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ABSTRACT
Traffic modeling often keeps the mesoscopic scale in the the-
oretical sphere because of the integro-differential nature of its
equations. In the present work, it is suggested to use the lat-
tice Boltzmann method to overcome these difficulties while
benefiting the strong theoretical foundation of the method.
An alternative version of the lattice Boltzmann method for
multi-class and heterogeneity in traffic flow is elaborated in
this paper. Its ability to reproduce the fundamental diagram is
proved, for both single-class and multi-class flows. This allows
easily simulating complex and realistic cases of mixture of
multi-class traffic flow. These simulations are able to capture
jamming in various traffic situations such as road merging,
reduction of the number of lanes or change of speed limits.

KEYWORDS
Heterogeneous traffic flow;
multi-class flow; Boltzmann-
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1. Introduction

Since the end of the twentieth century, with the increase of personal car and
road jam, traffic modeling has become a topic in the center of economic,
ecological, and social considerations. In this context, constructors and road
operators look forward to having a better understanding and anticipation of
traffic flows, in order to recommend the optimal practical solutions.
In this perspective, the models should handle the heterogeneous character-

istics of the traffic flow. One of its major heterogeneity is its composition by
multiple classes (or categories) of vehicles. Road operators and car drivers
agree on the important role of lorries. Due to their longer dimensions and
heavier weight, they are incriminated for faster deterioration of the structures,
densification of traffic situations, slowing of flows and faster creation of traffic
jams for a longer time.
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Models have to be able to capture various nonlinear phenomena, such as
those responsible for the growth of traffic jams. Commonly traffic models are
classified in three groups: microscopic, mesoscopic and macroscopic. First,
microscopic models describe the behavior of each driver individually. They
allow the interaction between two vehicles to be studied finely and simulated
to investigate its impact on traffic flows. This level of detail allows including
the psychological aspect of the drivers. At the microscopic scale, the lane-
changing and the overtaking questions are crucial (Gazis, Herman, and
Rothery 1961; Gipps 1981; Kerner 1999). These models are very suited to
simulate the evolution of traffic inside cities’ streets but also what could be the
new traffic behaviors with intelligent or unmanned vehicles (Chen et al. 2010;
Delis, Nikolos, and Papageorgiou 2018; Pourabdollah et al. 2017; Talebpour
and Mahmassani 2016; Wu et al. 2017). The most widely used method in these
approaches is the cellular automaton (Chopard, Luthi, and Queloz 1996;
Nagel and Schreckenberg 1992; Nagel et al. 1998; Schadschneider and
Schreckenberg 1993) and the car-following theory (Newell 1993, 2002; Pipes
1967). The main counterpart of the microscopic scale is the numerical resour-
ces needed to simulate large areas or numerous vehicles. This need is due to
the number of differential equations necessary to solve for car-following
methods, and the repeat of simulations in order to improve signal-to-noise
ratio with the cellular automaton.
At the opposite of these approaches, the macroscopic models have high

computational efficiency. This efficiency is mainly obtained thanks to the
reduced number of macroscopic variables describing the traffic flow and
the nature of the partial differential equations ruling these variables (Payne
1971). Such models results of the mixture of the empirical behavior like the
fundamental diagram and hydrodynamics equations. One could cite the
famous LWR model Lighthill and Whitham (1955) and Richards (1956).
These are appropriate models for long roads where the position and vel-
ocity of each vehicle are not at stake nor significant.
Mesoscopic models use a statistical description to recover the macroscopic

equations with a finer level of detail. These approaches adapt the kinetic the-
ory of ideal gases to traffic situations (Prigogine and Herman 1971). They are
based on Boltzmann-like equations, therefore they rely on the microscopic
interactions, which give “physical” explanation and foundations to the result-
ing behaviors. Mesoscopic and macroscopic traffic flow models can be derived
rigorously from microscopic dynamics (Helbing et al. 2002; Treiber and
Kesting 2013). On the one hand, the main mesoscopic variable is the distribu-
tion function, reducing the numbers of variables and the computation time.
On the other hand, the price of having fine details and numerical efficiency is
the necessity to work in functional spaces and the complexity of the
Boltzmann-like equations and their solutions.
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The multi-class effects are challenging and have been studied at all scales.
At the macroscopic scale, various multi-class works have been proposed
(Jiang and Wu 2004; Logghe and Immers 2008). At a microscopic scale,
approaches using cellular automaton (Lan and Chang 2005) or car-following
(Hidas 2002; Peeta, Zhang, and Zhou 2005) but also mixtures of (cooperative)
adaptive cruise control or intelligent driver model and human-driven vehicles
(Chen et al. 2010; Delis, Nikolos, and Papageorgiou 2018; Kesting, Treiber,
and Helbing 2010; Pourabdollah et al. 2017; Talebpour and Mahmassani
2016; Wu et al. 2017) have been developed. The mesoscopic scale has also
been the object of very detailed works for multi-class traffic flow, where the
interactions between classes are viewed from statistics (Chanut 2005;
Hoogendoorn and Bovy 2000, 2001; Shvetsov and Helbing 1999; Treiber and
Kesting 2013).
The Lattice Boltzmann Method (LBM) is born after the statistical averag-

ing for lattice gas cellular automata, in order to have meaningful results
when simple simulations are subjected to numerical noise. Yet, the LBM
also has a strong theoretical base lying on the Boltzmann equation He and
Luo (1997). Thus, it seems to be a natural framework to build numerical
schemes for mesoscopic models. However, few examples of LBM for traffic
flow are currently available.
In the present work, a statistical description of continuous kinetic model

is introduced in detail, before discussing the effects of multi-class hetero-
geneity on continuum models. Then the construction of the lattice
Boltzmann method and the formulations associated, for both the single
class and heterogeneous multi-class frameworks are proposed. It is followed
by numerical simulations in order to validate the suggested model. Finally,
discussions and conclusions are given in the last section.

2. Statistical description

2.1. Continuous kinetic models

To build a continuous mesoscopic and kinetic model, the density of
vehicles q has to be studied at a spatial position x along a highway, at a
time t. Obviously, on multi-lane roads, several vehicles can be at the same
time and position with a different velocity. This remark is also true, with
single-lane roads, since the Representative Elementary Volume (REV) used
for the mesoscopic scale is such that it contains many vehicles. Naturally,
this leads to introduce f ðx, n, tÞ the distribution of vehicles with the
velocity n. By working in the velocity space, the density q, average speed v,
and flow q are given by:
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qðx, tÞ ¼
ð
f ðx, n, tÞdn (1)

qðx, tÞ ¼ qðx, tÞvðx, tÞ ¼
ð
nf ðx, n, tÞdn: (2)

To describe the evolution of any distribution of particles, Boltzmann sug-
gested using the sum of a transport term with interactions between these
particles. It is quite reasonable to consider vehicles as particles interacting.
Following this idea, the Boltzmann equation seems perfectly adapted to
vehicle transport problems linked to traffic flow. Thus, Prigogine and
Andrews (1960) and Prigogine and Herman (1971), suggested describing
the evolution with no “external forces” and by decomposing the collision-
interaction operator into two terms. The Prigogine-Boltzmann equation for
traffic flow is

@

@t
þ n

@

@x

� �
f ¼ Xðf , f Þ ¼ @f

@t

� �
rel
þ @f

@t

� �
int

(3)

where the left-hand side member is the transport term, X is the collision-

interaction operator, ð@f@tÞrel and ð@f@tÞint are respectively the relaxation term
and the interaction term.
The relaxation term is assuming that drivers will reach a certain speed

called desired velocity. This desired velocity for all drivers is described by a
distribution function fd, and it is reached after a certain time s called the
relaxation time. Therefore, the relaxation term can be expressed as:

@f
@t

� �
rel

¼ � f ðx, n, tÞ�f dðx, n, tÞ
s

: (4)

The interaction term renders the following overtaking process. When a fast
incoming vehicle attains a slower one, the slow one is not affected. If the
fast one cannot overtake it, the fast driver has to slow down in a short
period. So, the interaction term not only encompasses overtaking maneu-
vers but also braking maneuvers when the overtaking is not possible. The
interaction term can be given by:

@f
@t

� �
int

¼ ð1�pÞf ðx, n, tÞ
ð
ðn0 � nÞf ðx, n0, tÞdn0 (5)

where p denotes the average probability to overtake slow vehicles id est the
slowing down event has the probability ð1�pÞ:
This model is criticized by some authors Munjal and Pahl (1969).

Paveri-Fontana highlighted some problems with this model when s and p
are constant. He also suggests a close enhanced model Paveri-Fontana
(1975). Moreover, he shows that Prigogine-Boltzmann equation and the
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Paveri-Fontana improved Boltzmann equation yield the same macroscopic
equation up to the second order.
Thus, as a first approach the Prigogine-Boltzmann equation is a simpler

and a good description of the traffic flow if s and p are linked to the
vehicle density. A common relationship between the parameter p and the
density q is c ¼ sqð1�pÞ, where c is a constant. To have a model closer to
the conventional lattice Boltzmann method, the Prigogine-Boltzmann equa-
tion can be rewritten

@

@t
þ n

@

@x

� �
f ðx, n, tÞ ¼ f ð0Þ�f

s0
(6)

with

f ð0Þ ¼ s0

s
f d þ 1� s0

s

� �
qðn�vÞ s0 ¼ s

1þ c
:

In the following, the distribution f ð0Þ is called equilibrium distribution function.
Some authors continue this path to create generic kinetic traffic models

adapted to many situations (Helbing 2001; Treiber and Kesting 2013).
Despite the discussions about the validity of their assumptions (specially
about the vehicular chaos), the continuous kinetic models seem to be good
tools to deal with traffic flows.

2.2. Continuum kinetic multi-class traffic approach

Some authors Costeseque and Duret (2015) and Hoogendoorn and Bovy (2000)
constructed continuum kinetic models for multi-class flows, through numerous
inter-class interactions. However, others Bagnerini and Rascle (2003) and
Chanut (2005) remind that the use of multi-class distribution is easier.
In this work, an alternative and simpler formulation is used. Indeed,

guided by the intuition that each driver interacts on average in the same
manner with all the other vehicles, independently of the class of the other
vehicles, the construction of the equilibrium distribution for each class
should be the function of the global density over the class and the local
density of its own class to respect the continuity equation.
Let us denote with the subscript c one class of vehicle out of Nc the number

of classes. Thus, the mesoscopic multi-class Boltzmann-like equations are

@

@t
þ n

@

@x

� �
fcðx, n, tÞ ¼ f ð0Þc ðq, qcÞ�fc

s0c
(7)

qcðx, tÞ ¼
ð
fcðx, n, tÞdn (8)
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qcðx, tÞ ¼ qcvcðx, tÞ ¼
ð
nfcðx, n, tÞdn (9)

q ¼
XNc

c¼1

qc q ¼ qv ¼
XNc

c¼1

qc: (10)

To be more accurate, density q and qc considered here should be inter-
preted as non-dimensional density or equivalently as occupation rates.
More precisely, let us consider the case of two classes, the first one made
of vehicles of length L1 and the second one of length L2. If the length of
the REV is Dx, therefore the maximum number of vehicles from the first
class at the position x is denoted q1ðxÞ and has the maximum value of
Dx=L1: This value is reached when there is no free space between vehicles,
which leads to the definition of qc as the occupation rate. Therefore for
any class, the relationship between q and �q is

qcðxÞ ¼
Dx

Lc
qcðxÞ: (11)

Moreover, the global density can only be expressed in terms of vehicles
number equivalent to vehicles of one class. In the previous example, the
number of vehicles from the second class equivalent to the ones of the first
class is q2=1 ¼ q2L2=L1: And so, if qtot=1 is the total number of vehicles

equivalent to those of the first class, this number is given by

qtot=1 ¼
XNc

c¼1

qc
Lc
L1

¼ q
Dx

L1
(12)

which is more convenient to compute with rate occupations (see Equation (10)).
The major drawback with kinetic models (single or multi-class) is the

integro-differential nature of their equations. This fact, combined with the
lack of physical properties, is responsible for absence of analytical solutions.
This is why numerical methods are for now necessary.

3. Lattice Boltzmann method

3.1. Lattice Boltzmann model for heterogeneous traffic flows

The LBM is a numerical method to solve a discretization of the continuous
Boltzmann equation. This discretization is performed on all three space,
time, and velocity space. Time discretization gives an explicit schema. The
velocity space discretization is often denoted DnQm where n specifies the
physical dimension of the problem and m is the number of points used to
condense the velocity space. The denomination lattice is linked to the
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regular spatial discretization and the DnQm schema used to connect the
spatial points; to coincide with the velocities Succi (2001).
Commonly in the LBM approach, the assumption of a collision-interaction

operator composed only of a relaxation term is made. This assumption is named
Bhatnagar, Gross and Krook (BGK) in reference to its authors Bhatnagar, Gross,
and Krook (1954). Thus, under the BGK approximation the Lattice Boltzmann
Equation (LBE) reads Chopard et al. (2002) andWolf-Gladrow (2000)

fiðxþ eidt, t þ dtÞ ¼ fiðx, tÞ þ 1
s
ðf ð0Þi �fiÞ (13)

where fi is the distribution evaluated in ei the discrete velocities (associate
to the velocity space); dt is the time step, therefore the space or lattice step
is given by dx=dt ¼ e and ei ¼ idx=dt:
For the numerical resolution, the LBE is divided in two steps. The first

step is the collision-interaction step defined by the equation

fiðx, t þ dtÞ ¼ fiðx, tÞ þ 1
s
ðf ð0Þi �fiÞ: (14)

This is usually followed by the streaming step defined by:

fiðxþ eidt, t þ dtÞ ¼ fiðx, t þ dtÞ: (15)

Nevertheless, the last equation comes from fluid dynamics and must be
adapted to take into account possible lane number changes (see Figure 1).
Therefore, to face these possibilities, it is suggested to turn the Equation
(15) into:

fiðxþ eidt, t þ dtÞ ¼ fiðx, t þ dtÞ nlðxÞ
nlðxþ eidtÞ (16)

with nl the number of lanes for a given spatial point.
The macroscopic variables are recovered by using the classic following

summations:

qðx, tÞ ¼
Xm�1

i¼0

fiðx, tÞ (17)

qðx, tÞ ¼ qvðx, tÞ ¼
Xm�1

i¼0

eifiðx, tÞ: (18)

Figure 1. Schematic of a road with changing of the speed limit and number of lanes.
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The LBM in its classical form can solve various problems related to trans-
port of particles, under certain conditions like compressible or viscous
flows. The equilibrium distribution function has to be in adequacy with the
physical phenomena. This distribution function is, in the Euler conserva-
tion case, uniquely found through the application of mathematical theorem
Cercignani (1988) and physical conservation laws.
When applying the LBM for road traffic (Meng et al. 2008; Shi et al. 2016),

the lack of conservation laws makes the appreciation of the equilibrium distri-
bution function harder. As some authors suggest Meng et al. (2008) a work-
around by constructing it from the observable data could be adopted. The
other noticeable difference with the LBM applied to traffic problems is the vel-
ocity space. It is Rn (symmetric) for fluids or gases but it becomes Rþ (asym-
metric) with roads since the dimension of roads is one and vehicles almost
never use reverse gear for something else than to park. Therefore it is sug-
gested to use a D1 q6 schema (see Figure 2), or more.
Previous studies Meng et al. (2008) suggest choosing an equilibrium dis-

tribution function that offers interesting capacity to model empirical phe-
nomena. Here, a completeness of this empirical model to deal with
heterogeneity is introduced. It allows to define the equilibrium distribution
function with

f ð0Þi ¼

qðxÞ

1þ
Xvm

i¼1
e2i exp � e2i ~qðxÞ

1� ~qðxÞ

 ! for i ¼ 0

e2i exp � e2i ~qðxÞ
1� ~qðxÞ

 !
qðxÞ

1þ
Xvm

i¼1
e2i exp � e2i ~qðxÞ

1� ~qðxÞ

 ! 8 i 2 1, vm½ �½ �

0 8 i 2 vm þ 1,m� 1½ �½ �

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(19)

~qðxÞ ¼
Pvm

i¼0
qðxþ eiÞ

vm þ 1
(20)

where vm is the maximum speed of vehicles (it can be the speed limit, like
on Figure 1, or higher values, if one wants to capture over-speeding) and ~q
is the most important parameter. The latter can be seen as the reachable

Figure 2. Schematic of an asymmetric D1Q6 network.
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forward occupation rate. In other words, it is the density, that the drivers
feel in front of them, in which they will have to navigate. Obviously, the
maximum speed of vehicles vm is an integer lower than or equal to
the maximum speed used to model the system m� 1. This also means that
the variations of vm along the road can only be a multiple of the lattice
step dx=dt ¼ e:
This equilibrium distribution function expressed the fact that drivers

under a constant relaxation time, change their desired speed with the vari-
ation of the forward reachable occupation rate. It is a manner to express
that they are adapting their speed with the traffic.
This model has to be completed by “virtual boundary condition” to pre-

vent having density higher than one when too many vehicles from different
cells want to reach the same cell. Naturally, the vehicles from the further
cells have to slow down quickly.

BvðfiðxÞÞ ¼8>>>>><
>>>>>:

f �i ðx�eidtÞ ¼
(
0 if qtest�

Xm
j¼iþ1

fjðx�ejdtÞ
nlðx�ejdtÞ

nlðxÞ >1

fiðx�eidtÞ else

f �i�1ðx�eidtÞ ¼
(
fiðx�eidtÞ þ fi�1ðx�eidtÞ if qtest�

Xm
j¼iþ1

fjðx�ejdtÞ
nlðx�ejdtÞ

nlðxÞ >1

fi�1ðx�eidtÞ else

(21)

qtestðxÞ ¼
Xm
i¼0

fiðx�eidtÞ nlðx�eidtÞ
nlðxÞ : (22)

A virtual boundary condition inspired by Meng et al. (2008), can be
expressed through the function Bv (see Equation (21)), in which the quan-
tity qtest (see Equation (22)) represents the density that would happen if all
the drivers could stream as they wish, i.e., if the density could be greater
than one and so that car crash could happen.
To avoid any confusion, since in the definition of Bv the comparison is

made with 1, the definition of q or qtest used here is the occupation rate
varying from 0 to 1.
Thus it is suggested to rewrite the streaming step that takes into account

the virtual boundaries:

fiðxþ eidt, t þ dtÞ ¼ Bvðfiðx, t þ dtÞÞ: (23)

3.2. Lattice Boltzmann model for multi-class traffic

Strengthened by the successful results of the LBM to model the Navier-
Stokes equations, researchers quickly tackled more complex problems like
mixture of fluids. A noticeable work has been done in the case of
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immiscible mixture (Shan and Chen 1993). At the same time, some pio-
neers initiated the work on miscible fluids (Holme and Rothman 1992),
improved some years after by adding thermodynamics equations (Inamuro
et al. 2002).
When it comes to traffic, despite heavy machinery vehicles tend to form

a continuous lane on highways, the second lane is most of the time full of
personal car. So, the hypothesis of immiscibility seems not to be the most
relevant in a first approach. Even if, publications deal with the use of cellu-
lar automata for multi-class traffic flows (Ez-Zahraouy, Jetto, and
Benyoussef 2004); the use of the lattice Boltzmann method to solve hetero-
geneous multi-class traffics has never been studied.
To take into account the necessity for the equilibrium density function

to depend on the global density and the class density, and since the vari-
able ~q can be understood as the density felt forward drivers; it seems nat-
ural in a first approach that the global density depends only on ~q: Thus,
the macroscopic variable related to the Equation (10) can be written as

qc ¼
Xm�1

i¼0

fc, iðx, tÞ qc ¼
Xm�1

i¼0

eifc, iðx, tÞ (24)

q ¼
XNc

c¼1

qc ¼
Xm�1

i¼0

XNc

c¼1

fc, iðx, tÞ (25)

q ¼
XNc

c¼1

qc ¼
XNc

c¼1

Xm�1

i¼0

eifc, iðx, tÞ: (26)

Then, the respect of conservation equations leads to a new formulation of
the equilibrium density function:

f ð0Þc, i ¼

qcðxÞ

1þ
Xvm, c

i¼1
e2i exp � e2i ~qcðxÞ

1� ~qcðxÞ

 ! for i ¼ 0

e2i exp � e2i ~qcðxÞ
1� ~qcðxÞ

 !
qcðxÞ

1þ
Xvm, c

i¼1
e2i exp � e2i ~qcðxÞ

1� ~qcðxÞ

 ! 8 i 2 1, vc,m½ �½ �

0 8 i 2 vc,m þ 1,m½ �½ �

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(27)

~qcðxÞ ¼
Pvm, c

i¼0
qðxþ eiÞ

vm, c þ 1
(28)

where vm, c is the maximum speed of the class c vehicles, and ~qc is the
reachable forward occupation rate for the class c.

10 R. NOËL ET AL.



The virtual boundary conditions also have to follow the same logic. One
should note that since the Bv function affects the values of the distribution
at a point backward from a given point where variables are evaluated, its
algorithmic application should be backward recursive. The variable qtest has
to be the reflection of the global density, while the modifications over dens-
ity has to be accomplished per class. Therefore, the virtual boundaries can
be expressed by:

BvðfiðxÞÞ ¼8>>>>><
>>>>>:

f �i, cðx�eidtÞ ¼
8<
:

0 if qtest�
X

iþ1�j�m
0�c�Nc

fj, cðx�ejdtÞ
nlðx�ejdtÞ

nlðxÞ >1

fi, cðx�eidtÞ else

f �i�1, cðx�eidtÞ ¼
8<
:

fi, cðx�eidtÞ þ fi�1, cðx�eidtÞ if qtest�
X

iþ1�j�m
0�c�Nc

fj, cðx�ejdtÞ
nlðx�ejdtÞ

nlðxÞ >1

fi�1, cðx�eidtÞ else

(29)

qtestðxÞ ¼
Xm
i¼0

XNc

c¼0

fi, cðx�eidtÞ nlðx�eidtÞ
nlðxÞ : (30)

4. Validation through numerical simulations

In all the following simulations, a space step of 5.5 meters and a time step
of 1 second are taken. This leads to a speed step of almost 20 kilometers
per hour. Moreover, a D1Q6 schema is used, consequently the maximum
speed is close to 100 kilometers per hour. However, for the sake of
generality, the following results will be presented in their non-dimensional
form, i.e., expressed in space or time step units.
All the following simulations are obtained with a relaxation frequency of

0.9, with the exception of the simulations linked to Figure 5 where the value
of the relaxation time is varying. The presented model is here confronted with
different simulations: fundamental diagrams, speed limits and number of lane
changes, road merging, and variation of truck concentration.

4.1. Fundamental diagrams

To evaluate the behavior of the suggested model, the study of density-flow
fundamental diagram is performed. It allows estimating the relationship
between the flow and the density (Kerner, Klenov, and Wolf 2002; Ngoduy
2011). The study of a ring road, of 1000 cell length, simulated for different
average density is done. Each simulation starts with density spatially vary-
ing around the average density by following a random noise of 10%. The
road has a speed restriction of 5 cells per unit of time (see Figure 3).
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The relaxation time is set to 0.9. After 2000 time steps, the averaging over
time and space is made to obtain the Figure 4. The resulting curve is com-
pared to usual macroscopic models such as the Greenshields (1935),
Greenberg (1959), Drake, Schofer, and May (1967), or Daganzo
(1997) models.
Figure 4 shows the ability of the LBM to simulate the various traffic sit-

uations with good accuracy. The results are very close to those described
by the Drake model (Drake, Schofer, and May 1967).
Moreover, the effect of the relaxation time on the fundamental diagram

is major. This effect is represented on the Figure 5. The relaxation time
interval in which the numerical schema remains stable is directly linked to
the equilibrium distribution function suggested. Moreover, the fact that its
effect is only noticeable for congested-flow can be interpreted as the too
slow ability of the drivers to change (or reach) their desire speed. In other
words, they have a speed incompatible with the current density of traffic.
For values of the relaxation time higher than 1.20 and lower than 0.65,

the numerical model becomes unstable for high density. This is due to the

Figure 3. Schematic of a ring road.

Figure 4. Fundamental diagram of some macroscopic models.
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nature of the equilibrium distribution function, which is a compromise
between the desired velocity and the current velocity. Therefore, a high
relaxation time means drivers not breaking enough in case of slowing
down, and a low relaxation time means drivers over accelerating in case of
speeding up. Both the acceleration and breaking phenomenon are critical at
high density since the start and stop occur with limited margins to maneu-
ver in strong jam. In both high and low relaxation time, the maladjusted
behaviors of the drivers lead to instabilities.

4.2. Number of lane

To evaluate the effect of a change of lane number on traffic conditions; the
study of a road of 5000 sites is proposed. It starts with three lanes and a con-
stant density, while a reduction to two lanes is located at the site number
2500. The speed limit is set to 5 cells per unit of time, as shows Figure 6.
Figure 7 represents density evolution in time and space for a simulation

with the entrance density of 0.10 (see Table 1). This situation leads to a
density increase after the reduction of lanes, which remains in free-
flow domain.
Figure 8 has for incoming density 0.20 (see Table 2), which means that an

increase of its density will lead to the congested-flow domain and might create

Figure 5. Flow-density relationship for different relaxation time.

Figure 6. Schematic of a road with a number of lane change.
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important interactions. On Figure 8, the entrance in congested-flow domain
leads to a slowing-down situation waving backward.

4.3. Speed limit change

The last external source of modification for traffic conditions studied in
this section is the change of speed limit. The same length of the road than

Figure 7. Density for reduction of lanes in free-flow conditions: simulation with LBM in solid
blue and with triangular-Daganzo fundamental diagram for LWR method in dashed red.

Figure 8. Density for a reduction of lanes in congested-flow traffic conditions: simulation with
LBM in solid blue and with triangular-Daganzo fundamental diagram for LWR method in
dashed red.
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for the previous numerical investigations for a road of two lanes and the
same relaxation frequency is used. As shown in Figure 9, a reduction of
speed limits from 5 to 4 cells per unit of time is imposed on the site
number 2500.
With the density of 0.15 at the entrance of the road (see Table 3), the

speed limit reduction has the same effect as the reduction of the lane

Table 1. Parameters for the LBM modeling of a road containing a
reduction of lanes in free-flow traffic conditions.
Parameters Values Space

qin 0.10 xin ¼ 1
nl 3 8x 2 ½0, 2500�
vm 5 8x 2 ½0, 2500�
nl 2 8x 2 ½2500, 5000�
vm 5 8x 2 ½2500, 5000�

Table 2. Parameters for the LBM modeling of a road containing a
reduction of lanes in congested-flow traffic conditions.
Parameters Values Space

qin 0.20 xin ¼ 1
nl 3 8x 2 ½0, 2500�
vm 5 8x 2 ½0, 2500�
nl 2 8x 2 ½2500, 5000�
vm 5 8x 2 ½2500, 5000�

Figure 9. Schematic of a road with a change of speed limit.

Figure 10. Modeling of a road containing a reduction of speed restriction under free-flow traf-
fic conditions: simulation with LBM in solid blue and with triangular-Daganzo fundamental dia-
gram for LWR method in dashed red.
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number: an increase in the density forward to the change. The Figure 10
represents this situation with the increased density still in free-
flow domain.
For Figure 11, the entrance density set at 0.26 leads (see Table 4), after

the reduction of speed limits, to a congested flow. It corresponds to the
same consequences as the previous congested cases, i.e., a slowing
down flow.
One can notice a difference between the results of the LBM and LWR

methods on Figure 11. The backward slowing down wave is starting earlier
and is less dense than the one generated by the LBM. This can be largely
explained by the differences in the fundamental diagrams between triangu-
lar-Daganzo and the LBM models. And this is emphasized by the fact that
the reduction of speed restriction under congested-flow simulated involves
the upper part of the fundamental diagram where the two diagrams are the
most different. Despite this difference, the same phenomena of slowing
down wave propagating backward from the reduction of speed restriction
is clearly visible.

Table 3. Parameters for the LBM modeling of a road containing a
reduction of speed restriction under free-flow traffic conditions.
Parameters Values Space

qin 0.15 xin ¼ 1
nl 2 8x 2 ½0, 2500�
vm 5 8x 2 ½0, 2500�
nl 2 8x 2 ½2500, 5000�
vm 4 8x 2 ½2500, 5000�

Figure 11. Modeling of a road containing a reduction of speed restriction under congested-
flow traffic conditions: simulation with LBM in solid blue and with triangular-Daganzo funda-
mental diagram for LWR method in dashed red.
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4.4. Road merging

Changes of the traffic conditions can be caused by road merging. To study
the effects of road merging on traffic conditions, the simulation of a two-
lane highway is considered. It can be remarked that the interaction of road
merging is acting both ways: if the sum of the two density exceeds the crit-
ical density of the highway, then congested situations can propagate back-
ward in both roads. Thus, we propose the following expression of the
interaction at the merging point:

qðxaddÞ ¼ qðxadd�1Þ þ qadd if qðx�1Þ þ qadd � qcritic
qðxaddÞ þ 0:3qadd else

�
(31)

This road is constituted of 5000 cells and the speed limit is 5 cells per unit
of time. The complete highway is empty at the time t ¼ 0 of the

Table 4. Parameters for the LBM modeling of a road containing a
reduction of speed restriction under congested-flow traffic conditions.
Parameters Values Space

qin 0.26 xin ¼ 1
nl 2 8x 2 ½0, 2500�
vm 5 8x 2 ½0, 2500�
nl 2 8x 2 ½2500, 5000�
vm 4 8x 2 ½2500, 5000�

Figure 12. Schematic of merging roads.

Figure 13. Modeling of road merging in free-flow traffic conditions: simulation with LBM in
solid blue and with triangular-Daganzo fundamental diagram for LWR method in dashed red.
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simulation. At the beginning of the road, the density is set to a constant,
while 2000 cells further a road merging adds another constant density
except if the sum is higher than one (see Figure 12).
Figure 13 illustrates the dynamic of the density when the two flows

merge. The density at the edge of the simulation is set to 0.11 and the
incident density is set to 0.15 (see Table 5). These two density and their
sum are in free-flow conditions: when the flows joined the density is simply
the sum of the incoming density. Therefore, no jam is observed around
the merge.
Per contra, Figure 14 is obtained with an initial density of 0.15 at the

beginning of the road and an incident density of 0.20 (see Table 6). These
two ones are still in free-flow domain but not their sum. Therefore, as
expected, Figure 14 shows a slowing down waves (characterized by an
increase of the density) streaming backward from the merging point.

Figure 14. Modeling of road merging in congested-flow traffic conditions: simulation with LBM
in solid blue and with triangular-Daganzo fundamental diagram for LWR method in dashed red.

Table 5. Parameters for the LBM modeling of road merging in free-
flow traffic conditions.
Parameters Values Space

qin 0.11 xin ¼ 1
nl 2 8x 2 ½0, 2000�
vm 5 8x 2 ½0, 2000�
qadd 0.15 xadd ¼ 200
nl 2 8x 2 ½2000, 5000�
vm 5 8x 2 ½2000, 5000�
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4.5. Truck concentration

To evaluate the effects of heterogeneous multi-class traffic, a ring road is
studied. The simulation of section 4.1 is reused but a variable ratio of 2 vehicle
classes is put in the model. These two classes have different speed limits: one
has a speed limit of 5 cells per unit of time, while the other has a speed limit of
only 4. The ring road is made of 1000 cells, 3 lanes (see Figure 3). The injec-
tion point imposes a global density qp distributed in two classes, through a
coefficient a. Thus, q1ðxpÞ ¼ aqp and q2ðxpÞ ¼ ð1�aÞqp:
Figure 15 shows the influence of a class of slower vehicles (with index

2), with a speed limit of 4 cells per unit of time (to simulate the heavy
weighted machines), on a class of faster ones (with index 1) having a speed
limit of 5 cells per unit of time (to model the personal cars).
Figure 15 shows the fundamental diagrams obtained.
It highlights that the maximum possible flow is lower with slower

vehicles. This is even more drastic when putting back the right problem

Table 6. Parameters for the LBM modeling of road merging in
congested-flow traffic conditions.
Parameters Values Space

qin 0.15 xin ¼ 1
nl 2 8x 2 ½0, 2000�
vm 5 8x 2 ½0, 2000�
qadd 0.20 xadd ¼ 200
nl 2 8x 2 ½2000, 5000�
vm 5 8x 2 ½2000, 5000�

Figure 15. Fundamental diagram: flow-density relationship for different lorry concentration.
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dimensions in the fundamental diagram. Indeed, if the slower vehicles are
lorries, they are more represented through the Equation (12), since they
have longer length.

5. Discussions & perspectives

The suggested method allows to reproduce macroscopic situations from a
mesoscopic formulation through a Boltzmann-like equation. The present
lattice-Boltzmann method is capable of modeling the theoretical traffic
behavior described in the literature. In particular, the results obtained with
the present model is able to recover those of Drake’s model. However, the
suggested method also adds the possibility to include the basic psycho-
logical behavior of drivers through the relaxation time parameter. This also
implies at least two elements of improvement. The first is the adaptive set-
ting of the relaxation time to weather conditions or physiological parame-
ters such as the tiredness (before holiday periods or after long/difficult
travels). The second is a work around the collision operator that could
gather the inclusion of psychological behavior and numerical efficiency.
Thanks to the improved formulation, the simulation of various road sit-

uations, unprecedented with such method, is now allowed. Conventional
microscopic or macroscopic methods are able to furnish simulations of
many road situations, but the previous works using the LBM never demon-
strated their ability to capture these situations. Through our incorporation
of the number of lanes in the Equations (16), (29), and (30), it is possible
to obtain simulations of roads with a number of lanes changing in free
flow domain and respectively in congested domain shown on Figure 7 and
respectively on Figure 8. Moreover, as it is suggested with the introduction
of the speed limit parameter in the Equations (27) and (28), it allows to
simulate roads with a variable speed limit both in free flow and congested
domain. These situations of roads with a variable speed limit are repre-
sented on Figure 7 and on Figure 8. In all the situations studied: number
of lanes, speed restriction change and road merging, the LBM gives
dynamic results very closes to those from LWR method, while providing
mesoscopic information details.
The merging roads, which implies a new mesoscopic implementation of

the boundary conditions for the numerical simulations. This contribution
about the boundary conditions is necessary to simulate realistic configura-
tions. Furthermore, thanks to the mesoscopic nature of the LBM the roads
merging with an active traffic light system is also imaginable (Gartner and
Wagner 2004; Newell 1956). Of course, new improvements are imaginable,
to extend the number of realistic situations reachable by the method.
Diverging roads branch simulation could be very useful, particularly with
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the possibility to connect LBM simulations of different roads. Then, it
would be possible to simulate a large highway network from the traffic
input and output measures and compare it to real observations to improve
the methods and models.
To obtain more realistic traffic situations, the influence of heavy machine

is of first importance and has many impacts. To incorporate several vehicle
classes, the constitutive equations of the LBM are adapted. This adaptation
is performed through the Equations (24)–(30). Therefore, all the previous
situations with changes of road properties can be simulated with a mixture
of vehicle classes. To emphasize only the effect of multi-class mixture, the
study of a ring road is preferred and given on Figure 15. The influence of
a multi-class traffic, on fundamental diagram, found here is close to those
presented by some authors Ez-Zahraouy, Jetto, and Benyoussef (2004).
Nevertheless, since the very simple assumption of symmetrical interaction
with all the vehicles regardless of their class is made, a logical improvement
could be included the psychological aspects of drivers facing trucks or
smaller cars. These improvements imply to treat nonsymmetrical class
interactions and could have connections with non-miscible fluids mixture
well addressed by the LBM.
Other aspects such as the sinuosity of the road or the traffic pressure in

multi-class flows could be interesting to add to the model. Moreover, the meso-
scopic scale and the statistical nature of the LBM could be turned into a greater
advantage by bringing at that scale stochastic variation of the distribution func-
tion to represent realistic random events. Investigations on the equilibrium dis-
tribution functions and their justification would also be an important step. The
frequency with which the virtual boundary condition is used could also be
linked with the probability of real car accident, since this boundary implies a
quick breaking action in order to avoid exceeding the road capacity.
Thus, the suggested method is able to deal with road merging, change of

lane numbers or speed limits with multi-class vehicles effects in both free-
flow and congested-flow conditions in agreement with the macroscopic
previsions. Even if these capacities of simulations are new with the LBM,
these are very common with standard methods. However, the LBM
presents many interesting aspects not present in standard methods. Indeed,
the LBM is yielding mesoscopic solutions with a reduced computational
time, and its local and explicit nature make it highly parallelizable. Plus,
statistical aspects of the method could be useful for stochastic parameters
and simulations Wagner, Buisson, and Nippold (2016). Therefore, the pre-
sented extension and validation of traffic flow simulations with the LBM is
a step before many further possible developments.
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6. Conclusions

The lattice Boltzmann method is an efficient numerical method to over-
come the integro-differential difficulties introduced by statistical models
and might be a practical manner to solve numerically the Prigogine-
Boltzmann like equation. This remains a good compromise between, on the
one hand, the high level of detail (but time consuming provided by the
microscopic description) and, on the other hand, the loss of information
(but the faster computation yield by the macroscopic description).
Moreover, the macroscopic results obtained through the LBM are bounded
to the choice of the equilibrium density function that can be tuned to
reproduce various effects and models.
The presented results demonstrate the capacity of the LBM to solve het-

erogeneous multi-class traffic flows, and suggested formulations give easy
treatment to deal with numerous road situations.
Indeed, thanks to this equilibrium density function and some extensions

done by introducing parameters like the number of lanes and the speed
limit or some boundary conditions, the ability for the suggested method to
reproduce situations such as roads merging, changing the number of lanes
or changing the speed limits in all traffic domains (free-flows or congested-
flows) is also demonstrated.
In addition, the complete adaptation of all the equations to incorporate

the mixture of heterogeneous multi-class is performed. This adaptation per-
mits to simulate and validate the effect of lorries mixes with faster cars in
case of miscible phases.
Thus, the presented article investigated the use of the LBM for traffic

flow simulations. Beyond this method which is scarcely used for these
problems, the method is here extended to reach more realistic simulations.
This work of validation is necessary before exploring the numerous devel-
opment opened by this numerical mesoscopic method.
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