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ABSTRACT
Evaluating the importance and the strength of empirical evidence requires asking three questions: First,
what are the practical implications of the findings? Second, how precise are the estimates? Confidence
intervals provide an intuitive way to communicate precision. Although nontechnical audiences often
misinterpret confidence intervals (CIs), I argue that the result is less dangerous than the misunderstandings
that arise from hypothesis tests. Third, is the model correctly specified? The validity of point estimates and
CIs depends on the soundness of the underlying model.
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1. Introduction

The American Statistical Association statement on p-values
(Wasserstein and Lazar 2016), calls for moving beyond “bright
line rules” when evaluating empirical results. How? To evaluate
a finding requires asking three questions:

1. What are the practical implications of the estimate?
2. Is the estimate precise?
3. Is the model correctly specified?

The first question addresses importance, the second and third
pertain to the strength of the evidence. This article discusses
each question in nontechnical writing, meant to be accessible for
anyone who presents or uses statistical results (e.g., journalists,
lawyers, policymakers, and students).

There is no simple rule for evaluating research that encom-
passes the three questions posed above. Worse, simple rules,
such as whether a null hypothesis is rejected, give a false sense of
certainty. Proof is only possible within theoretical frameworks
such as logic and mathematics. In contrast, empirical research
generates evidence. Accumulated evidence from multiple stud-
ies may eventually satisfy a “burden of proof,” but individual
studies are rarely definitive. The inherent uncertainty of statis-
tical evidence means that evaluating empirical work requires
judgment, informed by quantitative analysis and subject matter
knowledge.

Reviewers of research who do not possess subject-specific
expertise must seek it out. Academics can be found via their
publications and are usually pleased to discuss their work. Some
government agencies provide access to subject matter experts
via outreach offices (e.g., the Department of Agriculture and
the National Laboratories within the Department of Energy).
Experts may also be identified and contacted through outreach
groups run by professional associations. Throughout this article,
I point out the roles that subject matter expertise plays in the
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research process, from the crucial first step of model specifica-
tion to interpreting the magnitudes and precision of estimates.

2. Magnitude

A new fertilizer increases the average height of corn plants by 7
cm. Does it matter? What does it imply for corn yield and profit?
Pose these questions to a statistician and you may be left hungry
for answers. Judging the importance requires knowledge of corn
farming. It requires knowing whether the finding conforms
to expectations based on theory and prior evidence, or if the
finding is surprising, revealing fertile ground for future research.

Do not mistake statistical significance for practical impor-
tance. In informal discussions and the media, the term “signif-
icant” is often used without clarifying whether it is meant in a
statistical or practical sense. Statistical significance depends on
an estimate’s magnitude as well as its precision (illustrated in
Section 3). Larger samples typically lead to greater precision so
even a tiny magnitude can be statistically significant. If you mea-
sure enough corn plants, you will eventually obtain a statistically
significant difference, even if the fertilizer only increases average
height by 1 cm. The insight that statistical significance does
not imply practical significance is not new. Deirdre McCloskey
has been reminding economists for 35 years (e.g., McCloskey
1983; McCloskey and Ziliak 1996; Ziliak and McCloskey 2004).
Unfortunately the term “significant” continues to cause confu-
sion, so the point bears repeating.

To judge magnitude requires paying attention to scale. What
are the units of the relevant variables? Does an estimate repre-
sent births per month or births per week? The axes on graphs
should be clearly labeled, including units. Be careful to distin-
guish between percent changes and percentage point changes:
starting at an unemployment rate of 5%, it makes a big dif-
ference whether it falls by 3% (to 4.85%) or by 3 percentage
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points (to 2%). More generally, when a change is represented
in relative terms, consider the base quantity: suppose a new
vaccine reduces the incidence of malaria by 50% for a particular
population. In absolute terms this could be a huge decrease (if
the initial rate were high), but it could also be a small decrease
(if the initial rate were low).

In summary, to assess the magnitude of an estimate requires
understanding its real-world implications. Be wary of the term
“significant.” If practical significance is unclear, consult a subject
matter expert. Of course, simply attaining practical significance
does not ensure a finding is irrefutable. The strength of the
evidence depends on sampling and modeling uncertainty.

3. Precision: Quantifying Sampling Uncertainty

A statistic is an approximation to an unknown population
parameter based on a random subsample from that population.
Statistics generally differ from true population values: the
average height of five randomly selected female professional
basketball players is unlikely to exactly equal the average height
of all female professional basketball players. Given data from
the entire population, there would be no sampling uncertainty.
Precision is an informal term for how close a statistic is expected
to be to the true population value.

Quantifying precision lies at the core of statistics. Popular
techniques include credible intervals in the Bayesian frame-
work, and confidence intervals in the frequentist framework. I
focus on confidence intervals (CIs) because the target audience
for this article is likely to be more familiar with the frequentist
approach.

A 95% CI is a range of values to be constructed such that
there is a 95% probability that it will contain the true pop-
ulation parameter, assuming the model is correctly specified.
Technically, CIs are often misinterpreted (see the Appendix), but
people still get the correct idea since a margin-of-error, the half-
width of a CI, is an intuitive concept.

3.1. Illustrations

Simple rules, such as the results of null hypothesis significance
testing, can cause more serious confusion. I illustrate the use of
CIs as well as pitfalls in hypothesis testing using five hypothetical
estimates of the change in plant height associated with a corn fer-
tilizer (see Figure 1). Regarding practical importance, suppose a
change of 5 cm or more would be notable. Suppose the estimates
in Cases 1–3 are considered precise (narrow CIs) while Cases 4
and 5 are not.

In Case 1, the estimate is precise and large enough to be
interesting. Regarding statistical significance, consider testing
the null hypothesis that the true parameter is zero versus the
alternative hypothesis that the true parameter is not equal to
zero, at a 5% level. We reject the null if the CI does not include
zero. Thus, in Case 1 we reject the null, establishing statistically
significant evidence that the parameter is not equal to zero.

In Case 2, we do not reject the null (the CI includes
zero). Since the CI is narrow, this outcome is sometimes
called a precise zero. Although the result is not statistically
significant, it constitutes strong evidence that the parameter

Figure 1. Five estimation outcomes. Dots represent the estimated change in aver-
age plant height associated with fertilizer use. Brackets represent the bounds of
95% confidence intervals.

is less than five (the smallest interesting effect size). In terms of
magnitude and precision, Cases 2 and 3 provide very similar
information despite yielding opposite hypothesis test results. In
Case 3, we reject the null even though the estimate is small in
magnitude. Here statistical significance does not imply practical
significance, like the one centimeter difference in corn height
from Section 2.

The estimates in Cases 4 and 5 are significant in practical
terms but come with substantial sampling uncertainty. Again,
despite providing very similar information, they yield opposite
hypothesis test results: we reject the null in Case 4 but not in
Case 5. Comparing Case 4 with Case 1, both depict the same
point estimate and both are statistically significant, but they
differ enormously in precision. Case 1 provides evidence that
the parameter is near seven, but in Case 4 the CI extends from
just above zero to just under 14.

Regarding Case 5, failure to reject the null is sometimes
mistakenly viewed as an acceptance of the null. In other words,
finding no statistically significant effect is viewed as evidence
that the parameter is zero. In Case 2 that conclusion may be
reasonable. But more often, failure to reject simply indicates the
results are inconclusive, as in Case 5 where the CI extends from
slightly negative to greater than 14. Suppose Case 5 represented
an association between a food additive and cancer in laboratory
animals. Although we would not reject the hypothesis that there
is no relationship, it would be difficult to find a statistician
willing to consume the substance.

3.2. Implications

These five cases illustrate how hypothesis test outcomes, in
isolation, do not provide all the information required to evaluate
a result. Statistical significance is not a proxy for magnitude or
precision. CIs provide a useful way to gauge precision while
avoiding the potentially confusing terminology of hypothesis
testing.

What constitutes sufficient precision? This assessment is tied
to the evaluation of practical significance and must also be based
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on domain-specific knowledge. One rule-of-thumb is to require
the margin-of-error to be less than the smallest magnitude of
practical significance. In the corn fertilizer example, an estimate
would need a margin-of-error of less than five to be considered
precise. The assessment should also account for the fact that it
is more difficult to obtain precise estimates in some contexts. So
the judgment should consider the level of precision attained in
related research. An imprecise estimate may still be informative:
suppose the fertilizer were estimated to increase average plant
height by 12 cm with a margin-of-error of 6 cm. Then, despite
having a wide CI, its lower bound still represents a magnitude
of practical importance.

Studies that involve data collection must start by specifying
a required level of precision. This specification should then
be used to calculate minimum sample sizes. The target level
of precision is often stated as a margin-of-error or a level of
statistical power. Statistical power is the probability of correctly
rejecting a null hypothesis when a specific alternative hypothesis
is true. Statistical power is a function of both sample size and
the hypothesized parameter values (i.e., effect size). Thus, power
analysis requires considering both precision and magnitude. In
medical research, grant agencies commonly require sample sizes
that yield statistical power of at least 80%.

In summary, statistical significance does not guarantee that
an estimate is precise. In contrast, CIs provide an intuitive way
to quantify precision. One possible benchmark is to consider
an estimate’s margin-of-error relative to the smallest parameter
value with practical significance. Finally, projects that involve
collecting data should start by defining the required level of
precision; minimum sample sizes can then be set accordingly.

4. Model Uncertainty

Of the three questions posed in Section 1, whether a model is
correctly specified is the most difficult. It is also crucial because
point estimates and CIs depend on the validity of the model.
Sampling uncertainty is only one component of the overall
uncertainty associated with an estimate. I define “model uncer-
tainty” broadly to encompass all other sources of ambiguity.
The research process requires making many decisions and the
correct choice is often unknown.

Researchers tackle questions like: What explanatory variables
should enter the statistical model? What is an appropriate func-
tional form? What are the properties of the error term? Are
standard approximations (e.g., asymptotic results for sampling
distributions) adequate in a particular research context? Do
the observable variables accurately represent the underlying
theoretical constructs, for example, are wages an acceptable
proxy for worker productivity? What is the proper way to handle
data integrity issues such as missing or implausible values? A
researcher’s answers to these questions are modeling assump-
tions.

To assess model uncertainty, first identify the modeling
assumptions. Second, judge the validity of the assumptions.
Third, check how key findings change in response to alternative
modeling choices. Let’s consider each task in turn.

Modeling assumptions (including all the choices from model
specification to sample selection and the handling of data issues)
should be sufficiently documented so independent parties can

critique, and replicate, the work. The assumptions most often
overlooked may be the formal conditions attached to statistical
models. To the benefit of applied researchers, statisticians derive
the required conditions for valid estimates and CIs in specific
contexts. For example, a method of computing a CI may require
that unobserved factors are uncorrelated across observations.
Researchers should consult statistical references to ensure they
understand the assumptions associated with their models and
methods.

Armed with a list of modeling assumptions, the next question
is whether they are valid. Since it is rare for every condition to
be completely satisfied, asking if a model is correctly specified
actually means asking whether the model is adequate given
the research goal. Are any assumptions sufficiently violated
to cast doubt on the results? For instance, even after random
assignment, the treatment and control groups in an experiment
typically differ to some degree in their observable attributes.
Are there also differences in unobserved factors? If so, are they
substantial enough to confound the results?

To assess the plausibility of modeling assumptions,
researchers rely on both theory and evidence. A scatterplot may
show that it is reasonable to assume a linear relationship between
height and age for elementary school children. Since empirical
evidence is not always available, researchers also appeal to
theory. Suppose I am estimating the impact of a job training
program on wages for high school graduates. Can I simply
compare the wages of the graduates who complete the training
to the wages of typical high school graduates? In theory, factors
such as diligence and motivation influence both earnings and
the completion of a job training program. If so, then individuals
who finish the training would have earned higher wages even
without the program, so the simple difference in average wages
would exaggerate the impact of training.

The third step in assessing model uncertainty is to check
how estimates change across a range of plausible modeling
and data choices. This sensitivity analysis is especially cru-
cial when neither theory nor evidence points to one model-
ing approach over another. Robustness checks may be con-
ducted using a formal framework such as Bayesian model aver-
aging (Hoeting et al. 1999) or in an ad hoc manner such as
using different functional forms and sets of explanatory vari-
ables. If a key finding disappears due to a seemingly arbitrary
adjustment to the model, then the evidence for the finding is
weak.

In summary, the first step when assessing model uncertainty
is to identify the modeling assumptions. Assumptions include
both formal conditions required by statistical models as well as
more judgment-based choices such as sample selection and how
to handle data integrity issues. The second step is to assess the
validity of the assumptions. Researchers use theory and prior
empirical results to support their modeling choices, so subject
matter expertise it is especially crucial here. The third step is
to assess the degree to which key findings change across model
variations.

5. Conclusion

As a method of inquiry, the process of systematic observation,
statistical analysis, peer review, and replication is undeniably
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effective. Still, the results from individual studies are usually
not definitive. Researchers must clearly communicate the sam-
pling and modeling uncertainties associated with their find-
ings. The evaluation of an empirical result should take into
account existing evidence on the topic. Is the research com-
munity approaching consensus or is there still considerable
debate on the issue? When presenting research to audiences
who lack subject matter knowledge, it is crucial to provide the
context for evaluating the importance and the strength of the
evidence.

Appendix: A Common Misinterpretation of Confidence
Intervals

Section 3 defines CIs in frequentist statistics. It makes clear that the
probability statement applies before the sample has been drawn. If
a researcher has already drawn a random sample, obtained a point
estimate and computed its 95% CI, then it is incorrect to say there is a
95% chance the true parameter lies within that specific interval. This is
mistaken because the population parameter is not typically considered
random, so it has no probability distribution. The realized bounds of a
CI are also not random. Before the sample was drawn, the bounds were
random variables (functions of a random sample). But after drawing
the sample the realized bounds are not random (just as the roll of a die
is random, but the result from a particular role is a constant). In short,
after drawing the sample, nothing is random so probability statements
do not make sense. The population parameter is either inside or outside
the realized interval (and since the true parameter value is unknown,
we cannot say which is the case).

One way to describe realized bounds is to refer to two implied
hypothesis tests. Suppose an estimate has a 95% CI of [a, b]. Then, using
a two-sided hypothesis test at the 5% level, we would not reject the null
hypothesis that the population parameter is equal to a. In a separate
test, we would not reject the hypothesis that it is equal to b. In this
sense, the data is consistent with true parameter values ranging from
a to b.
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