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ABSTRACT
Using a suitable stochastic version of the compactness argument of [Zhikov
VV. On an extension of the method of two-scale convergence and its
applications. Sb Math. 2000;191(7–8):973–1014], we develop a probabilis-
tic framework for the analysis of heterogeneous media with high contrast.
We show that an appropriately defined multiscale limit of the field in the
original medium satisfies a system of equations corresponding to the cou-
pled ‘macroscopic’ and ‘microscopic’ components of the field, giving rise to
an analogue of the ‘Zhikov function’, which represents the effective disper-
sion of the medium. We demonstrate that, under some lenient conditions
within the new framework, the spectra of the original problems converge
to the spectrum of their homogenisation limit.
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1. Introduction

Asymptotic analysis of differential equations with rapidly oscillating coefficients has featured
prominently among the interests of the applied analysis community during the last half a century.
The problem of understanding and quantifying the overall behaviour of heterogeneous media has
emerged as a natural step within the general progress of material science, wave propagation and
mathematical physics. In this period several frameworks have been developed for the analysis of
families of differential operators, functionals and random processes describing multiscale media, all
of which have benefitted from the invariably deep insight and mathematical elegance of the work of
V.V. Zhikov. In the present paper, we touchupon two subjects inwhich his contributions have inspired
generations of followers: the stochastic approach to homogenisation, in particular through his col-
laboration with S. M. Kozlov during the 1980s, and the analysis of differential operators describing
periodic composites with high contrast, which started with his fundamental contribution [1].

Our present interest in the context of stochastic homogenisation of high-contrast composites
stems from the relationships that have recently been indicated between media with negative mate-
rial properties (‘metamaterials’), and more generally time-dispersive media, and ‘degenerate’ families
of differential operators, where e.g. loss of uniform ellipticity of the symbol is known to lead to non-
classical dispersion relations in the limit of vanishing ratio ε of the microscopic (l) and macroscopic
(L) lengths: ε = l/L → 0. The work [1] has provided an example, in the periodic context, of what one
should expect in the limit as ε → 0 in terms of the two-scale structure of the solution as well as the
spectrum of the related differential operator, in the case when the metamaterial is modelled by dis-
joint ‘soft’ inclusions with low, orderO(ε2) values of the material parameters (say, elastic constants in
the context of linearised elasticity), embedded in a connected ‘stiff’ material with material constants
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of order O(1). In mathematical terms, the coefficients of the corresponding differential expression
alternate between values of different orders in ε, where the contrast increases as ε gets smaller.

In the present article, we introduce a stochastic framework for the analysis of homogenisation
problems with soft inclusions and explore the question on what version of the results of [1] can be
achieved in this new framework. In particular, we are interested in the equations that describe the
stochastic two-scale limit, in an appropriate sense, of the sequence of solutions to the probabilistic
version of a Dirichlet problem in a bounded domain of Rn. Furthermore, we show that the spectra
of such problems converge, in the Hausdorff sense, to the spectrum of the limit problem, which we
analyse in a setting that models distributions of soft inclusions whose shapes are taken from a certain
finite set and whose sizes vary over an interval. To our knowledge, the present manuscript is the
first work containing an analysis of random heterogeneous media with high contrast that results in
a ‘complete’ Hausdorff-type convergence statement for the spectra of the corresponding differential
operators. Various aspects of multiscale analysis of high-contrast media in the stochastic context have
been looked at in a handful of papers, e.g. [2–4].

While in the periodic context norm-resolvent convergence results been obtained for high-contrast
media, see [5,6], the stochastic case remains open to developments of a similar nature. It is antici-
pated that the operator-theoretic approach to problems of the kind we discuss in the present article
will provide a general description of the types of spectral behaviour that can occur in the real-world
applications where it is difficult to enforce periodicity of the microstructure. On the other hand, as
we show in the present work, new wave phenomena should be expected in the stochastic setting
(e.g. a non-trivial continuous component of the spectral measure of the homogenised operator for a
bounded-domain problem), which makes the related future developments even more exciting.

Next, we outline the structure of the paper. In Section 2 we recall the notion of stochastic two-
scale convergence, which we use, in Sections 3 and 4, to pass to the limit, as ε → 0, in a family of
homogenisation problems with random soft inclusions. In Section 3 we give a formulation of the
high-contrast problem we study and provide some auxiliary statements. In Section 4 we describe
the limit problem and prove the strong resolvent convergence of the ε-dependent family to the limit
system of equations. In Section 5 we provide a link between the spectra of the Laplacian operator
on realisations of the inclusions and of the corresponding stochastic Laplacian. In Section 6 we prove
that sequences of normalised eigenfunctions of the ε-dependent problems are compact in the sense of
strong stochastic two-scale convergence. Finally, in Section 7 we discuss two examples of the general
stochastic setting and describe the structure of the corresponding limit spectrum.

In conclusion of this section, we introduce some notation used throughout the paper. For a Banach
space X and its dual X∗, we denote by X〈·, ·〉X∗ the corresponding duality. For a Hilbert space H the
inner product of a, b ∈ H is also denoted by 〈a, b〉H and, if H = Rn, by a · b. For a set O we denote
by χO its characteristic function, which takes value one on the setO and zero on the complement to
O in the appropriate ambient space. For D ⊆ Rn we denote by D its closure and by |D| its Lebesgue
measure. Further, we use the notation Br(0) for the ball in Rn of radius r with the centre at the origin;
Y denotes the cube [0, 1)n with torus topology, where the opposite faces are identified; and Nl

0 :=
{0, . . . , l}. For an operator A on some Hilbert space, we denote by SpA its spectrum. Finally, for a
Lipschitz open set D ⊂ Rn, we denote by −�D the (positive) Laplace operator with the Dirichlet
boundary condition on ∂D. For x ∈ Rn, we denote by [x] the element of Zn which satisfies [x] ≤ x <
[x] + (1, . . . , 1). For k = 1, . . . , n, by ek we denote the kth coordinate vectors.

2. Stochastic two-scale convergence

2.1. Probability framework

Let (�,F ,P) be a complete probability space.We assume thatF is countably generated, which implies
that the spaces Lp(�), p ∈ [1,∞), are separable. For a function u ∈ L1(�), we will sometimes write
〈u〉 for ´

�
u.
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Definition 2.1: A family (Tx)x∈Rn of measurable bijective mappings Tx : � → � on a probability
space (�,F ,P) is called a dynamical system on� with respect to P if:

(a) Tx ◦ Ty = Tx+y ∀ x, y ∈ Rn;
(b) P(TxF) = P(F) ∀ x ∈ Rn, F ∈ F ;
(c) T : Rn ×� → �, (x,ω) → Tx(ω) is measurable (for the standard σ -algebra on the product

space, where on Rn we take the Lebesgue σ -algebra).

We next define the notion of ergodicity for dynamical systems introduced above.

Definition 2.2: A dynamical system is called ergodic if one of the following equivalent conditions is
fulfilled:

(a) f measurable, f (ω) = f (Txω) ∀ x ∈ Rn, a.e.ω ∈ � =⇒ f (ω) is constant P − a.e.ω ∈ �.
(b) P((TxB ∪ B)\(TxB ∩ B)) = 0 ∀ x ∈ Rn =⇒ P(B) ∈ {0, 1}.

Henceforth we assume that the dynamical system Tx is ergodic.

Remark 2.1: Note that for the condition (b) the implication P(B) ∈ {0, 1} has to hold, if the symmet-
ric difference between TxB and B is a null set. It can be shown (see, e.g. [7]) that ergodicity is also
equivalent to an a priori weaker implication

TxB = B ∀ x ∈ Rn =⇒ P(B) ∈ {0, 1}.

For f ∈ Lp(�), we write f (x,ω) := f (Txω), defining the realisation f ∈ Lploc(R
n, Lp(�)). There is

a natural unitary action on L2(�) associated with Tx :

U(x)f = f ◦ Tx, f ∈ L2(�). (1)

It can be shown that the conditions of Definition 2.1 imply that this is a strongly continuous group
(see [8]). It is often necessary that the set of full measure be invariant in the sense that together with
the point ω it contains the whole ‘trajectory’ {Txω, x ∈ Rm}. This requirement can always be met on
the basis of the following simple lemma (see [8, Lemma 7.1]).

Lemma 2.1: Let �0 be a set of full measure in �. Then there exists a set of full measure �1 such that
�1 ⊆ �0, and for a given ω ∈ �1 we have Txω ∈ �0 for almost all x ∈ Rm.

For each j = 1, 2, . . . n, we define the infinitesimal generator Dj of the unitary group {U(x)}x∈Rn

by the formula

Djf (ω) = lim
xj→0

f (Txjω)− f (ω)
xj

, f ∈ L2(�), (2)

where the limit is taken in L2(�). Notice that iDj, j = 1, . . . , n, are commuting, self-adjoint, closed
and densely defined linear operators on the separable Hilbert space L2(�). The domain Dj(�) of
such an operator is given by the set of L2(�)-functions for which the limit (2) exists. We consider the
set

W1,2(�) :=
n⋂
j=1

Dj(�) (3)

and similarly

Wk,2(�) := {f ∈ L2(�) : Dα11 . . .Dαnn f ∈ L2(�), α1 + · · · + αn = k},
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W∞,2(�) :=
⋂
k∈N

Wk,2(�).

It is shown by the standard semigroup property thatW∞,2(�) is dense in L2(�). We also define the
space

C∞(�) := {f ∈ W∞,2(�) : ∀(α1, . . . ,αn) ∈ Nn
0 D

α1
1 . . .Dαnn f ∈ L∞(�)}.

By the smoothening procedure discussed in [8, p.232] (see also the text before Lemma 3.1 below), it
is shown that C∞(�) is dense in Lp(�) for all p ∈ [1,∞) as well as inWk,2(�) for all k. Furthermore,
it is shown thatW1,2(�) is separable. Notice that, due to the infinitesimal generator being closed,Djf
can be equivalently defined as the function that satisfies the property

ˆ
�

Djf g = −
ˆ
�

f Djg ∀ g ∈ C∞(�). (4)

If f ∈ W1,2(�), we may also define Djf (x,ω) := Djf (Txω) for all x ∈ Rn. It can be shown that the
following identity holds (see [9]):

W1,2(�) = {f ∈ W1,2
loc(R

n, L2(�)) : f (x + y,ω) = f (x,Tyω) ∀ x, y, a.e.ω}
= {f ∈ C1(Rn, L2(�)) : f (x + y,ω) = f (x,Tyω) ∀ x, y, a.e.ω}.

(5)

Moreover, for a.e. ω ∈ � the function Dif (·,ω) is the distributional derivative of f (·,ω) : a proof of
this fact can be found in [9, Lemma A.7].

Following [10], we denote by ‖ · ‖#,k,2 the seminorm on C∞(�) given by

‖u‖2#,k,2 =
∑

α∈Nn, |α|=k

‖Dαu‖2L2(�).

ByWk,2(�)we denote the completion of C∞(�)with respect to the seminorm ‖ · ‖#,k,2. The gradient
operator ∇ω := (D1, . . . ,Dn) and the operator div ω := ∇ω· are extended uniquely by continuity to
mappings from W1,2(�) to L2(�,Rn) and from W1,2(�,Rn) to L2(�), respectively. Finally, by a
density argument, it is easily seen that W1,2(�) is also the completion of W1,2(�) with respect to
‖ · ‖#,1,2.

2.2. Definition and basic properties

The key property of ergodic systems is the following theorem, due to Birkhoff (for a more general
approach, see [11]).

Theorem 2.1 (‘Ergodic Theorem’): Let (�,F ,P) be a probability space with an ergodic dynamical
system (Tx)x∈Rn on �. Let f ∈ L1(�), and let B ⊂ Rn be a bounded open set. Then for P-a.e. ω ∈ �
one has

lim
ε→0

ˆ
B
f (Tx/εω) dx = |B|

ˆ
�

f (ω) dP(ω). (6)

Furthermore, for all f ∈ Lp(�), 1 ≤ p ≤ ∞, and a.e. ω ∈ �, the function f (x,ω) = f (Txω) satisfies
f (·,ω) ∈ Lploc(R

n). For p < ∞ one has f (·/ε,ω) = f (T·/εω) ⇀
´
�
f dP weakly in Lploc(R

n) as ε → 0.

The elements ω such that (6) holds for every f ∈ L1(�) and bounded open B ⊂ Rn are refereed
to as typical elements, while the corresponding sets (Txω)x∈RN are called typical trajectories. Note
that the separability of L1(�) implies that almost every ω ∈ � is typical, and in what follows we only
work with such ω.
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For vector spaces V1,V2, we denote by by V1 ⊗ V2 their usual tensor product. We define the fol-
lowing notion of stochastic two-scale convergence, which is a slight variation of the definition given
in [12]. In [13], the authors average over the probability space and do not use the Birkhoff Ergodic
Theorem. As a consequence, they do not obtain convergence almost everywhere but only in mean,
which results in a weaker notion of stochastic two-scale convergence than the one introduced in [12].
In the context of calculus of variations, the first results are obtained in [14,15]. The authors of these
papers do not use stochastic two-scale convergence at all, as this was introduced later on, but rely on
a formula for non-periodic homogenisation for a.e.ω∈� as well as on the ergodic theorem.We shall
stay in the Hilbert setting (p= 2), as it suffices for our analysis. Finally, we denote by S a bounded
open LIpschitz set in Rn.

Definition 2.3: Let (Txω)x∈Rn be a typical trajectory and (uε) a bounded sequence in L2(S). We say

that (uε) weakly stochastically two-scale converges to u ∈ L2(S ×�) and write uε
2−⇀ u, if

lim
ε↓0

ˆ
S
uε(x)g(x,Tx/εω) dx =

ˆ
�

ˆ
S
u(x,ω)g(x,ω) dx dP(ω) ∀ g ∈ C∞

0 (S)⊗ C∞(�). (7)

If additionally ‖uε‖L2(S) → ‖u‖L2(S×�), we say that (uε) strongly stochastically two-scale con-

verges to u and write uε 2−→ u.

Remark 2.2: The convergence of (uε) is defined along a fixed typical trajectory and a priori the limit
depends on this trajectory. In applications, such as the analysis of the PDE family in Section 4, it often
turns out that the limit does not depend on the trajectory chosen. For this reason, and to simplify
notation, in what follows we often do not indicate this dependence explicitly.

Note also that, by density, the set of admissible test functions g in (7) can be extended to L2(S)⊗
L2(�).

In the next proposition, we collect the properties of stochastic two-scale convergence that we use
in the present work.

Proposition 2.1: The following properties of stochastic two-scale convergence hold.

(a) Let (uε) be a bounded sequence in L2(S). Then there exists a subsequence (not relabelled) and

u ∈ L2(S ×�) such that uε
2−⇀ u.

(b) If uε
2−⇀ u then ‖u‖L2(S×�) ≤ lim infε→0 ‖uε‖L2(S).

(c) If (uε) ⊆ L2(S) is a bounded sequence with uε → u in L2(S) for some u ∈ L2(S), then uε 2−→ u.
(d) If (vε) ⊆ L∞(S) is uniformly bounded and vε → v strongly in L1(S) for some v ∈ L∞(S), and (uε)

is bounded in L2(S) with uε
2−⇀ u for some u ∈ L2(S ×�), then vεuε

2−⇀ vu.
(e) Let (uε) be a bounded sequence in W1,2(S). Then on a subsequence (not relabelled) uε ⇀ u0 in

W1,2(S), and there exists u1 ∈ L2(S,W1,2(�)) such that

∇uε
2−⇀ ∇u0 + ∇ωu1(·,ω).

(f) Let (uε) be a bounded sequence in L2(S) such that ε∇uε is bounded in L2(S,Rn). Then there exists
u ∈ L2(S,W1,2(�)) such that on a subsequence

uε
2−⇀ u, ε∇uε

2−⇀ ∇ωu(·,ω). (8)
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Proof: In view of analogies with the periodic case, we just give a sketch of the proof. A proof of (a)
can be found in [12, Lemma 5.1]. For the proof of (b), we take an arbitrary g ∈ C∞

0 (S)⊗ C∞(�) and
calculate

lim inf
ε→0

ˆ
S
|uε(x)− g(x,Tx/εω)|2 dx = lim inf

ε→0

(ˆ
|uε(x)|2 dx

− 2
ˆ
S
uε(x)g(x,Tx/εω) dx +

ˆ
S
|g(x,Tx/εω)|2 dx

)
= lim inf

ε→0

(ˆ
|uε(x)|2 dx − 2

ˆ
S×�

u(x,ω)g(x,ω) dx dP(ω)+
ˆ
S×�

|g(x,ω)|2 dx dP(ω)
)
.

We obtain the claim by approximating u ∈ L2(S ×�) with functions g ∈ C∞
0 (S)⊗ C∞(�). The

proof of (c), (d) is straightforward. The proof of (e) goes in the same way as in the periodic case,
by the duality argument.

First, one proves that if f ∈ L2(�,Rn) is such thatˆ
�

f · g = 0 ∀ g ∈ {g ∈ C∞(�,Rn) : divω g = 0},

then there exists ψ ∈ W1,2(�) such that f = ∇ωψ . One then proceeds in the same way as in the

periodic case (see [16]). In order to show the claim (f), take the subsequence such that uε
2−⇀ u, where

u ∈ L2(S ×�) and ε∇uε
2−⇀ z, where z ∈ L2(S ×�,Rn). We choose the test functions of the form

ϕε(x) = a(x)b(Tx/εω), where a ∈ C∞
0 (S) and b ∈ C∞(�), and using integration by partswe conclude

lim
ε→0

ˆ
S
ε∇uε(x)ϕε(x) = −

ˆ
S

ˆ
�

u(x,ω)a(x)∇ωb(ω) dx dP(ω) =
ˆ
S

ˆ
�

z(x)a(x)b(ω) dx dP(ω),

from which the claim follows by a density argument, in view of the property (4). �

3. Problem formulation and auxiliary statements

Let S ⊆ Rn be a bounded open Lipschitz set. We take O ⊆ � such that 0 < P(O) < 1 and for each
ω ∈ � consider its ‘realisation’

Oω = {x ∈ Rn : Txω ∈ O}.
We assume that the following conditions are satisfied.

Assumption 3.1: For a.e. ω ∈ � one has

Oω :=
∞⋃
k=1

Ok
ω, (9)

where:

(1) Ok
ω, k ∈ N, are open connected sets with Lipschitz boundary;

(2) One hasOω = ∪∞
k=1Ok

ω;
(3) There exist c1, c2 > 0 such that c1 ≤ diamOk

ω ≤ c2 ∀ k ∈ N;
(4) There exists a sequence of disjoint bounded domains Bkω such thatOk

ω ⊆ Bkω, k ∈ N, andCω > 0
such that for all k ∈ N the following extension property holds: for all u ∈ W1,2(Bkω\Ok

ω) there
exists ũ ∈ W1,2(Bkω) satisfying

ũ = u on Bkω\Ok
ω,
ˆ
Bkω

|∇ũ|2 ≤ Cω
ˆ
Bkω\Ok

ω

|∇u|2, �ũ = 0 on Ok
ω.



APPLICABLE ANALYSIS 97

It is easily seen that Assumption 3.1 holds for the examples given in Section 7.1. Denote by
 the
set of typical elements ω ∈ � satisfying the conditions listed in Assumption 3.1, and for all ω ∈ 
,
ε > 0 define Sε0(ω) as the union of all components εOk

ω that are subsets of S and stay sufficiently far
from its boundary, in the sense that there exists C = C(ω) > 0 such that

Sε0(ω) :=
⋃
k∈Kεω

εOk
ω, Kεω := {k ∈ N : εOk

ω ⊆ S, dist(εOk
ω, ∂S) > Cε}. (10)

Wedenote the complement of the set Sε0(ω) by S
ε
1(ω) := S \ Sε0(ω) and the corresponding set indicator

functions by χε0 (ω) and χ
ε
1 (ω).

For each ω ∈ 
, we consider the following Dirichlet problem in S: for λ < 0 and f ε ∈ L2(S), find
uε ∈ W1,2

0 (S) such that
ˆ
S
Aε(·,ω)∇uε · ∇v − λ

ˆ
S
uε · v =

ˆ
S
f εv ∀ v ∈ W1,2

0 (S), (11)

where

Aε(·,ω) = χε1 (ω)A1 + ε2χε0 (ω)I, ω ∈ 
,
with a symmetric and positive-definite matrix A1.

For allω ∈ 
we also define theDirichlet operatorAε(ω) inL2(S) corresponding to the differential
expression −divAε(·,ω)∇u, e.g. by considering the bilinear form

ˆ
S
Aε(·,ω)∇u · ∇v, u, v ∈ W1,2

0 (S).

It is well known that the spectrum of Aε(ω) is discrete. The following subspace of W1,2(�) will
play an essential role in our analysis:

W1,2
0 (O) = {v ∈ W1,2(�) : v(Txω) = 0 onRn\Oω ∀ ω ∈ 
}.

Notice that as a consequence of Ergodic Theorem (Theorem 2.1) one has

W1,2
0 (O) = {v ∈ W1,2(�) : χOv = v},

i.e. W1,2
0 (O) consists of W1,2-functions that vanish on �\O. Henceforth we assume that ω ∈ 


without mentioning it explicitly.
The next two lemmas use a standard smoothening (or ‘mollification’) procedure, which we now

describe.We take g ∈ L2(�) and (cf. [8, p.232]) choose a nonnegative even functionρ ∈ C∞
0 (R

n)with´
Rn ρ = 1, supp ρ ⊂ B1(0) and write ρδ(x) = δ−nρ(x/δ) for all δ > 0. For each δ > 0, we define the
mollificationRδ[g] of g by

Rδ[g](ω) =
ˆ
Rn
ρδ(y)g(Tyω) dy,=

ˆ
Rn
ρδ(y)g(T−yω) dy, ω ∈ �.

Notice that

Rδ[g](Txω) =
ˆ
Rn
ρδ(y)g(Tx−yω) dy =

ˆ
Rn
ρδ(x − y)g(Tyω) dy =

ˆ
Rn
ρδ(y − x)g(Tyω) dy, (12)

from which we infer that

DjRδ[g](ω) = −
ˆ
Rn
∂jρδ(y)g(Tyω) dy, ω ∈ �, j = 1, 2, . . . , n.
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Arguing by induction, we show that Rδ[g] ∈ W∞,2(�), and if g ∈ L∞(�) then Rδ[g] ∈ C∞(�).
Before we state and prove the lemmas, we introduce additional notation. We define the space

C∞
0 (O) := {v ∈ C∞(�) : v = 0 on�\O},

as well as the sets

Dk,m
ω :=

{
x ∈ Ok

ω : dist(x, ∂Ok
ω) >

1
m

}
, k,m ∈ N.

Also, for allm ∈ N we define the set

Bm := {ω ∈ � : 0 ∈ Dk,m
ω for some k ∈ N} ⊂ �.

By using the density of Qn in Rn it can be seen that for all m ∈ N the set Bm is measurable. Notice
that for each fixed ω, k,m, wherem is large enough, there exist constants C1,C2 > 0 such that

C1

m
|Ok

ω| ≤ |�k
ω\Dk,m

ω | ≤ C2

m
|Ok

ω|. (13)

In the next lemma we assume that a relaxed version of the right inequality in (13) holds uniformly in
ω.

Lemma 3.1: Suppose that for a.e. ω ∈ � there exists a sequence of positive values Cm converging to
zero, such that

|Ok
ω\Dk,m

ω | ≤ Cm|Ok
ω| ∀ k ∈ N.

Then the set C∞
0 (O) is dense in L2(O).

Proof: Using Ergodic Theorem and the assumption of the lemma, it can be shown that P(O\Bm) →
0 asm → ∞. To prove the density, it suffices to approximate g := χBmf , where f ∈ L∞(O) by a func-
tion from C∞

0 (O), for which we use the above mollification procedure. Notice that for δ > 0 small
enough, one hasRδ[g] ∈ C∞

0 (O). It remains to checkRδ[g] → g as δ → 0, but this follows from the
strong continuity of the group U(x), see (1):

‖g − Rδ[g]‖L2(�) ≤
ˆ
Rn
ρδ(y)‖U(y)g − g‖L2(�) dy → 0,

as required. �

Notice that, by the standard Poincaré inequality, for each Dk,m
ω there exists C> 0 such that

ˆ
Ok
ω\Dk,m

ω

u2 dx ≤ C|Ok
ω\Dk,m

ω |2
ˆ
Ok
ω\Dk,m

ω

|∇u|2 dx ∀ u ∈ W1,2
0 (Ok

ω). (14)

In the following lemma we impose this condition uniformly.

Lemma 3.2: Assume that for a.e. ω ∈ � there exists a constant C> 0 such that

|Ok
ω\Dk,m

ω | ≤ C
m

|Ok
ω| ∀ k,m, (15)

and that (14) is satisfied for all k and large enough m. Then the set C∞
0 (O) is dense in W1,2

0 (O).
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Proof: We take f ∈ W1,2
0 (O) and define fM := χ|f |≤Mf + χ|f |≥MM. Notice that as a consequence

of (5), fM ∈ W1,2
0 (O) and DjfM = χ|f |<MDjf . It is easily seen that fM → f in W1,2(�) as M →

∞. Thus we can assume, without loss of generality, that f ∈ L∞(�) ∩ W1,2
0 (O). We define hm =

R1/2m[χBmf ]. It can be seen from the proof of Lemma 3.1 that hm → f in L2(O) asm → ∞. Notice
that for a.e. ω ∈ B�2m/3� we have, for i = 1, . . . , n,

Djhm(ω) = R1/2m[Dif ](ω) =
ˆ
Rn
ρ1/2m(y)Djf (Tyω) dy,

and therefore

‖Djhm − Djf ‖L2(B�2m/3�) ≤ ‖R1/2m[Dif ] − Djf ‖L2(�) → 0.

Notice also that for a.e. ω ∈ � there exist C1,C2 > 0 such that for all k,m ∈ N, where m is
sufficiently large, we have

‖∂jhm(·,ω)‖2L2(Ok
ω\Dk,�2m/3�

ω )
≤ C1m2‖f ‖2

L2(Ok
ω\Dk,�m/2�

ω )
≤ C2‖f ‖2W1,2(Ok

ω\Dk,�m/2�
ω )

,

where we have used (12), (14), (15) and Young’s inequality. Using the Ergodic Theorem we conclude
that there exists C> 0 such that

‖Djhm‖2L2(O\B�2m/3�) ≤ C‖f ‖2W1,2(O\B�m/2�),

from which the claim follows. �

4. Limit equations and two-scale resolvent convergence

We define the quadratic form

Ahom
1 ξ · ξ := inf

ϕ∈W1,2(�)

ˆ
�\O

A1(ξ + ∇ωϕ) · (ξ + ∇ωϕ), ξ ∈ Rn,

and denote byDW1,2(�\O) the completion of

DW1,2(�) := {∇ωϕ : ϕ ∈ W1,2(�)
}

with respect to the seminorm ‖∇ωϕ‖L2(�\O), ϕ ∈ W1,2(�). The proof of the following lemma is
straightforward.

Lemma 4.1: For each ξ ∈ Rn there exists pξ ∈ DW1,2(�\O) such that

Ahom
1 ξ · ξ =

ˆ
�\O

A1(ξ + pξ ) · (ξ + pξ ),

or, equivalently,
ˆ
�\O

A1(ξ + pξ ) · ∇ωϕ = 0 ∀ϕ ∈ C∞(�). (16)

In particular, one has Ahom
1 ≤ A1.
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Remark 4.1: It follows from the observations in [12, p.265–266] that if the following extension prop-
erty is satisfied for a.e. ω ∈ �: for all u ∈ C∞

0 (B1(0)) there exists ε
0
ω > 0 and a sequence of functions

(̃uε) such that

ũε = u in B1(0)

∖⋃
k∈N

εOk
ω for ε ≤ ε0ω,

ˆ
B2(0)

|∇ũε| ≤ Cω
ˆ
B1(0)\⋃k∈N εOk

ω

|∇u|2,

where Cω is a constant independent of u and ε, then the matrix Ahom
1 is positive definite.

Notice that under Assumption 3.1, the extension property in Remark 4.1 is satisfied.We define the
space

H := L2(S)+ {u ∈ L2(S ×�) : u|S×(�\O) = 0},
which is clearly a direct sum, naturally embedded in L2(S ×�). Before stating the next theorem we
prove a simple lemma that implies that gives norm bounds for each component of H by the norm in
L2(S ×�).

Lemma 4.2: Let f0 ∈ L2(S) and f1 ∈ L2(S ×�) such that f1 ≡ 0 on�\O. Then there exists a constant
C> 0 such that

‖f0‖L2(S) + ‖f1‖L2(S×�) ≤ C‖f0 + f1‖L2(S×�),
where we use the natural embedding L2(S) ↪→ L2(S ×�).

Proof: By Cauchy-Schwartz inequality we have

2
ˆ
S×�

|f0(x)||f1(x,ω)| dx dP(ω) = 2
ˆ
S
|f0(x)|

ˆ
O

|f1(x, ·)| dP dx

≤ ‖f0‖2L2(S) +
∥∥∥∥ˆO f1

∥∥∥∥2
L2(S)

≤ ‖f0‖2L2(S) + P(O)‖f1‖2L2(S×�),

and hence

‖f0 + f1‖2L2(S×�) ≥ ‖f0‖2L2(S×�) − 2
ˆ
S×�

|f0||f1| dx dP + ‖f1‖2L2(S×�) ≥ (1 − P(O))‖f1‖2L2(S×�).
(17)

It remains to bound ‖f0‖L2(S×�) by ‖f0 + f1‖L2(S×�), which is done by the triangle inequality:

‖f0‖2L2(S) ≤ 2(‖f0 + f1‖2L2(S) + ‖f1‖2L2(S×�)) ≤ 2(2 − P(O))
1 − P(O) ‖f0 + f1‖2L2(S×�).

�

By P : L2(S ×�) → H we denote the orthogonal projection. For f ∈ L2(S ×�) we have

P f (x,ω) =
ˆ
�\O

f (x, ·) dP + χO(ω)
(
f (x,ω)−

ˆ
�\O

f (x, ·) dP
)
.
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Theorem 4.1: Under Assumption 3.1, let λ < 0 and suppose that (f ε) is a bounded sequence in L2(S)

such that f ε
2−⇀ f ∈ L2(S ×�). For each ε > 0, consider the solution uε to (11). Then for a.e. ω ∈ �

one has uε
2−⇀ u0 + u1(·,ω), where u0 ∈ W1,2

0 (S), u1 ∈ L2(S,W1,2
0 (O)) satisfy

ˆ
S
Ahom
1 ∇u0 · ∇ϕ0 − λ

ˆ
S
(u0 + 〈u1〉�)ϕ0 =

ˆ
S
〈f 〉� ϕ0 ∀ϕ0 ∈ W1,2

0 (S), (18)

ˆ
O

∇ωu1(x, ·) · ∇ωϕ1 − λ

ˆ
O
(u0(x)+ u1(x, ·))ϕ1 =

ˆ
O
f (x, ·)ϕ1 ∀ϕ1 ∈ W1,2

0 (O). (19)

Remark 4.2: The system (18) and (19) is understood in the weak sense:
ˆ
S
Ahom
1 ∇u0 · ∇ϕ0 +

ˆ
S×�

∇ωu1 · ∇ωϕ1 − λ

ˆ
S×�

(u0 + u1)(ϕ0 + ϕ1)

=
ˆ
S×�

f (ϕ0 + ϕ1) ∀ϕ0 ∈ W1,2
0 (S), ϕ1 ∈ L2(S,W1,2

0 (O)). (20)

Noting thatW1,2
0 (O) is a closed subspace ofW1,2(�) and bearing in mind Lemma 4.2, it follows by

the Lax-Milgram lemma that for all f ∈ L2(S ×�), x ∈ S the problem (20) has a unique solution in
W1,2

0 (O). Its solutions for the right-hand sides f ∈ L2(S ×�) and P f coincide. The solution of the
Equation (19) has the form

u1(x,ω) = u(x,ω)+ u0(x)w(ω), (21)

where u ∈ L2(S,W1,2
0 (O)) is the solution of (19) obtained by setting u0 = 0 and w ∈ W1,2

0 (O) is
the solution of (19) obtained by setting u0 = 1 and f = 0. Substituting (21) into (18), we obtain an
equation on u0.

Proof: The proof follows a standard argument. First, by (11), there exists a constant C> 0 such that

‖∇uε‖L2(Sε1) + ε‖∇uε‖L2(Sε0) + ‖uε‖L2(S) ≤ C. (22)

For each ε > 0 we extend uε|Sε1 , using Assumption 3.1, to a sequence ũε , which is bounded in
W1,2(S). From Proposition 2.1 we infer that there exist u0 ∈ W1,2(S), u1 ∈ L2(S,W1,2(�)), u2 ∈
L2(S,W1,2(�)) such that on a subsequence we have

ũε → u0 strongly in L2(S), ∇ũε
2−⇀ ∇u0 + ∇ωu2, uε − ũε

2−⇀ u1, ε∇(uε − ũε)
2−⇀ ∇ωu1.

(23)
To obtain the Equation (18), we take test functions of the form ϕ0(x)+ εa(x)ϕ(Tx/εω) in (11), where
ϕ0 ∈ W1,2

0 (S), ϕ ∈ W1,2(�) and a ∈ C1
0(S). In the limit as ε → 0 we obtain

ˆ
S

ˆ
�\O

A1(∇u0 + ∇ωu2) · (∇ϕ0 + a∇ωϕ1) dP dx − λ

ˆ
S
(u0 + 〈u1〉�)ϕ0 =

ˆ
S
〈f 〉�ϕ0. (24)

Setting ϕ0 = 0, it follows that
ˆ
�\O

A1(∇u0(x)+ ∇ωu2) · ∇ωϕ1 dP = 0 a.e. x ∈ S,

and the characterisation (16) yields∇ωu2(x,ω) = p∇u0(x)(ω) a.e. x ∈ S,ω ∈ �. Taking arbitrary ϕ0 ∈
W1,2

0 (S) in (24), we obtain the ‘macroscopic’ part (18) of the limit problem. The ‘microscopic’ part
(19) is obtained by taking test functions of the form a(x)ϕ(Tx/εω) in (11), where a ∈ C1

0(S), ϕ ∈
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W1,2
0 (O). The convergence of the whole sequence can be deduced by uniqueness of the solution of

the system (18)–(19). �

Remark 4.3: The following observationwasmade in [1] in the periodic setting. The formulation (20)
can be interpreted from the operator-theoretic point of view. Namely, we define a positive-definite
operator A on a dense linear subset of V = W1,2

0 (S)+ L2(S,W1,2
0 (O)) (which is a dense subset of

H under the condition of Lemma 3.1), as follows. One takes λ < 0 and defines the domain dom(A)
as the set of solutions of (20) obtained for varying f ∈ H. To see that dom(A) is dense in H, take
the solutions u0 + u1,w0 + w1 ∈ V for f , g ∈ H, respectively. Setting ϕ0 = u0, ϕ1 = u1 as the test
function in the equation for (w0,w1) and ϕ0 = w0, ϕ1 = w1 as the test function in the equation for
(u0, u1) yields ˆ

S×�
f (w0 + w1) =

ˆ
S×�

g(u0 + u1).

Thus, if g ⊥ u0 + u1 then necessarily w0 + w1 = 0, which implies g= 0. The operator A :
dom(A) → H defined by A(u0 + u1) = f + λ(u0 + u1) is a bounded linear mapping between
Hilbert spaces, where the norm on dom(A) is given by

‖u0 + u1‖2dom(A) = ‖A(u0 + u1)‖2H + ‖u0 + u1‖2V .

We shall need the following statement for the convergence of spectra of the operators associated
with (11). It is proved in the same way as the previous theorem, and we omit the proof.

Proposition 4.1: Under Assumption 3.1, let λ < 0 and suppose that (f ε) is a bounded sequence in

L2(Sε0) such that χ
ε
0 f
ε 2−⇀ f ∈ L2(S ×�). For each ε > 0, let zε ∈ W1,2

0 (Sε0) be the solution of

ε2
ˆ
Sε0

∇zε · ∇v − λ

ˆ
Sε0
zεv =

ˆ
Sε0
f εv ∀ v ∈ W1,2

0 (Sε0). (25)

Then for a.e. ω ∈ � one has zε
2−⇀ z(·,ω), where z ∈ L2(S,W1,2

0 (O)) is the solution of the problem
ˆ
O

∇ωz(x, ·) · ∇ωv − λ

ˆ
O
z(x, ·)v =

ˆ
O
f (x, ·)v ∀ v ∈ W1,2

0 (O). (26)

Remark 4.4: Theorem 4.1 and Proposition 4.1 are still valid if, instead of a fixed λ < 0, we take a
sequence (λε) ⊆ R such that λε → λ ∈ R and lim infε→0 dist(λε , SpAε) > 0, for Theorem 4.1, i.e.
lim infε→0 dist(λε , SpT ε) > 0 for Proposition 4.1, where T ε := −ε2�Sε0 . Notice that SpT

ε splits into
the spectra of scaled Laplace operators on each inclusion contained in Sε0 :

SpT ε =
⋃
k∈Kεω

Sp(−�Ok
ω
), (27)

where Kεω is defined in (10). Notice that there exists C> 0 such that for all λ ∈ R the solution uε
of (11) satisfies

‖∇uε‖L2(Sε1) + ε‖∇uε‖L2(Sε0) + ‖uε‖L2(S) ≤ C(dist(λ, SpAε)−1 + λ+ 1)‖f ε‖L2(S), (28)

and similarly the solution of (25) satisfies

ε‖∇zε‖L2(Sε0) + ‖zε‖L2(Sε0) ≤ C(dist(λ, SpT ε)−1 + λ+ 1)‖f ε‖L2(S). (29)
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In what follows we denote by −�ω the operator generated by the bilinear form
ˆ
O

∇ωu · ∇ωv, u, v ∈ W1,2
0 (O). (30)

As a consequence of Proposition 4.1 and Remark 4.4, we have the following statement.

Corollary 4.1: Assume that Assumption 3.1 holds. Then

Sp(−�ω) ⊆
⋃
k∈N

Sp(−�Ok
ω
) a.e. ω ∈ �.

Proof: Take λ /∈ ⋃k∈N Sp(−�Ok
ω
) and f ∈ L2(O), and define f ε(x,ω) := χε0 f (Tx/εω)

2−→ f . As a
consequence of Remark 4.4, the sequence of solutions of (25) converges weakly two-scale to the solu-
tion of (26), which is a resolvent equation. Moreover, (27) and (29) imply the existence of C> 0 such
that

‖u1‖L2(S×�) ≤ lim inf
ε→0

‖zε‖L2(Sε0) ≤ C‖f ‖L2(O),

and therefore λ /∈ Sp(−�ω). �

5. Spectral completeness for inclusions

Next we prove that ⋃
k∈N

Sp(−�Ok
ω
) ⊆ Sp(−�ω) a.e. ω ∈ �.

We shall use the assumptions of Lemma3.2 aswell as assume that for eachλ0 > 0 there existsMλ0 > 0
such that for a.e. ω ∈ � the following implication holds:

−�u = λu, u ∈ W1,2
0 (Ok

ω), for some k ∈ N, λ ≤ λ0 =⇒ ‖u‖L∞(Ok
ω)

≤ Mλ0‖u‖L2(Ok
ω)
. (31)

Notice that, by regularity theory, the above condition is satisfied for a fixed ω ∈ � and k ∈ N,
whenever the boundary ∂Ok

ω is sufficiently regular. In what follows we use a sequence {ϕ̃k}k∈N ⊂
C∞
0 ([0, c2 + 1]n) that is dense in W1,2

0 ([0, c2 + 1]n), where the constant c2 is defined in Assump-
tion 3.1.

Wewill now define a sequence of random variables that is invariant for allω ∈ Owhose realisation
is such that the shape that contains the origin is the same. For q = (q1, . . . , qn) ∈ Qn define the set

Oq := {ω ∈ O : there exists k0 ∈ N such that q ∈ Ok0
ω }.

Lemma 5.1: For every q ∈ Qn,Oq ⊂ � is measurable.

Proof: Notice that

ω ∈ Oq ⇐⇒ There exists a polygonal line that connects 0 and q and

consists of a finite set of straight segments with rational endpoints

such that for all l ∈ Qn on this line one hasTlω ∈ O.

(32)

Since for each fixed q ∈ Qn there is a countable set of lines satisfying the property (32), the setOq is
measurable. �
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We define the random variables

Fj(ω) := inf{qj : ω ∈ Oq}, ω ∈ �, j = 1, . . . , n.

Notice that Fj = +∞wheneverω /∈ O, and also, due to the assumption,−c2 ≤ Fj ≤ 0 for a.e.ω ∈ O.
We denote by F the random vector

F := −(F1, . . . , Fn)+ ( 12 , . . . ,
1
2 ). (33)

For a.e. ω ∈ O,m ∈ N we define the set

Fmω :=
{
x ∈ Rn : there exists k0 ∈ N such that x ∈ Ok0

ω and dist(x, ∂Ok0
ω ) >

1
m

}
.

Furthermore, we introduce the setUω ⊂ [0, c2 + 1]n, which is a translation of the setOk0
ω containing

the origin:

Uω := {x ∈ [0, c2 + 1]n : x − F ∈ Ok0
ω for k0 ∈ N such that 0 ∈ Ok0

ω }.

Finally, we define a characteristic function of the translation of the set Fmω and a measurable function
of ω taking values inW1,2

0 ([0, c2 + 1]n):

χm(x,ω) := χDm
ω
(x − F), ϕk,m(x,ω) := ρ1/2m ∗ (χm(x,ω)ϕ̃k(x)). (34)

Notice that for a.e. ω ∈ O one has suppϕk,m(·,ω) ⊂ Uω.

Lemma 5.2: For every k,m ∈ N, the function ω �→ ϕk,m(·,ω) taking values in W1,2
0 ([0, c2 + 1]n) is

measurable with respect to the Borel σ -algebra on W1,2
0 ([0, c2 + 1]n).

Proof: Firstly notice that

ω �→ χm(·,ω)ϕ̃k(·), (35)

is a measurable mapping taking values in the set L2([0, c2 + 1]n), with Borel σ -algebra. To check this
notice that for each q ∈ Qn the set

Lq := {ω ∈ � : q ∈ Fmω },

is measurable: the related proof is similar to that of Lemma 5.1. Further, for ψ ∈ C∞
0 (R

n) the norm
‖ψ − χmϕ̃k‖L2(Rn) is written as a limit of Riemann sums, and each Riemann sum can be written
in terms of a finite number of χLq and values of function ϕ̃k(·). Thus ω �→ ‖ψ − χmϕ̃k‖L2(Rn) is
measurable. Since the topology in L2(Rn) is generated by the balls of the form B(ψ , r), where ψ ∈
C∞
0 (R

n) and r ∈ Qwe have that the mapping given by (35) is measurable. The claim follows by using
the fact that the convolution is a continuous (and thus measurable) operator from L2 toW1,2. �
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Notice that by construction {ϕk,m(·,ω)}k,m∈N ⊂ C∞
0 (Uω) is a dense subset of W

1,2
0 (Uω) for a.e.

ω ∈ � (see also the proof of Lemma 3.2). For 0 ≤ a ≤ b we introduce the following subset ofO :

Ea,b := {ω ∈ O : −�Ok0
ω
has an eigenvalue in [a, b] for k0 ∈ N such that 0 ∈ Ok0

ω }. (36)

For 0 ≤ a ≤ b and a.e. ω ∈ Ea,b we also define Sa,b,ω ⊂ W1,2
0 (Uω) as follows:

Sa,b,ω := {ψ ∈ W1,2
0 (Uω) : ψ is an eigenfunction of −�Uω whose eigenvalue is in [a, b]}.

Finally, for every r ∈ R and k,m ∈ N we define the random variable

Xk,m
r (ω) :=

⎧⎪⎪⎨⎪⎪⎩
‖ −�ϕk,m(·,ω)− rϕk,m(·,ω)‖W−1,2(Uω)

‖ϕk,m(·,ω)‖L2(Uω)
if ϕk,m(·,ω) �= 0,

+∞ otherwise.

(37)

Lemma 5.3: For every r ∈ R and k,m ∈ N, the function Xk,m
r is measurable.

Proof: We use Lemma 5.2 and the fact that −� is a continuous map from W1,2 to W−1,2 and
‖ · ‖W−1,2(Uω) is a measurable function, since

‖ψ(·,ω)‖W−1,2(Uω) := sup
k,m∈N

⎧⎨⎩W−1,2(Uω)〈ψ(·,ω),ϕk,m(·,ω)〉W1,2
0 (Uω)

‖ϕk,m(·,ω)‖W1,2(Uω)
: ϕk,m(·,ω) �= 0

⎫⎬⎭ .

�

Lemma 5.4: For 0 ≤ a ≤ b, the set Ea,b is measurable.

Proof: The claim follows by observing that

Ea,b =
{
ω ∈ O : inf

k,m∈N,r∈Q∩[a,b]
Xk,m
r (ω) = 0

}
.

�

Now we are going to define a measurable mapping from O to the subspace Sa,b,ω. We set it to
be an L2-projection onto Sa,b,ω of a specially chosen function of x and ω. We need the following
measurability lemma.

Lemma 5.5: Assume that ω �→ ϕ(·,ω) is a measurable function taking values in L2(Uω) for a.e. ω ∈
Ea,b. Then the L2-distance ω �→ distL2(Uω)(ϕ(·,ω), Sa,b,ω), ω ∈ Ea,b, is a measurable map.

Proof: The claim follows from the formula

distL2(Uω)(ϕ(·,ω), Sa,b,ω) = lim sup
n→∞

inf
k,m∈N

{
‖ϕk,m(·,ω)− ϕ(·,ω)‖L2(Uω) :

Xk,m
r (ω) <

1
n
for some r ∈ Q ∩ [a, b]

}
.

�
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For 0 ≤ a ≤ b and ω ∈ Ea,b we define a measurable map ω �→ ϕa,b(·,ω) as follows:

ϕa,b(·,ω) = ϕk0(ω),m0(ω)(·,ω),
where

k0(ω) := min
k∈N

{k : distL2(Uω)(ϕk,m(·,ω), Sa,b,ω) �= ‖ϕk,m(·,ω)‖L2(Uω),
1
2 ≤ ‖ϕk,m(·,ω)‖L2(Uω) ≤ 1 for somem ∈ N}, (38)

and m0(ω) is the minimal value of m in (38) Notice that in this way for a.e. ω ∈ Ea,b the L2-
projection of ϕa,b(·,ω) on Sa,b,ω is not zero. We also define the random variable R : � → [0,+∞)

in the following way:

R(ω) :=
⎧⎨⎩dist(0, ∂O

k0
ω ) if 0 ∈ Ok0

ω for some k0 ∈ N,

0 otherwise.

By invoking the measurability of Oq, q ∈ Qn, see Lemma 5.1, it is easily seen that R is indeed
measurable. Next, for 0 ≤ a ≤ b, l> 0 we define the random variable ψa,b,l : � → R by

ψa,b,l(ω) :=
⎧⎨⎩lim sup

n→∞
ffl
B(D,min{l,R(ω)}) ϕ

k1(ω,n),m1(ω,n)(·,ω) if R(ω) > 0,ω ∈ Ea,b,

0 otherwise,

where, for all n ∈ N,

k1(ω, n) := min
k∈N

{
k : Xk,m

r <
1
n
for some r ∈ Q ∩ [a, b],

‖ϕk,m(·,ω)− ϕa,b(·,ω)‖L2(Uω) < distL2(Uω)(ϕa,b(·,ω), Sα,b,ω)+ 1
n
for some m ∈ N

}
,

m1(ω) is the corresponding minimal value1 of m, and B(D, min{l,R(ω)}) is the ball with the centre
at D and radius min{l,R(ω)}, see (5.1). We also define

ψa,b := lim sup
l−1∈N, l→0

ψa,b,l.

Notice that in this way ψa,b is the value at the origin (taking into account for ω ∈ O the relative
position of the origin with respect to the shape) of the (unique) L2-projection of ϕa,b onto Sa,b,ω. As
a consequence of (31), we have |ψa,b| ≤ Mb. Notice that by construction ψa,b �= 0 if P(Ea,b) > 0. We
are ready for the proof of main statement.

Theorem 5.1: Under Assumption 3.1, the assumption of Lemma 3.2 and (31), one has⋃
k∈N

Sp(−�Ok
ω
) ⊆ Sp(−�ω) a.e. ω ∈ �.

Proof: We take l ≥ 0. There are two possibilities:

(a) There exists ε > 0 such that El−ε,l+ε has zero probability. In this case we denote

ε0(l) := sup
ε>0

{ε : P(El−ε,l+ε) = 0}.
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(b) For all ε > 0 the set El−ε,l+ε has positive probability.

In the case (a), by the continuity of probability, we conclude that P(E0l−ε0(l),l+ε0(l)) = 0, where
(cf. (36))

E0a,b := {ω ∈ O : −�Ok0
ω
has an eigenvalue in (a, b) for k0 ∈ N such that 0 ∈ Ok0

ω }.

By Lemma 2.1 and Corollary 4.1 we infer that

(l − ε0(l), l + ε0(l)) ⊆ C

∖⋃
k∈N

Sp(−�Ok
ω
) ⊆ C \ Sp(−�ω) a.e. ω ∈ �.

In particular, we conclude that l /∈ Sp(−�ω).
In the case (b) we construct a Weyl sequence showing that l ∈ Sp(−�ω). To this end, we define

ψn := ‖ψl−1/n,l+1/n‖−1
L2(O)ψl−1/n,l+1/n, n ∈ N.

Then, by the above construction and using Ergodic Theorem, one has

‖ −�ωψn − lψn‖L2(O) ≤ 1
n
, n ∈ N.

It follows from the above that Sp(−�ω) consists of exactly those l ∈ R that satisfy the property (b).
The set Sp(−�ω) is closed, hence its complement is a countable union of open disjoint intervals.
Every element of such an interval (d1, d2) satisfies the property (a) with l = (d1 + d2)/2, ε0(l) =
(d2 − d1)/2, and therefore P(E0d1,d2) = 0. Using Lemma 2.1, we obtain

(d1, d2) ⊆ C

∖⋃
k∈N

Sp(−�Ok
ω
) a.e. ω ∈ �.

The claim follows since there is only countable number of such intervals. �

6. Convergence of spectrum

In our analysis we keep in mind the examples set in Section 7, for which it is shown that Sp(−�ω) ⊆
Sp(A). In the present section we assume that this holds, as well as the conclusion of Theorem 5.1, i.e.

Sp(−�ω) =
⋃
k∈N

Sp(−�Ok
ω
). (39)

We are interested in approximating the spectra SpAε(ω) of the operators Aε(ω) (see Section 3) by
the spectrum SpA of the limit operator. We claim that SpAε(ω) → SpA for a.e. ω ∈ �, where the
convergence is understood in the Hausdorff sense:

(a) For all λ ∈ SpA there are λε ∈ SpAε(ω) such that λε → λ.
(b) If λε ∈ SpAε(ω) and λε → λ, then λ ∈ SpA.

We prove this claim by adapting the argument of [17]. First, we introduce the notion of strong
resolvent convergence.
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Definition 6.1: Let Aε(ω) and A be the operators acting on L2(S) and on H ⊂ L2(S ×�), respec-
tively. We say thatAε(ω) strongly two-scale resolvent converge toA and writeAε 2−→ A if

f ε 2−→ f , f ∈ L2(S ×�) =⇒ (Aε(ω)+ I)−1f ε 2−→ (A + I)−1f for a.e. ω ∈ �.

It can be shown that the property (a) is satisfied if we have strong two-scale resolvent convergence
(see the proof of [17, Proposition 2.2]). Theorem 4.1 shows that the following implication holds:

f ε
2−⇀ f , f ∈ L2(S ×�) =⇒ (Aε(ω)+ I)−1f ε

2−⇀ (A + I)−1f .

It can be shown that this is equivalent to strong two-scale resolvent convergence (see [17, Proposition
2.8]) and thus the property (a) is satisfied.

In order to prove (b), we start from the eigenvalue problem for the operatorAε(ω) (it has a compact
resolvent and its spectrum is discrete), i.e.

Aε(ω)uε = sεuε ,
ˆ
S
(uε)2 = 1. (40)

If we have that sε → s anduε
2−⇀ u, thenwewould also haveAu = su. However, the problemwould be

if u= 0, because then s /∈ SpA. The next lemma tells us if s /∈ Sp(−�ω) then necessarily the sequence
of eigenvalues is compact with respect to the strong two-scale convergence and thus s belongs to the
point spectrum of the operatorA, since then necessarily u �= 0.

Theorem 6.1: Suppose that (39) holds and that for each ε > 0, (sε , uε) satisfy (40). If sε → s /∈
Sp(−�ω), then for a.e.ω ∈ � the sequence (uε) is compact in the sense of strong two-scale convergence.

Proof: uε ∈ W1,2
0 (S) satisfies

ˆ
Sε1
A1∇uε · ∇v + ε2

ˆ
Sε0

∇uε · ∇v = sε
ˆ
S
uεv ∀ v ∈ W1,2

0 (S).

We use Assumption 3.1 and for each ε extend uε|Sε0 , denoting the extensions by ũε . Notice that there
exists C> 0 such that

‖̃uε‖W1,2(S) ≤ C. (41)

The difference zε := uε − ũε satisfies:

zε ∈ W1,2
0 (Sε0), ε2

ˆ
Sε0

∇zε · ∇v − sε
ˆ
Sε0
zεv = sε

ˆ
Sε0
ũεv ∀ v ∈ W1,2

0 (Sε0). (42)

From the estimate (41) we see that (̃uε) is weakly compact in W1,2
0 (S) and thus there exists

ũ ∈ W1,2
0 (S) such that ũε ⇀ ũ, which immediately implies sεχε0 ũ

ε 2−→ s̃uχO(ω). Furthermore, as a
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consequence of (27), (29) and (39), the following estimate holds for some C > 0 :

ε‖∇zε‖L2(Sε0) + ‖zε‖L2(Sε0) ≤ C.

Therefore, from Proposition 4.1 and Remark 4.4 we conclude that zε
2−⇀ z ∈ L2(S,W1,2

0 (O)), where
the limit z satisfies

ˆ
O

∇ωz(x, ·) · ∇ωv − s
ˆ
O
z(x, ·)v = s

ˆ
O
ũ(x)v ∀ v ∈ W1,2

0 (O). (43)

We also consider the problem

mε ∈ W1,2
0 (Sε0), ε2

ˆ
Sε0

∇mε · ∇v − sε
ˆ
Sε0
mεv = sε

ˆ
Sε0
zεv ∀ v ∈ W1,2

0 (Sε0). (44)

In the same way as before we conclude that for some C> 0:

ε‖∇mε‖L2(Sε0) + ‖mε‖L2(Sε0) ≤ C.

Analogously, we conclude thatmε
2−⇀ m ∈ L2(S,W1,2

0 (O)) which satisfies

ˆ
O

∇ωm(x, ·) · ∇ωv − s
ˆ
O
m(x, ·)v = s

ˆ
O
z(x, ·)v ∀ v ∈ W1,2

0 (O). (45)

By testing (42) withmε and (44) with zε we conclude

lim
ε→0

ˆ
Sε0
(zε)2 = lim

ε→0

ˆ
Sε0
ũεmε =

ˆ
S×�

ũm.

Finally, by testing (43) withm(x, ·) and (45) with z(x, ·) and integrating over S we conclude

ˆ
S×�

ũm =
ˆ
S×�

z2,

which completes the proof. �

7. Spectrum of the limit operator: examples

This section is devoted to the description of the spectrum of the limit operator. Since it crucially
depends on the intrinsic properties of the microscopic part of the operator and the properties of the
probability space, it does not seem feasible (at least at the current stage of research in this area) to
provide a characterisation of the spectrum in a general setting. We shall consider several interest-
ing, from the point of view of applications, examples of probability spaces and configurations of soft
inclusions. The general example of a finite number of shapes of randomly varying size is described in
Section 7.1. Then we consider the case of a single shape of fixed size in Section 7.2, and the case of a
single shape of randomly varying size in Section 7.3, for which we provide the full description of the
spectrum of the limit operator with the proofs. The characterisation of the spectrum in the general
case of Section 7.1 is analogous to the case of a single shape considered in Section 7.3.
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7.1. The setting of finite number of shapes of varying size

Let (ω̃j)j∈Zn be a sequence of independent and identically distributed random vectors taking val-
ues in Nl

0 × [r1, r2], where 0 < r1 ≤ r2 ≤ 1 and (�̃, F̃ , P̃) is an appropriate probability space. We
also assume that we have a finite number of shapes Yk ⊂ Y := [0, 1)n, k ∈ Nl

0, that represent the
inclusions, where the first and the second components of ω̃j = (kj, rj) model the shape and the size,
respectively. We also set Y0 = ∅. On �̃ there is a natural shift T̃z(ω̃j) = (ω̃j−z), which is ergodic. We
next state the discrete analogue of Lemma 2.1.

Lemma 7.1: Assume that �̃0 ⊆ �̃ is a set of full measure. Then there exists a subset �̃1 ⊆ �̃0 of full
measure such that for each ω̃ ∈ �̃1, z ∈ Zn we have T̃zω̃ ∈ �̃0.

We treatY as a probability space with Lebesguemeasure dy and the standard algebraL of Lebesgue
measurable sets, and define

� = �̃× Y , F = F̃ × L, P = P̃ × dy.

On � we define a dynamical system Tx(ω̃, y) = (T̃[x+y]ω̃, x + y − [x + y]). We consider the set
O = {(ω̃, y) : ω̃0 ∈ Nl

0 × [r1, r2], y ∈ r0Yk0} ⊆ �. It is easily seen that O is measurable. For a fixed
ω = (ω̃, y), the realisation Oω consists of the inclusions rjYkj + j − y, j ∈ Zn. Next, we describe
the generators Dj, j = 1, 2, . . . , n, in the present example. Taking f ∈ W1,2(�) and using the above
lemma, note that there exists a subset of full measure �̃1 ⊆ �̃ such that for all ω̃ ∈ �̃1 and z ∈ Zn we
have f (T̃zω̃, ·) ∈ W1,2(Y). It is clear that for x ∈ Y + z − y one has

f (x,ω) := f (Txω) = f (T̃zω̃, x − (z − y)).

Using this fact and the statement following (5), we infer that

W1,2(�) = {f ∈ L2(�̃× Y) : for a.e. ω̃ ∈ �̃, f (ω̃, ·) ∈ W1,2(Y), f (T̃z+ek ω̃, ·)|{yk=0}

= f (T̃zω̃, ·)|{yk=1} ∀ z ∈ Zn, k ∈ {1, . . . , n}}.

and

(Djf )(ω̃, y) = ∂yj f (ω̃, y), j = 1, 2, . . . , n. (46)

7.2. Simple example

In this section we set l = 0, r1 = r2 = 1, so thatNl
0 × [r1, r2] = {0, 1}, and, by a standard procedure,

see e.g. [18], identify the elements of the probability space �̃ with sequences ω̃ = (ω̃z)z∈Zn whose
components ω̃z take values in the two-element set {0, 1}. Let Y1 be an open subset of Y whose closure
is contained in Y (‘soft inclusion’). The value 0 or 1 of ω̃z, z ∈ Zn, corresponds to the absence or the
presence of the inclusion in the ‘shifted cell’ Y + z, respectively. We also set

O = {ω = (ω̃, y) : ω̃0 = 1, y ∈ Y1} ⊆ �.

Then, for a given ω = (ω̃, y) ∈ �, the realisation Oω = {x : Tx(ω̃, y) ∈ O} is the union of the sets
(‘inclusions’) Y1 + z − y over all z ∈ Zn such that ω̃z = 1. For this example the space W1,2

0 (O)



APPLICABLE ANALYSIS 111

consists of all functions of the form

v(ω) = v(ω̃, y) =
⎧⎨⎩vω̃(y), (ω̃, y) ∈ O, where vω̃ ∈ W1,2

0 (Y1),

0 otherwise.
(47)

It is also important to understand how one applies the stochastic gradient. For a function v(ω) ∈
W1,2

0 (O) ⊆ L2(�) we have (see (46))

∇ωv =
⎧⎨⎩∇vω̃(y), (ω̃, y) ∈ O, where vω̃ ∈ W1,2

0 (Y1),

0 otherwise.
(48)

Consider formally the spectral problem for the limit operator:
ˆ
S
Ahom
1 ∇u0 · ∇ϕ0 = λ

ˆ
S
(u0 + 〈u1〉)ϕ0 ∀ϕ0 ∈ W1,2

0 (S), (49)

ˆ
O

∇ωu1(x, ·)∇ωϕ1 = λ

ˆ
O
(u0(x)+ u1(x, ·))ϕ1 ∀ϕ1 ∈ W1,2

0 (O). (50)

We write the solution to the ‘microscopic’ Equation (50) in the form u1(x,ω) = λu0(x)v(ω), where
(recall Remark 4.2)

v ∈ W1,2
0 (O), −�ωv = λv + 1. (51)

In other words, v is given by (47) with vω̃(y) satisfying

−�vω̃(y) = λvω̃(y)+ 1, y ∈ Y1, (52)

whenever ω̃ such that ω̃0 = 1 and vω̃ = 0 otherwise.
We label the eigenvalues of the operator in (52) in the increasing order, where we repeat multiple

eigenvalues, so that νj, j ∈ N, and ν′
j , j ∈ N, are, respectively, the eigenvalues whose eigenfunctions ϕj

have non-zero integral over Y1 and the eigenvalues whose eigenfunctions ϕ′
j have zero integral over

Y1. Following [1], we write the solution to (52) via the spectral decomposition

vω̃ =
∞∑
j=1
(νj − λ)−1

(ˆ
Y1
ϕj

)
ϕj, (53)

and thereby

〈v〉� = P({ω̃ : ω̃0 = 1})
ˆ
Y1
vω̃ dy = P({ω̃ : ω̃0 = 1})

∞∑
j=1
(νj − λ)−1

(ˆ
Y1
ϕj

)2
. (54)

Substituting the obtained representation for u1 into the ‘macroscopic’ equation (49) yields

− divAhom
1 ∇u0 = β(λ)u0, u0 ∈ W1,2

0 (S), (55)

where

β(λ) := λ(1 + λ〈v〉�) = λ+ λ2P({ω̃ : ω̃0 = 1})
∞∑
j=1
(νj − λ)−1

(ˆ
Y1
ϕj

)2
(56)

is a stochastic version of the ‘Zhikov function’ β in [1]. Assume for the moment that S = Rn. Then
the intervals where β(λ) ≥ 0 are the ‘spectral bands’ of A, and additionally a Bloch-type spectrum
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is given by {ν′
j : j ∈ N}. The set {λ : β(λ) < 0} \ {ν′

j : j ∈ N} corresponds to the gaps in the spectrum
ofA.

In the setting of this paper, namely, for a bounded domain S ⊂ Rn, instead of each spectral band
β(λ) ≥ 0 lying to the left of νj we have a ‘band’ of discrete spectrum: a countable set of eigenvalues

{λj,k : νj−1 < λj,k < νj,β(λj,k) = μk}, (57)

with the accumulation point at the right end νj of each band, where μk are the eigenvalues of the
operator −divAhom

1 ∇ defined by the form
ˆ
S
Ahom
1 ∇u · ∇v, u, v ∈ W1,2

0 (S). (58)

The Bloch-type spectrum of A consists of eigenvalues ν′
j of infinite multiplicity with eigenfunctions

of the form f (x)v′
j(ω) with f ∈ L2(S) and

v′
j(ω) = v′

j(ω̃, y) =
⎧⎨⎩ϕ

′
j(y), (ω̃, y) ∈ O,

0 otherwise.
(59)

Summarising, the spectrum ofA is given by

σ(A) =
⎛⎝⋃

j
{ν′

j , νj}
⎞⎠ ∪ {λj,k : j, k ∈ N}. (60)

7.3. More advanced example

Here we allow the inclusions to randomly change size, so that l = 0, 0 < r1 < r2 < 1. By analogy
with the previous section, we assume that �̃ consists of sequences ω̃ = (ω̃z)z∈Zn such that ω̃z ∈ {0} ∪
[r1, r2], z ∈ Zn. We also assume that the restriction to to [r1, r2] of the probability measure on �̃ is
absolutely continuous with respect to Lebesgue measure. As before, consider Y1 ⊂ Y , and denote
by Y1,r := r(Y1 − yc)+ yc, where yc is the centre of Y, the ‘scaled inclusion’, requiring that Y1,r2 ⊂
Y , in order for the extension property in Assumption 3.1 to hold. The values 0 or r ∈ [r1, r2] of ω̃z
correspond to the absence of an inclusion or the presence of the inclusion Y1,r in the cell Y + z,
respectively. Furthermore, defineO := {ω = (ω̃, y) : y ∈ Y1,ω̃0} ⊆ �. Then a realisationOω = {x :
Tx(ω̃, y) ∈ O} is the union of the inclusions Y1,ω̃z + z − y for all z ∈ Zn, where in the case ω̃z = 0 we
set Y1,ω̃z = ∅. The spaceW1,2

0 (O) consists of functions of the form

v(ω) = v(ω̃, y) =
⎧⎨⎩vω̃(y), (ω̃, y) ∈ O, where vω̃ ∈ W1,2

0 (Y1,ω̃0),

0, otherwise.
(61)

Consider the spectral problem for u1, namely
ˆ
O

∇ωu1(x, ·)∇ωϕ = λ

ˆ
O
(u0(x)+ u1(x, ·))ϕ ∀ϕ ∈ W1,2

0 (�),

and separate the variables, as in Section 7.2: u1(x,ω) = λu0(x)v(ω), where the function v satisfies
ˆ
O

∇ωv · ∇ωϕ =
ˆ
O
(1 + λv)ϕ ∀ϕ ∈ W1,2

0 (�). (62)
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The stochastic gradient is given by

∇ωv =
⎧⎨⎩∇vω̃(y), (ω̃, y) ∈ O, where vω̃ ∈ W1,2

0 (Y1,ω̃0),

0, otherwise,

and therefore the problem (62) is equivalent to
ˆ

{ω̃0∈[r1,r2]}

ˆ
Y1,ω̃0

∇yv∇yϕ dy dP(ω̃) =
ˆ

{ω̃0∈[r1,r2]}

ˆ

Y1,ω̃0

(1 + λv)ϕ dy dP(ω̃). (63)

For each r ∈ [r1, r2], the eigenvalues νj,r , ν′
j,r and (orthonormal) eigenfunctions ϕj,r ,ϕ′

j,r of the oper-
ator −�y acting in W1,2

0 (Y1,r) are obtained by scaling the eigenvalues and eigenfunctions of −�y

acting in W1,2
0 (Y1), in particular, νj,r = r−2νj, ν′

j,r = r−2ν′
j . Therefore, the formula (53) with νj, ϕj

replaced by νj,r , ϕj,r gives the solution to

−�yvr = 1 + λvr , vr ∈ W1,2
0 (Y1,r). (64)

If 0 < r1 ≤ r2 and the set {νj,r : j ∈ N, r ∈ [r1, r2]}has gaps, then forλ ∈ R \ {νj,r : j ∈ N, r ∈ [r1, r2]}
the solution to (63) is given by (61), where the functions vω̃(y) solve (64) with r = ω̃0. Substituting it
into the spectral problem for (49) yields the problem (55) with the Zhikov-type function β given by
(cf. (56))

β(λ) := λ(1 + λ〈v〉�) = λ+ λ2
ˆ

{ω̃0∈[r1,r2]}

∞∑
j=1
(νj,ω̃0 − λ)−1

(ˆ
Y1,ω̃0

ϕj,ω̃0

)2

dP(ω̃). (65)

The integral in (65) is well defined for λ ∈ R \ {νj,r : j ∈ N, r ∈ [r1, r2]}, and the description of the
spectrum on the intervals where β(λ) > 0 follows Section 7.2.

Theorem 7.1: Under the assumptions of the current subsection, the spectrum ofA is given by

σ(A) =
⎛⎝ ⋃

j∈N, r∈[r1,r2]
{νj,r , ν′

j,r}
⎞⎠ ∪ {λj,k : j, k ∈ N}

where for each k, the valuesλj,k are solutions toβ(λj,k) = μk, see (57). The point spectrumof the operator
A is given by {λj,k : j, k ∈ N}.

It is clear that if the set
⋃

j∈N, r∈[r1,r2]{νj,r , ν′
j,r} has gaps, then σ(A) also has gaps. We are going to

prove the theorem in several steps formulated in the following lemmas. We begin by studying the
spectrum of the ‘microscopic’ part of the limit operator.

Lemma 7.2: The spectrum of the operator −�ω (see (30)) is given by

σ(−�ω) =
⋃

j∈N, r∈[r1,r2]
{νj,r , ν′

j,r}

and does not contain eigenvalues of −�ω.

Proof: Let λ = νj0,r0 for some j0 ∈ N, r0 ∈ [r1, r2], and assume that v ∈ W1,2
0 (O) is an eigenfunction

corresponding to λ, i.e. −�ωv = λv. (For λ = ν′
j0,r0 argument is similar.) Then v is of the form (61),
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where−�vω̃ = λvω̃ in Y1,ω̃0 , whenever ω̃0 ∈ [r1, r2]. But λ is only an eigenvalue of the operator−�
acting inW1,2

0 (Y1,ω̃0) if ω̃0 = r0, hence

v(ω) = v(ω̃, y) =
{
ϕj0,r0(y), ω̃0 = r0, y ∈ Y1,r0 ,
0 otherwise.

(66)

It remains to observe that {ω̃0 = r0, y ∈ Y1,r0} is a set of measure zero in� and hence ‖v‖L2(Ø) = 0.
The second claim of the lemma follows.

Now we show that λ ∈ σ(−�ω) by constructing a Weyl sequence. Without loss of generality we
can assume that r0 ∈ (r1, r2). For small enough δ > 0 we choose an L2-functionwδ = wδ(r) such that
suppwδ ⊆ (r0 − δ, r0 + δ) and ‖wδ‖L2(r0−δ,r0+δ) = 1, e.g. we can choosewδ to be equal to a constant
proportional to δ−1/2 on (r0 − δ, r0 + δ). Consider the sequence

vδ(ω) = vδ(ω̃, y) =
⎧⎨⎩wδ(ω̃0)ϕj0,ω̃0(y), (ω̃, y) ∈ O,

0 otherwise.

We have vδ ∈ W1,2
0 (O), ‖vδ‖L2(�) = 1 and

−�ωvδ(ω, y) = −wδ(ω̃0)�ϕj0,ω̃0(y) = νj0,ω̃0wδ(ω̃0)ϕj0,ω̃0(y),

hence

‖ −�ωvδ − λvδ‖2L2(O) =
ˆ

{ω̃0∈[r1,r2]}

ˆ
Y1,ω̃0

((νj0,ω̃0 − νj0,r0)wδ(ω̃0)ϕj0,ω̃0(y))
2 dy d̃P(ω̃) → 0,

δ → 0.

It follows that vδ is a Weyl sequence for λ = νj0,r0 .
It remains to prove that λ is in the resolvent set whenever λ /∈ ⋃j∈N, r∈[r1,r2]{νj,r , ν′

j,r}. Assume the
contrary and let f ∈ L2(O), then the resolvent equation−�ωv − λv = f has a unique solution given
by (61) with vω̃ solving −�vω̃(y)− λvω̃(y) = f (ω̃, y), y ∈ Y1,ω̃0 . Moreover, since

d := dist

⎛⎝λ, ⋃
j∈N, r∈[r1,r2]

{νj,r , ν′
j,r}
⎞⎠ > 0,

we have ‖vω̃‖L2(Y1,ω̃) ≤ d−1‖f (ω̃, ·)‖L2(Y1,ω̃0 ), and it follows immediately that ‖v‖L2(O) ≤ d−1

‖f ‖L2(O), which concludes the proof. �

Next, we focus on the spectrum ofA.

Lemma 7.3: The inclusion σ(−�ω) ⊂ σ(A) holds.

Proof: The proof of the inclusion {ν′
j,r : j ∈ N, r ∈ [r1, r2]} ⊂ σ(A) repeats the related part of the

proof of the Lemma 7.2. Namely, for λ = ν′
j0,r0 , j0 ∈ N, r0 ∈ (r1, r2), we define aWeyl sequence uδ :=

uδ0 + uδ1 ∈ V , whereuδ0 ≡ 0 anduδ1 is given byu
δ
1(x,ω) := f (x)vδ(ω), with an arbitrary fixed f ∈ L2(S)

and vδ defined as in Lemma 7.2. In order to show that {νj,r : j ∈ N, r ∈ [r1, r2]} ⊂ σ(A), suppose
that λ = νj0,r0 for some j0 ∈ N and r0 ∈ (r1, r2). Assume, to the contrary, that there exists a bounded
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resolvent (A − λ)−1, i.e. the system (18)–(19) has a unique solution for all f ∈ L2(S ×�). For f =
f (x) ∈ L2(S) the second equation reads

ˆ
{ω̃0∈[r1,r2]}

ˆ
Y1,ω̃0

(−�yu1 − λu1)ϕ1 dy dP(ω̃) = (f + λu0)
ˆ

{ω̃0∈[r1,r2]}

ˆ
Y1,ω̃0

ϕ1 dy d̃P(ω̃).

Then u1 must necessary be of the form u1 = (f + λu0)v, where v is of the form (61) and −�yvω̃ =
λvω̃ + 1 in Y1,ω̃0 , i.e.

vω̃ =
∞∑
j=1
(νj,ω̃0 − λ)−1

(ˆ
Y1,ω̃0

ϕj,ω̃0

)
ϕj,ω̃0 . (67)

which clearly blows up as ω̃0 → r0. We show that the corresponding v is not an element of L2(O),
leading to a contradiction. Indeed, using the identity

νj0,ω̃0 − νj0,r0 = ω̃−2
0 νj0 − r−2

0 νj0 = r−2
0 ω̃−2

0 (r0 − ω̃0)(r0 + ω̃0)νj0 ,

one has

ˆ
{ω̃0∈[r1,r2]}

ˆ
Y1,ω̃0

|v|2 dy dP(ω̃) =
ˆ

{ω̃0∈[r1,r2]}

∞∑
j=1
(νj,ω̃0 − νj0,r0)

−2

(ˆ
Y1,ω̃0

ϕj,ω̃0

)2

dP(ω̃)

≥
ˆ

{ω̃0∈[r1,r2]}
(νj,ω̃0 − νj0,r0)

−2

(ˆ
Y1,ω̃0

ϕj,ω̃0

)2

dP(ω̃)

≥ C
ˆ

{ω̃0∈[r1,r2]}
|ω̃0 − r0|−2 dP(ω̃),

where the last integral diverges. �

Lemma 7.4: If β(λ) = μk for some k ∈ N then λ is an eigenvalue ofA.

Proof: Let β(λ) = μk, and denote by ψk ∈ W1,2
0 (S) be the corresponding eigenfunction of

−divAhom
1 ∇ . Since λ /∈ {νj,r : j, r ∈ N}, the problem

v ∈ W1,2
0 (O), −�ωv = λv + 1,

has a solution given by (61), (67). Therefore u = ψk + λψkv is the eigenfunction ofA corresponding
to λ. �

Lemma 7.5: A point λ belongs to the resolvent set of A if λ /∈ σ(−�ω) and β(λ) /∈ σ(−divAhom
1 ∇),

i.e. β(λ) < 0 or β(λ) ≥ 0 and β(λ) �= μk, k ∈ N.
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Proof: We claim that the problem (18) and (19) has bounded resolvent. Indeed, suppose that f ∈
L2(S ×�) and write (19) in the form

−�ωu1 − λu1 = λu0 + f .

Since λ is not in the spectrum of −�ω, the latter has a bounded resolvent at λ and u1 = λu0v + g,
where v = (−�ω − λ)−11 is as in (61) and g = g(x,ω) = (−�ω − λ)−1f (x,ω), x ∈ S. In particular,

‖v‖L2(O) ≤ dist(λ, σ(−�ω))−1‖1‖L2(O), ‖g(x, ·)‖L2(O) ≤ dist(λ, σ(−�ω))−1‖f (x, ·)‖L2(�).

Substituting the expression for u1 in (18) we obtain

−divAhom
1 ∇u0 − β(λ)u0 = 〈f + λg〉.

For β(λ) /∈ σ(−divAhom
1 ∇) the operator −divAhom

1 ∇ − β(λ) is invertible and

‖u0‖L2(S) ≤ dist(β(λ), σ(−divAhom
1 ∇))−1‖〈f + λg〉‖L2(S)

≤ dist(β(λ), σ(−divAhom
1 ∇))−1(‖f ‖L2(S×�) + |λ|‖g‖L2(S×O)),

from which the claim follows. �

Proposition 7.1: The set σ(−�ω) \ {λj,k : j, k ∈ N} does not contain eigenvalues of the operatorA.

Proof: Assume that λ = νj0,r0 , for some j0 ∈ N and r0 ∈ [r1, r2], is an eigenvalue ofA, i.e. there exists
u = u0 + u1 ∈ V such that

−divAhom
1 ∇u0 = λ(u0 + 〈u1〉O),

−�ωu1(x, ·) = λ(u0(x)+ u1(x, ·)).
(68)

Suppose that u0(x) �= 0 for some x ∈ S, then u1(x, ·) = λu0(x)v(·), where v solves

−�ωv = λv + 1. (69)

Arguing as for the second inclusion of Lemma 7.3, we see that (69) has no L2-solution for the given
λ. It follows that u0 = 0 and therefore u1(x, ·) is an eigenfunction of −�ω, which cannot be true by
Lemma 7.2.

Now we assume that λ = ν′
j0,r0 . Arguing as above, for u0(x) �= 0 we have u1(x, ·) = λu0(x)v(·),

where v solves (69). The solution exists and is given by (61), (67). Substituting u1 into (68) we see that
u0 must satisfy −divAhom

1 ∇u0 = β(λ)u0, which cannot be true since β(λ) /∈ σ(−divAhom
1 ∇).

Finally, if u0 = 0, then we argue as above for the case λ = νj0,r0 , again arriving at a contradiction.
�

This completes the proof of Theorem 7.1.

Notes

1. The function ϕk,m(·,ω) is an ‘approximate eigenfunction’ for −�Uω , see (37).
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