FPþ FN

where TP ¼ True Positives, FP ¼ False Positives, FN ¼ False
Negatives, and (2) the Hausdorff distance (HD), which is the
largest minimal distance from any point from set A to any
point from set B.

Experimental design

Experiment 1: Assessment of model performance
Before evaluating individual patient contours, it was assessed
whether the model could reach levels of accuracy on multi-
center EORTC-data similar to the single-center data it was
trained on. Performance on in-house data was measured by
applying cross-validation, reducing the possibility of chance
findings. The number of folds was determined in such a way
that the hold-out test-set of each fold was the same size as
the EORTC set, allowing for a fair comparison between the
two sets. This resulted in 11-fold cross-validation for PG
(1294 training/124 test cases) and 16-fold for SMG (1083
training/69 test cases). For experiments 2 and 3 (below), a
definitive model was trained on the entire in-house data set
for each gland and EORTC data was used as test set.

Experiment 2: Investigating how the QA model responds
to a deformed test-set
To investigate whether the approach of using DL-based seg-
mentation with SDC and HD metrics could (in principle)
detect sub-optimal contours, the model was first applied to
the original trial data and then 3 different types of simple
errors were introduced, each in gradually increasing incre-
ments, to effectively degrade the quality of the original trial
contours: (1) CC expansion, (2) CC contraction and (3) CC dis-
placement in all three axes. Expansion and contraction (mag-
nitude determined by voxel dimensions) were increased in
steps of 1 voxel in all directions by applying binary dilation/
erosion [18] 10 times iteratively; and displacement (in ran-
domly determined directions) was increased from 1 to 10
voxels (in steps of 1).

Experiment 3: Visual inspection of cases highlighted by
the DL-model as Sub-optimal
To qualitatively asses the models’ potential for QA, all cases
in the test set flagged with low SDC/high HD were visually
inspected by a radiation oncologist and medical physicist, to
see whether ‘low agreement’ could be caused by a sub-opti-
mal CC (i.e., sub-optimal at a clinically relevant level, so not
at the level of 1–2mm disagreement, but for example, miss-
ing PG deep medial or anterior extension). A random sample,
equivalent to the number of flagged cases, was also drawn
from the non-flagged cases, to see whether these non-
flagged CCs had been correctly identified as acceptable. Low
agreement for ‘flagging’ purposes was defined using 2

2 H. NIJHUIS ET AL.

https://clinicaltrials.gov/ct/show/NCT01880359
http://keras.io/
https://www.tensorflow.org/


thresholds: (1) below average SDC � 1 standard deviation
(STD) and (2) above average HD þ 1 STD.

Results

Experiment 1: The DL-model performed consistently on both
datasets: PG SDC was 0.84 ± 0.08 and 0.83 ± 0.08 on the in-
house and EORTC data respectively, and SMG SDC was
0.85 ± 0.09 and 0.85 ± 0.05; PG HD was 10.5 ± 5.6 and
11.3 ± 6.3 respectively and SMG HD was 6.0 ± 2.9
and 6.1 ± 2.4.

Experiment 2: An increase of all three types of deliberately
induced errors led to a progressive reduction in average test-
set SDC and increase in average HD (Figure 1). In Figure 1,
contraction HD results are influenced by cases where CC can-
not be contracted any further (i.e., CC had to consist of �1
voxel), which is why the curve flattens. The percentage of
cases flagged as potentially sub-optimal by either threshold
increases substantially for all errors on both organs. At 3 vox-
els, all errors have deteriorated the SMG CC quality enough
to have them all flagged based on SDC-1STD.

Experiment 3: Figure 2 shows the SDC and HD of all 124
PGs. For PG, the flagging threshold was 0.84–0.08¼ 0.75
(average–1STD, rounded data) for SDC and 10.4þ 4.1¼ 14.6
(average þ 1STD, rounded data) for HD. 8/124 cases had
SDC < 0.75; 15/124 had HD > 14.6mm; and 4 cases satisfied
both criteria, making a total of 19 cases (15%) flagged as
potentially sub-optimal. On review, in 5/19 cases it was
agreed that CC was clinically sub-optimal (26%). In the non-
flagged sample, 2/19 cases were deemed clinically sub-opti-
mal on review (11%) – see Figure 3. As such, for flagging
sub-optimal PG contours, the sensitivity of our method was
0.71 and the specificity was 0.55.

Figure 4 shows SDC and HD for all 69 SMGs. For SMG, the
flagging threshold was 0.85–0.05¼ 0.80 (average–1STD,
rounded data) for SDC and 6.0þ 2.4¼ 8.3 (average þ 1STD,
rounded data) for HD. 11/69 cases had SDC < 0.80 and 9/
69HD > 8.3mm. 5 cases were highlighted by both thresh-
olds resulting in 15 (22%) cases deviating >1STD. On review,
7/15 CCs were actually deemed clinically sub-optimal (47%);
in the non-flagged sample, 2/15 CCs were deemed clinically
sub-optimal (13%) – see Figure 5. As such, for flagging sub-
optimal SMG contours, the sensitivity of our method was
0.78 and the specificity was 0.62. Causes of incorrectly being

Figure 1. The effect of deliberately induced errors on the average SDC and HD for the whole test-set for the PG and the SMG (shaded area¼ standard deviation)
and on the percentage of cases being flagged by either SDC-1STD or HD þ 1STD.
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flagged were anatomical deviation degrading the DC for 4
PGs and 2 SMGs (e.g., displacement/deformation due to adja-
cent tumor), the DC missing the anterior extension in 1 PG
and atypical data properties degrading the DC for 4 PGs and
4 SMGs (e.g., nonstandard CT slice thickness or missing data
in the clinical contour). For 5 PGs and 2 SMGs, the cause of
incorrectly being flagged could not be determined.

Discussion

DL for automated salivary gland contour QA using EORTC-
1219-DAHANCA-29 data was investigated. In summary, (1)
the DL-model, trained with in-house single-center data,
achieved comparable performance when applied to the
multi-center clinical trial data; (2) when the model was
applied to original trial contours that had been progressively

deformed with simple geometric errors, it led to increasing
deterioration in average SDC and HD. All three types of
deliberately induced errors deteriorated SDC and increased
HD substantially. This was what should have happened and
therefore, in this simple test, the model was behaving as
expected; and (3) in the majority of cases, low agreement
between the DL ‘QA’ contour and the CC could be attributed
to a sub-optimal DL-based contour (i.e., the flag was a ‘false-
positive’). However, the proportion of CCs deemed clinically
sub-optimal on review was higher in the highlighted than in
the non-highlighted sample. This underlines the ongoing
need for human review, especially of flagged cases. Most
clinical contours of the flagged cases were not considered
sub-optimal. In general, cases were flagged because of atyp-
ical organ shape/size or atypical data properties. Increasing
the variance in the training set and interpolating CT-data to

Figure 2. Scatterplot of 124 PGs showing SDC vs HD and the criteria for both
metrics to mark cases for suspicion of sub-optimal quality. Red crosses are
those contours that were actually deemed to be sub-optimal on review, black
dots in the shaded areas are considered false positives, red crosses in the
unshaded area are false negatives. Letters a-d refer to the respective images in
Figure 3.

Figure 3. Four cases with low agreement between CC (in red) and DC (in blue) for the parotid gland. The cause for low agreement: (a) CC missed the anterior
extension, (b) anatomical deviation because of cancerous lymph nodes pressing against the gland, (c) the DC incorrectly includes some voxels which result in a
high HD, (d) anatomical deviation: exceptionally small parotid gland, for unknown reason.

Figure 4. Scatterplot of 69 SMGs showing SDC vs HD and the criteria for both
metrics to mark cases for suspicion of sub-optimal quality. Red crosses are
those contours that were actually deemed to be sub-optimal on review, black
dots in the shaded areas are considered false positives, red crosses in the
unshaded area are false negatives. Letters a-d refer to the respective images in
Figure 5.
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match the slice thickness to that of the training data could
potentially help to avoid flagging such cases.

Most of the work on automated QA has been concerned
with plan quality [19,20] while not directly addressing the
quality of the contours on which those plans are based.
Nevertheless, there have been several studies into automated
contour QA, using various model types. For example, Altman
et al. [5] made a knowledge-based model containing varia-
bles like size and shape. Similarly, Chen et al. [21] used geo-
metric attribute distributions models. Zhang et al. [22] used
texture-based features to identify pancreas contouring errors.
Each of these three groups introduced artificial errors and
reported high accuracy scores when their model was used to
detect them. Furthermore, an approach in which mislabeled
contours and contours of low quality were detected using

groupwise conditional random forests and manually crafted
features, showed promising results [23]. The low-quality con-
tours were identified by looking at the single-value output of
a classification model, depicting to what extent the contour
looked like the archetype the model had learned from the
training library. Contrarily, our model made its own contour
and compared it to the clinical one, making it a fundamen-
tally different approach. As for deep learning-based methods,
Rhee et al. [24] used an approach similar to ours, but they
focused on detecting errors in multi-atlas based automatic-
ally generated contours, rather than human-derived con-
tours. Chen et al. [25] used a ResNet [26] to classify the
quality of a breast cancer segmentation CNN’s output and
predict the corresponding SDC. Like Rhee et al. [24], how-
ever, this is QA of automatically generated contours, rather

Figure 5. Four cases with low agreement between CC (in red) and DC (in blue) for the submandibular gland: (a) (sagittal plane) the CC encompasses to many slices
in the upper part of the gland; (b) (sagittal plane) because of data properties (e.g., CT slice thickness) the gland does not fit inside the crop; (c) (transverse plane)
anatomical deviation because of cancerous lymph nodes pressing against the gland; (d) (transverse plane) gland is difficult to distinguish from the surround-
ing tissue.
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than human-derived ones like we did. None of these studies
specifically investigated (DL) QA for clinical trials. Future
research should investigate whether these methods and ours
complement each other or fail for the same cases. If they
complement each other, combining several of these methods
may provide a robust and reliable framework for QA.

As long as DL-models and clinical contours are not com-
pletely error-free, using them for QA can never be entirely
accurate. Even for cases in which the CC is clearly sub-opti-
mal, a high SDC is still possible if the model makes similar
‘mistakes’ as the clinician. One important DL bottleneck, and
also a potential reason for imperfections in a model, seems
to be the quality of the training data. Our training data con-
sists of a large set of clinical contours, that were not curated
at ‘millimeter’ level, and were delineated over a period of
7 years by a number of different radiation oncologists/train-
ees. Nonetheless, our average SDC of 0.84 is well within the
range of earlier published values for DL-based PG/SMG seg-
mentation [6–13] and higher than SDCs resulting from mul-
tiple clinicians contouring the same PG [27]. It remains to be
tested whether a highly curated dataset would result in a
relevant increase in average SDC and decrease in false posi-
tives and negatives.

The authors acknowledge that the deliberately introduced
errors are only partially representative of real-world contouring
errors. Small amounts of contraction and expansion are realis-
tic, because HU windowing influences the visually apparent
size of the structure, but displacement of the entire contour is
not particularly common. Instead, the missing or over-delinea-
tion of only a part of a structure is more likely to occur.
Although SDC and HD were used to flag cases, the choice of
the threshold and metric is subjective. Using a threshold based
on the average performance on the test-set will highlight out-
liers. These cases tend to have a clear cause for low agreement
and should be considered for careful visual inspection. By eas-
ing the threshold, more cases will be identified for inspection
with the cause likely to be less clearly identifiable. The thresh-
old for HD may seem far greater than is clinically relevant, but
this is because the HD is not based on a comparison between
a contour and the ground-truth, but rather on two contours
that are inherently imperfect.

In general, we noticed that cases with similar SDCs could
differ in perceived quality of the contours. This may be
because the SDC is a volumetric similarity measure, whereas
the observed quality of the contour may often be judged
based on deviations with little volumetric impact (e.g.,

missing anterior extension of PG). Another limitation is that
even though experienced persons judged the contours to
determine if they were clinically sub-optimal, this judgment
remains subjective. It remains the case that, especially on CT,
these are not always easy structures to visualize and seg-
ment. Addition of MRI can sometimes help to resolve this.
Our current DL-model is based solely on CT data. It is note-
worthy that although all centers had been through a trial QA
process, we still identified multiple cases where we consid-
ered that the CC could be improved. This both highlights
the variation and subjectivity inherent in clinical contour
review, and supports the need for high-quality automated
QA. Although our DL method for QA did flag some false
positive cases, it also flagged some of the cases with sub-
optimal CC, demonstrating that an automated DL QA tool
can support a QA team to inspect the quality of contours.

Such a QA tool could be used in several ways, all of which
would be based around a comparison of DLD and clinical con-
tours, with cases being flagged when a certain threshold differ-
ence was exceeded. So, for example: (1) a center submits
clinical contours to a trial, DLD derived contours are used to
immediately QA these, with feedback being provided right
away to the submitting center. The DLD contours could be sent
to the submitting center who could choose to use them, or the
differences between manual and DLD contours could be high-
lighted and used to inform manual editing; (2) DLD based QA
could be used to flag centers that submit too many contours
that fail to pass QA; (3) The DLD QA tool could be used for
retrospective analyses and other research purposes (Figure 6).

In conclusion, in this proof-of-concept study, we have
shown that automated DL-based contour QA is technically
feasible (creating a contour for 124 images took less than
2 s) and within reach. However, further improvements are
needed: visual inspection remains essential, which is a barrier
to full-automation. Also, even though the DL-model per-
formed well within the range of earlier published values for
DL-based PG/SMG segmentation, there were a substantial
number of false positive flags due to sub-optimal perform-
ance of the DL-model. Continued improvement and an abil-
ity to handle ‘outlier’ cases will facilitate the routine use of
DL-based contour QA.
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