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Abstract
A crisis of validity has emerged from three related crises of science, that is, the crises of statistical significance
and complete randomization, of replication, and of reproducibility. Guinnessometrics takes commonplace
assumptions and methods of statistical science and stands them on their head, from little p-values to
unstructured Big Data. Guinnessometrics focuses instead on the substantive significance which emerges
from a small series of independent and economical yet balanced and repeated experiments. Originally
developed and market-tested by William S. Gosset aka “Student” in his job as Head Experimental Brewer
at the Guinness Brewery in Dublin, Gosset’s economic and common sense approach to statistical inference
and scientific method has been unwisely neglected. In many areas of science and life, the 10 principles of
Guinnessometrics or G-values outlined here can help. Other things equal, the larger the G-values, the better
the science and judgment.
By now a colleague, neighbor, or YouTube junkie has probably shown you one of those wacky psychology
experiments in a video involving a gorilla, and testing the limits of human cognition. In one video, a person
wearing a gorilla suit suddenly appears on the scene among humans, who are themselves engaged in
some ordinary, mundane activity such as passing a basketball. The funny thing is, prankster researchers
have discovered, when observers are asked to think about the mundane activity (such as by counting the
number of observed passes of a basketball), the unexpected gorilla is frequently unseen (for discussion see
Kahneman 2011). The gorilla is invisible. People don’t see it.
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1. Invisible Giant of Statistics Inside The Archives
(And Out)

I am an economic statistician and historian who has studied
the history of statistical significance and experimental design
in what is considered by most people to be a foreign and
ancient land—the archives, that is, historical archival libraries—
for nearly 25 years. I’ve logged countless hours in some of
the grandest and oldest reading rooms and their opposites in
England, Ireland, and the United States. On and off since 2008,
my research efforts have been especially focused in Dublin,
Ireland, primarily in the archives of the Guinness Storehouse
Museum (wicked, I know: nice work if you can get it).

I have found by comparing the archives with published liter-
ature a similar pattern in the history of statistics, an “unseeing”
of a statistical giant whose methods, when heeded, could help
out much of the economy, from Big Pharm and agri-business to
the World Bank and higher education, more or less instantly.
Statisticians and their clients have narrowed their focus on
the wrong thing, the back and forth of statistical significance
testing, “pass” or “no pass”. We have become so routinized in
our focus on bright-line significance levels such as p < 0.05 (an

CONTACT Stephen T. Ziliak sziliak@roosevelt.edu Roosevelt University, College of Arts and Sciences, Department of Economics, 430 S. Michigan Ave., Chicago, IL
60605.

example of what the behavioral economist Daniel Kahneman
calls “thinking fast”) that we are often blinded to larger, perhaps
more important things—such as estimation of the substantive
meaning of our results (requiring “slower”, deliberate thought).

In fact, I argue that this unseen giant of statistics holds the
keys for unlocking our current crises in science: the crises of
replication, of reproducibility, and of statistical significance; in
sum, close study of this giant’s methods can help to undo the cri-
sis of validity currently haunting science and society, including
business and law (Goodman 2002; Ziliak and McCloskey 2008;
Greenland, et al. 2016; Wasserstein and Lazar, 2016; Pierson,
Broman, et al. 2017).

2. How a Giant Statistician and Brewer Sidestepped
the Crisis of Validity

Who is this invisible giant with a hero’s cape? “Student” is
the name which graces Student’s t, the most popular test of
statistical significance in the world, and the foundation from
which Fisher’s p-values were originally derived (Student 1908a,
1925; Fisher 1925; Ziliak 2008). Most statisticians have heard
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that “Student” is in reality the pen name of William Sealy Gosset
(1876–1937), a brewer of Guinness beer.1

But even professional statisticians struggle to distinguish
“Student’s” actual methods from those of Fisher, erroneously
conflating the ideas and opinions of the two men (Ziliak
and McCloskey 2008, Chaps. 20–23). The much older and
far more experienced “Student”, who had been comparing
random with balanced layouts in agricultural plots since
1905 was not, as some observers seem to think, just another
“Fisher”-replicate donning a brewer’s costume, a minor figure
appearing on the scene to spice up a boring statistics lecture.
Brewing and shipping unpasteurized beer for profit, taste, and
quality assurance on the global scale is serious business—
the economic element is fundamental, and a lot can be lost,
“Student” knew and warned. Conflation of Student’s methods
with the admittedly hackneyed mathematical and antieconomic
re-interpretation of them by Fisher (1925, 1933, 1935) and
most other textbook authors is both a historical blind spot and
scientific blunder with, as I have shown elsewhere, enormous
practical and human consequences, many of them far from
good.2 I call this valuable if neglected approach to statistics,
“Guinnessometrics”.

3. G-Values: The 10 Principles of Guinnessometrics

Guinnessometrics is an experimental philosophy of inference
and decision-making innovated and market-tested between
1904 and 1937 by William S. Gosset, a self-trained statistician
who rose to Head Brewer of Guinness during the decades when
Guinness was the largest brewery in the world (Ziliak 2008). At
Guinness the scientific brewers, including Gosset, were allowed
by the company to publish research so long as they did not
mention (1) beer, (2) Guinness, or (3) their own surname.
Ironically the hundred-million gallon a year brewery did not
rely on statistical significance, Student’s t, randomized trials,
or Big Data. Closer to the opposite. Guinnessometrics takes
a repeated small-sample economic approach to experimental
statistics and decisions, in cooperation with agents up and
down supply chains, all with real “skin in the game” (Taleb
2018). Gosset’s Guinnessometrics inverts the usual matrix of
statistical science and emerges with little or no need for a
p-value or placebo-controlled randomized trial. And as any
Guinness drinker can tell you, results of this science are not
only repeatable and replicable, they are reproducible. Crisis
averted.

The crisis of validity in the statistical sciences has been
caused largely, though not entirely, by the following common
yet erroneous practices undermining trust in data-based
decisions:

• Attempted falsification of an assumed-to-be true null
hypothesis without a loss function;

1 Harold Hotelling (1930, p. 189), a vice president of the American Statistical
Association and a teacher of many leading economists and statisticians,
wrote: “I have heard guesses in this country, identifying ‘Student’with Egon
S. Pearson and the Prince of Wales.”

2 See also Student 1942; Pearson 1990; Ziliak 2014, 2010a, 2010b; Ziliak and
Teather-Posadas 2016.

• Statistical significance testing at a bright line level (such as
p < 0.05 or t > 1.96) independent of the substantive meaning
of the result, coefficient, or model;

• Running a randomized, placebo controlled trial (RCT)
assuming the independence of observations;

• Making decisions based on one, large-scale experiment, ran-
dom or not (“One and done”);

• Accepting or rejecting a hypothesis based on a single sample
of convenience and arbitrary size (the majority of social
science, and much of life science);

• Promoting what turns out to be irreproducible results;
• Investing prematurely in “Big Data”;
• Assuming in statistical tests there is “no prior” subject-matter

knowledge; and
• Making false binary and merely qualitative assessments

based on the alleged bright line “significance” or “insignif-
icance” of a result (important/unimportant, yes/no, exists/
does not exist)

Guinnessometrics reverses these misleading yet widespread
practices and replaces them with 10 principles or G-values,
just as Gosset always said. In listicle form, the Ten Principles of
Guinnessometrics are:

G-10 Consider the Purpose of the Inquiry, and Compare with
Best Practice

Falsification of a null hypothesis is not the main purpose
of the experiment or observational study. Making money or
beer or medicine—ideally more and better than the competi-
tion and best practice—is. Estimating the importance of your
coefficient relative to results reported by others, is. To repeat,
as the 2016 ASA Statement on Statistical Significance and P-
values makes clear, merely falsifying a null hypothesis with a
qualitative yes/no, exists/does not exist, significant/not signif-
icant answer, is not itself significant science, and should be
eschewed.

G-9 Estimate the Stakes (or Eat Them)
Estimation of magnitudes of effects, and demonstrations

of their substantive meaning, should be the center of most
inquiries. Failure to specify the stakes of a hypothesis is the first
step toward eating them (gulp).

G-8 Study Correlated Data: ABBA, Take a Chance on Me
Most regression models assume “i.i.d.” error terms—

independently and identically distributed—yet most data
in the social and life sciences are correlated by systematic,
nonrandom effects—and are thus not independent. Gosset
solved the problem of correlated soil plots with the “ABBA”
layout, maximizing the correlation of paired differences between
the As and Bs with a perfectly balanced chiasmic arrangement
(Ziliak 2014).

G-7 Minimize “Real Error” with the 3 R’s: Represent, Replicate,
Reproduce

A test of significance on a single set of data is nearly valueless.
Fisher’s p, Student’s t, and other tests should only be used when
there is actual repetition of the experiment. “One and done” is
scientism, not scientific. Random error is not equal to real error,
and is usually smaller and less important than the sum of non-
random errors. Measurement error, confounding, specification
error, and bias of the auspices, are frequently larger in all the
testing sciences, agronomy to medicine. Guinnessometrics min-
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imizes real error by repeating trials on stratified and balanced yet
independent experimental units, controlling as much as possible
for local fixed effects.

G-6 Economize With “Less Is More”: Small Samples of Inde-
pendent Experiments

Small-sample analysis and distribution theory has an eco-
nomic origin and foundation: changing inputs to the beer on
the large scale (for Guinness, enormous global scale) is risky,
with more than money at stake. But smaller samples, as Gosset
showed in decades of barley and hops experimentation, does not
mean “less than”, and Big Data is in any case not the solution for
many problems.

G-5 Keep Your Eyes on the Size Matters/How Much? Question
There will be distractions but the expected loss and/or profit

functions rule, or should. Are regression coefficients or differ-
ences between means large or small? Compared to what? How
do you know?

G-4 Visualize
Parameter uncertainty is not the same thing as model uncer-

tainty. Does the result hit you between the eyes? Does the
study show magnitudes of effects across the entire distribu-
tion? Advances in visualization software continue to outstrip
advances in statistical modeling, making more visualization a
no brainer.

G-3 Consider Posteriors and Priors too (“It pays to go Bayes”)
The sample on hand is rarely the only thing that is “known”.

Subject matter expertise is an important prior input to statistical
design and affects analysis of “posterior” results. For example,
Gosset at Guinness was wise to keep quality assurance metrics
and bottom line profit at the center of his inquiry. How does
prior information fit into the story and evidence? Advances in
Bayesian computing software make it easier and easier to do
a Bayesian analysis, merging prior and posterior information,
values, and knowledge.

G-2 Cooperate Up, Down, and Across (Networks and Value
Chains)

For example, where would brewers be today without the con-
tinued cooperation of farmers? Perhaps back on the farm and
not at the brewery making beer. Statistical science is social, and
cooperation helps. Guinness financed a large share of modern
statistical theory, and not only by supporting Gosset and other
brewers with academic sabbaticals (Ziliak and McCloskey 2008,
Chp. 22). And last but not least:

G-1 Answer the Brewer’s Original Question (“How Should you
set the odds?”)

No bright-line rule of statistical significance can answer the
brewer’s question. As Gosset said way back in 1904, how you set
the odds depends on “the importance of the issues at stake” (the
expected benefit and cost, for example) together with the cost of
obtaining new material.

No one could plausibly claim that the 10 G-values are the
end-all, be-all of statistical science. Only that for a great vari-
ety of business, medical, and scientific purposes, the Guinnes-
sometric approach to data and decision-making answers far
more questions, and far more satisfactorily, than the conven-
tional, unrepeated observational study or placebo controlled
RCT judged by the level of a p-value (compare Ziliak 2010a,
2010b; Senn 2010).

4. How to Get Large G-Values

Gosset’s routine was to produce as many of the 10 G-values as
possible, and to labor at them at maximum possible strength,
so long as doing so does not subtract too much from one or
more of the other G-values. We briefly illustrate below the value
of each G-value. For example, throwing too many resources
into G-value Number 7 by replicating too much (such as by
spending $10 million on a 12th replication of the overrated
“invisible gorilla” experiment made famous by YouTube) would
encroach too negatively on G-value Number 6: the need to
“Economize.” Economizing in Gosset’s sense means studying
a series of small but independent and well-structured samples
(rather than plunking down millions for Big, unstructured Data,
today’s fashion) to learn about regression input X or dependent
variable Y . It should be said that the validity of G-values is
completely general and does not depend on whether or not one
fancies a beverage by Guinness. Thus:

5. G-10 Consider The Purpose Of The Inquiry, And
Compare With Best Practice

Falsification of a null hypothesis is not, we have said, the “pur-
pose” of a study or experiment helped along by statistical meth-
ods. Saving lives or money or malted barley, or advancing the
health and wealth of schools and nations, is. In his magiste-
rial Theory of Probability Harold Jeffreys (1961 [1961], p. 377)
wrote in agreement with Gosset that the null test-and-p-value
procedure advocated by the Fisher School “is merely something
to set up like a coconut to stand until it is hit.” “Hence the
hypotheses made by “Student” are completely equivalent to
mine; they have merely been introduced in a different order”
(Jeffreys 1961, p. 380).

Presumably there is prior interest, otherwise, why test? Why
invest in an experiment that is thought in advance to make no
difference whatsoever? In their hearts, most investigators do
not. But in their statistical science most are in Jeffreys’s sense
dedicated coconut swatters.

Whatever the purpose of the experiment, best practice
research compares a novel treatment or variable with best
practice and/or prevailing wisdom, not with an assumed-to-
be-true null hypothesis or blank placebo. At the largest brewery
in the world measured by annual output and sales, Gosset was
determined, indeed he was incentivized, to mash the beer, not a
low hanging coconut. At Guinness, he could not afford to spend
his days taking whacks at easy to hit coconuts. At stake was
nothing less than 100 million gallons of Guinness stout pro-
duced and sold annually by one of the most recognized brands
in the world, first established by Arthur Guinness in 1759.

In an important letter of 1905, Gosset told Karl Pearson that
one can “aim at” the odds of attaining some result by way of
repeated experimentation. He told Pearson he decided that one
cannot judge the “significance” of results—or decide a course
of business action—without, in effect, employing some scale
of human values capable of balancing the utility of expected
gains against the disutility of losses (Gosset 1905). The point is
fundamental:
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When I first reported on the subject [of “The Application
of the ‘Law of Error’ to the Work of the Brewery” (1904)], I
thought that perhaps there might be some degree of probabil-
ity which is conventionally treated as sufficient in such work
as ours and I advised that some outside authority [in mathe-
matics, such as Karl Pearson] should be consulted as to what
certainty is required to aim at in large scale work. However it
would appear that in such work as ours the degree of certainty
to be aimed at must depend on the pecuniary advantage to
be gained by following the result of the experiment, compared
with the increased cost of the new method, if any, and the cost
of each experiment.

Gosset upped the odds of farming and brewing success by
designing and repeating small samples of stratified and balanced
experiments, reducing what he called the “real error.” The object
or purpose of an experiment has little or nothing to do with the
“significance” of a null hypothesis in and of itself, independent
of some scale of values and range of action.

In a seminal Biometrika article “On Testing Varieties of Cere-
als” Gosset wrote (Student 1923):

The object of testing varieties of cereals is to find out which
will pay the farmer best. This may depend on quality, but
in general it is an increase of yield which is profitable, and
since yield is very variable from year to year and from farm
to farm it is a difficult matter upon which to obtain conclusive
evidence.

Citing his own research undertaken in cooperation with
the Irish Department of Agriculture and Technical Instruction
(IDATI), Gosset continued:

Yet it is certain that very considerable improvements in yield
have been made as the result of replacing the native cereals by
improved varieties; as an example of this I may cite the case
of Ireland, where varieties of barley have been introduced
which were shown by experiment [since 1898] to have an
average yield of 15 to 20% above those which they replaced.
This represents, probably a gain to the country of not less
than £ 250,000 per year. As the cost of experiments from
the commencement to the present time [namely, about 25
years] cannot have reached £ 40,000 the money has been well
spent.

In the same article Gosset told the assembled at the Royal Sta-
tistical Society—including Fisher, Neyman, and Egon Pearson—
that the net gain to Ireland alone after 25 years of continuous
experimentation using balanced (not RCT) designs was approx-
imately:

Gain: + £ 250,000 per year × 25 years
Cost: - £ 40,000
That is, a ballpark net gain = £ 6.21 million on a £ 40,000

investment
In his last published paper, “Comparison of Random and

Balanced Arrangements of Field Plots,” Gosset said (Student
1938, p. 206):

I personally choose the method which is most likely to be
profitable when designing the experiment rather than use Prof.
Fisher’s system of a posteriori choice* which has always seemed
to me to savour rather too much of “heads I win, tails you lose.”

6. G-9 Estimate The Stakes (Or Eat Them)

Thus, the purpose of an experiment puts something substantive
at stake—a belief, an input, a technology, or policy variable. The
purpose of the experiment is not to reject a null hypothesis; the
purpose of a study is usually not even “statistical” in meaning.
Science is substantive. Its meaning lies in magnitudes of bees, or
beer, or basketball, of love, or family, or famous movie stars. Not
in columns and rows of Student’s t or Fisher’s p.

The stakes of a study are normally speaking the substantive
stakes of life—a gamble on a new pill or product or pilot study—
with expected magnitudes of gains and losses expressed in the
form of an expected loss function (Manski 2018, Press 2005),
Jeffreys’s minimum difference (Jeffreys 1961), a Ramsey bet
(Ramsey 1926) or Gosset gamble (Gosset 1905) on a scale of
values not captured by tables of probability alone. As Ramsey
(1926, p. 51) wrote in “Truth and Probability”:

We all agree that a man who did not make inductions would
be unreasonable: the question is only what this means.

Like Gosset, Ramsey believed that probability “is a measure-
ment of belief qua basis of action.”3 Quantities of substantive
gain or loss are central to the Guinnessometric approach.
The much-admired Frank Plumpton Ramsey (1926)—who by
chance had attended the same school as Gosset (Winchester
College) and studied mathematics with one of Gosset’s friends
(the mountain-climber, Robert Irving)—observed that the
“expected value” of an experiment or a set of observations is not
a reliable guide for action. (Most economists first learned the
point from Savage, though Savage credits Ramsey.) Expected
value is an unreliable metric for gauging human behavior,
though many social and life scientists interpret regression
models as if. As the stakes rise, or as the gamble is rephrased
or otherwise altered rhetorically and thus psychologically, risk
taking behavior changes, Ramsey perceived. And this fact has
led economists and statisticians to favor “expected utility” over
expected value (in statistics, see Lindley (1991) and Press (2005);
also see Taleb (2018) for the weakness of utility under “ruin”
probabilities). The expected value of something is the sum of
all the possible outcomes (in nominal terms) weighted by their
respective probabilities of occurrence.

It is easy to see Ramsey’s point in a comparison of three
different gambles subject to one random flip of a fair coin
(illustrated by Frank 2017, pp. 179–180):

Gamble 1: If a coin flip shows “heads”, win $100; if tails, lose
$0.50

Gamble 2: If a coin flip shows “heads”, win $200; if tails, lose
$100

Gamble 3: If a coin flip shows “heads”, win $20,000; if tails,
lose $10,000.

Now Gamble 1 would be accepted by many. Assuming as
convention does that the probability of heads and tails are equal
(at 1/2 each) the expected value of the gamble is (1/2)(win $100)
+ (1/2)(lose $0.50) for an expected win of $49.75. The worst case
scenario is “lose 50 cents”, which many would be willing to risk
for an equal chance at winning $100.

Gamble 2 will draw fewer contestants, though many will still
accept the gamble. Gamble 3 has the highest expected value but

3 https://plato.stanford.edu/entries/probability-interpret/
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this bet would be rejected by many (though not all) even though
the payoff structure is identical to Gamble 2 (both have a 2-to-
1 win-loss ratio). The reason is that, although winning $20,000
could be lovely, losing $10,000 from a single coin flip could be
tragic.

Suppose now that subjects are expected utility maximizers
instead of expected value maximizers. Utility theory has
problems and limitations, too, but it offers something more.
Expected utility is a scale of values which accounts for, among
other things, attitudes toward risk and the diminishing marginal
utility of money (for example Savage 1954; Lindley 1991; Press
2005). Suppose you are a conventional risk-averse person with
a strictly concave utility function, such as the square-root
function, which is concave in money accumulation (EU = √
money).

Your initial amount of money (or wealth) is $10,000. What is
the expected utility of each of the three gambles? Notice that the
“value” ranking of the gambles is now reversed.

The expected utility of Gamble 1 is highest even though its
expected value is lowest ((1/2)(

√
10,100) + (1/2)(

√
9999.50)

= 100.248 utils) while the expected utility of Gamble 3 is lowest
even though its expected value is by far the highest (= 86.60
utils). “The old established way of measuring a person’s belief
is to propose a bet, and see what are the lowest odds which
he will accept. This method I regard as fundamentally sound”
(Ramsey 1926, p. 34). “[B]ut it suffers from being insufficiently
general, and from being necessarily inexact. It is inexact
partly because of the diminishing marginal utility of money,
partly because the person may have a special eagerness or
reluctance to bet, because he either enjoys or dislikes excitement
or for any other reason, e.g., to make a book” (Ramsey,
pp. 34–35).

Yet from the point of view of a statistical scientist who is
charged with practical estimation and interpretation in a par-
ticular context, Ramsey’s approach is backward way around,
and too abstract. What Gosset’s expected loss function approach
lacks in abstract shine, it gains in economic profit and plain
common sense.

7. G-8 Study Correlated Data: Abba, Take a Chance on
Me

Completely randomized studies, where treatment and control
groups are determined as if by random coin flip, are now fash-
ionable. Yet, statisticians have long known that stratification
or blocking adds precision and efficiency to a study otherwise
based on complete randomization. Gosset (Student 1911) used
blocking or stratification long before the synonymous words
existed in the statisticians’ vocabulary. He called his balanced
approach to field layouts, “ABBA,” the closely arranged mirror
pattern of the layout, treatments, and controls, the As and Bs
being compared. Student (1923, p. 273) said:

The art of designing all experiments lies even more in arrang-
ing matters so that ρ [the correlation coefficient] is as large as
possible than in reducing σ 2

x and σ 2
y [the variance].

The peculiar difficulties of the problem lie in the fact that the
soil in which the experiments are carried out is nowhere really
uniform; however little it may vary from eye to eye, it is found

to vary not only from acre to acre but from yard to yard, and
even from inch to inch. This variation is anything but random
[Gosset himself noted], so the ordinary formulae for combining
errors of observation which are based on randomness are even
less applicable than usual.

As Deming (1938, p. 879), an admirer of Gosset, noted:
“Stratification is equivalent to blocking in the design of an
experiment.” Box, Hunter, and Hunter (2005, p. 92) explain that
“A block is a portion of the experimental material (the two shoes
of one boy, two seeds in the same pot) that is expected to be
more homogenous than the aggregate (the shoes of all the boys,
all the seeds not in the same pot). By confining comparisons
to those within blocks (boys, girls), greater precision is usually
obtained because the differences associated between the blocks
are eliminated.”

Deming, who before turning to manufacturing did a long
stint as researcher at the U.S. Department of Agriculture, agreed
with Gosset’s nonrandom point: random sampling and random-
ized experiments are at best preliminary steps to scientific study.
Complete randomization has a purpose when the investigator
knows little or nothing at all about strata or when the cost of
being wrong is negligible. Said Deming (p. 879):

The primary aim of stratified sampling is to increase the
amount of information per unit of cost. A further aim may be
to obtain adequate information about certain strata of special
interest. One way to carry out stratification is to rearrange the
sampling units in the frame so as to separate them into classes, or
strata, and then to draw sampling units from each class. The goal
should be to make each stratum as homogeneous as possible,
within limitations of time and cost.4

Likewise in his book, Planning of Experiments, David Cox
(1958) recommends “completely randomized arrangement
…[only] in experiments in which no reasonable grouping into
blocks suggests itself ”—that is, when ignorance prevails, or
priors are flat.

Normally speaking, ignorance does not prevail, and real
economic and statistical gains can be found by stratifying.
Deming (1938) and Tippett (1952) simplified Student’s (1911,
1923) proof that stratification (blocking) can reduce sample size
requirements by 40% or more, holding variance constant.5 And
as Tippett noted, “At the worst”—assuming the rare case that
calculated variance between strata is zero—“sampling in strata
is no better than random sampling, but it is never worse.”

8. G-7 Minimize “Real Error” With The 3 R’S:
Represent, Replicate, Reproduce

Recently the ASA has adopted the following widely used defini-
tions of reproducibility and replicability in a set of “Recommen-
dations” designed to assuage the reproducibility “crisis” which

4 Deming (1978, p. 879). Deming said he learned the technique from Neyman
(1934). In the seminal article Neyman demonstrates the statistical and eco-
nomic advantages of stratified sampling over random sampling (Neyman
1934, pp. 579-585). Neyman credits the idea of “purposive selection” to
earlier writers, such as Bowley and Gini and Galvani.

5 Deming (1978, p. 880-881), Tippett (1958, p. 356). In a Riesling vine-and-
wine experiment, Meyers, Sacks, van Es, and Vanden Heuvel (2011) used
blocking, balancing, and repetition (at n = 3 vineyards) to reduce sample
size requirements by up to 60%.
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is currently being observed throughout the sciences (Pierson,
Broman, et al. 2017):

1. Reproducibility: A study is reproducible if you can take the
original data and the computer code used to analyze the data
and reproduce all of the numerical findings from the study.
This may initially sound like a trivial task but experience
has shown that it’s not always easy to achieve this seemingly
minimal standard.

For Gosset and Guinnessometrics, “reproducibility” is the abil-
ity to brew Guinness stout or ale (Smithwick’s) in such a way as
to taste and to otherwise behave the same, pint after pint, gallon
after gallon, millions of times over worldwide.

2. Replicability: This is the act of repeating an entire study,
independently of the original investigator without the use of
original data (but generally using the same methods)

In 35 years of barley yield and quality trials, Gosset and Guin-
ness commissioned experiments with Irish barley farmers scat-
tered across the different barley growing regions of the country.
On average there were 10 farmers running simultaneously the
same or nearly identical experimental design on new barley
(treatment) and one or more “old” barley. And for insurance
each planted a replicate locally, thus there were approximately
20 replications in the average year.]

These definitions suit well the Guinnessometric practice of
replication and reproducibility. Gosset explained the 3 R’s of
minimum real error in a letter of April 1937 to Egon S. Pearson,
who was his close friend and editor of Biometrika (quoted in
Pearson 1939, pp. 247–248):

Many thanks for yours of [April] 10th; I feel I’m wasting your
time but as long as you ask questions you must expect to get
answers …Now I was talking about Cooperative experiments
and obviously the important thing in such is to have a low real
error, not to have a “significant” result at a particular station.
The latter seems to me to be nearly valueless in itself. Even when
experiments are carried out only at a single station, if they are
not mere five finger exercises, they will have to be part of a series
in time …. But in fact experiments at a single station [that is,
tests of statistical significance on a single set of data] are almost
valueless; you can say “In heavy soils like Rabbitsbury potatoes
cannot utilise potash manures”, but when you are asked “What
are heavy soils like Rabbitsbury?” you have to admit—until you
have tried elsewhere—that what you mean is “At Rabbitsbury
etc.” And that, according to X may mean only “In the old cow
field at Rabbitsbury”. What you really want to find out is “In what
soil and under what conditions of weather do potatoes utilise the
addition of potash manures?”{PRIVATE}

To do that you must try it out at a representative sample of the
farms of the country and correlate with the characters of the soil
and weather. It may be that you have an easy problem, like our
barleys which come out in much the same order whatever–in
reason–you grow them or like Crowther’s cotton which bene-
fitted very appreciably from nitro-chalk in seven stations out of
eight, but even then what you really want is a low real error. You
want to be able to say not only “We have significant evidence that
if farmers in general do this they will make money by it”, but also
“we have found it so in nineteen cases out of twenty and we are
finding out why it doesn’t work in the twentieth”. To do that you

have to be as sure as possible which is the 20th—your real error
must be small (emphasis added).

Representation, the third “R,” we can define in a number
of different ways but something like this: coverage and strat-
ification of all systematic sources of fluctuation, whether the
source be a temporal, a spatial, or other exogenous force (such as
weather: rainy or not rainy, or soil quality: loamy or clay). These
definitions work as a first approximation. It’s not about random
error: that’s the main point. We are trying to minimize and
control for the systematic errors, which are of larger importance
and number than are the assumed-to-be “random sampling
errors.” These are the 3 R’s of Guinnessometrics and G-value
No. 7.

The reason for G-value Number 7, the 3 R’s of Minimum Real
Error is simple: the out-of-sample experience of life is difficult to
predict, and for both systematic and random reasons. Unless you
are a late night psychic broadcasting on cable television to well
sedated individuals, you do not hold the crystal ball for ensuring
external validity and economic profit should we decide to “scale
up” from an unbalanced, un-stratified village-level experiment
on eyeglasses or to nets to, let’s say, a whole nation (the lack
doesn’t stop some from donning a purple scarf at The World
Bank: Banerjee and Duflo 2011; Glewwe et al, 2012).

Yet most statistical studies in the social sciences, economics
and psychology included, and many more in health and
medicine are of the “one and done” variety: one RCT (which
assumes independence) is conducted on a single sample; one
approach is taken to regression modeling, followed by 100 tests
of significance on the data using NHST and p-values on the
single sample on offer. P-hack until you publish the paper (Ziliak
and Teather-Posadas 2016 document the ethical side of this).
This treating of single samples as if they are repeated samples
is old news to older psychologists, many of whom remember
the great Sterling (1959) survey showing that the probability of
replication decreased with the level of statistical significance (the
lower the p value, the less likelihood the study will be replicated).

From 1901 until the start of World War II, Guinness (and
thus Gosset) invested heavily in the 3 R’s of G-values: that is
by repeating annually a small series of independent, representa-
tive, and balanced experiments (what sociologists call repeated,
stratified-random samples). The positive results of the Guinness
and Irish investment are nothing short of astonishing, with one
of the byproducts being that Gosset invented or inspired half of
the toolkit of modern statistics and experimental science.

9. G-6 Economize With “Less is More”: Small Samples
of Independent Experiments

Replication and reproduction does not always require millions
of dollars in grant money, though at the NIH, NSF, and else-
where it can.

Small samples are an economic and scientific choice, not a
mathematical problem to be solved in abstract mathematical
terms. For example, in a small-sample analysis, a brewer may
wish to know with 10 to 1 or better odds how many samples of
malt extract he needs to mix to be confident that the saccharine
level of the beer stays within 0.5 degrees of the 133 degree
standard he is targeting. The example is “Student’s”: brewing
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over 100 million gallons of Guinness stout per annum, “Stu-
dent” and Guinness stakeholders needed to know (Ziliak 2008,
p. 206). “Real” errors in this context include uneven temperature
changes, heterogeneous barley malt, and mismeasurement of
saccharine levels—adding up to more error than is allegedly
described by p or t.

Student rejected artificial rules about significance from the
beginning of his inquiries at the Brewery—at least four years
before he published the first table and small sample test of
significance (Gosset 1904; Student 1908a). In November, 1904,
Gosset—he would not be known as Student until three years
later—discussed his first break-through on the economic mean-
ing of statistical significance, in an internal report titled “The
Application of the ‘Law of Error’ to the Work of the Brewery.”
The Apprentice Brewer said:

Results are only valuable when the amount by which they
probably differ from the truth is so small as to be insignificant
for the purposes of the experiment. What the odds should be
depends —

1. On the degree of accuracy which the nature of the experiment
allows, and

2. On the importance of the issues at stake.

Comparing the level of saccharine content in a series of malt
extracts which he and others’ mixed in the Experimental Brew-
ery with that found in malts being used in the Main Brewery,
Gosset brought attention to a positive correlation he found
between “the square root of the number of observations”— that
is, the number of calculated differences in saccharine content
between Experimental and Main Brewery malts—and the level
of statistical significance. Other things equal, he said “the greater
the number of observations of which means are taken [the
larger the sample size of extract differences], the smaller the
[probable or standard] error” of the estimates. “And the curve
which represents their frequency of error,” he showed in a graph
and plot drawing, “becomes taller and narrower.”

Prior to Gosset the relation between sample size and the
level of statistical significance was rarely explored. For example,
while looking at biometric samples with up to thousands of
observations, Karl Pearson declared that a result departing by
more than three standard deviations is “definitely significant.”
The normal tables assumed very large samples. Yet Gosset, self-
trained in statistics, found by experiment that at such large sam-
ples nearly everything is statistically “significant”— though not,
in Gosset’s terms, economically or scientifically “important”.
And, likewise, Gosset found that a small number of observations
can be profitable, though not statistically significant in Pearson’s
conventional sense. Regardless, Gosset did not have the luxury
of large samples. One of his earliest experiments employed a
sample size of n = 2, which helps to explain why in the original
1908 article Gosset calculated a z statistic for n = 2 (Student
1908a).

His 1904 article is worth exploring a bit further – especially
for the econometrician and real-world firm that wants to earn
more with less. Guinness malt was produced in Gosset’s time
primarily from Irish and English barley stock—Old Irish, Pren-
tice, Plumage Archer, and Spratt Archer were effective varieties.
Malt extract was measured by “degrees saccharine” per barrel of
168 pounds malt weight.

An extract in the neighborhood of 133 degrees saccharine
gave the targeted level of alcohol for Guinness’s beer. A much
higher degree of saccharine would affect the stability and life of
the beer, but it also increases alcohol content—which in turn
increases the excise tax which Guinness owes to the British
government, which—sad to say—ups the price of Dad’s pint.
If, on the other hand, the alcohol content comes in too low, if
the degree of saccharine is insufficient, customers would riot,
or switch to Beamish and Beck’s. In Gosset’s view, +/ − 0.5
degrees saccharine was a difference or error in malt extract
which Guinness and its customers could swallow. “It might be
maintained,” he said, “that malt extract “should be [estimated]
within 0.5 of the true result with a probability of 10 to 1.” Gosset
calculated the odds of observing the stipulated accuracy for
small and then large numbers of extracts. He found that:

Odds in favour of smaller error than 0.5 [are with:]
2 observations 4:1
3 “ 7:1
4 “ 12:1
5 “ 19:1
82 “ practically infinite
Thus, Gosset concluded, “In order to get the accuracy we

require [that is, 10 to 1 odds with 0.5 accuracy], we must,
therefore, take the mean of [at least] four determinations.” The
Guinness Board cheered. The Apprentice Brewer found an eco-
nomical way to assess the behavior of population parameters,
using very small samples.

Small samples and their analysis originate from a funda-
mental economic cause: scarcity—the economic scarcity and
expense of gaining new information about barley, malt, hops,
and other beer inputs. Thus, one can say in general that Gosset
took an economic approach to the logic of uncertainty, from the
choice of sample size on up.

10. G-5 Keep Your Eyes on The Size Matters/How
Much? Questions

We’re all in search of that “Goldilocks” zone, not too high, not
too low; not too hot, not too cold, et cetera. In 1995, some
cancer epidemiologists made history (discussed by Ziliak and
McCloskey 2008, pp. 184–186). The authors of 10 independent
and randomized clinical trials involving thousands of patients
in treatment and control groups had come to an agreement
on an effect size. Consensus on a mere direction of effect—
up or down, positive or negative—is rare enough in science.
After four centuries of public assistance for the poor in the
United States and Western Europe for example, economists, do
not speak with one voice on the direction of effect on labor
supply exerted by tax-financed income subsidies. Medicine is no
different. Disagreement on the direction of effect—let alone the
size of effect—is more rule than exception.

So the Prostate Cancer Trialists’ Collaborative Group was
understandably eager to publicize the agreement. Each of the 10
studies showed that a certain drug “flutamide” —for the treat-
ment of prostate cancer—can increase the likelihood of patient
survival by an average of 12% (the 95% confidence interval in
the pooled data put an upper bound on flutamide-enhanced
survival at about 20% [Rothman, Johnson, and Sugano 1999]).
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Odds of 5 in 100 is not the best news to deliver to a prostate
patient. But if castration followed by death is the next best
alternative, a noninvasive 12-to-20% increase in survival sounds
good.

But in 1998 the results of still another, 11th trial were pub-
lished in the New England Journal of Medicine (Eisenberger et al.
1998, pp. 1036–1042). The authors of the new study found a
similar size effect. But when the two-sided p value for their
odds ratio came in at .14 they dismissed the efficacious drug,
concluding “no clinically meaningful improvement” (pp. 1036,
1039). Kenneth Rothman, Eric Johnson, and David Sugano
examined the individual and pooled results of the 11 separate
studies, including the study conducted by Eisenberger et al..

One might suspect that [Eisenbergers et al.’s] findings were at
odds with the results from the previous ten trials, but that is
not so. From 697 patients randomised to flutamide and 685
randomised to placebo, Eisenberger and colleagues found an
OR of 0.87 (95% CI 0.70–1.10), a value nearly identical to that
from the ten previous studies. Eisenberger’s interpretation
that flutamide is ineffective was based on absence of sta-
tistical significance. (Rothman, Johnson, and Sugano 1999,
p. 1184)

Rothman and coauthors display the flutamide effect graphi-
cally in a manner consistent with a Gosset-Deming-and-Savage
approach to visualization. Does the effect hit you between the
eyes? Does it cause interocular trauma? Rothman and others
pool data from the separate studies and plot the flutamide effect
(measured by an odds ratio, or the negative of the survival prob-
ability in a hazard function) together with the p-value function.
With the graphical approach, Rothman and his coauthors are
able to show pictorially how the p−values vary with increasingly
positive and increasingly negative large effects of flutamide on
patient survival. And what they show is substantively significant:

Eisenberger’s new data only reinforce the findings from the
earlier studies that flutamide provides a small clinical benefit.
Adding the latest data makes the p value function narrower,
which is to say that the overall estimate is now more precise, and
points even more clearly to a benefit of about 12% in the odds
of surviving for patients receiving flutamide.

Rothman and others conclude: “the real lesson” from the
latest study is “that one should eschew statistical significance
testing and focus on the quantitative measurement of effects.”
That sounds right. Statistical significance is hurting people,
indeed killing them. It is leaving their illnesses and a defective
notion of significance “unexplained.”

Still, a recent correspondent points out that although the rela-
tive risk is high, the measured relative difference is small, adding
only a month or so extra life. (Other things equal, perhaps even
a little life is better than none.) If you want to draw a line in your
science, in any case, draw a line of minimally important effect
or minimally important magnitude of a regression coefficient.
Keep your eyes on the size.

11. G-4 Visualize

And visualize. Model uncertainty is not the same thing as
parameter uncertainty. From farming to pharmaceuticals, we

want to know what the entire distribution looks like from
the point of view of oomph and precision, magnitudes of
relationships, and attendant uncertainty. Not just the point
mean or median, with a superscript of asterisks declaring
“significant” or “highly” so. Remember Stephen Jay Gould’s far-
above-the-median experience with surviving stomach cancer,
discussed in his essay “The Median Isn’t the Message” (Gould
1985). Gould’s doctor cited a median survival time from
diagnosis of about 8 months; but the prolific scholar and writer
looked at the graphs showing estimates. He noticed a thin but
long right-hand tail, changed his lifestyle and eating habits,
and lived and worked for another 22 years (rather more than 8
months)!

An illuminating study by Soyer and Hogarth (2011) tested
the predictive ability of more than 200 econometricians using
linear models. Prediction was most accurate when the experts
were only given a theoretical regression line and scatter plot of
data. Take away the plots and their ability to relate model error
to levels of the dependent variable fell dramatically. For novice
and seasoned alike, the several books by Tufte on the art and
science of visualization are invaluable.

The variance can vary, error bounds vary, degree and direc-
tion of uncertainty vary. Pictures help us to see by how much.
Like Gosset, we should pay more attention to the actual dis-
tribution of our data, not only to rejections of the normal or
exponential distribution (which few deign to discover) but also
simulations or other confirmations of the actual distribution.

12. G-3 Consider Posteriors And Priors Too (“It Pays
To Go Bayes”)

Be explicit about how prior information is or is not incorpo-
rated. Perhaps the most commonly used alternative to classical
tand p is the Bayes factor (Carlin and Louis 2008; Press 2003).
Gosset, I have mentioned, was a Bayesian who for reasons of
efficiency, and in a world without a supercomputer, resorted
frequently to frequentist methods (especially power: Student
1938). For discrete data and simple hypotheses, the Bayes factor
represents the ratio between the probability assigned to the data
under an alternative hypothesis and the null hypothesis (John-
son 2013). One big advantage of Bayesian analysis is that one
can compute the probability of a hypothesis, given the evidence,
whereas with the null hypothesis test of significance, measured
by a p value, one can only speak to the probability of seeing data
more extreme than have actually obtained, assuming the null
hypothesis of “no difference” (or whatever) to be true. As the
Bayesian Jeffreys noted (1961, p. 409):

Whether statisticians like it or not, their results are used
to decide between hypotheses, and it is elementary that if p
entails q, q does not necessarily entail p. We cannot get from
“the data are unlikely given the hypothesis” to”the hypothesis is
unlikely given the data” without some additional rule of thought.
Those that reject inverse probability have to replace it by some
circumlocution, which leaves it to the student to spot where the
change of data has been slipped in [, in] the hope that it will not
be noticed.

Jeffreys went on to explain that if one assigns prior odds
between the alternative and null hypotheses, multiplication
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of the Bayes factor by these prior odds yields the posterior
odds between the hypotheses. From the posterior odds between
hypotheses, scientists can compute the posterior probability that
a null hypothesis is true (or in any case useful or persuasive)
relative to an explicit alternative. Classical tests of significance,
measured by t and p, cannot.6 Johnson (2013) observes that
in certain hypothesis tests the alternative hypothesis can be
specified so that an equivalence between Bayes factors and
p-values can be established. Technically speaking, Johnson
and others have shown, in one parameter exponential family
models in which a point null hypothesis has been specified
on the model parameter, specifying the size of the test is
equivalent to specifying a rejection threshold for the Bayes
factor, provided that it is further assumed that the alternative
hypothesis is specified so as to maximize the power of the test.
The correspondence between Bayes factors and p-values in this
setting is just one example of the false demarcation line between
objective and subjective.

When an alternative hypothesis exists—and that’s the usual
situation of science: otherwise, why test?—Bayes factors can
be easily reported. Bayes factors permit individual scientists
and consumers to use prior information or the principle of
insufficient reason together with new evidence to compute the
posterior probability that a given hypothesis, H, is true (or to
repeat, useful or persuasive) based on the prior probability that
they assign to each hypothesis. After all—fortunately—we do
not have to begin every new observation or experiment from
tabula rasa; we know some stuff, but we want to know more stuff,
however imperfectly. Bayes factors add that information into the
calculation comparing the likelihood of alternative hypotheses.
For example, Bayes factors provide a clear interpretation of the
evidence contained in the data in favor of or against the null: a
Bayes factor of 10 simply means that the data were 10 times more
likely under the alternative hypothesis than they were under the
null hypothesis. Better than mushy p’s.

13. G-2 Cooperate Up, Down, And Across (Networks
And Value Chains)

Cooperation was a hallmark of Irish agricultural development
(economic historians will think of Horace Plunkett, John Ben-
nett, William Gosset and others), the growth of the Guinness
brewery, and—in one very large positive externality—the devel-
opment of modern statistics. Cooperation includes the human
side, such as the academic Karl Pearson inviting the unknown
brewer, Mr. Gosset, to London for sabbatical in 1906–1907 to
work and study at University College London Biometrics Lab.
Despite a strong-man reputation which Guinness has held in
some quarters, for trying to monopolize, the legendary brew-
ery cooperated up and down supply chains, and sometimes
to a remarkable extent. The 40-something years of repeated
experiments on barley, already mentioned, is just one exam-
ple: Guinness subsidized one-half (50%) of barley and malt
investment by the Irish Department of Agriculture. There is
something to be learned from that: remember the yield and
net profit figures shared by Gosset above. Guinness sending

6 Lavine and Schervich (1999) caution that Bayes factors can sometimes lead
to incoherence in the technical statistical sense of that term.

scientific brewers (Gosset was hardly the only one) on sab-
batical for postgraduate studies in statistics and chemistry and
genetics is another example. Sharing seeds and technical know-
how with the Carlsberg Brewery, in Denmark, is another (and
Carlsberg reciprocated generously by offering a stellar brewing
barley called “Prentice” for Guinness to try: it turned out to
be the mother of the greatest barley in early and midcentury
Europe). One could write a book on the importance of coop-
eration to the history and development of science and statistics.
And finally:

14. G-1 Answer The Brewer’s Original Question (“How
Should You Set The Odds?”)

Finally, how should you set the odds? As a 28-year-old brewer
and self-trained statistician told Karl Pearson way back in 1905:
“the degree of certainty to be aimed at must depend on the
pecuniary advantage to be gained by following the result of the
experiment, compared with the increased cost of the new method,
if any, and the cost of each experiment.” Add to Gosset’s pecu-
niary advantage “lives saved,” “jobs gained,” “racism abolished,”
“health crisis averted,” and the like and we have the makings of
a general approach.
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