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ABSTRACT
Second generation p-values preserve the simplicity that has made p-values popular while resolving critical
flaws that promote misinterpretation of data, distraction by trivial effects, and unreproducible assessments
of data. The second-generation p-value (SGPV) is an extension that formally accounts for scientific relevance
by using a composite null hypothesis that captures null and scientifically trivial effects. Because the majority
of spurious findings are small effects that are technically nonnull but practically indistinguishable from the
null, the second-generation approach greatly reduces the likelihood of a false discovery. SGPVs promote
transparency, rigor and reproducibility of scientific results by a priori identifying which candidate hypothe-
ses are practically meaningful and by providing a more reliable statistical summary of when the data are
compatible with the candidate hypotheses or null hypotheses, or when the data are inconclusive. We
illustrate the importance of these advances using a dataset of 247,000 single-nucleotide polymorphisms,
i.e., genetic markers that are potentially associated with prostate cancer.
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1. Introduction

By now everyone has seen the little red badges that appear on
mobile phone apps and computer icons when the software wants
attention. Besides stimulating serotonin production, those little
red badges serve an important role: they notify the user when
their attention is required. Perhaps not surprisingly, p-values
have become the little red badges of applied statistics; they are
assumed to indicate when the observed data are sufficiently
informative to warrant the reader’s attention. The results, after
all, have been deemed “significant.”

Having a gross indicator for when a set of data are sufficient
to separate signal from noise is not a bad idea. The problem is
that p-values perform poorly in this role. They confound effect
size and precision, blurring the natural emphasis on meaningful
effect sizes. They depend on the planned experimental design,
even if the plan was not followed. Their proper interpretation
is awkward. They are not consistent with the more intuitive
measures of statistical evidence that arise in likelihood (Barnard
1949; Royall 1997; Blume 2002), Bayesian (Edwards, Lindman,
and Savage 1963; Kass and Raftery 1995), and information
theory (Good and Osteyee 1974) paradigms. In practice, these
flaws often overshadow the p-value’s positive attributes (Berger
and Sellke 1987; Blume and Peipert 2003; Greenland et al. 2016;
Goodman 1993; Cornfield 1966; Royall 1986; Dupont 1983).

For decades now, the statistical community has discouraged
researchers from perseverating on the significance level of new
findings (Wasserstein and Lazar 2016). Instead, the community
seems to favor a more holistic approach that surveys the avail-
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able evidence, modeling choices, potentially impactful effect
sizes, and scientific context. While this emphasis is generally
welcomed by practitioners of statistics, it is hard to condense
it into a single metric that can be uniformly applied across dif-
ferent disciplines. Efforts to replace the p-value with something
else—for example, a likelihood ratio (LR, Royall 1997; Blume
2002), Bayes factor (Bayarri et al. 2016), or posterior probability
(Spiegelhalter, Abrams, and Myles 2004; Edwards, Lindman,
and Savage 1963)—have not yet garnered a large enough follow-
ing to alter the daily practice of statistics in applied disciplines
(e.g., Cristea and Ioannidis 2018). p-Value “improvements” have
been limited to revising the threshold for significance (Johnson
2013; Benjamin et al. 2018; Lakens et al. 2018) and tweaking
the interpretation (Ioannidis 2018). Unfortunately, these efforts,
resurrected every few decades since the 1960s (Berkson 1942;
Cornfield 1966; Cohen 1994; Savage 1962; Morrison and Henkel
1970), have not led to changes in the daily practice of statistics.

The need for a reliable descriptive summary of the statistical
evidence at hand remains unmet. Science looks to statistics for
a global assessment—a single number summary—of whether
the data favor the null hypothesis, the alternative hypothesis or
whether the data are inconclusive. More nuanced assessments
are, of course, encouraged. But this does not eliminate the need
for a quick and coarse assessment of what the data say that is
uniformly applicable across disciplines.

The second-generation p-value (SGPV) was developed with
this need in mind (Blume et al. 2018). The idea was to improve
on the p-value, rather than discard it. This meant keeping
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familiar characteristics, such as the bounds of zero and one,
while also adding new capabilities, such as the ability to indicate
when the data support the null hypothesis. By construction, the
SGPV retains many of the desirable properties of the p-value,
incorporates often-wished-for properties, retains excellent
control over error rates, operates with low false discovery rates
(FDRs), and is readily interpretable by non-statisticians. In a
broad sense, the SGPV simply indicates when experimental
data support only the null premise or scientifically relevant
alternative hypotheses.

The purpose of this note is to introduce the SGPV in a
nontechnical manner and explain how it differs from the clas-
sical p-value. We will take the phrase “statistical inference” to
mean measuring the strength of evidence in observed data about
scientific hypotheses. Other inferential domains, such as belief
theory (“What do I believe now that I have seen these data?”)
and decision theory (“What should I do now that I have seen
these data?”) will not be directly addressed. The focus here is on
the most obvious and most frequently asked question in science:
“Which scientific hypotheses are supported by the data?” Before
introducing and discussing the SGPV, it is important to consider
the conceptual framework that allows us to properly evaluate the
statistical properties of the SGPV and to examine the manner in
which we typically construct the null hypothesis.

2. Evidential Metrics

The majority of scientific activity consists of reporting and
interpreting data as scientific evidence. Although there is no
generally accepted mathematical framework for conducting an
evidential analysis, there are three key metrics that comprise an
evidential framework (Blume 2011):

1. A numerical assessment of the strength of evidence in a given
body of observations

2. The probability that the numerical assessment will be mis-
leading in a given setting

3. The probability that an observed assessment—one computed
from observed data—is mistaken

The first metric is the scale of evidence, the second is the error
rate, and the third is the FDR. These three metrics, obviously
distinct, must be clearly defined for the evidential framework to
be coherent. Failure to accomplish this creates a fatal flaw. Let’s
take a moment to consider each metric’s role in the scientific
process.

The first evidential metric is the numerical assessment of the
strength of evidence in a given body of data. It is the researcher’s
essential tool for understanding what the data say. This tool
is typically justified by axiomatic or intuitive means. Typically,
they are single number summaries, but there is no restriction
that this always be the case. Suppose we use M to measure the
strength of evidence. It might be a metric that indicates absolute
support for, or against, a single hypothesis such as a p-value or
posterior probability. Or, it might be a measure that indicates
relative support for one hypothesis over another such as a LR,
Bayes factor, or divergence measure. A simple point estimate,
such as a mean difference, relative risk, or odds ratio, is not
itself an evidential metric because the connection between the
point estimate and candidate hypothesis is not formalized. After
collecting data, we compute and report M.

Sometimes the data, by way of its interpretation through M,
indicate support for a false hypothesis or indicate that the data
are inconclusive. Neither outcome is desirable, so studies are
designed to minimize the rate at which they generate misleading
or inconclusive evidence. Accordingly, the second evidential
metric is the propensity to observe undesirable outcomes such
as misleading or inconclusive evidence. In statistical lingo, these
are often called “error” rates.

Suppose we have two competing hypotheses HA and HB.
The classical frequency properties of a study design would be
P(M supports HA|HB), P(M supports HB|HA), P(M yields
inconclusive evidence |HB), and P(M yields inconclusive evi-
dence |HA). A good study design minimizes these probabilities
to the best extent possible. There are, of course, many different
statistical and experimental strategies for doing this. The key
point is that these probabilistic measures are properties of the
experiment, not properties of the data that result from the
experiment. For this we need another tool.

Once the data are collected, we compute and report M. We
will know if the evidence is strong or if it is inconclusive from
the observed value of M. For example, the observed LR might
be 100, which would represent very strong evidence favoring
one hypothesis over another. However, we will not know if M is
misleading or not. The third evidential metric is the propensity
for observed evidence to be misleading; it is an FDR. The FDR
is an essential complement to the first evidential metric. We
report the observed metric to describe the strength of evidence
in the observed data, and we report the FDR to describe the
chance that this result is mistaken. Note that, unlike the second
evidential metric, the FDR is a property of the observed data.

Continuing with the example, the FDRs would be P(HB|M
supported HA) and P(HA|M supported HB). Bayes’ theorem
must be used to compute these probabilities, so assumptions are
made about the likelihood of the candidate hypotheses being
true. The key insight is that once data are observed, it is the FDRs
that are the relevant assessments of uncertainty. The error rates
of the study design, critical at the design phase, are no longer
relevant for the interpretation of observed data as statistical
evidence. Rather it is the FDRs that convey the magnitude of
uncertainty for the observed data.

The FDR was not formalized in the statistical literature until
fairly recently (Benjamini and Hochberg 1995; Storey 2002,
2003). This is largely why statisticians and applied researchers
have been slow to adopt this quantity in its natural role; prefer-
ring instead to rely on familiar but flawed interpretations of the
Type I and Type II error rates. While it is true that the FDRs
depend on the error rates (Wacholder et al. 2004), the FDRs are
clearly distinct quantities and they should be treated as such.

A very successful real-world example of this structure comes
from diagnostic medicine. Consider using CD4 count to deter-
mine if a patient, already infected with HIV, has developed
AIDS. The CD4 count is an estimate of the number of active
Helper T cells, per cubic millimeter, that can fight an infection.
Normal CD4 counts range from 500 to 1500. When the CD4
count falls below 200, it is an indicator that the patient may
have developed AIDS. Suppose we take M to be a LR and
patient X is found to have a CD4 count of 150. Is this CD4
count, which supports a diagnosis of AIDS, strong evidence that
patient X has AIDS? To answer this question, we compute the
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metric, say Mobs = 50, and interpret. The answer is yes; patient
X’s LR is large and favors the hypothesis that the patient has
AIDS. For simplicity here, let’s suppose the LR is a smoothly
decreasing function of the CD4 count so we can forgo the actual
computation ofM and just use CD4 count as a surrogate forM.

The second evidential metric—the properties of the diag-
nostic test—consist of sensitivity P(CD4 ≤ 200|AIDS) = 0.9
and specificity P(CD4 > 200|No AIDS) = 0.96 (the numerical
values were chosen for illustration purposes and do not reflect
actual performance). Good diagnostic tests have high sensitivity
and high specificity. The classical Type I and Type II error rates
are the complements of these numbers, so α = 0.04 and β =
0.1. When a physician receives patient X’s test results, she reports
the observed CD4 count (e.g., CD4 = 150) and the probability
that the patient has AIDS given their CD4 count is below 200.
This latter quantity is called the positive predictive value of the
test result, P(AIDS|CD4 ≤ 200) = PPV. We use Bayes’ theorem
to compute the PPV from the test’s sensitivity and specificity if
we know the disease prevalence, say 20% for illustration. Then,
we see that PPV = 0.9×0.2/(0.9×0.2+ .004×0.8) = 0.85. The
FDR is simply 1 – PPV or P(No AIDS|CD4 ≤ 200) = 0.15; it
is the probability that patient X does not have AIDS when their
CD4 count is less than 200.

In this context, it makes little sense for the physician to
report to patient X the complement of the observed specificity,
say P(CD4 ≤ 150|No AIDS) = 0.02. This is because the
patient already knows their CD4 count. Moreover, the patient
really wants to know how likely it is that they have AIDS or, if
that is not possible, whether their chances of having AIDS has
increased now that their CD4 count is known. The rub is that the
complement of specificity is the p-value. And it is not at all clear
what the p-value adds beyond the observed CD4 count (150)
and FDR (15%). Perhaps the physician should report the p-
value and the PPV? Or perhaps the CD4 count and the p-value?
Neither is quite right. This example illustrates why statistical
inference based on p-values can be so confusing. Imagine what
would happen if the p-value had to be adjusted for all the HIV
tests run at the doctor’s office that day. Once data have been
observed, it is the FDR that provides the correct assessment of
uncertainty in the evidence; not the p-value.

Failure to distinguish between the evidential metrics leads to
circular reasoning and irresolvable confusion about the inter-
pretation of data as statistical evidence (Blume and Peipert 2003;
Blume 2011). This is the fundamental dilemma that belies the
p-value. Is the tail area probability a measure of the strength of
evidence against the null hypothesis, or is it the study’s effective
error rate? Nearly a century after Fisher and Neyman first argued
this very point, it remains unclear with divergent opinion on the
matter. Fisher would argue for the former and Neyman for the
latter, but neither view has carried the day (Royall 1997; Berger
2003). The problem is that there is only one number, the tail
area probability, and this one number is used to represent two
different concepts. The conflation of these concepts, as they
pertain to the tail area probability, is the genesis of the multiple
comparisons/multiple looks paradoxes in statistics (Blume and
Peipert 2003; Royall 1997). Fisher understood this, writing “In
fact, as a matter of principle, the infrequency with which, in
particular circumstances, decisive evidence is obtained, should not
be confused with the force, or cogency, of such evidence” (Fisher
1959, p. 93). But this warning seems to have been long forgotten.

The SGPV framework respects the conceptual distinctions
critical to a coherent evidential framework (Blume et al. 2018).
As we will see, the SGPV is a proportion, not a tail area prob-
ability. This helps differentiate the summary of the strength of
evidence in a given body of observations—the SGPV—from the
design’s error rates and the data’s FDRs. The mere separation is
a substantial inferential advance.

3. Specifying the Null Hypothesis

The SGPV is dependent on an expanded null hypothesis. The
idea is to use a composite null hypothesis that reflects the
limits on physical or experimental precision in outcome mea-
surements, measurement error, clinical significance, and/or sci-
entific relevance. Interval null hypotheses are constructed by
incorporating this information into statistical hypotheses that
are stated a priori. For example, when follow-up intervals are
limited to weeks, it makes little sense to ponder survival differ-
ences of 7 days or less; that level of resolution for the outcome
is too high given that the data were collected on a weekly
basis. So, the natural interval null hypothesis consists of survival
differences of 7 days or less. The interval null should contain,
in addition to the precise point null hypothesis, all other point
hypotheses that are practically null and would maintain the
scientific null premise. While the hypotheses in the interval
null may be mathematically distinct, they are all considered
scientifically equivalent to the null premise. Examples include:

• H0 : 0.95 ≤ OR ≤ 1.05 instead of H0 : OR = 1,
• H0 : −0.1 ≤ P(Survival|Group 1) − P(Survival|Group 2) ≤

0.1 instead of H0 : P(Survival|Group 1) − P(Survival|Group
2), and

• H0 : −0.5σ ≤ μ1 − μ2 ≤ 0.5σ instead of H0 : μ1 = μ2.

By using an interval null hypothesis, we focus the evidential
assessment on scientifically relevant effects. As a consequence,
the Type I error rate, held constant in classical frequentist infer-
ence, naturally converges to zero as the sample size grows (see
Section 5). The disadvantage is mainly procedural; it takes real
forethought to specify the width of the interval in advance
(Remark A). However, the extra effort does have a payoff. Find-
ings that rule out this interval are both statistically significant
and scientifically impactful. They are generally more reliable
(the FDR is lower), and they are more likely to reproduce in
subsequent studies. The reason for this is that the vast majority
of Type I errors occur close to the point null hypothesis (2–4
standard errors away). Ergo, establishing a “buffer zone” trans-
lates into a substantial reduction in the rate of false discoveries.

In effect, the switch to an interval null hypothesis eliminates
the common problem that classical statistical significance does
not imply scientific relevance. This has been known in the
statistical literature for some time. For example, Lehmann (1986,
secs. 4.5 and 5.2; Good 2007) point out that the infinite precision
of a point null hypothesis is rarely required (or justified) in
practice. The scientific translation of this is that rejecting the
null hypothesis that two effects are identical is largely not help-
ful, because they could still be nearly identical for all practical
purposes. It is more helpful to establish that the effects differ by
a meaningful amount. Unfortunately, current practice is to make
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this assessment after the data are analyzed, when it is easier to be
influenced by the observed results. The SGPV approach requires
that this assessment be determined before the data are collected
and therefore justified by scientific reasoning independent of the
observed data, adding an important layer of rigor to the analysis.

4. The Second-Generation p-Value

The SGPV seeks to measure the fraction of data-supported
hypotheses that are also scientifically null hypotheses. We will
denote the SGPV by pδ to signal its dependence on the interval
null and distinguish it from the classical p-value (Blume et al.
2018). To identify the collection of “data-supported hypotheses,”
we use an interval estimate such as a confidence interval (CI), a
likelihood support interval (SI), or a credible interval. Any type
of interval may be used, but the choice impacts the frequency
characteristics of the SGPV (see Remark B). In this article,
we will use 1/8 likelihood SIs, which have numerous favorable
inferential properties (Blume 2002; Royall 1997). Briefly, a 1/8
SI often corresponds to the traditional 95.9% Wald CI. As such,
1/8 SIs can be thought of as slightly conservative 95% CIs that do
not need to be adjusted for sample space considerations (Blume
2002). Remark C provides a formal definition of SIs and an
example.

Suppose that we are interested in the value of some parameter
θ . Let I = [θl, θu] be the interval estimate of θ whose length
is given by |I| = θu − θl. Let the interval null hypotheses be
denoted by H0 and its length by |H0|. The SGPV is

pδ = |I ∩ H0|
|I| × max

{ |I|
2|H0| , 1

}

=
⎧⎨
⎩

|I∩H0|
|I| when |I| ≤ 2|H0|

1
2

|I∩H0|
|H0| when |I| > 2|H0|

(1)

where I ∩ H0 is the intersection or overlap of the two intervals.
When the data are sufficiently precise, the SGPV is the fraction
of I that is in H0, i.e., pδ = |I∩H0|/|I|. Here, “sufficiently precise”
means that the interval estimate is not more than twice the width
of the interval null, that is, when |I| ≤ 2|H0|.

When the interval estimate is very wide with |I| > 2|H0|, I
often extends on either side of H0. In these cases, the quantity
|I ∩ H0|/|I| = |H0|/|I| tends to be small and does not properly
reflect the inconclusive nature of the data. The correction term
max

{ |I|
2|H0| , 1

}
replaces the denominator |I| with 2|H0| so that

pδ = 0.5 × |I ∩ H0|/|H0|, which is bounded by 1/2. Note that pδ

can still be small despite being shrunk to 1/2 if the overlap |I∩H0|
is small. The correction factor maps inconclusive data toward a
SGPV of 1/2, reserving magnitudes near 1 for data that support
the null premise. This behavior is different than in traditional
p-values, where large p-values result when data are inconclusive
(i.e., when the CI is wide) and when the data support the null
hypothesis (i.e., when the CI is tight around the null hypothesis).

Figure 1 illustrates how SGPVs work (reproduced from
Blume et al. 2018). The overlap between the interval estimate
(here a CI, but easily imagined as a SI) and the interval null is the
essence of the SGPV. When the interval estimate is contained
within the null interval, the data support only null hypotheses
and pδ = 1. When the interval estimate and null set do not

Figure 1. Illustration of a point null hypothesis, H0; the estimated effect that is the
best supported hypothesis, Ĥ = θ̂ ; the confidence interval (CI) for the estimated
effect [CI− , CI+]; and the interval null hypothesis [H−

0 , H+
0 ].

overlap, the data are said to be incompatible with the null and
pδ = 0. When the null set and CI partially intersect, 0 < pδ < 1
and the data are inconclusive. In this last case, pδ communicates
the degree of inconclusiveness. For example, when pδ ≈ 1/2,
the data are said to be strictly inconclusive. But different levels
of inconclusiveness are possible. For example, when pδ ≈ 0.2,
the data might be interpreted as trending in support of certain
alternative hypotheses. When pδ ≈ 0.1, the data might be
interpreted as suggestive of a scientifically meaningful effect
but not definitively. When pδ ≈ 0.01 or pδ ≈ 0.99, the data are
close to fully supporting some alternative hypotheses or the null
premise, respectively. While the descriptors of SGPV magnitude
are helpful as communicators, they are not as essential as they
are to traditional p-values because the natural ending states are
well defined as pδ = 0 or 1 (Remark D).

To illustrate, consider a study of 100 smokers and 100 non-
smokers, where 65 smokers and 50 nonsmokers developed lung
cancer. These data yield an odds ratio of 1.86 for the association
of smoking and lung cancer. It is generally thought that odds
ratios between 0.9 and 1.1 are too small to lead to meaningful
associations. These data result in a 1/8 SI (95.9% CI) for the odds
ratio of 1.03–3.36. The SGPV would then be pδ = 0.175 =( 1

2
)

(1.1−1.03)
(1.1−0.9)

because the width of the CI is more than twice
that of the null interval. The natural overlap measure is adjusted
from (1.1−1.03)

(3.36−1.03)
= 0.03 to 0.175 to reflect that the data are

relatively imprecise when the goal is to learn about an interval
null as tight as 0.9 to 1.1. With a pδ = 0.175, we would report
that the study yielded inconclusive results. However, if 70 rather
than 65 smokers developed lung cancer the odds ratio would
be 2.33 with a 1/8 SI of 1.27–4.27. Now the intervals do not
overlap so |I ∩ H0| = 0. Hence, pδ = ( 1

2
)

(0)
(1.1−0.9)

= 0 and we
would report that the data support a scientifically meaningful
association between smoking and lung cancer.

The SGPV can be viewed as a formalization of today’s stan-
dard practice of using CIs to assess the potential scientific impact
of new findings. In our view, it is much better to make these
judgment calls about scientific impact before looking at the data.
SGPVs are intended as summary statistics that indicate when a
study has yielded a CI that supports only the null premise or
meaningful alternative hypotheses. By focusing only on results
that are scientifically meaningful, the SGPV changes the relative
importance of statistically significant findings. This means that
the findings associated with the smallest p-value(s) will not
necessarily have a corresponding SGPV of 0, nor will they
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Table 1. Comparison between the classical and second-generation p-value.

Property Classical p-value Second-generation p-value

Null hypothesis Point Interval
Scale Number between 0 and 1, excluding zero Number between 0 and 1, inclusive
Able to indicate support for alternative

hypotheses
When small or near 0 When 0

Able to indicate data are inconclusive When larger than the stated cutoff for significance When between 0 and 1; near 1/2 is strictly
inconclusive

Able to indicate support for null hypotheses No When 1
Accounts for practical importance No Yes, via specification of the null
Comparable across datasets Yes, when the sample size is equal Yes, when the width of the interval null is equal
Interpretation Awkward, conditions on null hypothesis Straightforward, conditions on observed data
Assumptions needed for computation Probability model, sharp null hypothesis, sample

space
Probability model, interval null hypothesis

Requires threshold for interpretation Generally, yes No, intended as a descriptive statistic
Adjustments required for multiple

comparisons/looks?
Yes, if considered a Type I error rate; no, if considered

a measure of statistical evidence
No

necessarily correspond to the top ranked SGPVs. This is illus-
trated nicely in our high-dimensional genetics example (Sec-
tion 6).

Table 1 provides a side-by-side comparison of the properties
of classical p-values and SGPVs. The take home message is that
the SGPV is essentially an upgraded classical p-value.

Lastly, two endpoints with a SGPV of zero (pδ = 0) are
compared on the basis of their delta-gap (Blume et al. 2018).
The delta-gap is the distance between the null interval and the
likelihood SI in units of δ, where δ is the half-width of the
interval null hypothesis. For example, when the SI is shifted to
the right of the null interval, the δ-gap is (CI− – H+

0 )/δ. The
scaling by δ makes it unit free and therefore easy to compare.
Comparisons of δ-gap favor larger effect sizes. We use the delta-
gap to rank SGPV findings in Section 6.

5. Frequency Properties

Blume et al. (2018) shows why the frequency properties of
SGPVs can be controlled through sample size. For convenience,
we mention a few key results here. Let θ̂n be a consistent esti-
mator of parameter θ and assume an acceptable approximation
to its sampling distribution is

√
n(θ̂n − θ)ÃN(0, V), where the

variance V is either known or can be readily estimated. This
setting applies to most maximum likelihood estimators and
posterior modes in large samples. When a (1 − α) 100% CI
is used as the interval estimate, the SGPV Type I error rate
analogue is

Pθ0(pδ = 0) = P(pδ = 0|θ = θ0) = 2�

[
−

√
nδ√
V

− Zα/2

]
.

(2)

Note the dependence on the sample size n and on δ. The Type
I error rate remains bounded above by α = 2�[−Za/2]. This is
subtly different from Neyman–Pearson hypothesis testing with
a composite null, where the size of the test is defined as the
maximum Type I error rate over the null space (α). The SGPV
approach anchors the Type I error at the natural experimental
point null and uses the interval around the point null as a buffer.
As such, when δ > 0, Pθ0(pδ = 0) shrinks to 0 as the sample size
grows (instead of remaining constant at α). When δ = 0, we
recover the usual constant Type I error rate of α. The derivation

of Pθ (pδ = 0), along with the probability that the data are
compatible with the null, Pθ (pδ = 1), and the probability that
the data are inconclusive Pθ (0 < pδ < 1), can be found in
Supplement 1 of Blume et al. (2018). Remark E provides an
expression for Pθ (pδ = 0), the SGPV power function.

Once data are collected and the SGPV is computed, the
relevant uncertainty measure is the probability that the observed
results, say pδ = 0 or 1, are mistaken. These are known as
the FDR, P(H0|pδ = 0), and the false confirmation rate (FCR),
P(H1|pδ = 1). The hypothesis notation, Hi for i = 0, 1, is left
flexible on purpose. It can represent either a point hypothesis,
Hi : θ = θi, or a composite hypothesis Hi : θ ∈ �i, as needed.
For example, P(pδ = 0|H0) = Pθ0(pδ = 0) when H0 : θ = θ0.
Otherwise, P(pδ = 0|H0) is the average rate over H0 : θ ∈
�0, defined as P(pδ = 0|H0) = ∫

�0
Pθ (pδ = 0)g(θ)dθ , for

some probability distribution g(θ) over �0. Bayes’ rule yields
expressions for the FDR and FCR

P(H0|pδ = 0) =
[

1 + P(pδ = 0|H1)

P(pδ = 0|H0)
r
]−1

P(H1|pδ = 1) =
[

1 + P(pδ = 1|H0)

P(pδ = 1|H1)

1
r

]−1
(3)

where r = p(H1)/P(H0) is the prior probability ratio (Blume
et al. 2018). These rates depend on the (possibly averaged)
design probabilities P(pδ = 0|H1), P(pδ = 0|H0), P(pδ =
1|H0), P(pδ = 1|H1), through the LR given the observed SGPV.
Good designs—those with low probabilities of observing mis-
leading evidence—will have low FDRs.

For fixed prior probability ratio r, the LRs P(pδ =
0|H1)/P(pδ = 0|H0) and P(pδ = 1|H0)/P(pδ = 1|H1) will
drive the FDR and FCR to zero as the sample size grows. This
is an improvement over the FDR from a classical hypothesis
test, which remains constant in the limit: α/(α + r). The
convergence to zero of the SGPV’s FDR and FCR happens
because the design probabilities, for example, P(pδ = 0|H0),
converge to zero. Thus, while it may not be possible to identify
r, the prior’s influence can be mitigated through sample size and
good study design. Lastly, it is worth repeating that the Type
I error rate, P(pδ = 0|H0), and the FDR, P(H0|pδ = 0), are
not exchangeable. Their magnitudes can vary substantially. See
Blume et al. (2018) and its Supplement 1 for further details.
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Figure 2. Manhattan plot of SNP associations, colored according to second-generation p-value status. The x-axis shows SNP position on chromosome 6 and the position
of the organic cation transporter gene (SLC22A3). The top 16 associations by p-value rank are in green and the top 16 associations by second-generation p-value rank are
in black. Bonferroni, FDR, and unadjusted significance levels are show by dashed lines.

6. Links to Prostate Cancer in 247,000 SNPs

The International Consortium for Prostate Cancer Genetics
(Schaid and Chang 2005; ICPCG 2018) collected data on
3,894 individuals of European descent, each with 4.6 million
single-nucleotide polymorphisms (SNPs) available for analysis.
Genetic ancestry and independence were confirmed in 2511
cases with prostate cancer and 1383 controls without prostate
cancer. SNPs measure the number of variant alleles (0, 1, or 2)
at a given position on a chromosome. Alleles with prevalence
less than 50% in the population of interest are variant. SNPs are
routinely used as genetic markers in studies of disease.

Our analysis focused on 246,563 SNPs from chromosome
6. We chose chromosome 6 because it contains a cluster of
genetic variants in or near an organic cation transporter gene
(SLC22A3) that are thought to be associated with prostate can-
cer. We used logistic regressions to obtain 246,563 estimated
odds ratios with 1/8 likelihood SIs (95.9% Wald CIs). Odds
ratios of small to moderate size are of interest in the context
of genetic investigations of common disease. Accordingly, we
defined the interval null hypothesis as odds ratios between
0.9 and 1.1111 (= 1/0.9), which is symmetric on the log scale.
Remark F records pertinent scientific details.

A Manhattan plot (Figure 2) displays the traditional p-
values, at sequence chromosome position on chromosome 6
(Remark G), computed under the null hypothesis that the odds
ratio is precisely 1. The Bonferroni cutoff (p = 2.03 × 10−7),
Benjamini–Hochberg FDR cutoff (p = 4.77 × 10−6), and
unadjusted cutoff (p = 0.05) are displayed as horizontal dashed
lines. The points are colored according to SGPV status. There
are 11,844 SNPs with p < 0.05, which accounts for 4.8% of all
SNPs. Only 27 of these SNPs are statistically significant when
controlling the FDR to 5%, and 16 of these meet the Bonferroni

criteria. Importantly, all 27 of these SNPs are concentrated in or
near the organic cation transporter gene (SLC22A3). These 27
SNPs also have a SGPV of zero (pδ = 0).

There are 1443 SNPs (0.6% of all SNPs) with pδ = 0. For
comparison with Bonferroni, we identified the top 16 SNPs
according to their SGPV delta-gap rankings. The δ-gap mea-
sures the distance between the interval estimate and the null
interval in units of δ (recall δ is the half width of the interval
null). When pδ > 0 the δ-gap is defined to be zero because
there is no gap between the intervals. Figure 3 shows a modified
Manhattan-style plot that displays the delta-gap by its position
on chromosome 6. While the 16 Bonferroni SNPs can be seen
concentrated around SLC22A3 (in green), the top 16 SNPs by
δ-gap (black) are instead spread across the chromosome and
potentially identify much stronger associations. In fact, the 16
Bonferroni SNPs are ranked between 423rd and 845th by the
δ-gap metric, which illustrates that classical methods can disre-
gard a large number of potentially impactful associations.

We can see in Figure 3 that the SGPV approach emphasizes
the magnitude of the observed association in addition to clas-
sical statistical significance. SNPs with a SGPV of 0 also have a
classical p-value that is less than 0.041 (the compliment of the
coverage probability for the 1/8 SI). However, the converse is
not true. Statistically significant findings can have an interval
estimate that intersects with the interval null, leading to a SGPV
> 0. Moreover, the δ-gap ranking orders findings by the weakest
nonnull effect size supported by the data. Hence, the SGPV
approach can be thought of as selecting for the potentially
strongest nonnull statistically significant effects supported by
the data, even when estimated relatively imprecisely.

When comparing top ranked SNPs according to different
criteria, it is helpful to examine the 1/8 SIs for the odds ratio
relative to the null interval hypothesis. This is done in Figure 4,
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Figure 3. Modified Manhattan-style plot of SNP associations as measured by the delta-gap. Points are colored according to second-generation p-value status. The x-axis
shows SNP position on chromosome 6 and the position of the organic cation transporter gene (SLC22A3). The top 16 associations by p-value rank are in green and the top
16 associations by second-generation p-value rank are in black.

Figure 4. 1/8 likelihood SIs for the estimated odds ratio for SNPs with the smallest 500 p-values. The x-axis is p-value rank. The interval null hypothesis (in gray) ranges
from 0.9 to 1.1111 (= 1/0.9). Intervals are colored according to second-generation p-value status. The top 16 Bonferroni SNPs are in green and the top 16 SGPV SNPs are in
black. Bonferroni (“Bonf”) and FDR significance levels are shown by dashed lines.

which displays the SNPs with the 500 smallest classical p-values,
ranging from 5.01 × 10−11 (rank 1) to 0.0016 (rank 500). The
SNPs that met Bonferroni and FDR criteria reflect highly precise
estimates of modestly sized odds ratios. Other SNPs that have
similar effect sizes and levels of precision, for example, those
immediately to the right of the FDR cutoff line, are ignored.
Figure 4 also shows that there are many similarly precise SIs that

are denoted as inconclusive by the SGPV (blue) because some
null effects have not been ruled out.

To further explore the differences in approaches, Figure 5
displays the top 2000 1/8 SIs as ranked by δ-gap when pδ = 0,
and by the SGPV when δ-gap = 0 (hereafter referred to as
SGPV rank). All 1,443 SNPs with a SGPV of 0 are sorted by their
delta-gap and displayed in red. Intervals in blue have small but
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Figure 5. Mirrored waterfall plot. 1/8 likelihood SIs for the estimated odds ratio for SNPs in the top 2,000 second-generation p-value ranking. The x-axis is SGPV rank. The
interval null hypothesis (in gray) ranges from 0.9 to 1.1111 (= 1/0.9). Intervals are colored according to second-generation p-value status. The top 16 Bonferroni SNPs are
in green and the top 16 SGPV SNPs are in black.

inconclusive SGPVs between 0 and 0.07 (often resulting from a
very wide SI that just slightly overlaps the null interval). Notice
the 16 Bonferroni SNPs (green) are in the middle of the plot, far
from the top findings by SGPV. The estimated effects from the
top ranked SGPV SNPs are clearly very large, but not precisely
estimated. We also see that the top 16 ranked SGPVs finds
associations in both directions, while the Bonferroni and FDR
approaches only find associations in one direction. This figure
makes it clear that the SGPV prioritizes the observed strength
of association in findings that are statistically significant.

It is helpful to see if any correspondence exists between the
classical p-value and the SGPV. Figure 6 shows their cross-
tabulation. Of the 11,844 SNPs with p < 0.05, there are 1,443
that have a SGPV equal to 0. Another 2,622 are effectively
inconclusive with SGPVs between 0.4 and 0.6, of which 783
have a SGPV greater than 0.5, indicating very weak support for
the null rather than the alternative hypothesis. There are 3,377
SNPs with a SGPV of 1, indicating no association between SNP
and cancer status, and they are uniformly dispersed across the
chromosome with observed classical p-values of 0.76 or larger.
This apparent correspondence should not be over interpreted;
it is due to the relatively narrow interval null. As the width
of the interval null lengthens, this relationship disappears. For
example, when the interval null is expanded to 0.8 to 1.25
(= 1/0.8), there are 83,749 SNPs with pδ = 1, and the classical
p-values for these SNPs are evenly distributed from 0.007 to 1.
This is not a typo; there are very precise intervals within the
null region that exclude OR = 1 and these SNPs have very small
classical p-values. But given their close proximity to OR = 1 they
support the null premise better than alternative theories.

Another interesting aspect of Figure 6 is the large number of
SGPVs at exactly 1/2. Many of these arise from logistic models
with poor fit, often because there are one or more zero cells in

the contingency table. Despite this, classical p-values near 1 are
often still reported by software, whereas the SGPVs map these
cases back to 1/2 (inconclusive). Of the 45,624 classical p-values
greater than 0.9, almost half (47.6% or 21,697 cases) correspond
to a SGPV of 1/2 because their point estimates were essentially
undefined and estimated variances were extremely large. This
reinforces the notion that large p-values do not imply the data
support the null premise, even in large datasets.

For illustration, we computed several flavors of the FDR for
5 SNPs with a SGPV of 0. These are displayed in Table 2. Three
versions of the FDR = P(H0|pδ = 0) were computed. Here θ

is the log odds ratio and θ̂ is its MLE. FDR1 uses the natural
point null, H0 : θ = log(1), with the alternative set to the MLE,
H1 : θ = θ̂ . FDR2 uses a point null hypothesis that is closer
to the null boundary, H0 : θ = log(1.05), with a prespecified
alternative H1 : θ = log(2). FDR3 uses the interval null H0 :
θ ∼ UNIF[log(0.9), log(1/0.9)] and the interval alternative H1 :
θ ∼ UNIF[θ̂l, θ̂u] where θ̂l and θ̂u are the lower and upper bound
of the 1/8 SI. FDR computations follow the formulas in Section 5
and Remark E.

We see from these results that a decent first-order approxima-
tion is given by FDR1, which is also straightforward to compute.
All of the FDRs are low, as is expected from a SGPV = 0 finding
(Remark H). Some are low because their 1/8 SI is shifted far from
the null interval (2nd row), and some are low because their 1/8
SIs is very narrow (4th row, also the top finding by classical p-
value) despite being only slightly shifted off the interval null.
These calculations also illustrate why using the FDR alone is
not best practice for ranking or screening findings. That strategy
downplays the scientific importance of the estimated effect size
and is sensitive to how the FDR is defined (as evidenced by
FDR2 = 30.3% in row 2). Nevertheless, the FDR is essential
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Figure 6. Cross-tabulation of classical p-values and second-generation p-values in the prostate cancer data example.

Table 2. False discovery rates of 5 SGPV = 0 findings computed under various null and alternative hypothesis configurations.

Odds 1/8 SI 1/8 SI
SNP ID SGPV rank p-Value rank ratio lower limit upper limit FDR1 FDR2 FDR3

kgp4568244_C 1 133 0.10 0.03 0.37 2.9% 17.1% 3.3%
kgp8051290_G 13 2002 15.58 1.95 124.68 4.3% 30.3% 4.9%
kgp4497498_A 28 255 4.37 1.80 10.64 2.5% 8.6% 3.1%
rs3123636_G 423 1 1.39 1.26 1.55 0.004% 0.1% 0.4%
kgp7460928_G 1443 3310 1.78 1.11 2.87 2.4% 2.0% 3.0%

NOTE: The prior probability ratio, r, is set to 1.

when gauging the potential for a finding to be mistaken or
misleading.

Lastly, an example global summary of the results is as follows:

Of the 246,563 SNPs examined in this analysis, 1,443 were
found to have strong evidence of a meaningful association with
cancer status (data supported ORs > 1.11 or < 0.9, SGPV
= 0). Another 3,377 SNPs were found to have practically no
association with prostate cancer (0.9 < ORs < 1.11, SGPV =
1). The remaining 241,743 SNPs were inconclusive to varying
degrees. There were 940 SNPs in which the data were suggestive
of a meaningful association with cancer status but were unable
to rule out trivial effects (0 < SGPV < 0.1). Similarly, there
were 14,797 SNPs in which the data were suggestive of no
association, but not strong enough to rule out meaningful
effects (0.9 < SGPV < 1). The remaining 226,006 SNPs were
effectively inconclusive (0.1 < SGPV < 0.9).

A detailed summary for individual SNP findings might be:

SNPs kgp4568244_C (1/8 SI for OR: 0.03–0.37, SGPV = 0)
and kgp8051290_G (1/8 SI: 1.95–124.7, SGPV = 0) were the
top ranked protective and harmful SNPs. SNPs rs9257135_G
(1/8 SI: 0.92–1.09, SGPV = 1) and kgp10695421_A (1/8 SI:
0.91–1.1, SGPV = 1) were found to be unassociated with
cancer status. SNP kgp17007117_A (1/8 SI: 1.08–3.6, SGPV
= 0.07) was suggestive of a relationship, while findings for
SNP kgp8948004_A (1/8 SI: 0.96–1.20, SGPV = 0.65) were
inconclusive.

7. Comments and Remarks

The second-generation p-value (SGPV) provides the inferential
properties that many scientists wish were attributes of the clas-
sic p-value. In addition, they are easy to interpret, they retain
excellent frequency properties, they provide error rate control,
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and they have reduced false discovery rate (FDR). The prostate
cancer example shows how SGPVs can be much more informa-
tive than classical p-values. Moreover, we saw that the Bonfer-
roni procedure tends to find modest odds ratios for common
variants, while SGPVs tend to identify the strongest associations
that are both statistically significant and scientifically meaning-
ful. This behavior was also observed in the high-dimensional
example used in Blume et al. (2018). Changing culture so that
we routinely specify internal null hypotheses before the study
is conducted, as opposed to after, will be challenging. However,
the rewards would be substantial; manifesting as increasing
statistical reliability and increased scientific reproducibility of
observed results. Prominent use of the second-generation p-
value would encourage that type of culture shift, and both
science and statistics would be better off for it.

Remark A. In practice the best we can do is to encourage pre-
specification of the null premise. Some scientific domains are
better at this than others. For example, in clinical trials the study
protocol is posted to clincialtrials.gov before the study enrolls
patients. Nevertheless, the specification of the null premise is
always an important scientific issue and recognizing that this
should occur before analyzing the data is an important step
forward for reproducibility and rigor.

Remark B. Although the coverage probability of the interval
estimate is not represented symbolically on pδ , it plays a major
role in determining the frequency properties of pδ , that is, the
error rates and FDRs. The connection is detailed in later sec-
tions. It is a key incentive to use intervals with good frequency
properties (unbiasedness, shortest expected length, robust cov-
erage, etc.) and to be transparent about why a certain type of
interval was chosen.

Remark C. For parameter θ , likelihood function L(θ) and MLE
θ̂ , the 1/k likelihood SI is the set {θ : L(θ)/L(θ̂) ≥ 1/k}.
A SI is the collection of parameter values under the “hump”
of the likelihood function when scaled by its maximum; these
parameter values have nearly the same likelihood value as the
maximum likelihood estimator (MLE) itself, and are “close” in
that sense. When X1, . . . , Xn ∼ N(θ , σ 2) and σ 2 is known,
the 1/k SI is X̄n ± σ

√
2 log(k)/n. When k = 8,

√
2 log(k) =

2.04, and the 1/8 SI is equivalent to an unbiased 95.9% CI with
shortest expected length. An advantage of SIs is that they often
correspond to CIs that are desirable in some sense, for example,
shortest expected length or unbiasedness. This discourages the
use of nonstandard CIs that have the same coverage probability.
See Royall (1997) and Blume (2002) for more on SIs.

Remark D. SGPVs of 0 and 1 are intended to be clear endpoints.
They do not imply overwhelming precision, but rather that the
accumulated data support only meaningful alternative hypothe-
ses or only practically null hypotheses. The label “suggestive”
can be attached to SGPVs between 0 and 0.1 or 0.9 and 1, to
describe data that may warrant further attention for ancillary
reasons (e.g., limited resources). The key point, The key point
is that SGPVs are summary measures to be used for facile
communication of results; they should not replace examination
of the interval estimate in the context of scientific discussions
and policy decisions.

Remark E. The power function for the SGPV is Pθ (pδ = 0) =
�

[√
n(θ0−δ)√

V
−

√
nθ√
V

− Zα/2
]

+ �
[
−

√
n(θ0+δ)√

V
+

√
nθ√
V

− Zα/2
]

when the interval null is symmetric about θ0. When θ = θ0,
this reduces to Pθ0(pδ = 0) in (2). This expression is needed for
computation of FDRs.

Remark F. The 246,563 SNPs investigated here were informa-
tive and not in strong local linkage disequilibrium. The Bon-
ferroni correction is overly conservative when there is strong
linkage disequilibrium (i.e., high correlation) among SNPs. To
reduce this problem slightly, we identified bins of contiguous
SNPs with an R2 > 0.98 and eliminated all but one SNP
from each bin. The number of variant alleles was treated as a
continuous measure in the logistic models, which is standard
practice.

Remark G. SNP position was recorded as the number of
nucleotides from the start of the p-arm of chromosome 6 based
on reference assembly GRCh37/hg19.

Remark H. FDR rates that result from a screening procedure
based on p-values will be larger than those computed based
on SGPV screening. For example, SNP rs3123636_G has the
smallest p-value (4th row, Table 2), but its FDR under classical
p-value screening inflates over 10-fold to ∼ 3.9% for all three
FDR flavors. Inflation occurs even when a multiple comparison
correction, such as Bonferroni, is applied. Blume et al. (2018)
provide details and an example.

Remark I. A link to a repository of R functions for com-
puting second generation p-values and associated quantities
can be found on www.statisticalevidence.com, GitHub https://
github.com/weltybiostat/sgpv, or by contacting the correspond-
ing author.
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