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ABSTRACT
In this work, we consider the method of non-linear boundary integral
equation for solving numerically the inverse scattering problem of obliquely
incident electromagnetic waves by a penetrable homogeneous cylinder
in three dimensions. We consider the indirect method and simple
representations for the electric and the magnetic fields in order to derive
a system of five integral equations, four on the boundary of the cylinder
and one on the unit circle where we measure the far-field pattern of the
scattered wave. We solve the system iteratively by linearizing only the far-
field equation. Numerical results illustrate the feasibility of the proposed
scheme.
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1. Introduction

The inverse obstacle scatteringproblem is to image the scatteringobject, i.e. find its shape and location,
from the knowledge of the far-field pattern of the scattered wave. The medium is illuminated by light
at given direction and polarization. Then, Maxwell’s equations are used to model the propagation of
the light through themedium, see [1,2] for an overview. This problem is of great interest because of its
applications in many areas of physics and engineering (non-destructive testing, biomedical imaging,
remote sensing, and target identification). We refer to [3–7] for some recent applications.

Due to the complexity of the combined system of equations for the electric and themagnetic fields,
it is common to impose additional assumptions on the incident illumination and the nature of the
scatterer. We consider time-harmonic incident electromagnetic plane wave that due to the linearity
of the problem will result to a time-independent system of equations. In addition, the penetrable
object is considered as an infinitely long homogeneous cylinder. Then, it is characterized by constant
permittivity and permeability. The problem is further simplified if we impose normal incidence for
the incidentwave.However, in thiswork,we consider themore complicated case of oblique incidence.

The three-dimensional scattering problem modeled by Maxwell’s equations is then equivalent to
a pair of two-dimensional Helmholtz equations for two scalar fields (the third components of the
electric and the magnetic fields). This approach reduces the difficulty of the problem but results to
more complicated boundary conditions. The transmission conditions now contain also the tangential
derivatives of the electric andmagnetic fields. In [8],we showed that the correspondingdirect problem
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is well-posed and we constructed a unique solution using the direct integral equation method. A
similar problem has been considered for an impedance cylinder embedded in a homogeneous [9]
and in an inhomogeneous medium [10]. Different numerical solutions of the direct problem have
been also proposed using finite difference/element methods [11,12], the Galerkin method [13], the
Nyström method [14], the Green’s tensor method [15], the method of auxiliary sources [16,17], the
generalized Debye method [18], and the separation of variables method [19–21].

On the other hand, the inverse problem is non-linear and ill-posed. The non-linearity is due to
the dependence of the solution of the scattering problem on the unknown boundary curve. The
smoothness of the mapping from the boundary to the far-field pattern reflects the ill-posedness of the
inverse problem. The unique solvability of the inverse problem is still an open problem. The first and
only, to our knowledge, uniqueness result was presented recently in [22] for the case of an impedance
cylinder using the Lax–Phillips method.

In this work, we solve the inverse problem by formulating an equivalent system of non-linear
integral equations that is solved using a regularized iterative scheme. This method was introduced
by Kress and Rundell [23] and then considered in many different problems, in acoustic scattering
problems [24,25], in elasticity [26,27] and in electrical impedance problem [28]. Our iterative scheme
is based on the idea of Johansson and Sleeman [29] first applied to the inverse acoustic scattering
problem for a sound soft object. See [26,30], for applications of the method in different problems.We
assume integral representations for the solutions that result to a system consisting of four integral
equations on the unknown boundary (considering the transmission conditions) and one on the
unit circle (taking into account the asymptotic expansion of the solutions). In our case, compared
to [29,30] where only smooth and weakly singular integral operators are present in the systems of
equations, appears also a singular operator (the tangential derivative of the single layer) due to the
much more involved transmission conditions.

We solve the system of equations in two steps. First, given an initial guess for the boundary curve,
we solve the well-posed subsystem (equations on the boundary) to obtain the corresponding densities
and then we solve the linearized (with respect to the boundary) ill-posed far-field equation to update
the initial approximation of the radial function.We consider Tikhonov regularization and the normal
equations are solved by the conjugate gradient method. To improve the reconstructions, we take also
into account measurements for few incident waves.

This work can be seen as a first step for solving the problem in the more complicated anisotropic
case. There, one has to treat the three-dimensional problem differently and the integral equation
methodwill result to amore complicated systemof equations. The simplification due to the symmetry
of the problem is also questionable and the unique solvability even for the direct problem is still an
openproblem.We refer to [31] for a numerical solutionusing a subspace-basedoptimizationmethod.

The paper is organized as follows: in Section 2, we present the direct scattering problem, the elastic
potentials, and the equivalent system of integral equations that provide us with the far-field data. The
inverse problem is stated in Section 3, where we construct an equivalent system of integral equation
using the indirect integral equation method. In Section 4, the two-step method for the parametrized
form of the system and the necessary Fréchet derivative of the integral operators are presented. The
numerical examples give satisfactory results and justify the applicability of the proposed iterative
scheme.

2. The direct problem

We consider the scattering of an electromagnetic wave by a penetrable cylinder in R3. Let x =
(x, y, z) ∈ R3. We denote by �int = {x : (x, y) ∈ �, z ∈ R} the cylinder, where � is a bounded
domain inR2 with smooth boundary �. The cylinder �int is oriented parallel to the z-axis and � is
its horizontal cross section. We assume constant permittivity ε0 and permeability μ0 for the exterior
domain�ext := R3 \�int . The interior domain�int is also characterized by constant parameters ε1
and μ1.
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Figure 1. The geometry of the scattering problem.

We define the exterior magneticHext(x, t) and electric field Eext(x, t) for x ∈ �ext , t ∈ R and the
interior fieldsHint(x, t) and Eint(x, t) for x ∈ �int , t ∈ R, that satisfy the Maxwell’s equations

∇ × Eext + μ0
∂Hext

∂t
= 0, ∇ × Hext − ε0

∂Eext

∂t
= 0, x ∈ �ext ,

∇ × Eint + μ1
∂Hint

∂t
= 0, ∇ × Hint − ε1

∂Eint

∂t
= 0, x ∈ �int .

(1)

and the transmission conditions

n̂ × Eint = n̂ × Eext , n̂ × Hint = n̂ × Hext , x ∈ �, (2)

where n̂ is the outward normal vector, directed into�ext .
We illuminate the cylinder with an incident electromagnetic plane wave at oblique incidence,

meaning transverse magnetic (TM) polarized wave. We define by θ the incident angle with respect
to the negative z axis and by φ the polar angle of the incident direction d̂ (in spherical coordinates),
see Figure 1. Then, d̂ = ( sin θ cosφ, sin θ sin φ,− cos θ) and the polarization vector is given by
p̂ = ( cos θ cosφ, cos θ sin φ, sin θ), satisfying d̂ ⊥ p̂, for θ ∈ (0,π). The upcoming analysis can also
be carried out to the case of transverse electric polarized incident plane wave.

In the following, due to the linearity of the problem, we suppress the time-dependence of the fields
and because of the cylindrical symmetry of the medium we express the incident fields as separable
functions of x := (x, y) and z.



Let ω > 0 be the frequency and k0 = ω
√
μ0ε0 the wave number in �ext . We define β = k0 cos θ

and κ0 =
√
k20 − β2 = k0 sin θ and it follows that the incident fields can be decomposed to [8]

Einc(x; d̂, p̂) = einc(x) e−iβz , Hinc(x; d̂, p̂) = hinc(x) e−iβz , (3)

where

einc(x) = 1√
ε0

p̂ eiκ0(x cosφ+y sin φ),

hinc(x) = 1√
μ0
( sin φ,− cosφ, 0) eiκ0(x cosφ+y sin φ).

After some calculations, we can reformulate Maxwell’s euqations (1) as a system of equations
only for the z-component of the electric and magnetic fields [8]. The interior fields eint3 (x) and
hint3 (x), x ∈ �1 := � and the exterior fields eext3 (x) and hext3 (x), x ∈ �0 := R2 \ � satisfy the
Helmholtz equations

�eint3 + κ21 e
int
3 = 0, �hint3 + κ21 h

int
3 = 0, x ∈ �1,

�eext3 + κ20 e
ext
3 = 0, �hext3 + κ20 h

ext
3 = 0, x ∈ �0,

(4)

where κ21 = μ1ε1ω
2 − β2.Here, we assume μ1ε1 > μ0ε0 cos2 θ in order to have κ21 > 0.

The transmission conditions (2) can also be written only for the z-component of the fields.
Let (n̂, τ̂ ) be a local coordinate system, where n̂ = (n1, n2) is the outward normal vector and
τ̂ = ( − n2, n1) the outward tangent vector on �. We define ∂

∂n = n̂ · ∇t , ∂
∂τ

= τ̂ · ∇t , where
∇t = e1 ∂∂x +e2 ∂∂y and e1, e2 denote the unit vectors inR

2.Then, we rewrite the boundary conditions
as [8]

eint3 = eext3 , x ∈ �,
μ̃1ω

∂hint3
∂n

+ β1
∂eint3
∂τ

= μ̃0ω
∂hext3
∂n

+ β0
∂eext3
∂τ

, x ∈ �,
hint3 = hext3 , x ∈ �,

ε̃1ω
∂eint3
∂n

− β1
∂hint3
∂τ

= ε̃0ω
∂eext3
∂n

− β0
∂hext3
∂τ

, x ∈ �,

(5)

where μ̃j = μj/κ
2
j , ε̃j = εj/κ

2
j , βj = β/κ2j , for j = 0, 1. The exterior fields are decomposed to

eext3 = esc3 + einc3 and hext3 = hsc3 + hinc3 , where esc3 and hsc3 denote the scattered electric and magnetic
field, respectively. From (3), we see that

einc3 (x) = 1√
ε0

sin θ eiκ0(x cosφ+y sin φ), hinc3 (x) = 0. (6)

To ensure that the scattered fields are outgoing, we impose in addition the radiation conditions in
R2 :

lim
r→∞

√
r
(
∂esc3
∂r

− iκ0esc3

)
= 0, lim

r→∞
√
r
(
∂hsc3
∂r

− iκ0hsc3

)
= 0, (7)

where r = |x|, uniformly over all directions.
Now we are in position to formulate the direct transmission problem for oblique incident

wave: find the fields hint3 , hsc3 , e
int
3 , and esc3 that satisfy the Helmholtz equations (4), the transmission

conditions (5) and the radiation conditions (7).
Theorem 2.1: If κ21 is not an interior Dirichlet eigenvalue and κ20 is not an interior Dirichlet and
Neumann eigenvalue, then the direct transmission problem (4)–(7) admits a unique solution.
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Proof: The proof is based on the integral representation of the solution resulting to a Fredholm type
system of boundary integral equations. For more details, see [8, Theorem 3.2].

In the following, j = 0, 1 counts for the exterior (x ∈ �0) and interior domain (x ∈ �1),
respectively. We introduce the single- and double-layer potentials defined by:

(Sjf )(x) =
∫
�

�j(x, y)f ( y)ds( y), x ∈ �j,

(Djf )(x) =
∫
�

∂�j

∂n( y)
(x, y)f ( y)ds( y), x ∈ �j,

(8)

where�j is the fundamental solution of the Helmholtz equation inR2 :

�j(x, y) = i
4
H(1)
0 (κj|x − y|), x, y ∈ �j, x �= y, (9)

andH(1)
0 is the Hankel function of the first kind and zero order. We define also the integral operators

(Sjf )(x) =
∫
�

�j(x, y)f ( y)ds( y), x ∈ �,

(Djf )(x) =
∫
�

∂�j

∂n( y)
(x, y)f ( y)ds( y), x ∈ �,

(NSjf )(x) =
∫
�

∂�j

∂n(x)
(x, y)f ( y)ds( y), x ∈ �,

(NDjf )(x) =
∫
�

∂2�j

∂n(x)∂n( y)
(x, y)f ( y)ds( y), x ∈ �,

(TSjf )(x) =
∫
�

∂�j

∂τ(x)
(x, y)f ( y)ds( y), x ∈ �,

(TDjf )(x) =
∫
�

∂2�j

∂τ(x)∂n( y)
(x, y)f ( y)ds( y), x ∈ �.

(10)

The following theorem was proven in [8].
Theorem 2.2: Let the assumptions of Theorem 2.1 still hold. Then, the potentials

eint3 (x) = −(D1φ1)(x)+ (S1η1)(x), x ∈ �1,
hint3 (x) = −(D1ψ1)(x)+ (S1ξ1)(x), x ∈ �1,
eext3 (x) = (D0φ0)(x)− (S0η0)(x), x ∈ �0,
hext3 (x) = (D0ψ0)(x)− (S0ξ0)(x), x ∈ �0,

(11)

solve the direct transmission problem (4)–(7) provided that the densities φ0 ∈ H1/2(�) and ψ0 ∈
H1/2(�) satisfy the system of integral equations

(D0 + K0)

(
φ0
ψ0

)
= b0, (12)
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where

D0 =
(
D0 − 1

2 I 0
0 D0 − 1

2 I

)
,

K0 =
(

− ε̃1
ε̃0
S0K1 − 1

ε̃0ω
S0(β1L1 + β0L0)

1
μ̃0ω

S0(β1L1 + β0L0) − μ̃1
μ̃0
S0K1

)
,

b0 =
(

−S0∂η + ε̃1
ε̃0
S0K1

− 1
μ̃0ω

S0(β0∂τ + β1L1)

)
einc3 ,

and Kj := (
NSj ± 1

2 I
)−1 NDj, Lj := 2(TDj − TSjKj). The rest of the densities satisfy φ1 = φ0 +

einc3 , ψ1 = ψ0, ηj = Kjφj and ξj = Kjψj.

The solutions esc3 and hsc3 of (4)–(7) have the asymptotic behavior

esc3 (x) = eiκ0r√
r
e∞(x̂)+ O(r−3/2), hsc3 (x) = eiκ0r√

r
h∞(x̂)+ O(r−3/2), (13)

where x̂ = x/|x|. The pair (e∞, h∞) is called the far-field pattern corresponding to the scattering
problem (4)–(7). Its knowledge is essential for the inverse problem and using (11) we can compute it
by:

e∞(x̂) = (D∞φ0)(x̂)− (S∞η0)(x̂), x̂ ∈ S,
h∞(x̂) = (D∞ψ0)(x̂)− (S∞ξ0)(x̂), x̂ ∈ S,

(14)

where S is the unit ball. The far-field operators are given by:

(S∞f )(x̂) =
∫
�

�∞(x̂, y)f ( y)ds( y), x̂ ∈ S,

(D∞f )(x̂) =
∫
�

∂�∞

∂n( y)
(x̂, y)f ( y)ds( y), x̂ ∈ S,

(15)

where�∞ is the far-field of the Green function�, given by:

�∞(x̂, y) = eiπ/4√
8πκ0

e−iκ0 x̂· y.

3. The inverse problem

The inverse scattering problem,we address here, reads: find the shape and the position of the inclusion
�, meaning reconstruct its boundary �, given the far-field patterns (e∞(x̂), h∞(x̂)), for all x̂ ∈ S,
for one or few incident fields (6).

3.1. The integral equationmethod

To solve the inverse problem we apply the method of non-linear boundary integral equations, which
in our case, results to a system of four integral equations on the unknown boundary and one on the
unit circle where the far-field data are defined. This method was first introduced in [23] and further
considered in various inverse problems, see for instance, [25–27,32,33]. Since the direct problem was
solvedwith thedirectmethod (Green’s formulas), in order to obtain ournumerical data, herewe adopt
a different approach based on the indirect integral equation method, using simple representations
for the fields.
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We assume a double-layer representation for the interior fields and a single-layer representation
for the exterior fields. Thus, we set

eint3 (x) = 1
ε̃1
(D1φe)(x), hint3 (x) = 1

μ̃1
(D1φh)(x), x ∈ �1,

esc3 (x) = 1
ε̃0
(S0ψe)(x), hsc3 (x) = 1

μ̃0
(S0ψh)(x), x ∈ �0.

(16)

Substituting the above representations in the transmission conditions (5) and considering the
well-known jump relations, we get the system of integral equations on �

1
ε̃1

(
D1 − 1

2

)
φe − 1

ε̃0
S0ψe = einc3 ,

ωND1φh + β1

ε̃1

(
TD1 − 1

2
∂

∂τ

)
φe − ω

(
NS0 − 1

2

)
ψh − β0

ε̃0
TS0ψe = β0

∂einc3
∂τ

,

1
μ̃1

(
D1 − 1

2

)
φh − 1

μ̃0
S0ψh = 0,

ωND1φe − β1

μ̃1

(
TD1 − 1

2
∂

∂τ

)
φh − ω

(
NS0 − 1

2

)
ψe + β0

μ̃0
TS0ψh = ε̃0ω

∂einc3
∂n

.

(17)

In addition, given the far-field operators (15) and the representations (16) of the exterior fields,
we see that the unknown boundary � and the densities ψe and ψh satisfy also the far-field equations

1
ε̃0
S∞ψe = e∞, on S, (18a)

1
μ̃0

S∞ψh = h∞, on S, (18b)

where the right-hand sides are the known far-field patterns from the direct problem. The Equation
(17) in matrix form reads

(T + K)φ = b, (19)

where

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω

2
β1

2μ̃1
∂τ 0 0

0 − 1
2μ̃1

0 0

0 0
ω

2
− β1

2ε̃1
∂τ

0 0 0 − 1
2ε̃1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ωNS0 − β1
μ̃1

TD1
β0

μ̃0
TS0 ωND1

0
1
μ̃1

D1 − 1
μ̃0

S0 0

−β0
ε̃0

TS0 ωND1 −ωNS0 β1

ε̃1
TD1

− 1
ε̃0
S0 0 0

1
ε̃1
D1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

φ =

⎛
⎜⎜⎝
ψe
φh
ψh
φe

⎞
⎟⎟⎠ , b =

⎛
⎜⎜⎝
ε̃0ω∂n
0

β0∂τ
1

⎞
⎟⎟⎠ einc3 .
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The matrix T due to its special form and the boundness of ∂τ : H1/2(�) → H−1/2(�) has a
bounded inverse given by:

T−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
ω

2β1
ω
∂τ 0 0

0 −2μ̃1 0 0

0 0
2
ω

−2β1
ω
∂τ

0 0 0 −2ε̃1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20)

Then, Equation (19) takes the form

(I + C)φ = g, (21)

where now I is the identity matrix and

C = T−1K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2NS0 0
2
ωμ̃0

(β0 − β1)TS0 2ND1

0 −2D1 2
μ̃1

μ̃0
S0 0

− 2
ωε̃0

(β0 − β1)TS0 2ND1 −2NS0 0

2
ε̃1

ε̃0
S0 0 0 −2D1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

g = T−1b =

⎛
⎜⎜⎜⎝

2ε̃0∂n
0

2
ω
(β0 − β1)∂τ

−2ε̃1

⎞
⎟⎟⎟⎠ einc3 .

Using the mapping properties of the integral operators [34], we see that the operator C :
(H−1/2(�)× H1/2(�))2 → (H−3/2(�)× H−1/2(�))2 is compact.

We observe that we have six equations (21) and (18) for the five unknowns: � and the four
densities. Thus, we consider the linear combination ε̃0·(18a) + μ̃0·(18b) as a replacement for the
far-field equations in order to state the following theorem as a formulation of the inverse problem.
Theorem 3.1: Given the incident field (6) and the far-field patterns (e∞(x̂), h∞(x̂)), for all x̂ ∈ S,
if the boundary � and the densities ψe, φh, ψh and φe satisfy the system of equations

ψe − 2NS0ψe + 2
ωμ̃0

(β0 − β1)TS0ψh + 2ND1φe = 2ε̃0∂neinc3 , (22a)

φh − 2D1φh + 2
μ̃1

μ̃0
S0ψh = 0, (22b)

− 2
ωε̃0

(β0 − β1)TS0ψe + 2ND1φh + ψh − 2NS0ψh = 2
ω
(β0 − β1)∂τ einc3 , (22c)

2
ε̃1

ε̃0
S0ψe + φe − 2D1φe = −2ε̃1einc3 , (22d)

S∞ψe + S∞ψh = ε̃0e∞ + μ̃0h∞, (22e)

then, � solves the inverse problem.
The integral operators in (22) are linear with respect to the densities but non-linear with respect

to the unknown boundary �. The smoothness of the kernels in the far-field Equation (22e) reflects
the ill-posedness of the inverse problem.
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To solve the above system of equations, we consider the method first introduced in [29] and
then applied in different problems, see for instance [26,30,35]. More precisely, given an initial
approximation for the boundary �, we solve the subsystem (22a)–(22d) for the densities ψe, φh, ψh
and φe. Then, keeping the densities ψe and ψh fixed we linearize the far-field Equation (22e) with
respect to the boundary. The linearized equation is solved to obtain the update for the boundary.
The linearization is performed using Fréchet derivatives of the operators and we also regularize the
ill-posed last equation.

To present the proposed method in detail, we consider the following parametrization for the
boundary

� = {z(t) = r(t)( cos t, sin t) : t ∈ [0, 2π]},
where z : R → R2 is a C2-smooth, 2π-periodic, injective in [0, 2π), meaning that z′(t) �= 0, for all
t ∈ [0, 2π]. The non-negative function r represents the radial distance of � from the origin. Then,
we define

ζe(t) = ψe(z(t)), ζh(t) = ψh(z(t)), t ∈ [0, 2π]
ξe(t) = φe(z(t)), ξh(t) = φh(z(t)), t ∈ [0, 2π]

and the parametrized form of (22) is given by:⎛
⎜⎜⎜⎜⎝

A1
A2
A3
A4
A5

⎞
⎟⎟⎟⎟⎠ (r; ζe)+

⎛
⎜⎜⎜⎜⎝

B1
B2
B3
B4
B5

⎞
⎟⎟⎟⎟⎠ (r; ξh)+

⎛
⎜⎜⎜⎜⎝

C1
C2
C3
C4
C5

⎞
⎟⎟⎟⎟⎠ (r; ζh)+

⎛
⎜⎜⎜⎜⎝

D1
D2
D3
D4
D5

⎞
⎟⎟⎟⎟⎠ (r; ξe) =

⎛
⎜⎜⎜⎜⎝

F1
F2
F3
F4
F5

⎞
⎟⎟⎟⎟⎠ , (23)

with the parametrized operators

(A1(r; ζ ))(t) = (C3(r; ζ ))(t) = ζ(t)− 2
∫ 2π

0
MNS0(t, s)ζ(s)ds,

(A3(r; ζ ))(t) = − μ̃0

ε̃0
(C1(r; ζ ))(t) = − 2

ωε̃0
(β0 − β1)

∫ 2π

0
MTS0(t, s)ζ(s)ds,

(A4(r; ζ ))(t) = μ̃0ε̃1

μ̃1ε̃0
(C2(r; ζ ))(t) = 2

ε̃1

ε̃0

∫ 2π

0
MS0(t, s)ζ(s)ds,

(A5(r; ζ ))(t) = (C5(r; ζ ))(t) =
∫ 2π

0
�∞( ẑ(t), z(s))ζ(s)|z′(s)|ds,

(B2(r; ξ))(t) = (D4(r; ξ))(t) = ξ(t)− 2
∫ 2π

0
MD1(t, s)ξ(s)ds,

(B3(r; ξ))(t) = (D1(r; ξ))(t) = 2
∫ 2π

0
MND1(t, s)ξ(s)ds,

and the right-hand side

(F1(r))(t) = 2ε̃0∂neinc3 (z(t)), (F3(r))(t) = 2
ω
(β0 − β1)∂τ einc3 (z(t)),

(F4(r))(t) = −2ε̃1einc3 (z(t)), (F5)(t) = ε̃0e∞( ẑ(t))+ μ̃0h∞( ẑ(t)).

In addition, we set A2 = B1 = B4 = B5 = C4 = D2 = D3 = D5 = F2 = 0. The matrix MKj

denotes the discretized kernel of the operator Kj. The explicit forms of the kernels can be found for
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example, in [8, Equation 4.3]. The operators Ak, Bk, Ck, Dk, k = 1, 2, 3, 4, 5 act on the densities and
the first variable r shows the dependence on the unknown parametrization of the boundary. OnlyF5
is independent of the radial function.

Let the function q stand for the radial function of the perturbed boundary

�q = {q(t) = q(t)( cos t, sin t) : t ∈ [0, 2π]}.

Then the iterative method reads:
Iterative Scheme 1: Let r(0) be an initial approximation of the radial function. Then, in the kth
iteration step:

(i) We assume that we know r(k−1) and we solve the subsystem

⎛
⎜⎜⎝

A1
A2
A3
A4

⎞
⎟⎟⎠ (r(k−1); ζe)+

⎛
⎜⎜⎝

B1
B2
B3
B4

⎞
⎟⎟⎠ (r(k−1); ξh)+

⎛
⎜⎜⎝

C1
C2
C3
C4

⎞
⎟⎟⎠ (r(k−1); ζh)

+

⎛
⎜⎜⎝

D1
D2
D3
D4

⎞
⎟⎟⎠ (r(k−1); ξe) =

⎛
⎜⎜⎝

F1
F2
F3
F4

⎞
⎟⎟⎠ , (24)

to obtain the densities ζ (k)e , ξ (k)h , ζ (k)h , and ξ (k)e .

(ii) Keeping the densities ζe and ζh fixed, we linearize the fifth equation of (23), namely

A5(r(k−1); ζ (k)e )+ (A′
5(r

(k−1); ζ (k)e ))(q)+ C5(r(k−1); ζ (k)h )

+ (C′
5(r

(k−1); ζ (k)h ))(q) = F5. (25)

We solve this equation for q and we update the radial function r(k) = r(k−1) + q.

The iteration stops when a suitable stopping criterion is satisfied.
Remark 1: In order to take advantage of the available measurement data, we can also keep the
overdetermined system (17) and (18) instead of (22e) and replace Equation (25) with

(
A′

5(r
(k−1); ζ (k)e )

A′
5(r

(k−1); ζ (k)h )

)
q =

(Fe
Fh

)
−
(

A5(r(k−1); ζ (k)e )

A5(r(k−1); ζ (k)h )

)
, (26)

where now Fe = ε̃0 e∞ and Fh = μ̃0 h∞.
The Fréchet derivatives of the operators are calculated by formally differentiating their kernels

with respect to r

((A′
5(r; ζ ))(q))(t) = eiπ/4√

8πκ0

∫ 2π

0
e−iκ0 ẑ(t)·z(s)(− iκ0 ẑ(t) · q(s)|z′(s)|

+ z′(s) · q ′(s)
|z′(s)|

)
ζ(s)ds. (27)

Recall that A5 = C5 = S∞. If κ20 is not an interior Neumann eigenvalue, then the operator A′
5 is

injective [25]. Using similar arguments as in [30,36], we can relate the above iterative scheme to the
classical Newton’s method.
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The iterative scheme 1 can also be generalized to the case of multiple illuminations
eincl , l = 1, . . . , L.
Iterative Scheme 2: [Multiple illuminations] Let r(0) be an initial approximation of the radial func-
tion. Then, in the kth iteration step:

(i) We assume that we know r(k−1) and we solve the L subsystems

⎛
⎜⎜⎝

A1
A2
A3
A4

⎞
⎟⎟⎠ (r(k−1); ζe,l)+

⎛
⎜⎜⎝

B1
B2
B3
B4

⎞
⎟⎟⎠ (r(k−1); ξh,l)+

⎛
⎜⎜⎝

C1
C2
C3
C4

⎞
⎟⎟⎠ (r(k−1); ζh,l)

+

⎛
⎜⎜⎝

D1
D2
D3
D4

⎞
⎟⎟⎠ (r(k−1); ξe,l) =

⎛
⎜⎜⎝

F1,l
F2,l
F3,l
F4,l

⎞
⎟⎟⎠ , l = 1, . . . , L (28)

to obtain the densities ζ (k)e,l , ξ
(k)
h,l , ζ

(k)
h,l and ξ (k)e,l .

(ii) Then, keeping the densities fixed, we solve the overdetermined version of the linearized fifth
equation of (23)

⎛
⎜⎜⎜⎜⎝

A′
5(r

(k−1); ζ (k)e,1 + ζ
(k)
h,1 )

A′
5(r

(k−1); ζ (k)e,2 + ζ
(k)
h,2 )

...

A′
5(r

(k−1); ζ (k)e,l + ζ
(k)
h,l )

⎞
⎟⎟⎟⎟⎠ q =

⎛
⎜⎜⎜⎜⎝

F5,1 − A5(r(k−1); ζ (k)e,1 + ζ
(k)
h,1 )

F5,2 − A5(r(k−1); ζ (k)e,2 + ζ
(k)
h,2 )

...

F5,L − A5(r(k−1); ζ (k)e,l + ζ
(k)
h,l )

⎞
⎟⎟⎟⎟⎠

for q and we update the radial function r(k) = r(k−1) + q.

The iteration stops when a suitable stopping criterion is satisfied.

4. Numerical implementation

In this section,we present numerical examples that illustrate the applicability of the proposedmethod.
Weuse quadrature rules for integrating the singularities considering trigonometric interpolation. The
convergence and error analysis are given in [37,38]. Then, the system of integral equations is solved
using the Nyström method. The parametrized forms of the integral operators are presented in [8,
Section 4]. We approximate the smooth kernels with the trapezoidal rule and the singular ones with
the well-known quadratures rules [38].

In the following examples, we consider two different boundary curves. A peanut-shaped and an
apple-shaped boundary with radial function

r(t) = (0.5 cos2 t + 0.15 sin2 t)1/2, t ∈ [0, 2π],

and

r(t) = 0.45 + 0.3 cos t − 0.1 sin 2t
1 + 0.7 cos t

, t ∈ [0, 2π],

respectively.
To avoid an inverse crime, we construct the simulated far-field data using the numerical scheme

(12) and considering double amount of quadrature points compared to the inverse problem. We
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approximate the radial function q by a trigonometric polynomial of the form

q(t) ≈
m∑
k=0

ak cos kt +
m∑
k=1

bk sin kt, t ∈ [0, 2π],

and we consider 2n equidistant points tj = jπ/n, j = 0, . . . , 2n − 1. The well-posed subsystem (24)
does not require any special treatment. The ill-posed linearized far-field Equation (25) is solved by
Tikhonov regularization. We rewrite (25) as:

(A′
5(r

(k−1); ζ (k)))(q) = F5 − A5(r(k−1); ζ (k)), (29)

for ζ (k) := ζ
(k)
e + ζ

(k)
h , and we decompose (27) as:

((A′
5(r; ζ ))(q))(t) = ((G1(r; ζ ))(q))(t)+ ((G2(r; ζ ))(q′))(t), (30)

where

((G1(r; ζ ))(q))(t) := eiπ/4√
8πκ0

∫ 2π

0
e−iκ0 ẑ(t)·z(s) [−iκ0 ẑ(t) · ( cos s, sin s)|z′(s)|

+ z′(s) · (− sin s, cos s)
|z′(s)|

]
ζ(s)q(s)ds,

((G2(r; ζ ))(q′))(t) := eiπ/4√
8πκ0

∫ 2π

0
e−iκ0 ẑ(t)·z(s) z′(s) · ( cos s, sin s)

|z′(s)| ζ(s)q′(s)ds.

We replace the derivative of q by the derivative of the trigonometric interpolation polynomial

q′(t) ≈
2n−1∑
j=0

Q(t, tj)q(tj),

with weight

Q(tk, tj) = 1
2
(− 1)k−j cot

tk − tj
2

, k �= j, k = 0, . . . , 2n − 1.

Then, at the kth step we minimize the Tikhonov functional of the discretized equation

‖ATx − b‖22 + λ‖x‖pp, λ > 0,

where x ∈ R(2m+1)×1 is the vector with the unknowns coefficients a0, . . . , am, b1, . . . , bm of the radial
function, and A ∈ C2n×2n, b ∈ C2n×1 are given by:

Akj = MG1(tk, tj)+ MG2(tk, tj)Q(tk, tj),
bk = F5(tk)− (MA5ζ )(tk),

for k, j = 0, . . . , 2n − 1. The multiplication matrix T ∈ R2n×(2m+1) stands for the trigonometric
functions of the approximated radial function and is given by:

Tkj =
{
cos kjπ

n , k = 0, . . . , 2n − 1, j = 0, . . . ,m
sin k(j−m)π

n , k = 0, . . . , 2n − 1, j = m + 1, . . . , 2m
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Figure 2. Reconstruction of a peanut-shaped boundary for two incident fields, frequency ω = 2.5, for exact data (left) and data
with 5% noise (right).

Here, p ≥ 0 defines the corresponding Sobolev norm. Since q is real valued, we solve the following
regularized equation: (

T (�(A)�(A)+ �(A)�(A)
)
T + λkIp

)
x

= T (�(A)�(b)+ �(A)�(b)
)
, (31)

on the kth step, where the matrix Ip ∈ R(2m+1)×(2m+1) corresponds to the Sobolev Hp penalty term.
We solve (31) using the conjugate gradient method. We update the regularization parameter in each
iteration step k by:

λk = λ0

(
2
3

)k−1
, k = 1, 2, . . .

for some given initial parameter λ0 > 0. To test the stability of the iterative method against noisy
data, we add also noise to the far-field patterns with respect to the L2−norm

e∞δ = e∞ + δ1
‖e∞‖2
‖u‖2 u, h∞

δ = h∞ + δ2
‖h∞‖2
‖v‖2 v,

for some given noise levels, δ1, δ2 where u = u1 + iu2, v = v1 + iv2, for u1, u2, v1, v2 ∈ R normally
distributed random variables.

Already in simpler cases [30], the knowledge of the far-field patterns for one incident wave is not
enough to produce satisfactory reconstructions. Thus, we will also use multiple incident directions.
To do so, we have to consider different values of the polar angle φ since in R2, as we see from (6),
corresponds to the incident direction d = ( cosφ, sin φ). We set

dl = (
cosφl , sinφl

)
, where φl = 2π l

L
, for l = 1, . . . , L.

4.1. Numerical results

We present reconstructions for different boundary curves, different number of incident directions
and initial guesses for exact and perturbed far-field data. In all figures the initial guess is a circle with
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Figure 3. Reconstruction of a peanut-shaped boundary for four incident fields, frequency ω = 2.5, noisy data (5% noise), with
initial guess r0 = 0.6 (left) and r0 = 1 (right).

Figure 4. Reconstruction of a peanut-shaped boundary for four incident fields,m = 5 coefficients, frequency ω = 2, for exact data
(left) and data with 3% noise (right).

radius r0, a green solid line, the exact curve is represented by a dashed red line and the reconstructed
by a solid blue line. The arrows denote the directions of the incoming incident fields.

We use n = 64 collocation points for the direct problem and n = 32 for the inverse. In the first
five examples, we set the exterior parameters (ε0,μ0) = (1, 1) and the interior (ε1,μ1) = (2, 2).We
set θ = π/3 and λ0 ∈ [0.5, 0.8] as the initial regularization parameter.

In the first three examples, we consider the peanut-shaped boundary. In the first example, the
regularized Equation (31) is solved with L2 penalty term, meaning p = 0 andm = 3 coefficients. We
solve Equation (26) for different incident directions. The reconstructions for ω = 2.5 and r0 = 0.6
are presented in Figure 2 for two incident fields with directions dl+1/2. On the left picture, we see
the reconstructed curve for exact data and 9 iterations and on the right picture for noisy data with
δ1 = δ2 = 5% and 14 iterations. In the second example, we consider Equation (25), four incident
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Figure 5. Reconstruction of an apple-shaped boundary for four incident fields, frequency ω = 3, exact data, with initial guess
r0 = 0.5 (left) and r0 = 1 (right).

Figure 6. Reconstruction of an apple-shaped boundary for four incident fields, frequency ω = 3, data with 3% noise, for three (left)
and four (right) incident fields.

fields, noisy data δ1 = δ2 = 5% and we keep all the parameters as before. The reconstructions for
r0 = 0.6 and 14 iterations are shown in the left picture of Figure 3, and for r0 = 1 and 20 iterations
in the right one. We set m = 5 and p = 1 (H1 penalty term) in the third example. The results for
r0 = 1 and four incident fields are shown in Figure 4. Here, ω = 2 and we use Equation (26). We
need 26 iterations for the exact data and 30 iterations for the noisy data (δ1 = δ2 = 3%).

In the next two examples we consider the apple-shaped boundary, H1 penalty term, ω = 3 and
m = 3 coefficients. In the fourth example, we consider Equation (25), noise-free data and four
incident fields in order to examine the dependence of the iterative scheme on the initial radial guess.
On the left picture of Figure 5, we see the reconstructed curve for r0 = 0.5 after 13 iterations and
on the right picture for r0 = 1 after 20 iterations. In the fifth example, we consider δ1 = δ2 = 3%
noise and r0 = 0.6. Figure 6 shows the improvement of the reconstruction for more incident fields.
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Figure 7. Reconstruction of a peanut-shaped boundary for two incident fields (left) and an apple-shaped boundary for four incident
fields (right). Here, we use θ = π/10, ω = 7 and data with 3% noise.

On the left picture we see the results for three incident fields, Equation (26) and seven iterations and
the reconstructed curve for four incident fields, Equation (25) and 15 iterations is shown on the right
picture.

In the last example we consider an electrically larger object, meaning we set (ε0,μ0) = (3, 3) and
ω = 7, resulting to a seven times larger (electrically) scatterer compared to the previous examples.
We choose (ε1,μ1) = (9, 1) such that the condition μ1ε1 > μ0ε0 cos2 θ is satisfied. To account also
for different oblique directions we set θ = π/10. For m = 3 and data with 3% noise, we present the
reconstructions in Figure 7. We consider for both boundary curves the same initial guess r0 = 0.6.
The results on the left picture are for two incident fields, considering Equation (26) and 35 iterations.
On the right picture we present the reconstruction for four incident fields, Equation (25) and 13
iterations.

To conclude, our examples have shown the feasibility of the proposed iterative scheme and the
stability against noisy data. However, this method can only be applied to objects with smooth
boundaries. In addition, the proposed method performs poorly for only one incident field which
is the case also in the acoustic regime. The main reason is that we miss information since we linearize
only the far-field equation. Thus, we had to consider few incident illuminations which improve
considerably the reconstructions. The initial guess plays also an important role in this scheme.
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