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ABSTRACT
In this paper, we establish an initial theory regarding the second-order
asymptotical regularization (SOAR) method for the stable approximate
solution of ill-posed linear operator equations in Hilbert spaces, which are
models for linear inverse problems with applications in the natural sci-
ences, imaging and engineering. We show the regularizing properties of
the newmethod, aswell as the corresponding convergence rates.Weprove
that, under the appropriate source conditions and by using Morozov’s
conventional discrepancy principle, SOAR exhibits the same power-type
convergence rate as the classical version of asymptotical regularization
(Showalter’s method). Moreover, we propose a new total energy discrep-
ancy principle for choosing the terminating time of the dynamical solution
from SOAR, which corresponds to the unique root of a monotonically non-
increasing function and allows us to also show an order optimal conver-
gence rate for SOAR. A damped symplectic iterative regularizing algorithm
is developed for the realization of SOAR. Several numerical examples are
given to show the accuracy and the acceleration effect of the proposed
method. A comparison with other state-of-the-art methods are provided
as well.
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1. Introduction

We are interested in solving linear operator equations,

Ax = y, (1)

where A is an injective and compact linear operator acting between two infinite dimensional Hilbert
spacesX andY . For simplicity, we denote by 〈·, ·〉 and ‖ · ‖ the inner products andnorms, respectively,
for both Hilbert spaces. Since A is injective, the operator equation (1) has a unique solution x† ∈ X
for every y from rangeR(A) of the linear operatorA. In this context,R(A) is assumed to be an infinite
dimensional subspace of Y .

Suppose that, instead of the exact right-hand side y = Ax†, we are given noisy data yδ ∈ Y obey-
ing the deterministic noise model ‖yδ − y‖ ≤ δ with noise level δ > 0. Since A is compact and
dim(R(A)) = ∞, we haveR(A) �= R(A) and the problem (1) is ill-posed. Therefore, regularization
methods should be employed for obtaining stable approximate solutions.

Loosely speaking, two groups of regularization methods exist: variational regularization meth-
ods and iterative regularization methods. Tikhonov regularization is certainly the most prominent
variational regularization method (cf., e.g. [1]), while the Landweber iteration is the most famous
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iterative regularization approach (cf., e.g. [2,3]). In this paper, our focus is on the latter, since from
a computational viewpoint the iterative approach seems more attractive, especially for large-scale
problems.

For the linear problem (1), the Landweber iteration is defined by

xk+1 = xk +�tA∗(yδ − Axk), �t ∈ (0, 2/‖A‖2), (2)

where A∗ denotes the adjoint operator of A. We refer to [2, Section 6.1] for the regularization prop-
erty of the Landweber iteration. The continuous analogue of (2) can be considered as a first-order
evolution equation in Hilbert spaces

ẋ(t)+ A∗Ax(t) = A∗yδ (3)

if an artificial scalar time t is introduced, and�t → 0 in (2). Here and later on, we use Newton’s con-
ventions for the time derivatives. The formulation (3) is known as Showalter’s method, or asymptotic
regularization [4,5]. The regularization property of (3) can be analysed through a proper choice of
the terminating time. Moreover, it has been shown that by using Runge–Kutta integrators, all of the
properties of asymptotic regularization (3) carry over to its numerical realization [6].

From a computational viewpoint, the Landweber iteration, as well as the steepest descent method
and the minimal error method, is quite slow. Therefore, in practice accelerating strategies are usually
used; see [3,7] and references therein for details.

Over the last few decades, besides the first-order iterative methods, there has been increasing evi-
dence to show that the discrete second-order iterative methods also enjoy remarkable acceleration
properties for ill-posed inverse problems. The well-known methods are the Levenberg–Marquardt
method [8], the iteratively regularized Gauss–Newton method [9], the ν-method [2, Section 6.3],
and the Nesterov acceleration scheme [10]. Recently, a more general second-order iterative method –
the two-point gradient method – has been developed in [11]. In order to understand better the
intrinsic properties of the discrete second-order iterative regularization, we consider in this paper
the continuous version

ẍ(t)+ ηẋ(t)+ A∗Ax(t) = A∗yδ ,

x(0) = x0, ẋ(0) = ẋ0 (4)

of the second-order iterative method in the form of an evolution equation, where x0 ∈ X and ẋ0 ∈ X
are the prescribed initial data and η > 0 is a constant damping parameter.

From a physical viewpoint, the system (4) describes the motion of a heavy ball that rolls over the
graph of the residual norm square functional �(x) = ‖yδ − Ax‖2 and that keeps rolling under its
own inertia until friction stops it at a critical point of �(x). This nonlinear oscillator with damp-
ing, which is called the Heavy Ball with Friction (HBF) system, has been considered by several
authors from an optimization viewpoint, establishing different convergence results and identifying
the circumstances under which the rate of convergence of HBF is better than the one of the first-
order methods; see [12–14]. Numerical algorithms based on (4) for solving some special problems,
e.g. inverse source problems in partial differential equations, large systems of linear equations, and
the nonlinear Schrödinger problem, etc., can be found in [15–18]. The main goal of this paper is
the intrinsic structure analysis of the theory of the second-order iterative regularization and the
development of new iterative regularization methods based on the framework (4).

The remainder of the paper is structured as follows: in Section 2, we extend the theory of general
affine regularization schemes for solving linear ill-posed problems to a more general setting, adapted
for the analysis of the second-order model (4). Then, the existence and uniqueness of the second-
order flow (4), as well as some of its properties, are discussed in Section 3. Section 4 is devoted to
the study of the regularization property of the dynamical solution to (4), while Section 5 presents the
results about convergence rates under the assumption of conventional source conditions. In Section 6,
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based on the Störmer–Verlet method, we develop a novel iterative regularization method for the
numerical implementation of the second-order asymptotical regularization (SOAR). Some numerical
examples, as well as a comparison with four existing iterative regularization methods, are presented
in Section 7. Finally, concluding remarks are given in Section 8.

2. General affine regularizationmethods

In this section, we consider general affine regularization schemes based on a family of pairs of piece-
wise continuous functions {gα(λ),φα(λ)}α (0 < λ ≤ ‖A‖2) for regularization parameters α ∈ (0, ᾱ].
Once a pair of generating functions {gα(λ),φα(λ)} is chosen, the approximate solution to (1) can be
given by the procedure

xδα = (1 − A∗Agα(A∗A))x0 + φα(A∗A)ẋ0 + gα(A∗A)A∗yδ . (5)

Remark 2.1: The affine regularization procedure defined by formula (5) is designed in particular
for the second-order evolution equation (4). If one sets (x0, ẋ0) = (0, 0), the proposed regularization
method coincideswith the classical linear regularization schema for general linear ill-posed problems;
see, e.g. [19]. However, as the numerical experiments in Section 7 will show, the initial data influence
the behaviour of the regularized solutions obtained by (4). By finding an appropriate choice of the
triple (x0, ẋ0, η), the second-order analogue of the asymptotical regularization yields an accelerated
procedure with approximate solutions of higher accuracy.

To evaluate the regularization error e(x†,α, δ) := ‖xδα − x†‖ for the procedure (5) in combination
with the noise-free intermediate quantity

xα := (1 − A∗Agα(A∗A))x0 + φα(A∗A)ẋ0 + gα(A∗A)A∗Ax†, (6)

where evidently e(x†,α, δ) ≤ ‖xα − x†‖ + ‖xδα − xα‖, we introduce the concepts of index functions
and profile functions from [19,20], as follows:

Definition 2.1: A real function ϕ : (0,∞) → (0,∞) is called an index function if it is continuous,
strictly increasing and satisfies the condition limλ→0+ ϕ(λ) = 0.

Definition 2.2: An index function f, for which ‖xα − x†‖ ≤ f (α)(α ∈ (0, ᾱ]) holds, is called a profile
function to x† under the assumptions stated above.

Having a profile function f estimating the noise-free error ‖xα − x†‖ and taking into account that
δ‖gα(A∗A)A∗‖ is an upper bound for the noise-propagation error ‖xδα − xα‖, which is independent
of x†, we can estimate the total regularization error e(x†,α, δ) as

e(x†,α, δ) ≤ f (α)+ δ‖gα(A∗A)A∗‖ (7)

for all α ∈ (0, ᾱ]. If we denote by
rα(λ) = 1 − λgα(λ), λ ∈ (0, ‖A‖2] (8)

the bias function related to the major part of the regularization method gα from (5), then f (α) =
‖rα(A∗A)(x0 − x†)+ φα(A∗A)ẋ0‖ is evidently a profile function to x† and we have

e(x†,α, δ) ≤ ‖rα(A∗A)(x0 − x†)+ φα(A∗A)ẋ0‖ + δ‖gα(A∗A)A∗‖. (9)

Proposition 2.1: Assume that the pairs of functions {gα(λ),φα(λ)}α are piecewise continuous in α and
satisfy the following three conditions:
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(i) For any fixed λ ∈ (0, ‖A‖2]: limα→0 rα(λ) = 0 and limα→0 φα(λ) = 0.
(ii) Two constants γ1 and γ2 exist such that |rα(λ)| ≤ γ1 and |φα(λ)| ≤ γ2 hold for all α ∈ (0, ᾱ].
(iii) A constant γ∗ exists such that

√
λ|gα(λ)| ≤ γ∗/

√
α for all α ∈ (0, ᾱ].

Then, if the regularization parameter α = α(δ, yδ) is chosen so that

lim
δ→0

α = lim
δ→0

δ2/α = 0,

the approximate solution in (5) converges to the exact solution x† as δ → 0.

Proof: From the properties (i) and (ii) of Proposition 2.1 we deduce for α → 0 point-wise conver-
gence rα(A∗A)x1 → 0 and φα(A∗A)x2 → 0 for any x1,2 ∈ X (see, e.g. [2, Theorem 4.1]). Therefore,
by the estimate (9) we can derive that

e(x†,α, δ) ≤ ‖rα(A∗A)(x0 − x†)‖ + ‖φα(A∗A)ẋ0‖ + γ∗δ/
√
α → 0

as δ → 0. �

Proposition 2.1motivates us to call the procedure (5) a regularizationmethod for the linear inverse
problem (1) if the pair of functions {gα(λ),φα(λ)}α satisfies the three requirements (i), (ii) and (iii).

Example 2.1: For the Landweber iteration (2) with the step size�t ∈ (0, 2/‖A‖2), we have φα(λ) =
0 and gα(λ) = (1 − (1 −�tλ)�1/α)/λ. It is not difficult to show, e.g. in [19,21], that gα(λ) is a
regularization method by Proposition 2.1 with constants γ2 = 0, γ1 = 1 and γ∗ = √

2�t.
Consider the continuous version of the Landweber iteration (3), i.e. Showalter’s method. It is not

difficult to show that φα(λ) = 0 and gα(λ) = (1 − e−λ/α)/λ, and hence rα(λ) = e−λ/α . Obviously,
gα(λ) is a regularization method with γ2 = 0, γ1 = 1 and γ∗ = θ by noting that supλ∈R+

√
λgα(λ) =

θ
√
α and θ = supλ∈R+

√
λ(λ− e−λ) ≈ 0.6382 [5].

Note that the three requirements (i)–(iii) in Proposition 2.1 are not enough to ensure rates of
convergence for the regularized solutions. More precisely, for rates in the case of ill-posed problems,
additional smoothness assumptions on x† in correspondence with the forward operator A and the
regularization method under consideration have to be fulfilled. This allows us to verify the specific
profile functions f (α) in formula (7) that are specified for our second-order method in formula (9).
Once a profile function f is given, together with the property (iii) in Proposition 2.1, we obtain from
the estimate (7) that

e(x†,α, δ) ≤ f (α)+ γ∗δ/
√
α forall α ∈ (0, ᾱ]. (10)

Moreover, if we consider the auxiliary index function

(α) := √
αf (α), (11)

and choose the regularization parameter a priori as α∗ = −1(δ), then we can easily see that

e(x†,α∗, δ) ≤ (1 + γ∗)f (−1(δ)). (12)

Hence, the convergence rate f (−1(δ)) of the total regularization error as δ → 0 depends on the
profile function f only, but for our suggested approach, f is a function of x†, gα ,φα , x0, ẋ0,A and on
the damping parameter η.

In order to verify the profile function f in detail, it is of interest to consider how sensitive the
regularizationmethod is with respect to a priori smoothness assumptions. In this context, the concept
of qualification can be exploited for answering this question: the higher its qualification, the more the
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method is capable of reacting to smoothness assumptions. Expressing the qualification by means of
index functions ψ , the traditional concept of qualifications with monomials ψ(λ) = λκ for κ > 0
from [5] (see also [2]) has been extended in [19,20] to general index functions ψ . We adapt this
generalized concept to our class of methods (5) in the following definition.

Definition 2.3: Let ψ be an index function. A regularization method (5) for the linear operator
equation (1) generated by the pair {gα(λ),φα(λ)}(0 < λ ≤ ‖A‖2) is said to have the qualification
ψ with constant γ > 0 if both inequalities

sup
λ∈(0,‖A‖2]

|rα(λ)|ψ(λ) ≤ γψ(α) and sup
λ∈(0,‖A‖2]

|φα(λ)|ψ(λ) ≤ γψ(α) (13)

are satisfied for all 0 < α ≤ ‖A‖2.

Remark 2.2: Since the bias function of Showalter’s method equals rα(λ) = e−λ/α and φα(λ) = 0, set
ξ = λ in the following identity:

sup
0≤ξ<∞

e−ξ/αξp = (p/e)pαp (14)

to conclude that for all exponents p> 0 the monomials ψ(λ) = λp are qualifications for Showalter’s
method.Wewill show that an analogue result also holds for the SOARmethod – see Proposition 4.1 –
and will apply this fact to obtaining associated convergence rates.

3. Properties of the second-order flow

We first prove the existence and uniqueness of strong global solutions of the second-order
equation (4). Then, we study the long-term behaviour of the dynamical solution x(t) of (4) and the
residual norm functional ‖Ax(t)− yδ‖.

Definition 3.1: x : [0,+∞) → X is a strong global solution of (4) with initial data (x0, ẋ0) if x(0) =
x0 ∈ X , ẋ(0) = ẋ0 ∈ X , and

• x(·), ẋ(·) : [0,+∞) → X are locally absolutely continuous [22],
• ẍ(t)+ η ẋ(t)+ A∗Ax(t) = A∗yδ holds for almost every t ∈ [0,+∞).

Theorem 3.1: For any pair (x0, ẋ0) ∈ X × X there exists a unique strong global solution of the second-
order dynamical system (4).

Proof: Denote by z = (x, ẋ)T, and rewrite (4) as a first-order differential equation

ż(t) = Bz(t)+ d, (15)

where B = [0, I;−A∗A,−ηI], d = [0;A∗yδ] and I denotes the identity operator in X . Since A
is a bounded linear operator, both A∗ and B are also bounded linear operators. Hence, by the
Cauchy–Lipschitz–Picard theorem, the first-order autonomous system (15) has a unique global
solution for the given initial data (x0, ẋ0). �

Now, we start to investigate the long-term behaviours of the dynamical solution and the residual
norm functional. These properties will be used for the study of convergence rate in Section 5.
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Lemma 3.1: Let x(t) be the solution of (4). Then, ẋ(·) ∈ L2([0,∞),X ) and ẋ(t) → 0 as t → ∞.
Moreover, we have the following two limit relations:

lim
t→∞ ‖Ax(t)− yδ‖ ≤ δ (16)

and

lim
t→∞ ‖Ax(t)− yδ‖2 + ‖ẋ(t)‖2 = inf

x∗∈X
‖Ax∗ − yδ‖2. (17)

The proof of the above lemma uses the idea given in [14], and can be found in Appendix A.1.
If yδ does not belong to the domain D(A†) of the Moore–Penrose inverse A† of A, it is not diffi-
cult to show that there is a ‘blow-up’ for the solution x(t) of the dynamical system (4) in the sense
that ‖x(t)‖ → ∞ as t → ∞. Contrarily, for yδ ∈ D(A†), i.e. if the noisy data yδ satisfy the Picard
condition, one can show more assertions concerning the long-term behaviour of the solution to the
evolution equation (4), and we refer to Lemma 3.2 for results in the case of noise-free data y = Ax†.
In this work, for the inverse problem with noisy data, we are first and foremost interested in the case
that yδ �∈ D(A†) may occur, since the set D(A†) is of the first category and the chance to meet such
an element is negligible.

At the end of this section, we show some properties of x(t) of (4) with noise-free data.

Lemma 3.2: Let x(t) be the solution of (4) with the exact right-hand side y as data. Then, in the case
η ≥ ‖A‖, we have

(i) x(·) ∈ L∞([0,∞),X ).
(ii) ẋ(·) ∈ L∞([0,∞),X ) ∩ L2([0,∞),X ) and ẋ(t) → 0 as t → ∞.
(iii) ẍ(·) ∈ L∞([0,∞),X ) ∩ L2([0,∞),X ) and ẍ(t) → 0 as t → ∞.
(iv) ‖Ax(t)− y‖ = o(t−1/2) as t → ∞.

The proof of Lemma 3.2 follows as a special case for f (x) = 1
2‖Ax − y‖2 in [22], and it is given in

Appendix A.2. The rate ‖Ax(t)− y‖ = o(t−1/2) as t → ∞ given in Lemma 3.2 for the second-order
evolution equation (4) should be compared with the corresponding result for the first-order method,
i.e. the gradient decent methods, where one only obtains ‖Ax(t)− y‖ = O(t−1/2) as t → ∞. If we
consider a discrete iterative method with the number k of iterations, assertion (iv) in Lemma 3.2
indicates that in comparison with gradient descent methods, the second-order methods (4) need the
same computational complexity for the number k of iterations, but can achieve a higher order o(k−1/2)
of accuracy for the objective functional as k → ∞.

4. Convergence analysis for noisy data

This section is devoted to the verification of the pair {gα(λ),φα(λ)}α of generator functions occurring
in formula (6) associatedwith the second-order equation problem (4)with the inexact right-hand side
yδ and the corresponding regularization properties.

Let {σj; uj, vj}∞j=1 be the well-defined singular system for the compact and injective linear operator
A, i.e. we haveAuj = σjvj andA∗vj = σjuj with ordered singular values ‖A‖ = σ1 ≥ σ2 ≥ · · · ≥ σj ≥
σj+1 ≥ · · · → 0 as j → ∞. Since the eigenelements {uj}∞j=1 and {vj}∞j=1 form complete orthonormal
systems in X and Y , respectively, the equation in (4) is equivalent to

〈ẍ(t), uj〉 + η〈ẋ(t), uj〉 + σ 2
j 〈x(t), uj〉 = σj〈yδ , vj〉, j = 1, 2, . . . . (18)

Using the decomposition x(t) = ∑
j ξj(t)uj under the basis {uj}∞j=1 in X , we obtain

ξ̈j(t)+ ηξ̇j(t)+ σ 2
j ξj = σj〈yδ , vj〉, j = 1, 2, . . . . (19)
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In order to solve the above differential equation, we have to distinguish three different cases: (a)
the overdamped case: η > 2‖A‖, (b) the underdamped case: there is an index j0 such that 2σj0+1 <
η < 2σj0 , and (c) the critical damping case: an index j0 exists such that η = 2σj0 . In this section,
we discuss for simplicity the overdamped case only. The other two cases are studied similarly, and
the corresponding details can be found in Appendix 2. We remark that all results that concluded in
the overdamped case also hold for the other two cases, but with different value of positive constants
γ1,2, γ∗ in Proposition 2.1 and γ in Definition 2.3.

In the overdamped case, the characteristic equation of (19), possessing the form ξ̈j(t)+ ηξ̇j(t)+
σ 2
j ξj = 0, which has two independent solutions ξ 1j = e−ηt/2eωjt/2 and ξ 2j = e−ηt/2e−ωjt/2 for all j =

1, 2, . . ., whereωj =
√
η2 − 4σ 2

j > 0. Hence, it is not difficult to show that the general solution to (19)
in the overdamped case is

ξj(t) = c1j e
−ηt/2eωjt/2 + c2j e

−ηt/2e−ωjt/2 + σ−1
j 〈yδ , vj〉, j = 1, 2, . . . . (20)

Introducing the initial conditions in (4) to obtain a system for {c1j , c2j } yields∑
j
(c1j + c2j + σ−1

j 〈yδ , vj〉)uj = x0,

∑
j

(
η − ωj

2
c1j + η + ωj

2
c2j

)
uj = ẋ0, (21)

or equivalently with the decomposition x0 = ∑
j〈x0, uj〉uj for all j = 1, 2, . . .

c1j + c2j + σ−1
j 〈yδ , vj〉 = 〈x0, uj〉,

η − ωj

2
c1j + η + ωj

2
c2j = 〈ẋ0, uj〉, (22)

which gives

c1j = η + ωj

2ωj
〈x0, uj〉 − 1

ωj
〈ẋ0, uj〉 − η + ωj

2ωjσj
〈yδ , vj〉,

c2j = −η − ωj

2ωj
〈x0, uj〉 + 1

ωj
〈ẋ0, uj〉 + η − ωj

2ωjσj
〈yδ , vj〉. j = 1, 2, . . . . (23)

By a combination of (23), the definition of ωj and the decomposition of x(t) we obtain

x(t) =
∑
j

⎛
⎝η +

√
η2 − 4σ 2

j

2
√
η2 − 4σ 2

j

e−((η−
√
η2−4σ 2

j )/2)t −
η −

√
η2 − 4σ 2

j

2
√
η2 − 4σ 2

j

e−((η+
√
η2−4σ 2

j )/2)t

⎞
⎠ 〈x0, uj〉uj

−
∑
j

1

2
√
η2 − 4σ 2

j

(
e−((η−

√
η2−4σ 2

j )/2)t − e−((η+
√
η2−4σ 2

j )/2)t
)

〈ẋ0, uj〉uj

+
∑
j

1 −
⎛
⎝η +

√
η2 − 4σ 2

j

2
√
η2 − 4σ 2

j

e−((η−
√
η2−4σ 2

j )/2)t −
η −

√
η2 − 4σ 2

j

2
√
η2 − 4σ 2

j

e−((η+
√
η2−4σ 2

j )/2)t

⎞
⎠

σj
〈yδ , vj〉uj

=: (1 − A∗Ag(t,A∗A))x0 + φ(t,A∗A)ẋ0 + g(t,A∗A)A∗yδ ,
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where

g(t, λ) = 1
λ

(
1 − η +

√
η2 − 4λ

2
√
η2 − 4λ

e−((η−
√
η2−4λ)/2)t + η −

√
η2 − 4λ

2
√
η2 − 4λ

e−((η+
√
η2−4λ)/2)t

)
,

φ(t, λ) = − 1
2
√
η2 − 4λ

(
e−((η−

√
η2−4λ)/2)t − e−((η+

√
η2−4λ)/2)t

)
. (24)

We find the form required for the generator functions in formula (6) if we set

gα(λ) := g(1/α, λ) and φα(λ) := φ(1/α, λ). (25)

Then the corresponding bias function rα(λ) = 1 − λg(1/α, λ) is

rα(λ) = η +
√
η2 − 4λ

2
√
η2 − 4λ

e−((η−
√
η2−4λ)/2)(1/α) − η −

√
η2 − 4λ

2
√
η2 − 4λ

e−((η+
√
η2−4λ)/2)(1/α). (26)

Theorem 4.1: The functions {gα(λ),φα(λ)}α in (25) based on (4) satisfy the conditions (i)–(iii) of
Proposition 2.1,which means that we consequently have a regularization method with the procedure (5)
for the linear inverse problem (1).

Proof: We check all of the three requirements in Proposition 2.1. The first condition obviously holds
for φα(λ) and rα(λ), defined in (25) and (26), respectively.

The second condition can be obtained by using

|rα(λ)| ≤ η +
√
η2 − 4λ

2
√
η2 − 4λ

= η

2
√
η2 − 4λ

+ 1
2

≤ γ1 := η

2
√
η2 − 4‖A‖2

+ 1
2
,

|φα(λ)| ≤ 1
2
√
η2 − 4λ

e−((η−
√
η2−4λ)/2)t ≤ γ2 := η

2
√
η2 − 4‖A‖2

. (27)

It remains to bound γ∗ in Proposition 2.1. By the inequality 1 − e−at ≤ √
at for a> 0, we obtain

1 − e−((η−
√
η2−4λ)/2)(1/α) ≤

√
η −

√
η2 − 4λ
2

1√
α
,

which implies that

√
λ|gα(λ)| = 1√

λ

(
1 − η +

√
η2 − 4λ

2
√
η2 − 4λ

e−((η−
√
η2−4λ)/2)(1/α)

+ η −
√
η2 − 4λ

2
√
η2 − 4λ

e−((η+
√
η2−4λ)/2)(1/α)

)

= 1√
λ

η +
√
η2 − 4λ

2
√
η2 − 4λ

(
1 − e−((η−

√
η2−4λ)/2)(1/α)

)

− 1√
λ

η −
√
η2 − 4λ

2
√
η2 − 4λ

(
1 − e−((η+

√
η2−4λ)/2)(1/α)

)

≤ 1√
λ

η +
√
η2 − 4λ

2
√
η2 − 4λ

⎛
⎝
√
η −

√
η2 − 4λ
2

1√
α

⎞
⎠ = 1√

η2 − 4λ

√
η +

√
η2 − 4λ
2

1√
α

≤
√

η

η2 − 4‖A‖2
1√
α
.
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Therefore, the third requirement in Proposition 2.1 holds for gα(λ) with

γ∗ =
√
η/(η2 − 4‖A‖2). (28)

Finally, by the proof above, we see that the upper bound ᾱ for the affine regularization method with
{gα(λ),φα(λ)}α can be selected arbitrarily. �

Proposition 4.1: For all exponents p> 0 the monomials ψ(λ) = λp are qualifications with the con-
stants

γ =
(pη
e

)p ( η

2
√
η2 − 4‖A‖2

+ 1
2

)
(29)

for the SOAR method in the overdamped case.

Proof: Set ξ = (η −
√
η2 − 4λ)/2 in (14) and use the following inequality:

η −
√
η2 − 4λ
2

= 4λ
2(η +

√
η2 − 4λ)

≥ λ

η

and the inequality (27), and we can derive that

sup
λ∈(0,‖A‖2]

|rα(λ)|ψ(λ) ≤ sup
λ∈(0,‖A‖2]

η +
√
η2 − 4λ

2
√
η2 − 4λ

e−((η−
√
η2−4λ)/2)(1/α)λp

≤ γ1 sup
λ∈(0,‖A‖2]

e−((η−
√
η2−4λ)/2)(1/α)λp

≤ γ1η
p sup
λ∈(0,‖A‖2]

e−((η−
√
η2−4λ)/2)(1/α)

(
η −

√
η2 − 4λ
2

)p

≤ γ1η
p sup
ξ∈(0,(η−

√
η2−4‖A‖2)/2]

e−ξ/α(ξ)p ≤ γ1η
p
(p
e

)p
αp = γαp.

Similarly, we have

sup
λ∈(0,‖A‖2]

|φα(λ)|ψ(λ) ≤ sup
λ∈(0,‖A‖2]

1
2
√
η2 − 4λ

e−((η−
√
η2−4λ)/2)(1/α)λp

≤ γ2 sup
λ∈(0,‖A‖2]

e−((η−
√
η2−4λ)/2)(1/α)λp ≤ γ2η

p
(p
e

)p
αp ≤ γαp,

which completes the proof. �

The assertion of Theorem 4.1 and analogues to Proposition 4.1 can be found in Appendix 2 for the
other values of the constant η > 0 occurring as a parameter in the second-order differential equation
of problem (4). In particular, this means the underdamped case (b), as well as the critical damping
case (c).
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5. Convergence rate results

Under the general assumptions of the previous sections, the rate of convergence of x(T) → x† as
T → ∞ in the case of precise data, and of x(T∗(δ)) → x† as δ → 0 in the case of noisy data, can be
arbitrarily slow (cf. [23]) for solutions x† which are not smooth enough. In order to prove convergence
rates, some kind of smoothness assumptions imposed on the exact solution must be employed. Such
smoothness assumptions can be expressed by range-type source conditions (cf., e.g. [2]), approxi-
mate source conditions (cf. [24]), and variational source conditions occurring in form of variational
inequalities (cf. [25]). Now, range-type source conditions have the advantage that, in many cases,
interpretations in the form of differentiability of the exact solution, boundary conditions, or similar
properties are accessible. Hence, we focus in the following on the traditional range-type source con-
ditions only. More precisely, we assume that an element v0 ∈ X and numbers p> 0 and ρ ≥ 0 exist
such that

x0 − x† = (A∗A)pv0 with ‖v0‖ ≤ ρ. (30)

Moreover, the initial data ẋ0 is supposed to satisfy such source conditions as well, i.e.

ẋ0 = (A∗A)pv1 with ‖v1‖ ≤ ρ. (31)

For the choice ẋ0 = 0, the condition (31) is trivially satisfied. However, following the discussions in
Sections 2 and 6, the regularized solutions essentially depend on the value of ẋ0. A good choice of ẋ0
provides an acceleration of the regularization algorithm. In practice, one can choose a relatively small
value of ẋ0 to balance the source condition and the acceleration effect.

Proposition 5.1: Under the source conditions (30) and (31), f (α) = 2γραp is a profile function for the
SOAR, where the constant γ is defined in (29).

Proof: Combining the formulas (9), (30) and (31) yields

‖x(1/α)− x†‖ ≤ ‖rα(A∗A)(x0 − x†)‖ + ‖φα(A∗A)ẋ0‖
≤ ‖rα(A∗A)(A∗A)pv0‖ + ‖φα(A∗A)(A∗A)pv1‖
≤ ρ sup

0≤λ≤‖A‖2
|rα(λ)|λp + ρ sup

0≤λ≤‖A‖2
|φα(λ)|λp ≤ 2γραp.

This proves the proposition. �

Theorem 5.1 (A priori choice of the regularization parameter): If the terminating time T∗ of the
second-order flow (4) is selected by the a priori parameter choice

T∗(δ) = c0ρ2/(2p+1)δ−2/(2p+1) (32)

with the constant c0 = (2γ )2/(2p+1), then we have the error estimate for δ ∈ (0, δ0]

‖x(T∗)− x†‖ ≤ cρ1/(2p+1)δ2p/(2p+1), (33)

where the constant c = (1 + γ∗)(2γ )1/(2p+1) and δ0 = 2γρη2p+1.

Proof: By the discussion in Section 2, we choose the value of α∗ such that δ = (α∗) = √
α∗f (α∗) =

2γραp+1/2
∗ . By solving this equation we directly obtain α∗ = (2γ )−2/(2p+1) ρ−2/(2p+1)δ2/(2p+1).
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Setting T∗ = 1/α∗ and using the estimate (12), this gives the relations (32) and

‖x(T∗)− x†‖ = e(x†,α, δ) ≤ (1 + γ∗)f (α∗) = (1 + γ∗)2γρ(T∗)−p

= {(1 + γ∗)(2γ )1/(2p+1)}ρ1/(2p+1)δ2p/(2p+1).

Finally, we use the inequality α∗ ≤ ᾱ = η2 to get the bound δ0 (the upper bound ᾱ = η2 is required
for the affine regularization (5) in both the underdamped and critical cases; see the appendix for
details). �

In practice, the stopping rule in (32) is not realistic, since a good terminating time pointT∗ requires
knowledge of ρ (a characteristic of unknown exact solution). Such knowledge, however, is not neces-
sary in the case of a posteriori parameter choices. In the following two subsections, we consider two
types of discrepancy principles for choosing the terminating time point a posteriori.

5.1. Morozov’s conventional discrepancy principle

In our setting, Morozov’s conventional discrepancy principle means searching for values T> 0
satisfying the equation

χ(T) := ‖Ax(T)− yδ‖ − τδ = 0, (34)

where τ > γ1 ≥ 1 is a constant, and the number γ1 is defined in Proposition 2.1.

Lemma 5.1: If ‖Ax0 − yδ‖ > τδ, then the function χ(T) has at least one root.

Proof: The continuity of χ(T) is obvious according to Theorem 3.1. On the other hand, from (16)
and the assumption of the lemma, we conclude that

lim
T→∞

χ(T) ≤ (1 − τ)δ < 0 and χ(0) = ‖Ax0 − yδ‖ − τδ > 0,

which implies the existence of the root of χ(T). �

Theorem 5.2 (A posteriori choice I of the regularization parameter): Suppose that ‖Ax0 − yδ‖ >
τδ and the source conditions (30) and (31) hold. If the terminating time T∗ of the second-order flow (4)
is chosen according to the discrepancy principle (34), we have for any δ ∈ (0, δ0] and p> 0 the error
estimates

T∗ ≤ C0ρ
2/(2p+1)δ−2/(2p+1) (35)

and

‖x(T∗)− x†‖ ≤ C1δ
2p/(2p+1), (36)

where δ0 is defined in the Theorem 5.1, C0 := (τ − γ1)
−2/(2p+1)(2γ )2/(2p+1), and C1 := (τ +

γ1)
2p/(2p+1)(γ1 + γ2)

1/(2p+1) + γ∗(τ − γ1)
−1/(2p+1)(2γ )1/(2p+1).
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Proof: Using the moment inequality ‖Bpu‖ ≤ ‖Bqu‖p/q‖u‖1−p/q and the source conditions
(30)–(31), we deduce that

‖rα(A∗A∗)(x0 − x†)+ φα(A∗A∗)ẋ0‖
= ‖(A∗A)(p+1/2) (rα(A∗A)v0 + φα(A∗A)v1

) ‖
≤ ‖(A∗A)(p+1/2) (rα(A∗A)v0 + φα(A∗A)v1

) ‖2p/(2p+1)

· ‖rα(A∗A)v0 + φα(A∗A)v1‖1/(2p+1)

≤ ‖Arα(A∗A)(x0 − x†)+ Aφα(A∗A∗)ẋ0‖2p/(2p+1)

· (‖rα(A∗A)v0‖ + ‖φα(A∗A)v1‖
)1/(2p+1) . (37)

Since the terminating time T∗ is chosen according to the discrepancy principle (34), we derive that

τδ = ‖Ax(T∗)− yδ‖
=
∥∥∥Ar1/T∗(A∗A)(x0 − x†)+ Aφ1/T∗(A∗A)ẋ0 − r1/T∗(A∗A)(yδ − y)

∥∥∥
≥ ‖Ar1/T∗(A∗A)(x0 − x†)+ Aφ1/T∗(A∗A)ẋ0‖ − ‖r1/T∗(A∗A)(yδ − y)‖. (38)

Now we combine the estimates (37) and (38) to obtain, with the source conditions, that

‖rα(A∗A∗)(x0 − x†)+ φα(A∗A∗)ẋ0‖
≤ ‖Arα(A∗A)(x0 − x†)+ Aφα(A∗A∗)ẋ0‖2p/(2p+1)

· (‖rα(A∗A)v0‖ + ‖φα(A∗A)v1‖)1/(2p+1)

≤ (τδ + ‖r1/T∗(A∗A)(yδ − y)‖)2p/(2p+1)((γ1 + γ2)ρ)
1/(2p+1)

≤ c1ρ1/(2p+1)δ2p/(2p+1), (39)

where c1 := (τ + γ1)
2p/(2p+1)(γ1 + γ2)

1/(2p+1).
On the other hand, in a similar fashion to (38), it is easy to show that

τδ ≤ ‖Ar1/T∗(A∗A)(x0 − x†)+ Aφ1/T∗(A∗A)ẋ0‖ + ‖r1/T∗(A∗A)(yδ − y)‖
≤ ‖Ar1/T∗(A∗A)(x0 − x†)+ Aφ1/T∗(A∗A)ẋ0‖ + γ1δ.

If we combine the above inequality with the source conditions (30)–(31) and the qualification
inequality (2.3), we obtain

(τ − γ1)δ ≤ ‖Ar1/T∗(A∗A)(x0 − x†)+ Aφ1/T∗(A∗A)ẋ0‖
≤ ‖(A∗A)p+1/2r1/T∗(A∗A)v0‖ + ‖(A∗A)p+1/2φ1/T∗(A∗A)v1‖ ≤ 2ργ (T∗)−(p+1/2),

which yields the estimate (35). Finally, using (35) and (39), we conclude that

‖x(T∗)− x†‖ ≤ ‖rα(A∗A∗)(x0 − x†)+ φα(A∗A∗)ẋ0‖ + γ∗
√
T∗δ

≤ c1ρ1/(2p+1)δ2p/(2p+1) + γ∗
√
C0ρ

1/(2p+1)δ2p/(2p+1) = C1ρ
1/(2p+1)δ2p/(2p+1).

This completes the proof. �
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Figure 1. The behaviour of χ(T) from (34) with different damping parameters η.

Remark 5.1: If the function χ(T) has more than one root, we recommend selecting T∗ from the rule

χ(T∗) = 0 < χ(T), ∀ T < T∗.

In other words, T∗ is the first time point for which the size of the residual ‖Ax(T)− yδ‖ has about
the order of the data error. By Lemma 5.1 such T∗ always exists.

It is easy to show that χ(T) is bounded by a decreasing function as the proof of Proposition 5.2
will show. Roughly speaking, the trend of χ(T) is to be a decreasing function, where oscillations may
occur, and we refer to Figure 1. On the other hand, one can anticipate that themore oscillations of the
discrepancy function χ(T) occur, the smaller the damping parameter η is. This is an expected result
due to the behaviour of damped Hamiltonian systems.

5.2. The total energy discrepancy principle

For presenting a newly developed discrepancy principle, we introduce the total energy discrepancy
function as follows:

χte(T) := ‖Ax(T)− yδ‖2 + ‖ẋ(T)‖2 − τ 2δ2, (40)

where τ > γ1 as before.

Proposition 5.2: The function χte(T) is continuous and monotonically non-increasing. If ‖Ax0 −
yδ‖2 + ‖ẋ0‖2 > τ 2δ2, then χte(T) = 0 has a unique solution.

Proof: The continuity of χte(T) is obvious according to Theorem 3.1. The non-growth of χte(T) is
straight-forward according to χ̇te = −2η‖ẋ‖2. Furthermore, from (16), (17) and the assumption of
the proposition, we derive that

lim
T→∞

χte(T) ≤ δ2(1 − τ 2) < 0, (41)

and that, moreover, χte(0) = ‖Ax0 − yδ‖2 + ‖ẋ0‖2 − τ 2δ2 > 0. This implies the existence of roots
for χte(T).
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Finally, let us show that χte(T) has a unique solution.We prove this by contradiction. Since χte(T)
is a non-increasing function, a number T0 exists so that χte(T) = 0 for T ∈ [T0,T0 + ε] with some
positive ε > 0. Thismeans that χ̇te(T) = −2η‖ẋ‖2 ≡ 0 in (T0,T0 + ε). Hence, ẍ ≡ 0 in (T0,T0 + ε).
Using equation (4) we conclude that for all T > T0: x(T) ≡ x(T0). Since χte(T0) = 0, we obtain that
χte(T) ≡ 0 for T > T0, which implies that limT→∞ χte(T) = 0. This contradicts the fact in (41). �

Theorem5.3 (Aposteriori choice II of the regularizationparameter ): Assume that ‖Ax0 − yδ‖2 +
‖ẋ0‖2 > τ 2δ2 and a positive number δ1 exists such that for all δ ∈ (0, δ1], the unique root T∗ of χte(T)
satisfies the inequality ‖Ax(T∗)− yδ‖ ≥ τ1δ, where τ1 > γ1 is a constant, independent of δ. Then,
under the source conditions (30) and (31), for any δ ∈ (0, δ0] and p> 0 we have the error estimates

T∗ ≤ C0ρ
2/(2p+1)δ−2/(2p+1), ‖x(T∗)− x†‖ ≤ C1δ

2p/(2p+1), (42)

where δ0 is defined in Theorem 5.1, and constants C0 and C1 are the same as in Theorem 5.2.

Proof: The proof can be done along the lines and using the tools of the proof of Theorem 5.2. �

In the simulation Section 7.1, we will computationally show that the assumptions occurring in the
above theorem can happen in practice. Empirically, when the value of the initial velocity is not too
small (‖ẋ0‖ > 0) or the noise is small enough (δ � 1), the additional assumption ‖Ax(T∗)− yδ‖ ≥
τ1δ in Theorem 5.3 always holds.

6. A novel iterative regularizationmethod

Roughly speaking, the second-order evolution equation (4) with an appropriate numerical discretiza-
tion scheme for the artificial time variable yields a concrete second-order iterative method. Just as
with the Runge–Kutta integrators [6] or the exponential integrators [26] for solving first-order equa-
tions, the damped symplectic integrators are extremely attractive for solving second-order equations,
since the schemes are closely related to the canonical transformations [27], and the trajectories of the
discretized second flow are usually more stable.

The simplest discretization scheme should be the Euler method. Denote by v = ẋ, and consider
the following Euler iteration:

xk+1 = xk +�tkvk,

vk+1 = vk +�tk(A∗(yδ − Axk+1)− ηvk),

x0 = x0, v0 = ẋ0. (43)

By elementary calculations, scheme (43) expresses the form of following three-term semi-iterative
method:

xk+1 = xk + μk(xk − xk−1)+ ωkA∗(yδ − Axk) (44)

with a specially defined parameters ωk = �tk and μk = 1 −�tkη. It is well known that the semi-
iterativemethod (44), equippedwith an appropriate stopping rule, yields order optimal regularization
method with (asymptotically) much fewer iterations than the classical Landweber iteration [2,
Section 6.2].
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In this paper, we develop a new iterative regularization method based on the Störmer–Verlet
method, which also belongs to the family of symplectic integrators and takes the form

vk+1/2 = vk + �t
2
(A∗(yδ − Axk)− ηvk+1/2),

xk+1 = xk +�tvk+1/2,

vk+1 = vk+1/2 + �t
2
(A∗(yδ − Axk+1)− ηvk+1/2),

x0 = x0, v0 = ẋ0. (45)

Proposition 6.1: For any fixed damping parameter η, if the step size is chosen by

�t ≤ min(
√
2/‖A‖, 2/η), (46)

then, the scheme (45) is convergent. Consequently, for any fixed T, there exists a pair of parameters
(k,�t), satisfying k�t = T and the condition (46), such that xk = x(T)+ O(�t2) as �t → 0. Here
xk and x(·) are solutions to (45) and (4), respectively.

Proof: Denote by z = (x, v)T, and rewritten (45) as

zk+1 = Bzk + �t
2 +�tη

b, (47)

where b = [�t; 2I − (�t2/2)A∗A]A∗yδ and

B =

⎡
⎢⎢⎣

I − �t2

2 +�tη
A∗A

2�t
2 +�tη

I

− �t
2(2 +�tη)

(4I −�t2A∗A)A∗A
2 −�tη
2 +�tη

I − �t2

2 +�tη
A∗A

⎤
⎥⎥⎦ .

By Taylor’s theorem and the finite difference formula, it is not difficult to show the consistency of
the scheme (45). It is well known that boundedness implies the convergence of consistent schemes
for any problem [28], hence, it suffices to show the boundedness of the scheme (45). The asymp-
totical behaviour xk = x(T)+ O(�t2) follows from the convergence result and the second order of
the Störmer–Verlet method. Furthermore, a sufficient condition for the boundedness of the iterative
algorithm (45) is that the operator B is non-expansive. Hence, it is necessary to prove that ‖B‖2 ≤ 1.

Using the singular value decomposition, we have A∗A = ���T, where� is a unitary matrix and
� = diag(λi), where λi ≥ 0, i = 1, . . . , n.

By the elementary calculations, we obtain that the eigenvalues of B equal

μ±
i = 1

2 +�tη
{(2 −�t2λi)±

√
(2 −�t2λi)2 − (4 −�t2η2)}, i = 1, . . . , n. (48)

Denote by i∗ the index of λi∗ , corresponding to the maximal absolute value of μ±
i , i.e.

|μmax| = 1
2 +�tη

max±

∣∣∣∣(2 −�t2λi∗)±
√
(2 −�t2λi∗)2 − (4 −�t2η2)

∣∣∣∣ .
There are three possible cases here: the overdamped case ((2 −�t2λi∗)2 > 4 −�t2η2), the under-

damped case ((2 −�t2λi∗)2 < 4 −�t2η2), and the critical damping case ((2 −�t2λi∗)2 = 4 −
�t2η2).
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Let us consider these cases, respectively. For the chosen time step size �t in (46), we have 2 −
�t2λi∗ ≥ 0. Therefore, for the overdamped case,

|μmax| = 1
2 +�tη

{(2 −�t2λi∗)+
√
(2 −�t2λi∗)2 − (4 −�t2η2)}.

Define 2 −�t2λi∗ = a
√
4 −�t2η2 with a> 1 (by the condition (46), it holds that 4 −�t2η2 ≥ 0),

and we have

|μmax| = (a + √
a2 − 1)

√
4 −�t2η2

2 +�tη
= (a + √

a2 − 1)(2 −�t2λi∗)
a(2 +�tη)

. (49)

Note that

�tη =
√
4 −

(
2 −�t2λi∗

a

)2
. (50)

Combine (49) and (50) to obtain

|μmax| = (a + √
a2 − 1)(2 −�t2λi∗)

2a +√
4a2 − (2 −�t2λi∗)2

=
(a + √

a2 − 1)(1 − �t2λi∗
2

)

a +
√
a2 −

(
1 − �t2λi∗

2

)2
≤ 1 − �t2λi∗

2
≤ 1.

Now, consider the underdamped case. In this case, the complex eigenvalue μmax satisfies

|μmax|2 = 1
(2 +�tη)2

{(2 −�t2λi∗)
2 + [(4 −�t2η2)− (2 −�t2λi∗)

2]},

which implies that

|μmax|2 = 4 −�t2η2

(2 +�tη)2
= 2 −�tη

2 +�tη
< 1.

Finally, consider the critical damping case. Similarly, we have |μmax| = √
(2 −�tη)/(2 +�tη) < 1,

which yields the desired result. �

At the end of this second, we show the convergence rate of the scheme (45).

Theorem 6.1: Under the assumptions of Theorem 5.2 or 5.3, if the time step size is chosen by �t =
Ctδ

p/(2p+1), then for any δ ∈ (0, δs] and p> 0 we have the convergence rate

‖xk∗ − x†‖ = O(δ2p/(2p+1)), (51)

where k∗ = T∗/�t , δs = min{(√2/Ct)
2+1/p‖A‖−2−1/p, (2/Ct)

2+1/pη−2−1/p, δ0}, Ct =
(T∗/δp/(2p+1))/�T∗/δp/(2p+1), and T∗ is the root of (34) or (40). Here, �· denotes the standard floor
function and δ0 is defined in Theorem 5.1.

Proof: It follows from Proposition 6.1 that the choice�t = Ctδ
p/(2p+1) yields

‖xk∗ − x(T∗)‖ ≤ Cδ2p/(2p+1)

with some constant C for all δ ∈ (0, δs].
Combine the above inequality and the results in Theorems 5.2 and 5.3 to obtain

‖xk∗ − x†‖ ≤ ‖xk − x(T∗)‖ + ‖x(T∗)− x†‖ ≤ Crδ
2p/(2p+1)

for some constant Cr . This gives the estimate (51). �



1016 Y. ZHANG AND B. HOFMANN

7. Numerical simulations

In this section, we present some numerical results for the following integral equation:

Ax(s) :=
∫ 1

0
K(s, t)x(t) dt = y(s), K(s, t) = s(1 − t)χs≤t + t(1 − s)χs>t . (52)

If we choose X = Y = L2[0, 1], the operator A is compact, selfadjoint and injective. It is well known
that the integral equation (52) has a solution x = −y′′ if y ∈ H2[0, 1] ∩ H1

0[0, 1]. Moreover, the oper-
ator A has the eigensystem Auj = σjuj, where σj = (jπ)−2 and uj(t) = √

2 sin(jπ t). Furthermore,
using the interpolation theory (see e.g. [29]) it is not difficult to show that for 4p − 1/2 �∈ N

R((A∗A)p) = {x ∈ H4p[0, 1] : x2l(0) = x2l(1) = 0, l = 0, 1, . . . , �2p − 1/4}.
In general, a regularization procedure becomes numerically feasible only after an appropriate dis-
cretization. Here, we apply the linear finite elements to solve (52). Let Yn be the finite element space
of piecewise linear functions on a uniform grid with step size 1/(n − 1). Denote by Pn the orthogo-
nal projection operator acting from Y into Yn. Define An := PnA and Xn := A∗

nYn. Let {φj}nj=1 be a
basis of the finite element space Yn, then, instead of the original problem (52), we solve the following
system of linear equations:

Anxn = yn, (53)

where [An]ij = ∫ 1
0 (
∫ 1
0 k(s, t)φi(s) ds)φj(t) dt and [yn]j = ∫ 1

0 y(t)φj(t) dt.
As shown in [2], the finite dimensional projection error εn := ‖(I − Pn)A‖ plays an important role

in the convergence rates analysis. For the compact operator A, εn → 0 as n → ∞. Moreover, if the
noise level δ → 0 slowly enough as n → ∞, the quality εn has no influence and we obtain the same
convergence rates as in Theorems 5.2 and 5.3.

Uniformly distributed noises with the magnitude δ′ are added to the discretized exact right-hand
side:

[yδn]j := [1 + δ′ · (2Rand(x)− 1)] · [yn]j, j = 1, . . . , n, (54)

where Rand(x) returns a pseudo-randomvalue drawn fromauniformdistribution on [0,1]. The noise
level of measurement data is calculated by δ = ‖yδn − yn‖2, where ‖ · ‖2 denotes the standard vector
norm in Rn.

To assess the accuracy of the approximate solutions, we define the L2-norm relative error for an
approximate solution xk∗

n (k∗ = �T∗/�t):

L2Err := ‖xk∗
n − x†‖L2[0,1]/‖x†‖L2[0,1],

where x† is the exact solution to the corresponding model problem.

7.1. Influence of parameters

The purpose of this subsection is to explore the dependence of the solution accuracy and the conver-
gence rate on the initial data (x0, ẋ0), damping parameter η and the discrepancy functions χ and χte,
and thus to give a guide on the choices of them in practice.

In this subsection, we solve integral equation (52) with the exact right-hand side y = s(1 − s).
Then, the exact solution x† = 2, and x† ∈ R((A∗A)p) for all p < 1/8. Denote by ‘DP’ and ‘TEDP’
the newly developed iterative scheme (45) equipped with the Morozov’s conventional discrepancy
function χ(T) and the total energy discrepancy functions χte(T), respectively.

The results about the influence of the solution accuracy (L2Err) and the convergence rate (iteration
numbers k∗(δ)) on the initial data (x0, ẋ0) are given in Tables 1 and 2, respectively. As we can see, both
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Table 1. The dependence of the solution accuracy and the conver-
gence rate on the initial data x0.�t = 19.4946, η = 2.5648 × 10−4, ẋ0 =
0, τ = 2, p = 0.1125.

DP TEDP

δ (δ′) x0 k∗(δ) L2Err k∗(δ) L2Err

7.1191e−04 (1e−03) 0 1295 0.2214 2033 0.2894
7.1337e−04 (1e−03) −1 1354 0.2284 2210 0.2825
7.0838e−04 (1e−03) 1 1108 0.1965 1777 0.1414
7.1602e−05 (1e−04) 0 2397 0.0688 2958 0.0653
8.0523e−05 (1e−04) −1 2525 0.0983 3076 0.0920
7.8903e−05 (1e−04) 1 1600 0.0449 2643 0.0431

Table 2. The dependence of the solution accuracy and the convergence rate
on the initial data ẋ0.�t = 19.4946, η = 0.0154, x0 = 1, τ = 2, p = 0.1125.

DP TEDP

δ (δ′) ẋ0 k∗(δ) L2Err k∗(δ) L2Err

6.3541e−04 (1e−03) 0 155 0.1062 156 0.1061
7.3673e−04 (1e−03) −0.01 374 0.1576 376 0.1574
7.1484e−04 (1e−03) 0.01 39 0.0443 39 0.0443
8.0763e−05 (1e−04) 0 4559 0.0675 4561 0.0675
7.3174e−05 (1e−04) −0.01 12466 0.0953 12467 0.0953
7.6200e−05 (1e−04) 0.01 982 0.0293 983 0.0293

Table 3. The dependence of the solution accuracy and the convergence rate on the
damping parameter η.�t = 19.4946, x0 = 1, ẋ0 = 0, τ = 2, p = 0.1125.

DP TEDP

δ (δ′) η k∗(δ) L2Err k∗(δ) L2Err

8.7715e−04 (1e−03) 2.5648e−05 6943 0.8319 17393 0.7744
7.3673e−04 (1e−03) 2.5648e−04 1108 0.1310 1728 0.1080
7.1484e−04 (1e−03) 2.5648e−03 124 0.0901 183 0.0870
8.1011e−05 (1e−04) 2.5648e−02 205 0.1101 206 0.1100
7.3174e−05 (1e−04) 0.0513 398 0.1108 398 0.1108
7.2721e−05 (1e−04) 0.1026 (= 2/�t) 848 0.1096 848 0.1096

the initial data x0 and ẋ0 influence the solution accuracy as well as the convergence rate. Moreover,
when the value of the damping parameter is not too small (see Tables 2 and 3) the results (both
solution accuracy and convergence rate) by the methods ‘DP’ and ‘TEDP’ almost coincide with each
other. This result verifies the rationality of the assumption in Theorem 5.3.

In Table 3, we displayed the numerical results with different value of damping parameters η. With
the appropriate choice of the damping parameter, say η = 2.5648 × 10−3 in our example, the SOAR
not only gives the most accurate result but exhibits an acceleration effect. The critical value of the
damping parameter, say η = 2/�t, also provides an accurate result. But it requires a few more steps.
The influence of the damping parameter on the residual functional can be found in Figure 1. It
shows that at the same time point, the larger the damping parameter, the smaller the residual norm
functional.

7.2. Comparisonwith othermethods

In order to demonstrate the advantages of our algorithm over the traditional approaches, we solve
the same problems by four famous iterative regularization methods – the Landweber method, the
Nesterov’s method, the ν-method and the conjugate gradient method for the normal equation
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Table 4. Comparisons with the Landweber method, the Nesterov’s method, the Chebyshev method, and the CGNE method.

DP TEDP Landweber

δ k∗(δ) CPU (s) L2Err k∗(δ) CPU (s) L2Err k∗(δ) CPU (s) L2Err

Example 1
1.0400e−2 70 0.2023 0.1494 70 0.1995 0.1494 20438 52.6428 0.2639
1.0380e−3 2872 8.9239 0.0945 2871 1.9105 0.0945 kmax 1.6899e3 0.1807
1.0445e−4 56246 177.3387 0.0597 56246 177.9603 0.0473 kmax 1.8048e3 0.1807

Example 2
1.0761e−2 15 0.0554 0.3676 25 0.0753 0.1987 1457 6.3672 0.7032
1.0703e−3 93 0.2488 0.0637 132 0.3567 0.0581 23790 67.6082 0.1767
1.1006e−4 453 1.4931 0.0195 531 1.8000 0.0184 187188 679.8274 0.0509

Nesterov Chebyshev CGNE

δ k∗(δ) CPU (s) L2Err k∗(δ) CPU (s) L2Err k∗(δ) CPU (s) L2Err

Example 1
1.0400e−2 419 1.1384 0.2590 264 0.7378 0.2553 6 0.0351 0.2213
1.0380e−3 2813 8.5986 0.1600 2229 7.6512 0.1496 18 0.0904 0.1383
1.0445e−4 16642 60.1179 0.1025 17443 52.2056 0.0897 39 0.2013 0.0894

Example 2
1.0761e−2 102 0.3018 0.7043 62 0.1768 0.7102 6 0.0148 0.4835
1.0703e−3 416 1.1732 0.1676 415 1.1908 0.1190 12 0.0261 0.1514
1.1006e−4 1805 6.0793 0.0280 2226 7.6967 0.0196 15 0.0309 0.0447

(CGNE, cf., e.g. [30]). The Landweber method is given in (2), while Nesterov’s method is defined
as [31]

zk = xk + k − 1
k + α − 1

(xk − xk−1),

xk+1 = zk +�tA∗(yδ − Azk), (55)

where α > 3 (we choose α = 3.1 in our simulations). Moreover, we select the Chebyshev method as
our special ν-method, i.e. ν = 1/2 [2, Section 6.3]. For all of four traditional iterative regularization
methods, we use the Morozov’s conventional discrepancy principle as the stopping rule.

We consider the following two different right-hand sides for the integral equation (52).

• Example 1: y(s) = s(1 − s). Then, x† = 2, and x† ∈ R((A∗A)p) for all p < 1/8. This example
uses the discretization size n= 400. Other parameters are�t = 19.4946, η = 2.5648 × 10−4, x0 =
1, ẋ0 = 0, τ = 2, p = 0.1125.

• Example 2: y(s) = s4(1 − s)3. Then, x† = −6t2(1 − t)(2 − 8t + 7t2), and x† ∈ R((A∗A)p) for
all p < 5/8. This example uses the discretization size n= 400. Other parameters are �t =
19.4946, η = 0.0051, x0 = 0, ẋ0 = 0, τ = 2, p = 0.5625.

The results of the simulation are presented in Table 4, where we can conclude that, in general, the
SOAR need less iteration and CPU time, and offers a more accurate regularization solution. More-
over, with respect to the Morozov’s conventional discrepancy principle, the newly developed total
energy discrepancy principle provides more accurate results in most cases. Concerning the number
of iterations, the CGNE method performed much better than all of the other methods. However, the
accuracy of the CGNE method is much worse than other methods (including DP and TEDP), since
the step size of CGNE is too large to capture the optimal point and the semi-convergence effect dis-
turbs the iteration rather early. Note that we set a maximal iteration number kmax = 400, 000 in all of
our simulations.
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8. Conclusion and outlook

In this paper, we have investigated the method of SOAR for solving the ill-posed linear inverse
problem Ax= y with the compact operator Amapping between infinite dimensional Hilbert spaces.
Instead of y, we are given noisy data yδ obeying the inequality ‖yδ − y‖ ≤ δ. We have shown regular-
ization properties for the dynamical solution of the second-order equation (4). Moreover, by using
Morozov’s conventional discrepancy principle on the one hand and a newly developed total energy
discrepancy principle on the other hand, we have proven the order optimality of SOAR. Furthermore,
based on the framework of SOAR, by using the Störmer–Verlet method, we have derived a novel
iterative regularization algorithm. The convergence property of the proposed numerical algorithm
is proven as well. Numerical experiments in Section 7 show that, in comparison with conventional
iterative regularization methods, SOAR is a faster regularization method for solving linear inverse
problems with high levels of accuracy.

Various numerical results show that the damping parameter η in the second-order equation (4)
plays a prominent role in regularization and acceleration. Therefore, how to choose an optimal damp-
ing parameter should be studied in the future.Moreover, using the results of the nonlinear Landweber
iteration, it will be possible to develop a theory of SOAR for wide classes of nonlinear ill-posed prob-
lems. Furthermore, it could be very interesting to investigate the case with the dynamical damping
parameter η = η(t). For instance, the second-order equation (4) with η = r/t (r ≥ 3) presents the
continuous version of Nesterov’s scheme [32], and the discretization of (4) with

ηk = (k + 2ν − 1)(2k + 4ν − 1)(2k + 2ν − 3)− (k − 1)(2k − 3)(3k + 3ν − 1)
4(2k + 2ν − 3)(2k + 2ν − 1)(k + ν − 1)

,

�tk = 4
(2k + 2ν − 1)(k + ν − 1)
(k + 2ν − 1)(2k + 4ν − 1)

,

yields the well-known ν-methods [2, Section 6.3]. Even in the linear case (1), to the best of our
knowledge, it is not quite clear whether Nesterov’s approach equipped with a posteriori choice of the
regularization parameter is an accelerated regularization method for solving ill-posed inverse prob-
lems. In our opinion, however, the SOAR can be a candidate for the systematic analysis of general
second-order regularization methods.
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Appendix 1. Proofs in Section 3

A.1 Proof of Lemma 3.1
Define the Lyapunov function of (4) by E(T) = ‖Ax(T)− yδ‖2 + ‖ẋ(T)‖2. It is not difficult to show that

Ė(t) = −2η‖ẋ(t)‖2 (A1)
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by looking at equation (4) and the differentiation of the energy function Ė(t) = 2〈ẋ(t), ẍ(t)− A∗(yδ − Ax(t))〉. Hence,
E(t) is non-increasing, and consequently, ‖ẋ(t)‖2 ≤ E(0). Therefore, ẋ(·) is uniform bounded. Integrating both sides
in (A1), we obtain ∫ ∞

0
‖ẋ(t)‖2dt ≤ E(0)/(2η) < ∞,

which yields ẋ(·) ∈ L2([0,∞),X ).
Now, let us show that for any x∗ ∈ X the following inequality holds:

lim sup
t→∞

‖Ax(t)− yδ‖ ≤ ‖Ax∗ − yδ‖. (A2)

Consider for every t ∈ [0,∞) the function e(t) = e(t; x∗) := 1
2‖x(t)− x∗‖. Since ė(t) = 〈x(t)− x∗, ẋ(t)〉 and

ë(t) = ‖ẋ(t)‖2 + 〈x(t)− x∗, ẍ(t)〉 for every t ∈ [0,∞). Taking into account (4), we get

ë(t)+ ηė(t)+ 〈x(t)− x∗,A∗(Ax(t)− yδ)〉 = ‖ẋ(t)‖2. (A3)

On the other hand, by the convexity inequality of the residual norm square functional ‖Ax(t)− yδ‖2, we derive
‖Ax(t)− yδ‖2 + 2〈x∗ − x(t),A∗(Ax(t)− yδ)〉 ≤ ‖Ax∗ − yδ‖2. (A4)

Combine (A3) and (A4) with the definition of E(t) to obtain
ë(t)+ ηė(t) ≤ 1

2‖Ax∗ − yδ‖2 − 1
2E(t)+ 3

2‖ẋ(t)‖2.
By (A1), E(t) is non-increasing, hence, given t> 0, for all τ ∈ [0, t] we have

ë(τ )+ ηė(τ ) ≤ 1
2‖Ax∗ − yδ‖2 − 1

2E(t)+ 3
2‖ẋ(τ )‖2.

By multiplying this inequality with eηt and then integrating from 0 to θ , we obtain

ė(θ) ≤ e−ηθ ė(0)+ 1 − e−ηθ

2η
(‖Ax∗ − yδ‖2 − E(t))+ 3

2

∫ θ

0
e−η(θ−τ)‖ẋ(τ )‖2dτ .

Integrate the above inequality once more from 0 to t together with the fact that E(t) decreases, to obtain

e(t) ≤ e(0)+ 1 − e−ηt

η
ė(0)+ ηt − 1 + e−ηt

2η2
(‖Ax∗ − yδ‖2 − E(t))+ h(t), (A5)

where h(t) := 3
2
∫ t
0
∫ θ
0 e−η(θ−τ)‖ẋ(τ )‖2dτdθ .

Since e(t) ≥ 0 and E(t) ≥ ‖Ax(t)− yδ‖2, it follows from (A5) that

ηt − 1 + e−ηt

2η2
‖Ax(t)− yδ‖2 ≤ e(0)+ 1 − e−ηt

η
ė(0)+ ηt − 1 + e−ηt

2η2
‖Ax∗ − yδ‖2 + h(t).

Dividing the above inequality by (ηt − 1 + e−ηt)/2η2 and letting t → ∞, we deduce that

lim sup
t→∞

‖Ax(t)− yδ‖2 ≤ ‖Ax∗ − yδ‖2 + lim sup
t→∞

2η
t
h(t).

Hence, for proving (A2), it suffices to show that h(·) ∈ L∞([0,∞),X ). It is obviously held by noting the following
inequalities:

0 ≤ h(t) = 3
2η

∫ t

0
(1 − e−η(t−τ))‖ẋ(τ )‖2dτ ≤ 3

2η

∫ ∞

0
‖ẋ(τ )‖2dτ < ∞.

From the inequality ‖Ax(t)− yδ‖ ≥ infx∗∈X ‖Ax∗ − yδ‖, we conclude together with (A2) that

lim
t→∞ ‖Ax(t)− yδ‖ = inf

x∗∈X
‖Ax∗ − yδ‖. (A6)

Consequently, we have

lim
t→∞ ‖Ax(t)− yδ‖ ≤ ‖Ax† − yδ‖ ≤ δ.

Now, let us show the remaining parts of the assertion. Since E(t) is non-increasing and bounded from below by
infx∗∈X ‖Ax∗ − yδ‖2, it converges as t → ∞. If limt→∞ E(t) > infx∗∈X ‖Ax∗ − yδ‖2, then limt→∞ ‖ẋ(t)‖ > 0 by
noting (A6). This contradicts the fact that x(·) ∈ L2([0,∞),X ). Therefore, the limit (17) holds and ẋ(t) → 0 as t → ∞.
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A.2 Proof of Lemma 3.2
(i) Consider for every t ∈ [0,∞) the function e(t) = e(t; x†) = 1

2‖x(t)− x†‖2. Similarly as in (A3), it holds that

ë(t)+ ηė(t)+ 〈x(t)− x†,A∗(Ax(t)− y)〉 = ‖ẋ(t)‖2,
which implies that

ë(t)+ ηė(t)+ 1
‖A‖2 ‖A∗(y − Ax(t))‖2 ≤ ‖ẋ(t)‖2 (A7)

or, equivalently (by using the evolution equation (4)),

ë(t)+ ηė(t)+ η

‖A‖2
d‖ẋ(t)‖2

dt
+
(
η2

‖A‖2 − 1
)

‖ẋ(t)‖2 + 1
‖A‖2 ‖ẍ‖2 ≤ 0. (A8)

By the assumption η ≥ ‖A‖, we deduce that

ë(t)+ ηė(t)+ η

‖A‖2
d‖ẋ(t)‖2

dt
≤ 0, (A9)

whichmeans that the function t �→ ė(t)+ ηe(t)+ (η/‖A‖2)‖ẋ(t)‖2 ismonotonically decreasing.Hence, a real number
C exists, such that

ė(t)+ ηe(t)+ η

‖A‖2 ‖ẋ(t)‖2 ≤ C, (A10)

which implies ė(t)+ ηe(t) ≤ C. By multiplying this inequality with eηt and then integrating from 0 to T, we obtain the
inequality

e(T) ≤ e(0)e−ηT + C(1 − e−ηT)/η ≤ e(0)+ C/η.
Hence, e(·) is uniform bounded, and, consequently, the trajectory x(·) is uniform bounded.

(ii) follows from Lemma 3.1.
Now, we prove assertion (iv). Define

h(t) = η

2
‖x(t)− x†‖2 + 〈ẋ(t), x(t)− x†〉. (A11)

By elementary calculations, we derive that

ḣ(t) = η〈ẋ(t), x(t)− x†〉 + 〈ẍ(t), x(t)− x†〉 + ‖ẋ(t)‖2 = ‖ẋ(t)‖2 − ‖Ax − y‖2,
which implies that (by noting Ė(t) = −2η‖ẋ(t)‖2)

Ė(t)+ ηE(t)+ ηḣ(t) = 0.

Integrate the above equation on [0,T] to obtain together, with the nonnegativity of E(t),∫ T

0
E(t)dt = 1

η
(E(0)− E(t))− (h(t)− h(0)) ≤

(
1
η
E(0)+ h(0)

)
− h(t). (A12)

On the other hand, since both x(t) and x† are uniform bounded, and ẋ(t) → 0 as t → 0, a constantM exists such
that |h(t)| ≤ M. Hence, letting T → ∞ in (A12), we obtain∫ ∞

0
E(t) dt < ∞. (A13)

Since E(t) is non-increasing, we deduce that∫ T

T/2
E(t) dt ≥ T

2
E(T). (A14)

Using (A13), the left side of (A14) tends to 0 when T → ∞, which implies that limT→∞ TE(T) = 0. Hence, we
conclude limT→∞ T‖Ax(T)− y‖2 = 0, which yields the desired result in (iv).

Finally, let us show the long-term behaviour of ẍ(·). Integrating the inequality (A8) from 0 to T we obtain the fact
that there exists a real number C′, such that for every t ∈ [0,∞)

ė(T)+ ηe(T)+ η

‖A‖2 ‖ẋ(T)‖2 +
(
η2

‖A‖2 − 1
)∫ T

0
‖ẋ(t)‖2dt + 1

‖A‖2
∫ T

0
‖ẍ(t)‖2dT ≤ C′. (A15)

Since both e(·) and ė(·) are global bounded (note that x(·), ẋ(·) ∈ L∞([0,∞),X )), inequality (A15) gives ẍ(·) ∈
L2([0,∞),X ). The relations ẍ(·) ∈ L∞([0,∞),X ) and ẍ(t) → 0 as t → ∞ are obvious by noting assertions (i), (ii),
(iv) and the connection equation (4).
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Appendix 2. Convergence analysis of the SOAR for the case when η ∈ (0, 2‖A‖]
B.3 The underdamped case: 2σj0+1 < η < 2σj0

In this case, the solution to the second-order differential equation (4) reads

x(t) = (1 − A∗Agab(t,A∗A))x0 + φab(t,A∗A)ẋ0 + gab(t,A∗A)A∗yδ ,

where

gab(t, λ) =
{

g(t, λ) if λ < η2/4,
gb(t, λ) if λ > η2/4, φab(t, λ) =

{
φ(t, λ) if λ < η2/4,
φb(t, λ) if λ > η2/4,

where g(t, λ) and φ(t, λ) are defined in (24), and

gb(t, λ) = 1
λ

{
1 − e−(η/2)t

[
η√

4λ− η2
sin

(√
4λ− η2

2
t

)
+ cos

(√
4λ− η2

2
t

)]}
,

φb(t, λ) = 2√
4λ− η2

e−(η/2)t sin

(√
4λ− η2

2
t

)
. (B1)

As in the overdamped case, we define

gabα (λ) = gab(1/α, λ) and φabα (λ) = φab(1/α, λ). (B2)

In this case, the corresponding bias function becomes

rabα (λ) =
⎧⎨
⎩

rα(λ) if λ < η2/4,

rbα(λ) := e−η/2α
[

η√
4λ−η2 sin

(√
4λ−η2
2α

)
+ cos

(√
4λ−η2
2α

)]
if λ > η2/4,

where rα(λ) is given in (26).

Theorem B.1: The functions {gabα (λ),φabα (λ)}, defined in (B2), satisfy the conditions (i)–(iii) of Proposition 2.1.

Proof: The first requirement in Proposition 2.1 is obvious. Furthermore, using the inequalities | sin ξ | ≤ |ξ | and
e−ξ (ξ + 1) ≤ 1 we obtain∣∣∣∣∣e−η/2α

[
η√

4λ− η2
sin

(√
4λ− η2

2α

)
+ cos

(√
4λ− η2

2α

)]∣∣∣∣∣ ≤ 1, (B3)

which implies the second condition in Proposition 2.1: |rabα (λ)| ≤ γ ab
1 with γ ab

1 := max{η/2
√
η2 − 4σ 2

j0+1 + 1/2, 1} .
Similarly, we have ∣∣∣φbα(λ)∣∣∣ =

∣∣∣∣∣ 2√
4λ− η2

e−η/2α sin

(√
4λ− η2

2α

)∣∣∣∣∣ ≤ α−1e−η/2α ≤ 2
eη

, (B4)

which means that |φabα (λ)| ≤ γ ab
2 with γ ab

2 := max{ η

2
√
η2−4σ 2j0+1

, 2
eη }.

Now, let us check the third condition in Proposition 2.1. Using the inequality (B4) we obtain that for λ > η2/4

1√
λ

{
1 − e−η/2α

[
η√

4λ− η2
sin

(√
4λ− η2

2α

)
+ cos

(√
4λ− η2

2α

)]}
≤ 2√

λ
≤ 4
η
.

Hence, in the case when λ > η2/4 and α ≤ η2, we have
√
λ|gbα(λ)| ≤ 4/η ≤ 4/

√
α.

Finally, by defining

γ ab
∗ = max

{√
η/(η2 − 4σ 2

j0+1), 4
}

(B5)

we can deduce that
√
λ|gabα (λ)| ≤ γ ab∗ /

√
α for α ∈ (0, ᾱ] with ᾱ = η2. �

Proposition B.1: For all exponents p> 0 the monomials ψ(λ) = λp are qualifications with the constants γab =
max{γ , γb} for the SOAR method in the underdamped case, where γ is defined in (29) and

γb := η + 2‖A‖2
2

(
2(p + 1)

eη

)p+1
‖A‖2p. (B6)
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Proof: By Proposition 4.1, we only need to show that

sup
λ∈(η2/4,‖A‖2]

|rbα(λ)|λp ≤ γbα
p and sup

λ∈(η2/4,‖A‖2]
|φbα(λ)|λp ≤ γbα

p (B7)

for all α ∈ (0, ‖A‖2]. Set ξ = η/2 and p = p′ + 1 in (14) to obtain

e−η/2α ≤ (2(p′ + 1)/(eη))p
′+1αp

′+1. (B8)

Then, using (B4) and (B8), we can derive that for all α ∈ (0, ‖A‖2]∣∣∣∣∣e−η/2α
[

η√
4λ− η2

sin

(√
4λ− η2

2α

)
+ cos

(√
4λ− η2

2α

)]∣∣∣∣∣ · λp′ ≤ e−η/2α
( η
2α

+ 1
)
λp

′

≤ e−η/2α · η + 2‖A‖2
2α

· ‖A‖2p′ ≤
(
2(p′ + 1)

eη

)p′+1
· αp′+1 · η + 2‖A‖2

2α
· ‖A‖2p′ = γbα

p′
,

which yields the first inequality in (B7).
Finally, from the above result, we can deduce that for all α ∈ (0, ‖A‖2]

|φbα(λ)|λp
′ ≤ e−η/2α

η

2α
λp

′ ≤ e−η/2α
( η
2α

+ 1
)
λp

′ ≤ γbα
p′
,

which completes the proof. �

B.4 The critical damping case: η = 2σj0

In this case, the solution of (4) is x(t) = (1 − A∗Agabc(t,A∗A))x0 + φabc(t,A∗A)ẋ0 + gabc(t,A∗A)A∗yδ , where

gabc(t, λ) =
⎧⎨
⎩

g(t, λ) if λ > η2/4,
gb(t, λ) if λ < η2/4,
gc(t, λ), λ = η2/4,

φabc(t, λ) =
⎧⎨
⎩
φ(t, λ) if λ > η2/4,
φb(t, λ) if λ < η2/4,
φc(t, λ), λ = η2/4,

and gc(t, λ) := (4/η2){1 − e−(η/2)t((η/2)t + 1)}, φc(t, λ) := te−(η/2)t .
Define

gabcα (λ) = gabc(1/α, λ) and φabcα (λ) = φabc(1/α, λ), (B9)

and obtain the corresponding bias function

rabcα (λ) =

⎧⎪⎪⎨
⎪⎪⎩
raα(λ) if λ > η2/4,

rbα(λ) if λ < η2/4,

rcα(λ) := e−η/2α
( η
2α

+ 1
)

if λ = η2/4.

Theorem B.2: The functions {gabcα (λ),φabcα (λ)}, given in (B9), satisfy the conditions (i)–(iii) of Proposition 2.1.

Proof: By Theorem B.1, we only need to check the case when λ = η2/4. In this case, it is easy to verify
that limα→0 φα(λ) = limα→0 e−η/2α/α = 0, limα→0 rα(λ) = limα→0 e−η/2α(η/2α + 1) = 0 and |φα(λ)| ≤ 2/eη and
|rα(λ)| ≤ 1 for all α > 0. Finally, by the inequality (assume that α ≤ η2) 1/

√
λ{1 − e−η/2α(η/2α + 1)} ≤ 2/

√
λ =

4/η ≤ 4/
√
α, and Theorem B.1, we complete the proof with

√
λ|gα(λ)| ≤ γ ab∗ /

√
α for α ∈ (0, ᾱ], ᾱ = η2, and γ ab∗ is

defined in (B5). �

Proposition B.2: For all exponents p> 0 the monomials ψ(λ) = λp are qualifications with the constants γabc =
max{γ , γb, γc} for the SOAR method in the critical damping case, where

γc := η + 2‖A‖2
2

(
p + 1
e

)p+1 (η
2

)p−1
max

((η
2

)p
, 1
)
, (B10)

and the constants γ and γb are defined in (29) and (B6), respectively.



APPLICABLE ANALYSIS 1025

Proof: By Propositions 4.1 and B.1, we only need to show that for all α ∈ (0, ‖A‖2]
|rα(η2/4)|(η2/4)p ≤ γcα

p and |φα(η2/4)|(η2/4)p ≤ γcα
p.

By (B9) and elementary calculations, we derive that∣∣∣∣rα
(
η2

4

)∣∣∣∣
(
η2

4

)p

= e−η/2α
( η
2α

+ 1
)(η2

4

)p

≤
((

2(p + 1)
eη

)p+1
αp+1

)
η + 2‖A‖2

2α

(
η2

4

)p

=
{
η + 2‖A‖2

2

(
2(p + 1)

eη

)p+1 (
η2

4

)p}
αp =

{
η + 2‖A‖2

2

(
p + 1
e

)p+1 (η
2

)p−1
}
αp ≤ γcα

p

and ∣∣∣∣φα
(
η2

4

)∣∣∣∣
(
η2

4

)p

= e−η/2α
η

2α
2
η

(
η2

4

)p

≤ e−η/2α
( η
2α

+ 1
) (η

2

)2p−1

≤
((

p + 1
e

)p+1
αp+1

)
η + 2‖A‖2

2α

(η
2

)2p−1 ≤ γcα
p,

which yields the required result. �
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