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ABSTRACT
It is widely recognized by statisticians, though not as widely by other researchers, that the p-value cannot
be interpreted in isolation, but rather must be considered in the context of certain features of the design
and substantive application, such as sample size and meaningful effect size. I consider the setting of the
normal mean and highlight the information contained in the p-value in conjunction with the sample size
and meaningful effect size. The p-value and sample size jointly yield 95% confidence bounds for the effect
of interest, which can be compared to the predetermined meaningful effect size to make inferences about
the true effect. I provide simple examples to demonstrate that although the p-value is calculated under the
null hypothesis, and thus seemingly may be divorced from the features of the study from which it arises,
its interpretation as a measure of evidence requires its contextualization within the study. This implies that
any proposal for improved use of the p-value as a measure of the strength of evidence cannot simply be a
change to the threshold for significance.
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1. Introduction

Seventy-two prominent researchers proposed changing the
default p-value threshold for statistical significance from 0.05 to
0.005 for claims of new discoveries (Benjamin et al. 2018). They
were motivated to address a leading cause of nonreproducibility
of scientific studies; standards of evidence such as the usual rule
for formal inference, “reject if p < 0.05,” are too low. This is not a
new concern and was raised several years ago by Ionnidis (2005),
who presented data and analysis in support of his title claim
that most published research findings are false. The solution
proposed by Benjamin et al. (2018) is simple, but surprisingly
does not implement some of the basic tenets put forth in
the recent statement published by the American Statistical
Association (ASA) on the topic of statistical significance and
p-values (Wasserstein and Lazar 2016). The third principle
listed in the ASA statement asserts that scientific conclusions
should not be based on whether a p-value passes a threshold.
The fifth principle acknowledges that the p-value, in isolation,
does not measure the effect size or the importance of a result.
A better solution is not to change the threshold, as suggested
by Benjamin et al. (2018), but to find an alternative to exclusive
reliance on threshold alone. Context matters.

In this article, I use the terms design and context to refer to
characteristics of experiments such as sample size and substan-
tively meaningful effect size, which impact the interpretation
of a p-value and the conclusions that are drawn. I then rely on
examples from the simple setting of a single normal sample with
variance one to articulate and illustrate two informal principles
for interpreting p-values. A first pair of examples (Section 2)
shows how data leading to a p-value of 0.005 as in Benjamin
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et al. (2018) can lead to different inferences depending on the
combination of sample size and context-specific magnitude of
an interesting or important effect size. These examples rely
on a functional relationship between the observed p-value and
sample size, and the lower endpoint of a one-sided confidence
interval. A second pair of examples (Section 3) shows how data
leading to a large p-value can also lead to different inferences,
also depending on the combination of sample size and context-
specific magnitude of an uninteresting or inconsequential effect
size. These examples similarly rely on a relationship between
the observed p-value and sample size, and the upper endpoint
of a one-sided confidence interval. Although I rely on a simple
setting for examples, the informal principles for interpreting p-
values extend in a natural way to more general settings. The
article concludes (Section 4) with a summary and discussion.

2. Interpreting a Small p-Value

The Benjamin et al. (2018) proposal calls for reducing the p-
value threshold from 0.05 to 0.005 as a solution to nonre-
producibility in science. This section presents two examples,
both with p = 0.005. For the first example, p = 0.005 is
too stringent of a threshold for detecting a meaningful signal.
For the second example, p = 0.005 is not stringent enough.
What distinguishes the two examples is the context, namely, the
combination of sample size, n, and size, d, of the effect judged
to be meaningful. Here, I assume that d has been identified; in
practice, the identification of clinically or substantively mean-
ingful effects is complicated and may not be consistent across the
various stakeholders, including patients, clinicians, regulators,
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investors, and payers (Keefe et al. 2013; Rosnow and Rosenthal
2003). By definition, d is nonzero.

It is well-known that there is a duality relating hypothesis
tests and confidence intervals: we reject the null hypothesis,
H0 at level α if and only if the null value of the parameter lies
outside the corresponding 1 −α level confidence interval. I rely
here on a different correspondence, that between the p-value
calculated for a one-sided test of H0 : μ = 0 versus the one-
sided alternative hypothesis, H1 : μ > 0, and the endpoint μ∗
of a one-sided confidence interval for μ of the form (μ∗, ∞).
The extension to two-sided tests and confidence intervals is
straightforward. Browne (2010) also elucidated the relationship
between the p-value and the observed effect. He did not, how-
ever, relate the interpretation of the 95% confidence interval to a
predetermined meaningful effect size as the basis for inference.

For the simple case of a random sample X1, X2, . . . , Xn from
a normal distribution with known variance 1 and unknown
mean μ, the value of the sample mean x̄ determines both the
p-value, denoted by p, and the lower endpoint of the interval,
μ∗. For example, X might be the measured standardized change
in systolic blood pressure from baseline to one year after some
treatment and μ is the expectation of X. Of interest is the test
of the hypothesis that the drug has a positive effect on blood
pressure: H0 : μ = 0 versus H1 : μ > 0. The p-value is given
by p = Pμ=0(Z >

√
nx̄), where Z is standard normal, μ∗ =

x̄ − Z1−α/
√

n, and Z1−α is the 1 − α quantile of the standard
normal distribution. Inverting the equation that defines the p-
value and solving for x̄ yields that μ∗ = (Z1−p − Z1−α)/

√
n.

Note that smaller p are associated with larger μ∗, and thus there
is a threshold p∗ such that p-values that are below p∗ provide
evidence that μ > d, that is, of a non-null meaningful effect. In
the systolic blood pressure example, d might be 10/σ , where σ

is the standard deviation of the change in blood pressure from
baseline to one year. (These calculations follow from the fact
that the sample mean X̄ is normally distributed with mean μ

and variance 1/n and so
√

n(X̄ − μ) is standard normal). In
the setting of a two-sided test, with positive x̄, μ∗ = (Z1−p/2 −
Z1−α/2)/

√
n and a p-value threshold can likewise be derived.

Given the observed p-value, it is possible to calculate the
lower endpoint μ∗ of a one-sided 1−α% confidence interval for
μ. In particular, if p = 0.005, the corresponding 0.995 quantile
of a standard normal is Z0.995 = 2.576, and the lower endpoint
of a 95% one-sided interval is μ∗ = (2.576 − Z0.95)/

√
n, where

Z0.95 = 1.645. Thus, μ∗ = (2.576 − 1.645)/
√

n.
Now consider two examples, both with p = 0.005. I take as

context the combination of sample size, n, and the meaningful
effect size, d, defined as the smallest value of μ > 0 judged
to be meaningful. Note that the sample size might have been
selected to attain a certain level of power to detect a particular
value of μ. If it is important to fix the power at a certain level, for
practical considerations such as availability of subjects and cost
of the trial, this value of μ is frequently larger than d, the smallest
meaningful value of μ. However, if it is important to design the
study to detect the meaningful effect, d, it may be underpowered
given the constraints of subject availability and cost.

Example 1(a): Suppose that an effect size of d = 0.10 is
considered meaningful, and that the sample size is n = 50.
Given that p = 0.005, the lower endpoint of the one-sided 95%
confidence interval is equal to μ∗ = (2.576 − 1.645)/

√
50 =

0.1317 (Table 1). Thus, with 95% confidence, p = 0.005
excludes values of μ that are less than or equal to 0.1317, and
thus certainly those that are less than 0.10. In this context,
p = 0.005 identifies meaningful signals, but potentially misses
some signals (i.e., those between 0.10 and 0.1317). The optimal
(i.e., maximum) p-value threshold corresponding to μ∗ = 0.1
in this context is 0.0093.

Example 1(b): For a contrasting example, I increase the sam-
ple size to n = 200 and maintain the same effect size of d = 0.10.
The same p-value yields a lower 95% confidence limit of 0.0658,
which includes values of μ less than d. Here, p = 0.005 is not a
useful threshold relative to the meaningful effect size as it admits
values of μ less than 0.10. In this example, the optimal threshold
is 0.0011.

Generalizing from these examples suggests a strategy for
finding the p-value threshold for concluding a meaningful effect
for any given sample size:

1. Based on substantive knowledge about the applied con-
text, select a value d for the smallest effect size considered
meaningful. While ideally this is the value that is used
to design the study to achieve a fixed power, practical
considerations often do not permit this.

2. Take as the upper p-value threshold that value p∗, for
which μ∗ = d. That is, reject H0 if and only if p < p∗, or
equivalently, the 95% confidence interval for μ, (μ∗, ∞)

excludes d.

The principle: Reject the null in favor of a meaningful effect
if and only if the lower 95% confidence bound exceeds the
smallest effect size considered meaningful. Thus, rejecting the
null means we can be 95% confident that the true effect size is at
least as large as the size considered to be clinically meaningful.

As an example, consider the 1993 GUSTO-I study of strep-
tokinase plus intravenous heparin versus rt-PA (recombinant
tissue plasminogen activator) plus intravenous heparinthrom-
bolytic drugs for acute myocardial infarction, as discussed by
Lesaffre (2008). The primary endpoint was 30-day mortality.
There were approximately 10,300 subjects in each of these treat-
ment arms, and the observed percentages of 30-day mortality
were 7.4% and 6.3%. The two-sided p-value testing the equality
of the percentages was 0.0028, with a 95% confidence interval
for the difference of (0.36%, 1.73%). The conclusion was that
there was a significant reduction in 30-day mortality advantage
for the rt-PA group versus the streptokinase plus intravenous
heparin group. This conclusion implies that a difference as small
as 0.36% is considered to be clinically meaningful (i.e., d <

0.0036). If this is not the case, and d > 0.0036, then even the
small p-value of 0.0028 does not provide strong evidence of a
meaningful effect.

3. Interpreting a Large p-Value

In the previous section, I illustrated that a small p-value relative
to a fixed threshold has different meanings depending on the
context. I now consider what can be learned from large p-values.
Students of introductory statistics courses are taught that no
conclusions can be drawn from large p-values. This maxim
was reiterated in the ASA statement (Wasserstein and Lazar
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2016). In this section, I illustrate that large p-values relative to
a fixed threshold also have different meanings depending on the
context.

Just as the lower confidence limit for the normal mean has a
direct relationship with the p-value for the same one-sided test
H0 : μ = 0 versus H1 : μ > 0, so does the upper limit of a
one-sided confidence interval (−∞, μ∗). In particular, simple
algebra yields that μ∗ = (Z1−p + Z1−α)/

√
n. Note that larger p

are associated with smaller μ∗, and thus there is a threshold p∗
such that p-values that exceed p∗ provide evidence that μ < d,
that is, of a nonmeaningful effect. In the setting of a two-sided
test, with positive x̄, μ∗ = (Z1−p/2 + Z1−α/2)/

√
n and a p-value

threshold can likewise be derived.
Now consider two examples, both with p = 0.6286. Again, I

take as context the combination of sample size, n, and the effect
size, d, defined as the smallest value of μ > 0 judged to be
meaningful.

Example 2(a): Suppose that an effect size of d = 0.10 is con-
sidered meaningful, and that the sample size is n = 50. Given
that p = 0.6286 and Z1−p = −0.328, the calculations above
yield that the upper endpoint of the one-sided 95% confidence
interval is equal to μ∗ = (−0.328 + 1.645)/

√
50 = 0.1862.

Thus, with 95% confidence, p = 0.6286 excludes values of μ

that are greater than or equal to 0.1862, but is uninformative
about whether μ is less than d = 0.10 or not. In this example, a
lower p-value threshold of p∗ = 0.8259 would provide evidence
of a nonmeaningful effect (i.e., μ < d).

Example 2(b): For a contrasting example, I increase the sam-
ple size to n = 200 and maintain the same effect size of
d = 0.10. The same p-value yields an upper 95% confidence
limit of 0.0931, which excludes values of μ greater than d =
0.10. Here, the large p-value of 0.6286 is useful in providing
evidence against a meaningful effect. In this example, a lower
p-value threshold of p∗ = 0.5913 would be sufficient to provide
evidence of a nonmeaningful effect.

Generalizing from these examples suggests a strategy for
finding the p-value threshold for concluding a nonmeaningful
effect for any given sample size:

1. Based on substantive knowledge about the applied con-
text, select a value d for the smallest effect size considered
meaningful. While ideally this is the value that is used
to design the study to achieve a fixed power, practical
considerations often do not permit this.

2. Take as a lower p-value threshold that value, p∗, for which
μ∗ = d. That is, accept H0, that is, conclude no meaning-
ful effect, if and only if p > p∗, or equivalently, the 95%
confidence interval for μ, (−∞, μ∗) excludes d.

The principle: Accept the null with respect to a prespecified
d if and only if the upper 95% confidence bound falls below the
smallest effect size considered meaningful. Thus, accepting the
null means we can be 95% confident that the true effect size
is no larger than the minimal size considered to be clinically
meaningful.

As an example in the different context of a two-sided test
of a relative risk, the RE-LY trial of atrial fibrillation compared
dabigratran to warfarin with respect to risk of stroke or systemic
embolism (Connolly et al. 2009). A relative risk of 1.46 was iden-
tified as the clinically meaningful threshold for noninferiority

of dabigatran relative to warfarin; that is, if the upper two-sided
95% confidence limit (i.e., the upper one-sided 97.5% limit) for
the relative risk fell below 1.46, noninferiority could be declared.
The upper one-sided 97.5% limit was used to account for the
two dabigatran dose groups that were tested versus warfarin and
because superiority was tested, as well. The relative risk for the
6015 subjects in the 110 mg dabigatran group versus the 6022
subjects in the warfarin group was 0.91, with a 95% confidence
interval of (0.74,1.11) and a p-value of 0.34. Because the upper
limit of 1.11 is below 1.46, this dose group of dabigatran could
be concluded to be noninferior to warfarin. In this setting, the
large p-value of 0.34 (and associated confidence interval) is large
enough to declare noninferiority of dabigatran.

4. Summary

In conjunction with the design and context of the study, such
as sample size and the minimum meaningful effect size, which
are inputs to the calculation of confidence limits for measures
of effect, the p-value may indeed be informative about the effect
of interest and/or about the null. However, absolute thresholds
for the p-value do not render it meaningful with regard to a
positive or null effect; the thresholds depend on n and d. This
understanding expands on the ASA statement (Wasserstein and
Lazar 2016), which enumerates truisms about the p-value, but
does not provide guidance regarding best uses of the p-value,
and provides nuance to the simple stringent threshold suggested
by Benjamin et al. (2018). In summary, I have elucidated the
importance of contextualizing the p-value within the salient fea-
tures of the study when formal hypothesis testing is undertaken.
When this is done, it can be a useful measure of evidence for the
truth.
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