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ABSTRACT
We investigate a second-order dynamical system with variable damping in
connection with the minimization of a nonconvex differentiable function.
The dynamical system is formulated in the spirit of the differential equation
which models Nesterov’s accelerated convex gradient method. We show
that the generated trajectory converges to a critical point, if a regulariza-
tion of the objective function satisfies the Kurdyka- Lojasiewicz property.
We also provide convergence rates for the trajectory formulated in terms of
the Lojasiewicz exponent.
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1. Introduction

Consider the (not necessarily convex) optimization problem

inf
x∈Rn

g(x), (1)

where g : R
n −→ R is a Fréchet differentiable function with Lg-Lipschitz continuous gradient, i.e.

there exists Lg ≥ 0 such that ‖∇g(x) − ∇g(y)‖ ≤ Lg‖x − y‖ for all x, y ∈ R
n. We associate to (1) the

second-order dynamical system (for t ≥ t0)

ẍ(t) +
(α

t
+ γ

)
ẋ(t) + ∇g(x(t)) = 0,

x(t0) = u0, ẋ(t0) = v0,
(2)

where t0 > 0, u0, v0 ∈ R
n,α ∈ R and γ ∈ (0,+∞).

The study of the system (2) is motivated by the recent developments related to the approaching of
the solving of convex optimization problems from a continuous perspective.

In [1], Su, Boyd and Candes proposed the following dynamical system

ẍ(t) + α

t
ẋ(t) + ∇g(x(t)) = 0,

x(t0) = u0, ẋ(t0) = v0,
(3)
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as the continuous counterpart of the Nesterov’s accelerated gradient method [see [2]] for minimizing
g in the convex case. This research has been deepened by Attouch and his co-authors [see [3,4]], who
proved that, if α > 3, then the generated trajectory x(t) converges to a minimizer of g as t → +∞,
while the convergence rate of the objective function along the trajectory is o(1/t2). The convergence
of the trajectory is actually the continuous counterpart of a result due to Chambolle and Dossal [see
[5]], which proves the convergence of the iterates of the modified FISTA algorithm [see [6]].

Recently, in [7], investigations have been performed concerning the convergence rate of the objec-
tive function along the trajectory in the subcritical case α ≤ 3, while some open questions related to
the asymptotic properties of the trajectory have been formulated.

In thismanuscript, we carry out, in the nonconvex setting, an asymptotic analysis of the dynamical
system (2), which can be seen as a perturbation of the dynamical system (3) that models Nesterov’s
accelerated gradient method in the convex case. To the best of our knowledge, this is the first contri-
bution addressing second-order dynamical systems with variable damping associated to nonconvex
optimization problems. We show that the generated trajectory converges to a critical point of g as
t → +∞, provided the following regularization of g,

H : R
n × R

n −→ R, H(u, v) = g(u) + 1
2‖u − v‖2,

satisfies the Kurdyka–Łojasiewicz inequality. Moreover, we derive convergence rates in the terms of
Łojasiewicz exponent, for the trajectory, its velocity and its acceleration. One of themajor future goals
is to study the asymptotic properties of the system (2) in case γ = 0. For other investigations of the
asymptotic analysis of second-order dynamical systems with time-dependent damping, we refer to
the papers of Haraux and Jendoubi [8] and Balti [9].

For α = 0, the convergence of the trajectory generated by (2) to a critical point of g has been
shown by Bégout, Bolte and Jendoubi in [10] in the hypothesis that g is of class C2 and it satisfies
the Kurdyka–Łojasiewicz property with a desingularizing function satisfying a restrictive condition
[see also the papers of Haraux and Jendoubi [11] and Chill and Jendoubi [12]]. On the other hand,
the dynamical system (2) is, for α = 0, a particular instance of the second-order dynamical system of
proximal-gradient type studied in [13].

The following numerical scheme, with starting points x0, x1 ∈ R
n,

(∀k ≥ 1)

⎧⎪⎨⎪⎩yk = xk + (1 − γ
√
s)k − αγ

√
s

k + α
(xk − xk−1),

xk+1 = yk − s∇g(yk),
(4)

where s ≤ 1/Lg is the step size, can be seen as a discrete counterpart of (2). One can notice that for
γ = 0, this iterative scheme algorithm is similar to Nesterov’s accelerated convex gradient method.

In the following, we prove that (2) can be seen in an informal way as the exact limit of (4)). We
take to this end in (4) small step sizes and follow the same approach as Su, Boyd and Candes in [1,
Section 2]. For this purpose, we rewrite (4) in the form

xk+1 − xk√
s

= (1 − γ
√
s)k − αγ

√
s

k + α
· xk − xk−1√

s
− √

s∇g(yk) ∀ k ≥ 1 (5)

and introduce the Ansatz xk ≈ x(k
√
s) for some twice continuously differentiable function x :

[0,+∞) → R
n. We let k = t/

√
s and get x(t) ≈ xk, x(t + √

s) ≈ xk+1, x(t − √
s) ≈ xk−1. Then, as

the step size s goes to zero, from the Taylor expansion of x, we obtain

xk+1 − xk√
s

= ẋ(t) + 1
2
ẍ(t)

√
s + o(

√
s)

and
xk − xk−1√

s
= ẋ(t) − 1

2
ẍ(t)

√
s + o(

√
s).
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Furthermore, since

√
s‖∇g(yk) − ∇g(xk)‖ ≤ √

sLg‖yk − xk‖ = √
sLg

∣∣∣∣ (1 − γ
√
s)k − αγ

√
s

k + α

∣∣∣∣ ‖xk − xk−1‖ = o(
√
s),

it follows
√
s∇g(yk) = √

s∇g(xk) + o(
√
s). Consequently, (5) can be written as

ẋ(t) + 1
2
ẍ(t)

√
s + o(

√
s) = (1 − γ

√
s)t − αγ s

t + α
√
s

(
ẋ(t) − 1

2
ẍ(t)

√
s + o(

√
s)
)

− √
s∇g(x(t)) + o(

√
s)

or, equivalently

(t + α
√
s)(ẋ(t) + 1

2 ẍ(t)
√
s + o(

√
s)) = ((1 − γ

√
s)t − αγ s)(ẋ(t) − 1

2 ẍ(t)
√
s + o(

√
s))

− √
s(t + α

√
s)∇g(x(t)) + o(

√
s).

Hence,

1
2 (2t + α

√
s − γ t

√
s − αγ s)ẍ(t)

√
s + (γ t

√
s + α

√
s + αγ s)ẋ(t) + √

s(t + α
√
s)∇g(x(t))= o(

√
s).

After dividing by
√
s and letting s → 0, we obtain

tẍ(t) + (γ t + α)ẋ(t) + t∇g(x(t)) = 0,

which, after division by t, gives (2), namely

ẍ(t) +
(α

t
+ γ

)
ẋ(t) + ∇g(x(t)) = 0.

2. Existence and uniqueness of the trajectory

Weconsider on the finite-dimensional spaceR
n the Euclidean topology. If x ∈ R

n is a localminimizer
of g, then ∇g(x) = 0. We denote by

crit(g) = {x ∈ R
n : ∇g(x) = 0}

the set of critical points of g.
We are considering in the asymptotic analysis of the dynamical system (2) strong global solutions.

Definition 2.1: We say that x : [t0,+∞) → R
n is a strong global solution of (2), if the following

properties are satisfied:

(i) x, ẋ : [t0,+∞) → R
n are locally absolutely continuous, in other words, absolutely continuous

on each interval [t0,T] for t0 < T < +∞;
(ii) ẍ(t) + (α/t + γ )ẋ(t) + ∇g(x(t)) = 0 for almost every t ≥ t0;
(iii) x(t0) = u0 and ẋ(t0) = v0.

Recall that a function x : [t0,+∞) → R
n is absolutely continuous on an interval [t0,T], if there

exists an integrable function y : [t0,T] → R
n such that

x(t) = x(0) +
∫ t

t0
y(s) ds ∀ t ∈ [t0,T].

It follows from the definition that an absolutely continuous function is differentiable almost every-
where, its derivative coincides with its distributional derivative almost everywhere and one can
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recover the function from its derivative ẋ = y by the integration formula above. On the other hand, if
x : [t0,T] → R

n (whereT > t0) is absolutely continuous andB : R
n → R

n is L-Lipschitz continuous
(where L ≥ 0), then the function B ◦ x is absolutely continuous, too. Moreover, B ◦ x is almost every-
where differentiable and the inequality ‖(d/dt)B(x(t))‖ ≤ L‖ẋ(t)‖ holds for almost every t ≥ t0 [see
[14,15]].

We prove existence and uniqueness of a strong global solution of (2) by making use of the
Cauchy–Lipschitz–Picard Theorem for absolutely continues trajectories [see for example [16, Propo-
sition 6.2.1], [17, Theorem54]]. The key argument is that one can rewrite (2) as a particular first-order
dynamical system in a suitably chosen product space [see also [18]].

Theorem 2.1: For every starting points u0, v0 ∈ R
n there exists a unique strong global solution of the

dynamical system (2).

Proof: By making use of the notation X(t) = (x(t), ẋ(t)), the system (2) can be rewritten as a first-
order dynamical system:

Ẋ(t) = F(t,X(t)),

X(t0) = (u0, v0),
(6)

where F : [t0,+∞) × R
n × R

n −→ R
n × R

n, F(t, u, v) = (v,−(α/t + γ )v − ∇g(u)).
First we show that F(t, ·, ·) is L(t)-Lipschitz continuous for every t ≥ t0 and that the Lips-

chitz constant is a function of time with the property that L(·) ∈ L1loc([t0,+∞)). Indeed, for every
(u, v), (u, v) ∈ R

n × R
n, we have

‖F(t, u, v) − F(t, u, v)‖ =
√

‖v − v‖2 +
∥∥∥(α

t
+ γ

)
(v − v) + (∇g(u) − ∇g(u))

∥∥∥2
≤
√(

1 + 2
(α

t
+ γ

)2) ‖v − v‖2 + 2L2g‖u − u‖2

≤
√
1 + 2L2g + 2

(α

t
+ γ

)2√‖v − v‖2 + ‖u − u‖2

=
√
1 + 2L2g + 2

(α

t
+ γ

)2‖(u, v) − (u, v)‖.

Obviously, the Lipschitz constant function t 
→ L(t) :=
√
1 + 2L2g + 2(α/t + γ )2 is continuous,

hence integrable, on [t0,T] for all t0 < T < +∞, consequently, L ∈ L1loc([t0,+∞)).
Next we show that F(·, u, v) ∈ L1loc([t0,+∞),Rn × R

n) for all u, v ∈ R
n. Let u, v ∈ R

n be fixed.
For t0 < T < +∞, one has∫ T

t0
‖F(t, u, v)‖ dt =

∫ T

t0

√
‖v‖2 +

∥∥∥(α

t
+ γ

)
v + ∇g(u)

∥∥∥2dt
≤
∫ T

t0

√(
1 + 2

(α

t
+ γ

)2) ‖v‖2 + 2‖∇g(u)‖2 dt

≤
√

‖v‖2 + ‖∇g(u)‖2
∫ T

t0

√
3 + 2

(α

t
+ γ

)2
dt

and the conclusion follows by the continuity of t 
→
√
3 + 2(α/t + γ )2 on [t0,T].
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The Cauchy–Lipschitz–Picard Theorem guarantees existence and uniqueness of the trajectory of
the first-order dynamical system (6) and thus of the second-order dynamical system (2). �

The next result shows that the acceleration of the trajectory generated by (2) is also locally
absolutely continuous on [t0,+∞).

Proposition 2.1: For the starting points u0, v0 ∈ R
n, let x be the unique strong global solution of (2).

Then ẍ is locally absolutely continuous on [t0,+∞), hence the third-order derivative x(3) exists almost
everywhere on [t0,+∞).

Proof: Let T> 0 be fixed. According to Theorem 2.1, X(t) := (x(t), ẋ(t)) is absolutely continuous on
[t0,T]. We endow the product space R

n × R
n with the 1-norm. For arbitrary s, t ∈ [t0,T], we have

‖Ẋ(s) − Ẋ(t)‖1 = ‖F(s,X(s)) − F(t,X(t))‖1
=
∥∥∥(ẋ(s) − ẋ(t),−

(α

s
+ γ

)
ẋ(s) +

(α

t
+ γ

)
ẋ(t) − ∇g(x(s)) + ∇g(x(t))

)∥∥∥
1

≤ (1 + γ )‖ẋ(s) − ẋ(t)‖ +
∥∥∥α

s
ẋ(s) − α

t
ẋ(t)

∥∥∥+ ‖∇g(x(s)) − ∇g(x(t))‖

≤ (1 + γ )‖ẋ(s) − ẋ(t)‖ + |α|
s

‖ẋ(s) − ẋ(t)‖ +
∥∥∥α

s
ẋ(t) − α

t
ẋ(t)

∥∥∥+ Lg‖x(s) − x(t)‖

≤ L1‖ẋ(s) − ẋ(t)‖ + L2
∣∣∣α
s

− α

t

∣∣∣+ Lg‖x(s) − x(t)‖,

where

L1 := max
t∈[t0,T]

(
1 + γ + |α|

t

)
and L2 := max

t∈[t0,T]
‖ẋ(t)‖.

Let be ε > 0. Since the functions ẋ(·), t 
→ α/t and x(·) are absolutely continuous on [t0,T], there
exists η > 0 such that for any finite family of intervals Ik = (ak, bk) ⊆ [t0,T], the implication(

Ik ∩ Ij = ∅ and
∑
k

|bk − ak| < η

)

=⇒
∑
k

‖ẋ(bk) − ẋ(ak)‖ <
ε

3L1
,

∑
k

∣∣∣∣ αbk − α

ak

∣∣∣∣ <
ε

3L2
and

∑
k

‖x(bk) − x(ak)‖ <
ε

3Lg

holds. Consequently, ∑
k

‖Ẋ(ak) − Ẋ(bk)‖ <
ε

3
+ ε

3
+ ε

3
= ε,

hence Ẋ(·) = (ẋ(·), ẍ(·)) is absolutely continuous on [t0,T], which shows that ẍ is absolutely contin-
uous [t0,T]. This proves that ẍ is locally absolutely continuous on [t0,+∞), which means that the
third-order derivative x(3) exists almost everywhere on [t0,+∞). �

The following results provides an estimate for the third-order derivative of the strong global
solution of the dynamical system (2) in terms its first- and second-order derivatives.

Lemma 2.1: For the starting points u0, v0 ∈ R
n, let x be the unique strong global solution of (2). Then,

for almost every t ∈ [t0,+∞), it holds

‖x(3)(t)‖ ≤
(
Lg + |α|

t2

)
‖ẋ(t)‖ +

(
γ + |α|

t

)
‖ẍ(t)‖. (7)
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Proof: Let t ∈ [t0,+∞) be such that Ẋ(t) = F(t,X(t)). We have for almost every h> 0 that

‖Ẋ(t + h) − Ẋ(t)‖1 = ‖F(t + h,X(t + h)) − F(t,X(t))‖1

=
∥∥∥∥(ẋ(t + h) − ẋ(t),−

(
α

t + h
+ γ

)
ẋ(t + h) +

(α

t
+ γ

)
ẋ(t) − ∇g(x(t + h)) + ∇g(x(t))

)∥∥∥∥
1

= ‖ẋ(t + h) − ẋ(t)‖ +
∥∥∥∥−( α

t + h
+ γ

)
ẋ(t + h) +

(α

t
+ γ

)
ẋ(t) − ∇g(x(t + h)) + ∇g(x(t))

∥∥∥∥
≤ (1 + γ )‖ẋ(t + h) − ẋ(t)‖ +

∥∥∥∥ α

t + h
ẋ(t + h) − α

t
ẋ(t)

∥∥∥∥+ ‖∇g(x(t + h)) − ∇g(x(t))‖

≤ (1 + γ )‖ẋ(t + h) − ẋ(t)‖ +
∥∥∥∥ α

t + h
ẋ(t + h) − α

t
ẋ(t)

∥∥∥∥+ Lg‖x(t + h) − x(t)‖.

Hence,∥∥∥∥ Ẋ(t + h) − Ẋ(t)
h

∥∥∥∥
1

≤ (1 + γ )

∥∥∥∥ ẋ(t + h) − ẋ(t)
h

∥∥∥∥+
∥∥∥∥ (α/(t + h))ẋ(t + h) − (α/t)ẋ(t)

h

∥∥∥∥
+ Lg

∥∥∥∥x(t + h) − x(t)
h

∥∥∥∥ .
By taking the limit as h → 0, we obtain

‖Ẍ(t)‖1 ≤ (1 + γ )‖ẍ(t)‖ +
∥∥∥∥(α

t
ẋ(t)

)′∥∥∥∥+ Lg‖ẋ(t)‖.

Since ‖Ẍ(t)‖1 = ‖x(3)(t)‖ + ‖ẍ(t)‖, we conclude

‖x(3)(t)‖ ≤
(
Lg + |α|

t2

)
‖ẋ(t)‖ +

(
γ + |α|

t

)
‖ẍ(t)‖.

�

Remark 2.1: For

N := max
t≥t0

(
Lg + |α|

t2
, γ + |α|

t

)
,

we have that

‖x(3)(t)‖ ≤ N(‖ẍ(t)‖ + ‖ẋ(t)‖)
for almost every t ∈ [t0,+∞).

3. Convergence of trajectories

In this section, we study the convergence of the trajectory of the dynamical system (2). We denote by

ω(x) := {x ∈ R
n : ∃tk −→ +∞ such that x(tk) −→ x as k −→ +∞}

the set of limit points of the trajectory x.
Before proving a first result in this sense, we recall two technical lemmas which will play an

essential role in the asymptotic analysis.
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Lemma 3.1: Suppose that F : [0,+∞) → R is locally absolutely continuous and bounded below and
that there exists G ∈ L1([0,+∞)) such that for almost every t ∈ [0,+∞)

d
dt
F(t) ≤ G(t).

Then there exists limt→+∞ F(t) ∈ R.

Lemma 3.2: Suppose that F : [0,+∞) → [0,+∞) is locally absolutely continuous and F ∈
Lp([0,+∞)), 1 ≤ p < ∞, and that there exists G : [0,+∞) → R,G ∈ Lr([0,+∞)), 1 ≤ r ≤ ∞,
such that for almost every t ∈ [0,+∞)

d
dt
F(t) ≤ G(t).

Then it holds limt→+∞ F(t) = 0.

Theorem 3.1: Assume that g is bounded from below and, for u0, v0 ∈ R
n, let x be the unique strong

global solution of the dynamical system (2). Then the following statements are true:

(i) ẋ, ẍ ∈ L2([t0,+∞),Rn);
(ii) there exists β > 0 such that the limit limt−→+∞ g(βẋ(t) + x(t)) exists and is finite;
(iii) limt−→+∞ ẍ(t) = 0 and limt−→+∞ ẋ(t) = 0;
(iv) ω(x) ⊆ crit(g).

Proof: Choose 0 < β < min(2/Lg , (
√
L2g + 2γ Lg − Lg)/Lg). By using the Lg-Lipschitz continuity of

∇g, for almost every t ∈ [t0,+∞) it holds

d
dt
g(βẋ(t) + x(t)) = 〈βẍ(t) + ẋ(t),∇g(βẋ(t) + x(t))〉

= 〈βẍ(t) + ẋ(t),∇g(βẋ(t) + x(t)) − ∇g(x(t))〉
+
〈
βẍ(t) + ẋ(t),−ẍ(t) −

(α

t
+ γ

)
ẋ(t)

〉
≤ −β‖ẍ(t)‖2 −

(
1 + βγ + αβ

t

)
〈ẍ(t), ẋ(t)〉 −

(
γ + α

t

)
‖ẋ(t)‖2

+ Lg‖βẍ(t) + ẋ(t)‖‖βẋ(t)‖.

Taking into account that

‖βẍ(t) + ẋ(t)‖‖βẋ(t)‖ ≤ β2‖ẍ(t)‖‖ẋ(t)‖ + β‖ẋ(t)‖2 ≤ 1
2
β2‖ẍ(t)‖2 +

(
β + 1

2
β2
)

‖ẋ(t)‖2

and

−
(
1 + βγ + αβ

t

)
〈ẍ(t), ẋ(t)〉 = −1

2
d
dt

[(
1 + βγ + αβ

t

)
‖ẋ(t)‖2

]
− αβ

2t2
‖ẋ(t)‖2,

we obtain for almost every t ∈ [t0,+∞)

d
dt

(
g(βẋ(t) + x(t)) + 1

2

(
1 + βγ + αβ

t

)
‖ẋ(t)‖2

)
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≤
(

−β + Lgβ2

2

)
‖ẍ(t)‖2 +

(
−γ + Lgβ + Lgβ2

2
− α

t
− αβ

2t2

)
‖ẋ(t)‖2. (8)

Since 0 < β < min(2/Lg , (
√
L2g + 2γ Lg − Lg)/Lg), there exists t1 > 0 such that for every t ≥ t1 it

holds

1 + βγ + αβ

t
> 0, −β + Lgβ2

2
< 0 and − γ + Lgβ + Lgβ2

2
− α

t
− αβ

2t2
< 0. (9)

For simplicity, we denote

A := −β + Lgβ2

2
and B(t) := −γ + Lgβ + Lgβ2

2
− α

t
− αβ

2t2
∀ t ∈ [t0,+∞).

Let be T > t1. Since x ∈ C2([t1,T],Rn), we have x, ẋ, ẍ ∈ L2([t1,T],Rn). Furthermore, by the Lg-
Lipschitz property of ∇g, it holds ∇g ∈ L2([t1,T],Rn). By integrating (8) on [t1,T], we obtain

g(βẋ(T) + x(T)) + 1
2

(
1 + βγ + αβ

T

)
‖ẋ(T)‖2 −

∫ T

t1
A‖ẍ(t)‖2dt −

∫ T

t1
B(t)‖ẋ(t)‖2dt

≤ g(βẋ(t1) + x(t1)) + 1
2

(
1 + βγ + αβ

t1

)
‖ẋ(t1)‖2. (10)

Taking into account that g is bounded from bellow, by letting T −→ +∞, we obtain∫ ∞

t1
(−A‖ẍ(t)‖2) dt < +∞ and

∫ ∞

t1
(−B(t)‖ẋ(t)‖2) dt < +∞

Consequently ‖ẍ(·)‖2, B(·)‖ẋ(·)‖2 ∈ L1([t0,+∞),R), hence

ẍ, ẋ ∈ L2([t0,+∞),Rn).

On the other hand, (8) and Lemma 3.1 ensure that the limit

lim
t−→+∞

(
g(βẋ(t) + x(t)) + 1

2

(
1 + βγ + αβ

t

)
‖ẋ(t)‖2

)
(11)

exists and is finite.
As for almost every t ∈ [t0,+∞)

d
dt

(‖ẋ(t)‖2) = 2〈ẍ(t), ẋ(t)〉 ≤ ‖ẋ(t)‖2 + ‖ẍ(t)‖2

and ‖ẋ(·)‖2 + ‖ẍ(·)‖2 ∈ L1([t0,+∞)), according to Lemma 3.2, it follows that limt−→+∞ ẋ(t) = 0.
As for almost every t ∈ [t0,+∞)

d
dt

(‖ẍ(t)‖2) = 2〈x(3)(t), ẍ(t)〉 ≤ ‖x(3)(t)‖2 + ‖ẍ(t)‖2

and ‖x(3)(·)‖2 + ‖ẍ(·)‖2 ∈ L1([t0,+∞)) (see Remark 2.1 and (i)), according to Lemma 3.2, it follows
that limt−→+∞ ẍ(t) = 0.
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Finally, by using that limt−→+∞ ẋ(t) = 0, (11) becomes

∃ lim
t−→+∞

(
g(βẋ(t) + x(t)) + 1

2

(
1 + βγ + αβ

t

)
‖ẋ(t)‖2

)
= lim

t−→+∞ g(βẋ(t) + x(t)) ∈ R. (12)

Let x ∈ ω(x). Then there exists a sequence tk −→ +∞, k −→ +∞ such that x(tk) −→ x as
k −→ +∞. By using the continuity of ∇g, we have

0 = lim
k−→+∞

(
ẍ(tk) +

(
α

tk
+ γ

)
ẋ(tk) + ∇g(x(tk))

)
= ∇g(x),

which shows that x ∈ crit(g). �

In the following result, we use the distance function to a set, defined for A ⊆ R
n as dist(x,A) =

infy∈A ‖x − y‖ for all x ∈ R
n. The following result is a direct consequence of Theorem 3.1.

Lemma3.3: Assume that g is bounded from below and, for u0, v0 ∈ R
n, let x be the unique strong global

solution of the dynamical system (2). Define

H : R
n × R

n −→ R, H(x, y) = g(x) + 1
2‖x − y‖2.

Let be 0 < β < min(2/Lg , (
√
L2g + 2γ Lg − Lg)/Lg) and t1 > 0 such that for every t ≥ t1 the inequal-

ities (9) hold. For every t ∈ [t1,+∞), define

u(t) := βẋ(t) + x(t), v(t) :=
(√

1 + βγ + αβ

t
+ β

)
ẋ(t) + x(t),

A = −β + Lgβ2

2
, B(t) := −γ + Lgβ + Lgβ2

2
− α

t
− αβ

2t2
and

p(t) := Lgβ + γ + |α|
t

+ 2
√
1 + βγ + αβ

t
.

Then the following statements are true:

(i) ω(u) = ω(v) = ω(x);
(ii) d

dtH(u(t), v(t)) ≤ A‖ẍ(t)‖2 + B(t)‖ẋ(t)‖2 ≤ 0 for almost every t ≥ t1;
(iii) the limit limt−→+∞ H(u(t), v(t)) = limt−→+∞ g(βẋ(t) + x(t)) exists and is finite;
(iv) H is finite and constant on ω(u, v) = {(x, x) ∈ R

n × R
n : x ∈ ω(x)};

(v) ‖∇H(u(t), v(t))‖ ≤ ‖ẍ(t)‖ + p(t)‖ẋ(t)‖ for almost every t ≥ t1;
(vi) ω(u, v) ⊆ crit(H).

If x is bounded, then

(vii) ω(u, v) is nonempty and compact;
(viii) limt−→+∞ dist((u(t), v(t)),ω(u, v)) = 0.

Proof: (i) According to Theorem 3.1(iii),

lim
t−→+∞ βẋ(t) = lim

t−→+∞

(√
1 + βγ + αβ

t
+ β

)
ẋ(t) = 0,

hence ω(u) = ω(v) = ω(x).
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(ii) and (iii) are nothing else than (8) and (12), respectively.
(iv) follows directly from (iii).
(v) Since∇H(x, y) = (∇g(x) + x − y, y − x) for every (x, y) ∈ R

n × R
n, by using (2), we have for

almost every t ∈ [t1,+∞)

‖∇H(u(t), v(t))‖ ≤ ‖∇g(u(t))‖ + 2‖u(t) − v(t)‖
≤ ‖∇g(u(t)) − ∇g(x(t))‖ + ‖∇g(x(t))‖ + 2‖u(t) − v(t)‖
≤ Lgβ‖ẋ(t)‖ +

∥∥∥−ẍ(t) −
(
γ + α

t

)
ẋ(t)

∥∥∥+ 2‖u(t) − v(t)‖

≤ ‖ẍ(t)‖ +
(
Lgβ + γ + |α|

t
+ 2

√
1 + βγ + αβ

t

)
‖ẋ(t)‖ = ‖ẍ(t)‖ + p(t)‖ẋ(t)‖.

(vi) Since

critH = {(x, y) ∈ R
n × R

n : ∇H(x, y) = (0, 0)} = {(x, x) ∈ R
n × R

n : x ∈ crit(g)}

and (see (i))

ω(u, v) = {(x, x) ∈ R
n × R

n : x ∈ ω(x)},
by Theorem 3.1(iv) one obtains

ω(u, v) ⊆ crit(H).

Assume that x is bounded.
(vii) Since ẋ(t) −→ 0, t −→ +∞, we obtain that u and v are bounded, too. Thus, the set of limit

points ω(u, v) is nonempty. Furthermore, since ω(u, v) = {(x, x) ∈ R
n × R

n : x ∈ ω(x)} and ω(x)
is bounded, it is enough to show that ω(x) is closed.

Let be (xn)n≥1 ⊆ ω(x) and assume that limn−→+∞ xn = x∗. We show that x∗ ∈ ω(x). Obviously,
for every n ≥ 1, there exists a sequence tnk −→ +∞, k −→ +∞, such that

lim
k−→+∞

x(tnk ) = xn.

Let be ε > 0. Since limn−→+∞ xn = x∗, there exists N(ε) ∈ N such that for every n ≥ N(ε) it
holds

‖xn − x∗‖ <
ε

2
.

Let n ≥ 1 be fixed. Since limk−→+∞ x(tnk ) = xn, there exists k(n, ε) ∈ N such that for every k ≥
k(n, ε) it holds

‖x(tnk ) − xn‖ <
ε

2
.

Let be kn ≥ k(n, ε) such that tnkn > n. Obviously tnkn −→ ∞ as n −→ +∞ and for every n ≥ N(ε)

‖x(tnkn) − x∗‖ < ε.

Hence,

lim
n−→+∞ x(tnkn) = x∗,

thus x∗ ∈ ω(x).
(viii) follows from the definition of the set ω(u, v). �
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Remark 3.1: Combining (iii) and (iv) in Lemma 3.3, it follows that for every x ∈ ω(x) and tk −→
+∞ such that x(tk) −→ x as k −→ +∞ we have

lim
k−→+∞

H(u(tk), v(tk)) = H(x, x).

The convergence of the trajectory generated by the dynamical system (2) will be shown in the
framework of functions satisfying the Kurdyka–Łojasiewicz property. For η ∈ (0,+∞], we denote
by 	η the class of concave and continuous functions ϕ : [0, η) → [0,+∞) such that ϕ(0) = 0, ϕ is
continuously differentiable on (0, η), continuous at 0 and ϕ′(s) > 0 for all s ∈ (0, η).

Definition 3.1 (Kurdyka–Łojasiewicz property): Let f : R
n → R be a differentiable function. We

say that f satisfies the Kurdyka–Łojasiewicz (KL) property at x ∈ R
n if there exist η ∈ (0,+∞], a

neighbourhood U of x and a function ϕ ∈ 	η such that for all x in the intersection

U ∩ {x ∈ R
n : f (x) < f (x) < f (x) + η},

the following inequality holds

ϕ′(f (x) − f (x))‖∇f (x))‖ ≥ 1.

If f satisfies the KL property at each point in R
n, then f is called a KL function.

The origins of this notion go back to the pioneeringwork of Łojasiewicz [19], where it is proved that
for a real-analytic function f : R

n → R and a critical point x ∈ R
n (that is ∇f (x) = 0), there exists

θ ∈ [1/2, 1) such that the function |f − f (x)|θ‖∇f ‖−1 is bounded around x. This corresponds to the
situation when ϕ(s) = C(1 − θ)−1s1−θ . The result of Łojasiewicz allows the interpretation of the KL
property as a re-parametrization of the function values in order to avoid flatness around the critical
points. Kurdyka [20] extended this property to differentiable functions definable in an o-minimal
structure. Further extensions to the nonsmooth setting can be found in [21–24].

To the class of KL functions belong semi-algebraic, real sub-analytic, semiconvex, uniformly
convex and convex functions satisfying a growth condition. We refer the reader to [21–27] and
the references therein for more details regarding all the classes mentioned above and illustrating
examples.

An important role in our convergence analysis will be played by the following uniformized KL
property given in [27, Lemma 6].

Lemma 3.4: Let � ⊆ R
n be a compact set and let f : R

n → R be a differentiable function. Assume
that f is constant on � and f satisfies the KL property at each point of �. Then there exist ε, η > 0 and
ϕ ∈ 	η such that for all x ∈ � and for all x in the intersection

{x ∈ R
n : dist(x,�) < ε} ∩ {x ∈ R

n : f (x) < f (x) < f (x) + η}, (13)

the following inequality holds

ϕ′(f (x) − f (x))‖∇f (x)‖ ≥ 1. (14)

The following theorem is the main result of the paper and concerns the global asymptotic
convergence of the trajectory generated by (2).

Theorem 3.2: Assume that g is bounded from below and, for u0, v0 ∈ R
n, let x be the unique strong

global solution of (2). Suppose that

H : R
n × R

n −→ R, H(x, y) = g(x) + 1
2‖x − y‖2

is a KL function and x is bounded. Then the following statements are true:
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(a) ẋ, ẍ ∈ L1([t0,+∞),Rn);
(b) there exists x ∈ crit(g) such that limt−→+∞ x(t) = x.

Proof: Let be 0 < β < min(2/Lg , (
√
L2g + 2γ Lg − Lg)/Lg) and t1 > 0 such that for every t ≥ t1 the

inequalities (9) hold. Furthermore, we will use the notations made in Lemma 3.3, according to which
we can choose (x̃, x̃) ∈ ω(u, v). It holds

lim
t−→+∞H(u(t), v(t)) = H(x̃, x̃).

Case I. There exists t ≥ t1 such that H(u(t), v(t)) = H(x̃, x̃). From Lemma 3.3(ii), we have

d
dt
H(u(t), v(t)) ≤ A‖ẍ(t)‖2 + B(t)‖ẋ(t)‖2 ≤ 0 for almost every t ≥ t1,

hence

H(u(t), v(t)) ≤ H(x̃, x̃) for every t ≥ t.

On the other hand,

H(u(t), v(t)) ≥ lim
t−→+∞H(u(t), v(t)) = H(x̃, x̃) for every t ≥ t1,

hence

H(u(t), v(t)) = H(x̃, x̃) for every t ≥ t.

Hence, (d/dt)H(u(t), v(t)) = 0, which leads to

0 ≤ A‖ẍ(t)‖2 + B(t)‖ẋ(t)‖2 ≤ 0 for almost every t ≥ t.

Since A< 0 and B(t) < 0 for every t ≥ t1, the latter inequality can hold only if

ẋ(t) = ẍ(t) = 0 for almost every t ≥ t.

Consequently, ẋ, ẍ ∈ L1([t0,+∞),Rn) and x is constant on [t,+∞).
Case II. We assume thatH(u(t), v(t)) > H(x̃, x̃) holds for every t ≥ t1. Let� := ω(u, v). Accord-

ing to Lemma 3.3, � is nonempty and compact and H is constant on �. Since H is a KL function,
according to Lemma 3.4, there exist ε, η > 0 and ϕ ∈ 	η such that for every (z̃, w̃) in the intersection

{(z,w) ∈ R
n × R

n : dist((z,w),�) < ε} ∩ {(z,w) ∈ R
n × R

n : H(x, x) < H(z,w) < H(x̃, x̃) + η}
one has

ϕ′(H(z̃, w̃) − H(x̃, x̃))‖∇H(z̃, w̃)‖ ≥ 1.

Since limt−→+∞ dist(u(t), v(t),�) = 0, there exists t2 ≥ t1 such that dist(u(t), v(t)),�) < ε

for every t ≥ t2. Since limt−→+∞ H(u(t), v(t)) = H(x, x), there exists t3 ≥ t1 such that H(x, x) <

H(u(t), v(t)) < H(x, x) + η for every t ≥ t3. Hence, for every t ≥ T := max(t2, t3), we have

ϕ′(H(u(t), v(t)) − H(x, x)) · ‖∇H(u(t), v(t))‖ ≥ 1.

According to Lemma 3.3 (ii) and (v), we have (d/dt)H(u(t), v(t)) ≤ A‖ẍ(t)‖2 + B(t)‖ẋ(t)‖2 ≤ 0
and ‖∇H(u(t), v(t))‖ ≤ ‖ẍ(t)‖ + p(t)‖ẋ(t)‖, hence

d
dt

ϕ(H(u(t), v(t)) − H(x̃, x̃)) = ϕ′(H(u(t), v(t)) − H(x̃, x̃))
d
dt
H(u(t), v(t))
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≤ A‖ẍ(t)‖2 + B(t)‖ẋ(t)‖2
‖ẍ(t)‖ + p(t)‖ẋ(t)‖

for almost every t ∈ [T,+∞).
By integrating on the interval [T,T], for T > T, we obtain

ϕ(H(u(T), v(T)) − H(x̃, x̃)) −
∫ T

T

A‖ẍ(s)‖2 + B(s)‖ẋ(s)‖2
‖ẍ(s)‖ + p(s)‖ẋ(s)‖ ds ≤ ϕ(H(u(T), v(T)) − H(x̃, x̃)).

Since ϕ is bounded frombelow,A < 0,B(s) < 0 and p(s) > 0 for every s ≥ T andT was arbitrarily
chosen, we obtain that

0 ≤
∫ +∞

T

−A‖ẍ(s)‖2 − B(s)‖ẋ(s)‖2
‖ẍ(s)‖ + p(s)‖ẋ(s)‖ ds ≤ ϕ(H(u(T), v(T)) − H(x, x)),

which leads to

t 
→ ‖ẍ(t)‖2
‖ẍ(t)‖ + p(t)‖ẋ(t)‖ , t 
→ ‖ẋ(t)‖2

‖ẍ(t)‖ + p(t)‖ẋ(t)‖ ∈ L1([t0,+∞),Rn)

and further to

t 
→ ‖ẍ(t)‖‖ẋ(t)‖
‖ẍ(t)‖ + p(t)‖ẋ(t)‖ ∈ L1([t0,+∞),Rn).

Since p is bounded from above on [t0,+∞) and

‖ẋ(t)‖ + ‖ẍ(t)‖ = ‖ẍ(t)‖2
‖ẍ(t)‖ + p(t)‖ẋ(t)‖ + p(t)‖ẋ(t)‖2

‖ẍ(t)‖ + p(t)‖ẋ(t)‖ + (1 + p(t))‖ẍ(t)‖‖ẋ(t)‖
‖ẍ(t)‖ + p(t)‖ẋ(t)‖ ,

we obtain that

ẋ, ẍ ∈ L1([t0,+∞),Rn).

Finally, since ẋ ∈ L1([t0,+∞),Rn), the limit limt−→+∞ x(t) exists and it is finite. In conclusion,
there exists x ∈ crit(g) such that

lim
t−→+∞ x(t) = x.

�

Remark 3.2: According to Remark 2.1, there exists N > 0 such that ‖x(3)(t)‖ ≤ N(‖ẍ(t)‖ + ‖ẋ(t)‖)
for almost every t ≥ t0, hence, under the hypotheses of Theorem 3.2, one has

x(3) ∈ L1([t0,+∞),Rn).

Remark 3.3: Since the class of semi-algebraic functions is closed under addition [see, for example,
[27]] and (x, y) 
→ 1

2‖x − y‖2 is semi-algebraic, the conclusion of the previous theorem holds, if,
instead of asking that H is a KL function, we ask that g is semi-algebraic.

Remark 3.4: Assume that g is coercive, that is

lim
‖u‖→+∞

g(u) = +∞.

For u0, v0 ∈ R
n, let x ∈ C2([0,+∞),Rn) be the unique global solution of (2). Then x is bounded.

Indeed, notice that g is bounded from below, being a continuous and coercive function [see [28]].
From (10), it follows that β ẋ(T) + x(T) is contained for every T ≥ t1 in a lower level set of g, which
is bounded. According to Theorem 3.1, β ẋ(t) −→ 0, t −→ +∞, which implies that x is bounded.
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4. Convergence rates

In this section, we will assume that the regularized function H satisfies the Lojasiewicz property,
which, as noted in the previous section, corresponds to a particular choice of the desingularizing
function ϕ [see [19,22,25]].

Definition 4.1: Let f : R
n −→ R be a differentiable function. The function f is said to fulfil the

Łojasiewicz property, if for every x ∈ crit f there exist K, ε > 0 and θ ∈ (0, 1) such that

|f (x) − f (x)|θ ≤ K‖∇f (x)‖ for every x fulfilling ‖x − x‖ < ε.

The number θ is called the Łojasiewicz exponent of f at the critical point x.

In the following theorem, we provide convergence rates for the trajectory generated by (2), its
velocity and acceleration in terms of the Łojasiewicz exponent of H [see, also, [22,25]].

Theorem 4.1: Assume that g is bounded from below and, for u0, v0 ∈ R
n, let x be the unique strong

global solution of (2). Suppose that x is bounded, let x ∈ crit(g) be such that limt−→+∞ x(t) = x and
suppose that

H : R
n × R

n −→ R, H(x, y) = g(x) + 1
2‖x − y‖2

fulfils the Łojasiewicz property at (x, x) ∈ critH with Łojasiewicz exponent θ . Let be (see Remark 2.1)

N := max
t≥t0

(
Lg + |α|

t2
, γ + |α|

t

)
.

Then, there exist a1, a2, a3, a4 > 0 and T> 0 such that for almost every t ∈ [T,+∞), the following
statements are true:

(a) if θ ∈ (0, 12 ), then x converges in finite time;
(b) if θ = 1

2 , then ‖x(t) − x‖ ≤ a1e−a2t , ‖ẋ(t)‖ ≤ a1e−a2t and ‖ẍ(t)‖ ≤ Na1e−a2t ;
(c) if θ ∈ ( 12 , 1), then ‖x(t) − x‖ ≤ (a3t + a4)−(1−θ)/(2θ−1), ‖ẋ(t)‖ ≤ (a3t + a4)−(1−θ)/(2θ−1) and

‖ẍ(t)‖ ≤ N(a3t + a4)−(1−θ)/(2θ−1).

Proof: Let be 0 < β < min(2/Lg , (
√
L2g + 2γ Lg − Lg)/Lg) and t1 > 0 such that for every t ≥ t1 the

inequalities (9) hold. We define for every t ∈ [t1,+∞)

σ (t) :=
∫ +∞

t
(‖ẋ(s)‖ + ‖ẍ(s)‖) ds.

Let t ∈ [t1,+∞) be fixed. For T ≥ t, we have

‖x(t) − x‖ =
∥∥∥∥x(T) − x −

∫ T

t
ẋ(s) ds

∥∥∥∥ ≤ ‖x(T) − x‖ +
∫ T

t
‖ẋ(s)‖ ds.

By taking the limit as T −→ +∞, we obtain

‖x(t) − x‖ ≤
∫ +∞

t
‖ẋ(s)‖ ds ≤ σ(t). (15)

Furthermore, for T> t, we have

‖ẋ(t)‖ =
∥∥∥∥ẋ(T) −

∫ T

t
ẍ(s) ds

∥∥∥∥ ≤ ‖ẋ(T)‖ +
∫ T

t
‖ẍ(s)‖ ds.



APPLICABLE ANALYSIS 375

By taking the limit as T −→ +∞, we obtain

‖ẋ(t)‖ ≤
∫ +∞

t
‖ẍ(s)‖ ds ≤ σ(t). (16)

According to Remark 2.1, it holds ‖x(3)(t)‖ ≤ N(‖ẍ(t)‖ + ‖ẋ(t)‖) for almost every t ≥ t1,

‖ẍ(t)‖ =
∥∥∥∥ẍ(T) −

∫ T

t
x(3)(s) ds

∥∥∥∥ ≤ ‖ẍ(T)‖ +
∫ T

t
‖x(3)(s)‖ ds ≤ ‖ẍ(T)‖

+ N
∫ T

t
(‖ẍ(s)‖ + ‖ẋ(s)‖) ds ∀T > t.

By taking the limit as T −→ +∞, we obtain

‖ẍ(t)‖ ≤ Nσ(t). (17)

Next, we show that there existsm< 0 such that

A‖ẍ(t)‖2 + B(t)‖ẋ(t)‖2
‖ẍ(t)‖ + p(t)‖ẋ(t)‖ ≤ m(‖ẋ(t)‖ + ‖ẍ(t)‖). (18)

Indeed,

(‖ẍ(t)‖ + p(t)‖ẋ(t)‖)(‖ẋ(t)‖ + ‖ẍ(t)‖) = ‖ẍ(t)‖2 + (1 + p(t))‖ẋ(t)‖‖ẍ(t)‖ + p(t)‖ẋ(t)‖2

≤
(
3
2

+ p(t)
2

)
‖ẍ(t)‖2 +

(
1
2

+ 3p(t)
2

)
‖ẋ(t)‖2 ≤ A

m
‖ẍ(t)‖2 + B(t)

m
‖ẋ(t)‖2,

where

m := max
(
max
t≥t1

A
3/2 + p(t)/2

,max
t≥t1

B(t)
(3/2)p(t) + 1/2

)
.

It is an easy verification thatm < 0.
Aswehave seen in the proof of Theorem3.2, if there exists t ≥ t1 such thatH(u(t), v(t)) = H(x, x),

then x is constant on [t,+∞) and the conclusion follows.
On the other hand, if for every t ≥ t1 one has that H(u(t), v(t)) > H(x, x), then according to the

proof of Theorem 3.2, there exist ε > 0 and T ≥ t1 such that

‖(u(t), v(t)) − (x, x)‖ < ε

and

d
dt

(H(u(t), v(t)) − H(x, x))1−θ ≤ A‖ẍ(t)‖2 + B(t)‖ẋ(t)‖2
‖ẍ(t)‖ + p(t)‖ẋ(t)‖ for almost every t ≥ T.

Busing (18), we obtain that

M(‖ẋ(t)‖ + ‖ẍ(t)‖) + d
dt

(H(u(t), v(t)) − H(x, x))1−θ ≤ 0 for almost every t ≥ T,

whereM := −m > 0.
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For t ≥ T, we integrate the last relation on the interval [t, T̃], where T̃ > t, which yields

M
∫ T̃

t
(‖ẋ(s)‖ + ‖ẍ(s)‖) ds + (H(u(T̃), v(T̃)) − H(x, x))1−θ ≤ (H(u(t), v(t)) − H(x, x))1−θ .

By taking the limits as T̃ −→ +∞, we get

Mσ(t) ≤ (H(u(t), v(t)) − H(x, x))1−θ .

On the other hand, according to the KL property for H and Lemma 3.3 (v), we have

(H(u(t), v(t)) − H(x, x))θ ≤ K‖∇H(u(t), v(t))‖ ≤ K(‖ẍ(t)‖ + p(t)‖ẋ(t)‖) for almost every t ≥ T,

hence

Mσ(t) ≤ K(1−θ)/θ (‖ẍ(t)‖ + p(t)‖ẋ(t)‖)(1−θ)/θ for almost every t ≥ T.

By denoting a := maxt≥T p(t) ∈ (0,+∞), one can easily see that a> 1 and so

Mσ(t) ≤ (aK)(1−θ)/θ (‖ẋ(t)‖ + ‖ẍ(t)‖)(1−θ)/θ for almost every t ≥ T.

Taking into account that ‖ẋ(t)‖ + ‖ẍ(t)‖ = −σ̇ (t), the previous inequality is nothing else than

− cσθ/(1−θ)(t) ≥ σ̇ (t) for almost every t ≥ T, (19)

where c := Mθ/(1−θ)/aK > 0.
If θ = 1

2 , then (19) becomes cσ(t) + σ̇ (t) ≤ 0 for almost every t ≥ T. By multiplying with ect and
integrating on [T, t], it follows that there exists a1 > 0 such that

σ(t) ≤ a1e−a2t for every t ≥ T,

where a2 = c. Using (15)–(17), we obtain

‖x(t) − x‖ ≤ a1e−a2t , ‖ẋ(t)‖ ≤ a1e−a2t and ‖ẍ(t)‖ ≤ Na1e−a2t for every t ≥ T,

which proves (b).
Assume now that 0 < θ < 1

2 . In this case, (19) leads to

d
dt

σ (1−2θ)/(1−θ)(t) = 1 − 2θ
1 − θ

σ−θ/(1−θ)(t)σ̇ (t) ≤ −c
1 − 2θ
1 − θ

for almost every t ≥ T.

By integrating on [T, t] we obtain

σ (1−2θ)/(1−θ)(t) ≤ −αt + β , for every t ≥ T,

where α > 0. Then there exists T̂ ≥ T such that σ(t) ≤ 0 for every t ≥ T̂, thus, x is constant on
[T̂,+∞) and (a) follows.

Assume now that 1
2 < θ < 1. In this case, (19) leads to

d
dt

σ (1−2θ)/(1−θ)(t) = 1 − 2θ
1 − θ

σ−θ/(1−θ)(t)σ̇ (t) ≥ c
2θ − 1
1 − θ

for almost every t ≥ T.

By integrating on [T, t] we obtain

σ (1−2θ)/(1−θ)(t) ≥ a3t + a4 for every t ≥ T,

where a3, a4 > 0, or, equivalently,

σ(t) ≤ (a3t + a4)−(1−θ)/(2θ−1) for every t ≥ T.

Using again (15)–(17), we obtain

‖x(t) − x‖ ≤ (a3t + a4)−(1−θ)/(2θ−1), ‖ẋ(t)‖ ≤ (a3t + a4)−(1−θ)/(2θ−1) and
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‖ẍ(t)‖ ≤ N(a3t + a4)−(1−θ)/(2θ−1) for every t ≥ T,

which proves (c). �
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