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ABSTRACT

The cost and time of pharmaceutical drug development continue to grow at rates that many say are
unsustainable. These trends have enormous impact on what treatments get to patients, when they get them
and how they are used. The statistical framework for supporting decisions in regulated clinical development
of new medicines has followed a traditional path of frequentist methodology. Trials using hypothesis tests
of “no treatment effect” are done routinely, and the p-value < 0.05 is often the determinant of what
constitutes a “successful”trial. Many drugs fail in clinical development, adding to the cost of new medicines,
and some evidence points blame at the deficiencies of the frequentist paradigm. An unknown number
effective medicines may have been abandoned because trials were declared “unsuccessful” due to a p-
value exceeding 0.05. Recently, the Bayesian paradigm has shown utility in the clinical drug development
process for its probability-based inference. We argue for a Bayesian approach that employs data from other
trials as a “prior” for Phase 3 trials so that synthesized evidence across trials can be utilized to compute
probability statements that are valuable for understanding the magnitude of treatment effect. Such a
Bayesian paradigm provides a promising framework for improving statistical inference and regulatory
decision making.
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1. Introduction followed by treatment of larger groups of patients with various
doses of the treatment under various durations and conditions
to learn what might be most useful for a disease/condition of
interest, referred to as Phase 2. Once there is an understanding
of the right patient population(s) to treat and the doses that are
safe and efficacious, clinical development moves into large-scale
confirmatory trials (Phase 3) with the intent being to demon-
strate clearly that the treatment is safe and effective when used
as intended. Because of the Kefauver-Harris Amendment and
its reference to “clinical investigations” (note the plural term), it

There has been nearly uniform acceptance of p < 0.05 in most
fields of research since R.A. Fisher first made his statements
about what he thought might be considered “statistically sig-
nificant” evidence (Fisher 1926). Following the passage of the
Kefauver-Harris Amendment to the Food, Drug and Cosmetic
Act of 1962, drug manufacturers have been required to demon-
strate “evidence [of effectiveness] consisting of adequate and
well-controlled investigations, including clinical investigations
... to evaluate the effectiveness of the drug involved” (Drug

Amendment Act 1962). With the passage of the 1962 legisla-
tion, there were Congressional hearings and debates about the
need for “adequate and well-controlled” trials, including topics
such as randomization, whether placebo-controlled trials were
ethical, and why investigators should be blinded to the study
medication. During the years following the passage of the Act,
FDA promulgated regulations that defined and set standards
for these trial characteristics, while hiring statisticians to assess
the adequacy of the evidence. The use of the null hypothesis
significance testing (NHST) approach to compare treatments
was adopted according to the prevailing customs in the canon
of statistical methods.

In regulated drug development, the worldwide approach is
to conduct a sequence of clinical studies, first establishing the
safety of a new drug in small trials (Phase 1 trials). This is

generally is expected that drug sponsors will conduct at least two
independent Phase 3 trials. Each trial is evaluated independently
and declared a success or failure based on whether the trial
achieves a statistically significant result (i.e., p < 0.05 in most
cases). Both trials must be “successful” for a drug to be con-
sidered by a regulatory agency for review and approval. While
the above is a general framework for drug development that
helps put this work into context, there are a wide variety of drug
development programs that may deviate from the Phase 1-2-3
paradigm, although the standard of evidence (p < 0.05 in two
adequate and well-controlled trials) remains in place most often.

The adoption of a p-value < 0.05 for concluding “success”
was also done as a convention and a matter of convenience
in the paper and pencil era of the late 1960s and 1970s. This
convenience was first noted by Fisher himself in 1925 when he
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wrote, “The value for which p=0.05 is 1.96 or nearly 2; it is
convenient to take this point as a limit in judging whether a
deviation is to be considered significant or not” (Fisher 1925,
p- 45). However, there is nothing that any of the authors of this
report can find, after diligent review of Congressional hearings
and documents or the FDA archives, that discusses or debates
the level of evidence needed for drug approval or the standard
by which that evidence is judged. Thus, the acceptance of funda-
mental concepts for what constitutes adequate, well-controlled
investigations—use of placebo, blinding and randomization—
that we take for granted today, were heavily debated 50 years ago.
While these trial design characteristics are accepted today as the
gold standard for generating credible evidence, the acceptable
level of statistical evidence (p < 0.05) was, AND STILL IS, just
a matter of tradition and convenience.

Using a decision criterion of p < 0.05, NHST ignores
available evidence from sources external to each individual trial
as well as the clinical context in which a decision is made.
However, is it always reasonable to conclude that a treatment
does not work after obtaining, for example, a p-value of 0.01
in one Phase 3 trial and a p-value of 0.08 in a second Phase 3
trial of the same treatment, that is, one “successful” trial and
one “unsuccessful” trial? Furthermore, should the interpretation
of two such trials—one success and one failure—be the same
regardless of whether the trials are for a chronic, debilitating
disease (e.g., rheumatoid arthritis) or a transient treatment of
symptoms (e.g., dental pain)? In contrast to inferring whether a
treatment works or not using NHST (and requiring p < 0.05 in
two independent trials), imagine a world in which the approval
of a new treatment—drug or biologic—is truly based on the
probability that the treatment works according to the totality
of the evidence and the clinical context. “That the treatment
works” is subject to judgment, as is the probability level that
is needed for approval. That takes some very hard thinking
and lively discussion. But we should not shy away from this
diligence and hide behind convenience. We posit that patients
would accept a treatment that has a 50% probability of curing
pancreatic cancer, while most might prefer a 95% probability
that a treatment produces a 10 kg weight loss in one year. Those
statements are much better suited for describing a treatment
effect in a Bayesian paradigm. Moreover, the Bayesian paradigm
seems ideally suited for synthesizing evidence from not only two
Phase 3 trials but also the other trials conducted over many years
in the drug development process, as well as other scientifically
relevant evidence.

This paper sets the stage for Bayesian thinking for regulated
drug development in Section 2. Section 3 provides a real and
recent industry example with some specific details of how the
Bayesian paradigm could be implemented when analyzing and
interpreting Phase 3 clinical trials. Current uses of Bayesian
approaches within FDA, as well as possible extensions of the
Bayesian paradigm for regulatory decision making, are covered
in Section 4. We end with further discussion in Section 5.

2. Bayesian Thinking for Drug Development

The debates about the suitability of a frequentist paradigm
versus the Bayesian paradigm have been long-standing and,

at times, acrimonious. There is abundant literature comparing
and contrasting both approaches (Bayarri and Berger 2004;
Christensen 2005; Inoue et al. 2005). Goodman (1999) provides
an excellent description of “the p-value fallacy;” and posits that
the over-reliance on p-values “has almost eliminated our ability
to distinguish between statistical results and scientific conclu-
sions” This could certainly be a criticism of current regulatory
practice in which a p-value < 0.05 in pivotal trials is almost
always a requirement for regulatory consideration, let alone
approval, despite other supportive clinical trial evidence from
earlier phases of drug development.

The Bayesian way of thinking and formal analytical approach
seems ideally suited for the drug development process. The learn
and confirm paradigm has been espoused in drug development
(Sheiner 1997). The idea is to learn as much as one can about a
new treatment, followed by well informed, confirmatory trials.
This approach acknowledges that clinical drug development
proceeds over many years. It is a continual sequence of learn-
ing studies and confirming, using ever larger samples sizes
and different populations of subjects, gradually accumulating
knowledge about the efficacy and safety of a novel treatment.
Since this development proceeds over many years, additional
scientific knowledge is also accumulating during that time—
knowledge of the disease state, knowledge of molecular biol-
ogy surrounding the mechanism of action of the treatment,
genomics and additional data from animal experiments or other
companies developing similar treatments. The advantage of the
Bayesian approach is that it can formally incorporate prior data
or external information into the analysis of the confirmatory
trials.

It is important to note that this is not an attempt to “lower
the bar” for substantial evidence of a treatment effect and may in
some instances increase the evidentiary barrier to approval. For
regulatory decision making, Bayesian analytical approaches can
be rigorously prespecified to provide a formal mechanism utiliz-
ing information that comes from outside a single Phase 3 trial
or can be used to synthesize information across Phase 3 trials.
Information external to the Phase 3 study can be incorporated
into a vague/diffuse prior or an informative prior, depending on
the strength of evidence from such information related to the
treatment effect. Such priors would need agreement and formal
documentation with regulators in advance of Phase 3 trials. This
is no different than the current practice for clinical trial analysis
using frequentist approaches for which models and assumptions
are agreed in advance. It is worth noting, however, that in the
case of some difficult to treat diseases, such as Alzheimer’s
Disease or sepsis, the history of failed clinical trials could result
in a more skeptical prior that may lead to a more rigorous
standard being applied to determine trial success.

The focus of this article is on the evaluation of efficacy
at the completion of two Phase 3 trials. However, Bayesian
approaches also seem ideally suited for use in interim analysis
of clinical trials where data are accumulating within a clinical
trial and decisions are made whether to continue or terminate
that trial based on the data/evidence accumulated at that time.
Also, safety considerations and analysis of adverse events plays
a major role in drug development and regulatory decisions,
but often is not the subject of rigorous hypothesis testing. The
evaluation of adverse effects of a treatment seem amenable to



Bayesian approaches, especially for less frequent adverse events.
In any single clinical trial, the sample size may be insufficient
to elucidate a treatment effect on an adverse outcome. Nev-
ertheless, the accumulation of safety data across all phases of
drug development can be used in formal Bayesian approaches
to assess the probability that any particular adverse outcome is
the result of an experimental treatment as well as the probability
associated with any magnitude of that effect.

In summary, the Bayesian approach makes direct probability
statements about the treatment effect itself, given the observed
data. The inferential framework is more relevant to information
needs of patients and prescribers, and in fact, all stakeholders of
our healthcare system.

3. Industry Example

The frequentist paradigm is engrained in our scientific cul-
ture and implementation of regulated clinical research for new
treatments. A Bayesian perspective in this realm is novel, and
the following example illustrates how the drug development
process and decision making could be modified to take this
approach. The example is taken from real and recent experience
in a pharmaceutical company. The sponsor asked that additional
details about the drug and disease not be shared since there are
proprietary elements of this example. We do not believe that
withholding such information detracts substantially from the
key points that we are seeking to illustrate.

Because the Bayesian approach requires the definition of a
prior, its application should be considered upon initiation of the
first efficacy clinical trials—generally before Phase 2. However,
for simplicity and to illustrate how the Bayesian approach could
replace NHST for confirmatory Phase 3 trials, the following
example focuses on the analysis and interpretation of two Phase
3 trials, the priors for which are described below. While much
of the methodology presented here is described in Spiegelhalter
etal. (2004), this example illustrates how the Bayesian approach
can lead to better understanding and interpretation of clinical
trial results that are considered conflicting or confusing under
the frequentist paradigm. In that sense, the approach described
herein serves as an informative contribution to the comparison
of frequentist and Bayesian paradigms in a practical applica-
tion with important consequences in drug development and
approval.

The prior distribution of effect size for Phase 3 can be quan-
tified from a variety of sources, which is one of the benefits
of the Bayesian approach. Phase 2 results of the new treat-
ment provide some direct evidence of its effect. In addition to
randomized Phase 2 trials that include a comparator, either a
placebo or an active treatment, qualified data from other trials
outside the clinical development program of the new treatment
can also be used. For simplicity, we will focus on placebo-
controlled trials, although the concepts can be easily extended to
trials with active comparators. Bayesian network meta-analysis
(Greco et al. 2016) can be employed to synthesize data into a
single posterior distribution of effect for both the new treatment
as well as the placebo. Care must be taken to account for differ-
ences in study populations, duration of treatment, study design
and other relevant factors when doing such meta-analysis.
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The scientific context for this example is that a treatment
from a competitor sponsor was approved recently by the FDA
and on the market. That treatment had a very similar mecha-
nism of action and was approved for the treatment of a disease
and population of patients similar to what was intended by the
sponsor for the experimental treatment in this example. The
sponsor wanted to leverage data from the competitor treatment
and scientific knowledge that was emerging in this disease area
to skip Phase 2 and proceed with two Phase 3 trials.

When there is scant or no clinical data on the experimental
treatment of interest, one can consider using appropriately dis-
counted data from other treatments in the same class (e.g., treat-
ments that have a similar mechanism of action, such as inhibi-
tion of the same/similar enzyme or binding to the same/similar
cell surface receptor). There are also well-developed methods
for “prior elicitation” (O’Hagan et al. 2006; Morris et al. 2014)
in which experts can use animal data, disease state knowledge
and other biological or medical knowledge to express their
beliefs about the treatment effect in the form of a prior distri-
bution of effect size. Finally, there are historical evaluations of
a large number of new treatments and the success rates of such
treatments in different disease states (Hay et al. 2014) that can
provide insight into the development of a prior distribution.

In this example, the primary response variable for this disease
is the percentage of patients responding with a prespecified and
clinically meaningful degree of improvement across a variety of
disease symptoms. As noted previously, there were no Phase 2
studies of the experimental treatment, but two Phase 3 studies
were available of an FDA approved and marketed competitor
treatment with the same mechanism of action in the same dis-
ease state and patient population. There were also many studies
in this disease state of other treatments compared to placebo.
Using a Bayesian network meta-analysis, the posterior distri-
bution of responses from those studies served as a foundation
for development of a prior distribution of treatment responses
for the Phase 3 studies of the experimental treatment versus
placebo, as well as a very good estimate for the prior distribution
of the placebo response (Figure 1). Because placebo has been
used in many studies, one can see that its posterior distribution
of response has a much sharper peak (smaller variance) than the
competitor treatment, which included only two studies.

Credible prior distribution of response for the Phase 3 studies
cannot, in general, be taken directly from the posterior distri-
butions derived in Figure 1. For example, the only experimental
treatments that progress to Phase 3 studies are those that show
a substantial effect in Phase 2 (i.e., statistically significant or
medically meaningful). There is well-documented regression to
the mean in which estimates of the treatment effect in Phase
3 studies tend to be smaller than those observed in Phase 2
studies of the same compound (Chuang-Stein and Kirby 2014).
Also, there may be other causes for differences between the
studies used for the posterior distribution described previously
and the planned Phase 3 study of the experimental treatment
that are not easily measured or defined. They include, but are not
limited to, changes in medical care/practice that occur over time,
differences in investigative sites chosen for the study (including
a potentially different mix of countries in global Phase 3 trials),
changes in patient inclusion/exclusion criteria or the precise
definition of the primary endpoint.
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Posterior Distribution of Response

2 Treatment
% 4- [ [
(=) Trt

0.00 0.25 0.50 075 1.00
Response

Figure 1. Distributions of treatment responses for placebo and an FDA approved
and marketed competitor treatment based on systematic literature review and
Bayesian network meta-analysis. For placebo (Pbo), the response rate is 30% with
95% credible interval (20%, 39%); for the competitor treatment (Trt) the response
rate is 39% with 95% credible interval (7%, 82%). These are the starting points
for developing the priors to be used for the Phase 3 trials of placebo versus the
experimental treatment.

Cumulatively, the reasons given above make it advisable to
discount the derived posterior distribution of response (Fig-
ure 1) when creating the prior distribution of response for the
planned Phase 3 trail, denoted 7’(mg). This can be accom-
plished easily with two different approaches. The first is to use a
robust prior (Berger 1990) in which a mixture is used combining
the posterior distributions derived from the data, 7 (mg p), and
a more skeptical or diffuse prior, 7w (mgg). The latter prior of
the mixture is chosen so that it is centered closer to the null
hypothesis of no effect (skeptical) and has greater uncertainty
or variability (diffuse). This is done to counter-balance the
possibility of using a prior that is too optimistic, that is, too
closely dependent on historical data. This can be written as

' (mg) = e (mgp) + (1 — )7 (mgg) (1)

where ¢ is the borrowing factor or mixing proportion. Another
discounting approach is to use a power prior (Ibrahim and Chen
2000)

7' (mg) = 7 (mgp)° )

where ¢ < 1.

The choice of ¢ is based on the degree to which the Phase 3
study is similar to the other studies that were used to create
7 (mg,p), which is subjective. While the subjectivity may be con-
sidered a drawback to the Bayesian approach, the construction
of the Phase 3 prior, including the choice of ¢ , can be debated
and adjudicated by agreement with regulatory agencies prior to
the commencement of the Phase 3 trials. For this analysis, ¢
was chosen to be 0.4 since there were many similarities between
the studies of the competitor treatment and the experimental
treatment, but no direct data on the experimental treatment.
While analyses were done using both borrowing approaches, we
present the results using the robust prior approach (Equation 1)
since the results did not differ much between the two methods.

Lastly, the prior effective sample size for placebo and the
competitor treatment are approximately 83 and 6, respectively.
This is obtained by approximating the posterior distribution of
the response rate of placebo and a competitor treatment by a

Table 1. Results from two randomized, controlled, double-blind trials of two dose
levels (every 4-week dosing—Q4W—and every 2-week dosing—Q2W) of an exper-
imental treatment versus placebo. N = sample size; Responders were defined
prospectively based on improvement in a variety of clinical symptoms. P-values
were derived from logistic regression, taking prespecified covariates into account.

Study 1 Study 2
Measure Placebo Q4w Q2w Placebo Q4w Q2w
N 379 378 371 376 376 372
Responders (%) 293 35.2 318 277 34.8 384
p-value 0.052 0.490 0.051 0.002

beta distribution. The sum of the shape parameters of the beta
distribution is used as the approximate effective sample size for
the prior. The effective sample size can be used as an indicator
of the “informativeness” of the prior, and the larger value for
the placebo treatment shows that there is considerably more
information to be gained using the prior for the placebo than
using the prior for the competitor treatment (Morita et al. 2008).

In this example, there were two Phase 3 studies of the exper-
imental treatment that included two different dose levels based
on frequency of dosing—every 2-week dosing (Q2W) and every
4-week dosing (Q4W). The Q2W dose will be referred to as the
high dose since twice as much of the experimental treatment is
given in each 4-week period of treatment. The summary results
are presented in Table 1. The placebo (PBO) responses for the
two Studies were consistent with historical data that were used
for creating the Phase 3 prior. The Q4W dose (lower dose) of
the experimental treatment behaved consistently across trials
and was very close to traditional statistical significance at the
0.05 level. The Q2W dose (higher dose) performed erratically;
in Study 1, Q2W was slightly better than placebo and slightly
worse than Q4W (i.e., not consistent with a dose-response rela-
tionship), while in Study 2, Q2W outperformed placebo and
Q4W, exhibiting a dose-response relationship. Also, Q2W of
this experimental treatment performed similarly in Study 2 to
the synthesized effect size derived from the Bayesian network
meta-analysis of the competitor treatment (38.4% versus 39%,
respectively), as was anticipated prior to the initiation of the
Phase 3 program.

In the frequentist paradigm, such results present a conun-
drum. Strictly speaking, Study 1 did not achieve statistical sig-
nificance and, therefore, is a failed study. Study 2 did achieve
statistical significance for Q2W only, and therefore, was a suc-
cessful study since the objective of the study was to demonstrate
that at least one dose was significantly different from placebo.
With the regulatory requirement to show replication in two
adequate and well-controlled trials, the Phase 3 program, and
thus, the experimental treatment, is technically a failure. Yet,
there are very similar results for the Q4W effect across the two
trials, and the p-values are so close to 0.05 that it is difficult to
argue that the treatment has no effect.

Using the Bayesian paradigm with the prior distribution of
treatment effect as described previously (Figure 1) with borrow-
ing parameter ¢ = 0.4 (Equation 1), the posterior distributions of
treatment effect are shown in Figure 2a (Study 1) and Figure 2b
(Study 2). From these distributions based on the Phase 3 data,
the probability that there is a positive treatment effect can be
computed easily, and the results are given in Table 2. At present,
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Figure 2a. Posterior distributions of treatment effect for every 2-week dosing
(Q2W) versus placebo (PBO) and every 4-week dosing (Q4W) versus placebo for
Study 1.
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Figure 2b. Posterior distributions of treatment effect for every 2-week dosing
(Q2W) versus placebo (PBO) and every 4-week dosing (Q4W) versus placebo for
Study 2.

Table 2. Posterior probabilities of a positive treatment effect calculated from the
posterior distributions of effect size for Study 1 and Study 2 using the prespecified
borrowing factor ( & = 0.4) and sensitivity analysis using smaller borrowing factors
(£=0.1,02,0.3).

Study 1 Study 2
Q4w Q2w Q4w Q2w
Borrowing versus versus versus versus
Factor Placebo Placebo Placebo Placebo

0.4 0.967 0.805 0.986 0.999

0.3 0.969 0.803 0.987 0.999

0.2 0.972 0.807 0.983 0.999

0.1 0.970 0.804 0.983 1.000

there are no conventions related to acceptable probability lev-
els for a treatment effect to be considered a success, which
could and should vary depending on the disease state severity
or unmet medical need. Nonetheless, with probability levels
exceeding 0.98, one could safely conclude that Study 2 shows
a clear treatment effect at both dose levels, while Study 1 gives
an inconsistent result between the two dose levels, especially
since the higher dose (Q2W) has a lower probability of a treat-
ment effect than the lower dose (Q4W) (0.805 versus 0.967,
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Study 2 with Study 1 as Prior
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Figure 3. Posterior distributions of treatment effect for every 2-week dosing (Q2W)
and every 4-week dosing (Q4W) for Study 2 using the posterior distribution of
treatment effect from Study 1 as the prior distribution for Study 2 with borrowing
factor £ =0.9.

respectively). Also, in Table 2 are results using smaller borrow-
ing factors (i.e., relying less on historical data as a prior) for a
sensitivity analysis. The results are unchanged, indicating that
the prespecified borrowing factor is not a substantial determi-
nant of the outcome.

In our quest to answer the fundamental question “What is
the probability that the experimental treatment has a response
different from the placebo response?” it is natural to consider the
synthesis of data from both Phase 3 trials. This overall synthesis
of the prior information and all Phase 3 data is quite natural
in the Bayesian approach and allows for a single evaluation of
the Phase 3 program and interpretation of the treatment effect
that can be used for a regulatory decision. In this case, the
posterior distribution from Study 1 could be used as the prior
distribution for Study 2 to obtain an overall assessment of the
treatment effect. If a borrowing factor of 0.9 is used for that prior
distribution (consistent with the fact that Study 2 was identical
to Study 1, but had a slightly different set of geographic sites),
then the posterior distribution of treatment effect for each dose
is shown in Figure 3.

For Q4W versus placebo, the probability that there is a pos-
itive treatment effect is 0.995 while for Q2W that same proba-
bility is 0.999. Thus, it is unequivocal that both doses produce
a positive treatment effect with this approach. Using the tradi-
tional NHST approach, the regulatory criteria are not officially
met, and the frequentist approach struggles to have a compre-
hensive and coherent decision paradigm. In this real example,
the sponsor decided not to spend the considerable time and
effort of submitting this treatment for approval, in part, due to its
low chance of clearing the regulatory hurdle. In contrast, what
appeared to be confusing results from a frequentist analysis of
two independent clinical studies is rendered more interpretable
with the holistic Bayesian analysis [median effect (95% credible
interval): Q4W — PBO = 0.0544 (0.0129, 0.0972); Q2W — PBO
=0.0656 (0.0249, 0.1080)].

It should be noted that if Study 2 was used as the prior for
Study 1, with the same borrowing factor of 0.9, the posterior
probabilities for the synthesized treatment effect are also greater
than 0.99. There may be other approaches to the synthesis of
all data/information to arrive at a single probability for the
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Table 3. The probability of exceeding a treatment effect (E) for each dose group
based on the posterior probability distribution for the combined Phase 3 trials.

Treatment effect (E) Pr(Q4W effect > E) Pr(Q2W effect > E)

0.06 0.4011 0.6152
0.07 0.2353 0.4170
0.08 0.1192 0.2531
0.09 0.0537 0.1275
0.10 0.0192 0.0545

treatment effect, but we leave that to other creative thinkers
involved in drug development and regulatory decision making.

There are other aspects of the treatment effect that are quan-
tified easily in the Bayesian paradigm, once the posterior dis-
tribution of that treatment effect has been derived. For exam-
ple, it is important to know the likelihood that the more fre-
quent dose (Q2W) is more effective than the less frequent
dose (Q4W). While the frequentist approach and the current
regulatory paradigm assess trials separately and independently
thereby giving a mixed result, using the Bayesian paradigm and
the synthesized Phase 3 data, Pr(Q2W effect > Q4W effect) =
0.6532. This probability for greater effectiveness of Q2W can be
weighed against increased risk of adverse events possibly seen
with the high dose. Also, the probability of any chosen effect size
can be calculated for clinicians to determine the likelihood of a
clinically meaningful effect. Table 3 shows the probabilities for a
range of treatment effect sizes. From historical data on the FDA
approved treatment for this disease (used in the meta-analysis
previously described), the treatment effect was approximately
0.09. The results in Table 3 show that this experimental treat-
ment has a low probability of being more efficacious than the
currently approved and marketed product.

Finally, in our example, some may be concerned with the
disparity of the results for the Q2W dose group across the
two studies, and such an observation alone may cast doubt on
the credibility of the studies. The differences between Study
1 and Study 2 results for the Q2W dose were examined in
great detail (e.g., all treatment groups were very well-balanced
with respect to baseline demographics; drop-out patterns and
missing data assumptions could not explain such a discrep-
ancy). It is completely unclear as to why the placebo and Q4W
responses were consistent across studies and the Q2W responses
were not. With enough experience over many clinical trials, one
will recognize that there are times when two identical studies
run contemporaneously produce different results. One may be
willing to accept the outcome of Study 2 as more consistent
with expectations (e.g., similarity with historical data used in
the network meta-analysis, consistent dose response, biologic
plausibility) and, therefore, more representative of the truth.
Based on that perspective, we have calculated the probability of
observing an average response as small as that observed in Study
1 for the Q2W dose using the posterior distribution of effect
for Q2W from Study 2. That probability is 0.0025, indicating
that the Q2W response in Study 1 is very unusual and perhaps
beyond the expectations of sampling variation from one study
to the next.

In the authors” views of this clinical development program,
the totality of the evidence indicates with a high degree of
certainty (>99%) that the experimental treatment produces a

positive treatment effect. Of course, there are other considera-
tions that are necessary for the approval of a new treatment: Is
the treatment safe? Does the high dose (i.e., more frequent dos-
ing regimen in this example) produce sufficiently more efficacy
to warrant any potential increase in adverse effects that might
accompany using the higher dose? However, the first question
that needs to be answered is, “Does this treatment work?” or
stated differently, “Does this treatment produce a response dif-
ferent from the placebo response?” An affirmative answer to this
question opens the door for regulatory submission and review;
if answered in the negative, then no such submission and review
are possible. As such, obtaining the best answer to this question
is very important to the sponsor and ultimately the patients who
are waiting for new treatments. Lastly, sponsors must make the
decision about seeking approval for a new treatment based on
the treatment effect and its clinical utility. Even treatments that
are shown to be highly likely to work (i.e., be different from
placebo) based on rigorous clinical trials may not be worth
the cost or adverse effects of the treatment in the context of
clinical practice. Here again, the Bayesian paradigm can give
quantitative probabilities related to a range of effect sizes as a
natural interpretation of the posterior distribution of effect size
(Table 3).

4, Regulatory Perspective

The acceptability of Bayesian approaches within the FDA dif-
fers across and within the various Centers. The Center for
Devices and Radiologic Health (CDRH) has issued a formal
guidance document (US Food and Drug Administration 2010)
on the topic and has encouraged and engaged in numerous
submissions of new products using a Bayesian approach as the
definitive analysis to support decision making. The Center for
Biologics Evaluation and Research (CBER) cosigned the CDRH
guidance, and submissions using the Bayesian approach as the
primary analysis have occurred and been accepted. CDRH reg-
ulates devices, and a strong argument can be made for accepting
Bayesian approaches in that setting. If a device is approved for
use, for example, then subsequent versions of that device involv-
ing engineering changes or software changes can rely heavily
on the fact that the previous device worked as it was purported
to do. Borrowing data/information from previous versions of a
device for approval of subsequent versions of the same device is
both scientifically sound and legal under the governing Federal
statute and regulations (FDA 2018b), which differ somewhat
from the statutes governing approval of new drugs. The use of
Bayesian approaches is also used within CBER, which regulates
vaccines. Approval of new vaccines may rely on well-established
clinical data and repeatable manufacturing processes created
from previous vaccine approvals. In fact, one might consider
ignoring prior evidence when evaluating minor changes in a
product—but still requiring approval—as unethical. This is not
to say that Bayesian methods are used exclusively within these
Centers; when novel devices or biologics are developed and
submitted to FDA for approval, more traditional frequentist
methods are often utilized.

The Center for Drug Evaluation and Research (CDER) has,
to date, issued no guidance on Bayesian approaches, and rarely



employs Bayesian inference as the definitive basis for concluding
whether a drug has a positive treatment effect or not. In CDER,
new therapeutic treatments for a wide variety of diseases are
reviewed. Some of these treatments have biological mechanisms
that are similar to others as multiple sponsors develop treat-
ments based on their common knowledge of disease pathology.
Other treatments have novel biological mechanisms of action
as scientific discovery unveils new insights into disease pro-
cesses. How or when to use prior information in this setting is
less obvious, and decision-making criteria are more complex.
Consequently, the application of Bayesian approaches has been
controversial.

Space does not permit a full elaboration of specific possi-
ble uses of Bayesian approaches in clinical drug development,
but we acknowledge some areas where such approaches have
emerged or are emerging.

o FDA has recognized the utility of Bayesian approaches in
earlier phases of clinical drug development, the results of
which are not directly involved in regulatory approval as with
Phase 3 trials.

o FDA has researched possible application in areas such as
noninferiority trials (Gamalo et al. 2014). Noninferiority
trials seek to confirm that an experimental treatment is
no worse than an approved control treatment. The use
of Bayesian approaches in noninferiority trials seems
quite natural because the comparison of an experimental
treatment versus an active control requires synthesizing data
from historical trials of the active control agent. The final
FDA Guidance on noninferiority trials acknowledges the
potential utility of a Bayesian approach in this setting (US
Food and Drug Administration 2016).

«+ Bayesian methods for adaptive trials are of interest in some
regulatory settings. The PREVAIL trial in Ebola provides
one such example (Dodd et al. 2016; Proschan, Dodd and
Price 2016). Furthermore, Bayesian trial designs are refer-
enced in the recently released draft guidance from CDER
on adaptive clinical trial designs, possibly opening the door
to such methods in confirmatory trials (US Food and Drug
Administration 2018a).

o The use of Bayesian approaches in pediatric trials using adult
data as a source of prior information is a logical opportunity
(Goodman and Sladky 2005; Greenhouse and Seltman 2005).
However, children are not merely smaller adults. When cre-
ating prior distributions of effect, one must consider not
only dose adjustments due to smaller body mass, but also
how children may differ in their absorption, metabolism and
excretion of a treatment.

« Using historical data on the natural progression of rare dis-
eases as a source of prior information can be quite helpful
since it is often difficult to recruit patients or even find
sufficient numbers of patients to participate in trials of rare
diseases.

Interest in Bayesian methods to inform regulatory decision
making has been increasing in recent years, particularly when
relevant prior data sources are available or the acquisition of new
data carries difficulties, as in the situations mentioned above.
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5. Discussion

The use of hypothesis testing and subsequent reliance on p-
values for determining the success of a clinical trial has been
engrained in the drug development and approval process for
50 years. Arguments in favor of this approach include having
an objective, albeit arbitrary, criteria that create a level playing
field for all sponsors seeking regulatory approval for marketing
of their products. This well-worn path has created a cross-
industry consistency that does streamline discussions between
sponsors and regulators since it obviates the need for more
complex and detailed conversations about definition of priors
and a suitable posterior probability that the treatment works
required for approval. Furthermore, time has taught us that the
vast majority of treatments approved by FDA and other regula-
tory agencies around the world are effective. Indeed, the reason
for withdrawal of treatments from the market are most often
due to adverse events that emerge only after many thousands
or even millions of patients take a new treatment. Thus, some
regulators have argued that the system and inferential approach
based on the frequentist paradigm has served our society well
and supplanting it with a new paradigm should only be done
with caution and careful study.

Such perspectives give less weight to the cost and time it
takes to conduct Phase 3 trials that are treated as separate
and independent entities. In an era where drug development
is enormously expensive and takes many years, why would our
research community throw out the body of knowledge about an
experimental treatment and act as if Phase 3 trials are isolated
entities unto themselves? If our society truly understood this
process, would they not consider it puzzling and perhaps even
wasteful? Furthermore, statisticians and others have acknowl-
edged for decades that a p-value is not a measure of treatment
effect since a large enough sample size can produce statistically
significant results for arbitrarily small differences between an
experimental treatment and a control. The advantage of the
Bayesian approach is that it makes probability statements about
the quantity of greatest interest to all members of society—
the probability associated with any magnitude of the treatment
effect, whether that magnitude be a difference from placebo or
any agreed medically meaningful effect.

However, one needs to consider the operating characteristics
of any paradigm in terms of producing not only Type 1, but also
Type 2 errors—nonapproval of treatments that are indeed useful
for patients—the latter being rarely a consideration in present
day regulatory reviews. Balancing Type 1 and Type 2 errors
presents a difficult challenge for the regulatory decision-making
process. Perhaps our society would benefit from a more rigorous
and formal use of a practical metric of public health value or a
utility function. The utility function is the bridge between “what
do I believe about the treatment effect” (expressed as a probabil-
ity statement about the size of the treatment effect) and “what is
the optimal decision” balancing the probability and cost of Type
1 and Type 2 errors (Miiller et al. 2017; Ventz and Trippa 2015).
From a regulatory approval perspective, such a utility function
basis for approval decisions may be based on the societal cost
of false-positive and false-negative decisions. Furthermore, it is
logically dependent on the severity and burden of the disease on
individual outcomes, the safety risks that patients are willing to
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take, and the overall social impact of the disease state. From a
payer perspective (individual, insurance company or any other
form of coverage), cost implications play a role as well. The
probabilistic framework inherent in the Bayesian paradigm is
well suited for such quantitative evaluations.

In our example, there were no Phase 2 studies of the experi-
mental treatment that could have provided an informative prior
for Phase 3 because the Sponsor chose not to do such studies
influenced by cost and time considerations. This scenario is
not uncommon in drug development. A sponsor may have
approval for their treatment in one disease state, and for a second
related disease state, the sponsor wants to proceed directly to
Phase 3. Another situation is when a sponsor may be trailing a
competitor in the race to the market and may assume the risk
of selecting doses for Phase 3 without the benefit of Phase 2
trials to inform that selection. In such cases, sponsors routinely
look to other treatments with the same mechanism of action for
insights into the magnitude of the possible efficacy of the new
treatment. The value of the Bayesian approach is to quantify
explicitly how such information should be incorporated into a
prior distribution. In doing so, we are not considering that the
new treatment has the same efficacy as another treatment, but
rather use the results on the other treatment as a starting point
for borrowing the appropriate level of information from which
we evaluate the current experimental treatment.

Some argue that there are subjective elements to the
Bayesian approach, but that is one of the distinguishing positive
features—it requires stating subjective assumptions clearly
and quantifying them. Also, we should not be blind to the
fact that there are assumptions and subjective choices related
with frequentist methods as well (e.g., normal distribution,
homoscedasticity, model selection, inclusion of covariates in a
model as well as the arbitrary p-value itself). For those involved
in clinical drug development, there is awareness of the many
subjective decisions and agreements that are made with FDA
or other global regulatory agencies through the numerous
meetings and correspondences that happen over many years
of development of an experimental treatment.

We present a practical approach that could be undertaken
within the existing sponsor-regulatory interaction framework.
Discussions and decisions about use of Phase 2 data, borrowing
factors and external information from the evolving field of
science or medicine could be thoughtfully reviewed and agreed
before the initiation of a Phase 3 trial. Specifically, sponsors
could propose which clinical trials of the experimental treat-
ment or of treatments from other sponsors or even government
research that may be included in a meta-analysis in order to
develop a prior distributions of treatment response. The details
of such meta-analysis, including statistical models and assump-
tions, could be agreed jointly by the sponsor and regulators.
Based on the design of the Phase 3 trial (patient population,
doses, duration, etc.), the similarity to previous trials could be
evaluated and appropriate borrowing factors could be agreed
upon for each treatment in the Phase 3 trial. Nonclinical data—
from the sponsor, other pharmaceutical companies or the aca-
demic community—generated about the mechanism of action
of the new drug, genetic factors or other molecular biology
knowledge could be used to strengthen or weaken such bor-
rowing factors. A different borrowing factor could be applied

for placebo, active control treatment and the experimental treat-
ment based on the strength of evidence for each. In this way, just
as in current practice, statistical design and analysis method-
ologies for Phase 3 trials would be prespecified and levels of
evidence agreed upon by all parties involved. Furthermore,
prespecified sensitivity analyses using various priors, defined
by the borrowing factor ¢, could help evaluate the robustness
of any conclusions. Thus, the current paradigm using Phases
of drug development needs little overhaul, and the existing
framework for regulatory interactions could remain the same,
but the statistical content of such meetings would shift from
frequentist to Bayesian approaches. There would be no major
disruptions to existing practice, laws or regulations—merely a
change in thinking, which, to date, has proven to be the most
difficult of all.

Frequentist-based inference has dominated clinical trial
design, conduct, analysis, and reporting since the advent
of modern clinical trials in the 1940s. This paradigm has
served a very useful role in bringing rigor to the evaluation
of experimental treatments. Bayesian approaches offer the next
generation of inferential thinking for decision making based
on the probability of an effect size that synthesizes the most
relevant available evidence and is calibrated by the severity of
the disease state and the burden of disease on individual patients
and on society as a whole. Thanks to breakthroughs in efficient
computing algorithms, faster computers and more accessible
software tools, Bayesian computations are now tractable (Lee
and Chu 2012). The use of Bayesian approaches by the statistical
and medical communities in the biopharmaceutical industry,
medical product regulatory agencies and academia are only
constrained by our history and our comfort in operating the way
we have always done so. The conversion to a Bayesian paradigm
is possible through meaningful dialog amongst industry and
regulatory scientists within the current legal and regulatory
framework of the FDA and other global regulatory agencies. We
hope this article has helped to highlight the value of a Bayesian
approach as well as the practical steps on a path forward.
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