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ABSTRACT
Recently, I havederived conditions to characterise the kernel of the retarded response function, under
the assumption that the initial state is a ground state. In this paper, I demonstrate its generalisation to
mixed states (ensembles). To make the proof work, the weights in the ensemble need to be decreas-
ing for increasing energies of the pure states fromwhich themixed state is constructed. The resulting
conditions are not easy to verify, but under the additional assumptions that the ensemble weights
are directly related to the energies and that the full spectrum of the Hamiltonian participates in the
ensemble, it is shown that potentials only belong to the kernel of the retarded response function
if they commute with the initial Hamiltonian. These additional assumptions are valid for thermody-
namic ensembles,whichmakes this result physically relevant. The conditions on thepotentials for the
thermodynamic ensembles aremuch stronger than in the pure state (zero temperature) case, leading
to a much less involved kernel when the conditions are applied to the retarded one-body reduced
density matrix response function.

1. Introduction

In a recent paper [1], I generalised the invertibility the-
orem by van Leeuwen for the retarded (causal) density
response function [2] to the retarded one-body reduced
density matrix (1RDM) response function. This is an
important step forward for the formal foundations of
linear-response time-dependent 1RDM functional the-
ory, since a Runge–Gross type of proof is lacking.

This generalisation is achieved by cutting the proof by
van Leeuwen into two parts. The first part of the proof can
be generalised to completely arbitrary retarded response
functions, under following two assumptions. The initial
(reference) state should be a ground state and the perturb-
ing potential should be Laplace transformable in time.

CONTACT K. J. H. Giesbertz k.j.h.giesbertz@vu.nl

This first part yields a necessary condition which poten-
tials need to satisfy to yield a zero response, i.e. to belong
to the kernel of the retarded response function. For non-
degenerate ground states this condition is also sufficient,
but in the degenerate case an additional sufficiency con-
dition needs to be checked. These conditions depend on
the operators for which the retarded response function is
considered, e.g. dipoles, magnetisation and spin-density.
Hence, the second step of the proof consists of inserting
the operators under consideration into the conditions and
to check to which extend they are satisfied.

In Ref. [1], I have explicitly worked out these condi-
tions for the retarded density response function and the
1RDM response function. For non-degenerate ground
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states, the same result as van Leeuwen was recovered: the
density response function is invertible up to a constant
shift in the potential. Additionally, I have worked out the
case for degenerate response functions, thereby extend-
ing the validity of van Leeuwen’s theorem to degener-
ate ground states. Not surprisingly, the same result was
obtained: the density response function is invertible up to
a constant. From the Runge–Gross theorem, we already
know that this holds for analytic potentials [3] and even
for more general potentials by the work of Ruggenthaler,
Penz and van Leeuwen [4–6].

More interesting results were obtained by work-
ing out the invertibility conditions for the 1RDM
response function. All symmetry operators which can
be expressed as one-body operators belong to the kernel
of the 1RDM response function. So, apart from the con-
stant potential, also spin-projection operators, Ŝ, belong
to the kernel of the 1RDM operator if the Hamiltonian
is spin-independent. Likewise, the (angular) momen-
tum operators, L̂ and/or −i�, are also candidates if the
system is rotationally and/or translationally invariant.
Discrete symmetry operators can only be expressed as
one-body operators for non-interacting systems. In most
interacting systems, the interaction prevents such a sim-
ple expression and more-than-one-body operators are
needed to express discrete symmetry operators. There-
fore, discrete symmetries are typically of no concern in
interacting systems, e.g. the Coulomb interaction.

Not only potentials related to the symmetry of the sys-
tem possibly lead to no response. Also somewhat ‘patho-
logical’ cases need to be considered which are more
related to the structure of the ground state than to any
symmetry of the system. These potentials can be revealed
by working in the natural orbital (NO) representation.
The NOs are defined as the eigenfunctions of the 1RDM
and the corresponding eigenvalues are called (natural)
occupation numbers, nk. By expanding the ground state
in Slater determinants constructed from the NO basis,
one can easily find that potentials coupling only com-
pletely unoccupiedNOs, nk = 0, are also part of the kernel
of the 1RDM response function. Likewise, in the case of
fermions, the potentials coupling the fully occupied NOs,
nk = 1, also yield no response in the 1RDM. This result
does not come as a surprise, since this freedom to make
unitary transformations among the (un)occupied orbitals
is often exploited in Hartree–Fock and Kohn–Sham.
For systems with a Coulomb interaction, it is actually
highly unlikely that fully occupied or completely empty
NOs exist [7–12]. In the case of non-interacting systems,
one can actually show that potentials coupling degen-
erate NOs, nk = nl, also do not lead to a response in
the 1RDM. The last case which needs to be mentioned,
is the two-electron wave function. Due to its special

structure in the NO representation (the NOs only occur
once in pairs [13–17]), special potentials which couple
these paired NOs or degenerate pairs also belong to the
kernel of the 1RDM response function.

In this paper, I will consider a further extension of the
invertibility proof from pure states to ensembles as initial
condition. This allows us to release the constraint of using
a ground state as initial state, though we need to demand
that theweights of lower lying states are always larger than
the weights of higher lying states in the ensemble. Two
necessary and sufficient conditions for the potentials in
the kernel of the retarded response function are derived
for such ensembles. Unfortunately, it is hard to make any
general statements based on these conditions. If, however,
the natural assumption ismade that the ensemble weights
only depend on the energy, only one of these conditions
remains. In the case of the (grand) canonical ensem-
ble, the remaining condition further simplifies to the
condition that only potentials which commute with the
Hamiltonian belong to the kernel of the response func-
tion. Only the symmetry related potentials in the kernel
of the 1RDM response function remain therefore at finite
temperature.

The paper has a comparable structure to Ref. [1]. In
Section 2, I derive a necessary condition and in Section 3,
an additional sufficiency condition and discuss how it is
trivially satisfied if the weights of the ensemble are purely
energy related. In Section 4, I discuss the implication for
the canonical and grand canonical ensembles and show
how the kernel of the 1RDM response function is cleaned
up when using a finite temperature formalism. In Sec-
tion 5, I discuss how these results relate to the time-
independent 1RDM response function and conclude in
the last section.

2. A necessary condition for potentials in the
kernel of the retarded response function

The invertibility proof for general retarded response
functions proceeds in a very analogousmanner as for ini-
tial ground states [1]. For the sake of clarity, a full expo-
sition of the proof is useful, since at some key-points new
conditions need to be imposed for the proof to work and
the ensemble weights need to be included. We will start
by deriving a necessary condition which potentials in the
kernel of the response function need to satisfy. In the next
section, we will consider to which extend this condition
is sufficient.

We start from a general set of self-adjoint operators or
operator densities, {Q̂i}, where the index i can perfectly
be some multi-index. In the case of operator densities,
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the index i will be a continuous label and the summa-
tions later on should be interpreted as integrals. A typical
example would be the density operator, n̂(r). Of course,
a mixture of discrete and continuous indices is also per-
fectly allowed, e.g. the spin-density n̂(x), where x := rσ
is a combined space and spin coordinate.

Now we consider perturbations to the system by these
operators with strengths δvj(t), so we consider the fol-
lowing perturbation to the original time-independent
Hamiltonian, Ĥ0,

δV̂ (t ) =
∑
j

Q̂ jδv j(t ).

The linear response in the expectation values of the same
set of operators can be expressed as [16,18,19]

δQi(t ) =
∑
j

∫ t

0
dt ′ χi j(t − t ′)δv j(t ′),

where χ ij(t − t′) is the retarded linear response function
which is readily generalised to initial ensembles as

χi j(t − t ′)

:= −iθ (t − t ′)
∑
L

wL〈�L|[Q̂H0,i(t ), Q̂H0, j(t
′)]|�L〉,

where wL � 0 are the weights of the the states |�L〉 in
the ensemble and should sum to one. In the definition of
the response function, I have used the interaction picture,
so Q̂H0,i(t ) := eiĤ0t Q̂ie−iĤ0t . In other words, the opera-
tors are in the Heisenberg representation with respect to
the unperturbed Hamiltonian, H0. To make the response
function causal (retarded), the definition also includes a
Heaviside function, which is defined as

θ (x) :=
{
1 for x > 0
0 for x < 0.

The retarded response function for ensembles can be
expressed in its Lehmann representation by insert-
ing a complete set of eigenstates of the unperturbed
Hamiltonian, Ĥ0, which gives

χi j(t − t ′) = iθ (t − t ′)
∑
KL

wL ei�KL(t−t ′)qLKj qKLi + c.c.,

(1)

where �KL := EK − EL are (de-)excitation energies of Ĥ0

and qKLi := 〈�K |Q̂i|�L〉. With the help of the Lehmann
representation of the response function, we can write the

perturbation in the expectation values as

δQi(t ) = i
∑
KL

wL

∫ t

0
dt ′ qKLi aLK (t ′)ei�KL(t−t ′) + c.c.,

where

aKL(t ) :=
∑
j

qKLj δv j(t ).

The time-integral has the form of a convolution product,
which is readily deconvoluted by taking the Laplace trans-
form

L[δQi](s) = i
∑
KL

wL qKLi
L[aLK](s)
s − i�KL

+ c.c.,

where the Laplace transform is defined as

L[ f ](s) :=
∫ ∞

0
dt e−st f (t ).

To derive our working condition, we multiply by the
Laplace transform of the perturbing potentials, L[δvi](s)
and sum over the remaining index

∑
i

L[δvi](s)L[δQi](s)

= −2
∑
KL

wL
�KL

s2 + �2
KL

|L[aLK](s)|2.

Hence, in absence of response we find the following nec-
essary condition

0 =
∑
KL

wL�KL

s2 + �2
KL

|L[aKL](s)|2.

Note that each KL pair occurs twice in this summation
and the terms K = L do not contribute. The necessary
condition can, therefore, be rewritten as

0 =
∑
K>L

(wL − wK )�KL

s2 + �2
KL

|L[aKL](s)|2. (2)

Similar as in the proof for ground states, we would like to
infer that this condition implies that all individual terms
need to be zero. To do so, we demand that all individ-
ual terms are positive or zero, so we impose the following
condition on the ensemble

(wL − wK )�KL ≥ 0 for all K and L.
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So, that means that for any two states with different ener-
gies with EK < EL, we require wK � wL. This condi-
tion does not yield additional restrictions for degener-
ate states.1 Note that the equality is not only satisfied for
degenerate states, but also states with equal weights and
possibly different energies. States for which the equal-
ity holds need a special treatment, so for each state we
define

D(K) := {
L : (wL − wK )�KL = 0

}
= {

L : EL = EK ∨ wL = wK
}
.

I will refer to this subspace as the ‘extended degenerate
subspace’ of the state K, since not only states with the
same energy belong to it, but also states with the same
weight.

Armed with this additional condition on the ensem-
ble let us return to the necessary condition (2). Since all
the individual terms are zero or positive, we find that
L[aKL](s) = 0 if L /∈ D(K). So, in the time-domain, we
find that aKL(t) = 0 almost everywhere. The first pos-
sibility is that δvj(t) = 0 almost everywhere. Typically
one would also require δvj(t) � C1[0, T] (differentiable
up to first order in the time-interval [0, T]) to guar-
antee a physical (strong) solution,2 so the term ‘almost
everywhere’ is of no importance in physical situations.
For more details on the solvability of the time-dependent
Schrödinger equation and in particular when physical
(strong) solutions exist, I refer the reader to an excellent
exposition by Ruggenthaler, Penz and van Leeuwen [6].
This first possibility is the trivial way to have no response
(no potential), so is not the solution we are interested in.

The more interesting possibility is the existence of
linear combinations of the operator Q̂ j,

L̂n =
∑
j

Q̂ jδv
n
j ,

such that lLKn = 〈�L|L̂n|�K〉 = 0 for all pairs K, L /∈
D(K). In other words, we should look for operators L̂n,
such that they only give components in the extended
degenerate subspace

L̂n|�K〉 =
∑

L∈D(K)

lLKn |�L〉. (3)

If any of such linear combinations exist, they are can-
didates to belong to the kernel of the retarded response
function.

3. Sufficiency

In the previous section, we have derived a necessary con-
dition (3) for potentials in the kernel of the response func-
tion. Suppose that we have found such a potential, we will
now check to which extend this condition (3) is also suffi-
cient. We start by rewriting the Lehmann representation
of the response function (1) by retaining only the unique
pairs in the sum

χi j(t − t ′) = iθ (t − t ′)
∑
K>L

(wL − wK ) ei�KL(t−t ′)qLKj qKLi

+ c.c..

I have used here that the K = L terms drop out of the
summation. If there exists one or more operators L̂n
which satisfy (3), we find that the response is only truly
zero if

0 = i
∑

L<K∈D(L)

(wL − wK ) ei�KL(t−t ′)qLKj lKLn + c.c. ∀ j.

Note that due to necessary condition (3), the sum
could be restricted to pairs in their respective extended
degenerate subspace. Since states with equal weights
do not actually contribute to this sum, we can further
restrict the summation over pairs which have differ-
ent weights, so only (energetically) degenerate states can
contribute

0 = i
∑

L<K∈Dr(L)

(wL − wK )qLKj lKLn + c.c. ∀ j, (4)

where we used that �KL = 0 for degenerate states and
introduced

Dr(L) := {K : EK = EL ∧ wK �= wL}.

From this form of the sufficiency condition (4), we can
extract two important results. The first result is a gener-
alisation of the commutator form for the sufficiency con-
dition [1]. Since for other pairs L and K /∈ Dr(L)we have
that eitherwL =wK or lKLn = 0, we can put them back into
the summation without affecting the result. This yields
the following form for the sufficiency condition

0 =
∑
L,K

(wL − wK )qLKi lKLn + c.c.

=
∑
K

wK〈�K |[Q̂i, L̂n
]|�K〉 = 0 ∀i. (5)

Note that this expression correctly reduces to the pure
state case if w0 = 1 (so wi > 0 = 0). It will be hard to check
this condition for general ensembles.
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A more useful result is obtained by noting that if the
weights only depend on the energy, wK = w(EK), that for
degenerate state the weights are equal. This implies that
Dr(K) = ∅ for any K, so the sufficiency condition (4) is
trivially satisfied, since the sum does not run over any-
thing anymore. Hence, condition (3) is for these ensem-
bles not only necessary, but also sufficient. Note that
the canonical and the grand canonical ensembles exactly
belong this category of ensembles.

4. (Grand) Canonical ensembles

In this section, we will specialise ourselves to the (grand)
canonical ensembles. In the (grand) canonical ensemble,
all states in the Hilbert space contribute. The only differ-
ence between the canonical and grand canonical ensem-
ble is the extend of their Hilbert spaces. In the canon-
ical ensemble, the Hilbert space only consists of states
with a specific particle number, N. In the grand canon-
ical ensemble, also states with a different particle number
are included, so the full Fock space is taken as the Hilbert
space. The number of particles is then regulated via a con-
stant shift in the potential: the chemical potential.

The most important thing to realise is that all states
contribute to response function in the (grand) canonical
ensemble, because all weights are non-zero. So, the nec-
essary and sufficient condition (3) can only be satisfied
if and only if all eigenstates of the unperturbed Hamilto-
nian H0 can be expressed as eigenstates of the operator
L̂n. This is only the case if the operator L̂n commutes with
the Hamiltonian,

[Ĥ0, L̂n] = 0. (6)

Note that this is a much more stringent (and conve-
nient) condition than in the T = 0 case [1]. In the non-
degenerate pure state case, only the ground state needs to
be an eigenstate of the operator L̂n and the excited states
are immaterial. In the degenerate T = 0 case, the oper-
ator L̂n is allowed to create components in the degen-
erate subspace, but again, the excited states do not play
any role.

In the case of the retarded 1RDM response function,
the weaker condition in the T = 0 case does give rise
to some ‘pathological’ potentials which do not commute
with the initialHamiltonian, Ĥ0, as described in the intro-
duction. In the (grand) canonical ensemble case, how-
ever, only the potentials related to the symmetries of
the Hamiltonian remain due to condition (6). In other
words, all eigenstates of the initial Hamiltonian should
be choosable as eigenfunctions of the operator L̂n. Hence,
the potentials in the kernel of the 1RDM response func-
tion for the (grand) canonical ensemble exactly coincide

with the symmetry-induced ones of the zero temperature
1RDM response function. Some examples:

� Number conserving Hamiltonian: N̂.
� Spin-independent Hamiltonian: Ŝ.
� Linear molecule: L̂z.
� (Spherical) atoms: L̂.
� Homogeneous electron gas: L̂ and p̂ := −i∇ .
There does not seem to be any difference between the

kernels of the 1RDM response function in the canonical
and grand canonical ensemble. The only case I can think
of is the one-particle case in combination with an inter-
acting Hamiltonian. In the canonical ensemble, only the
1-particle sector of the Fock space is used, so effectively
the Hamiltonian is non-interacting. Since there is only
one particle, all symmetry operators can be expressed as
one-body operators even the discrete ones. In the grand
canonical ensemble, also the states with a higher number
of particles contribute. For these states, however, the dis-
crete symmetries cannot be expressed as one-body opera-
tors.Hence, the discrete symmetries of the systemare part
of the kernel of the 1RDM response function in theN= 1
case, only in the canonical ensemble and not in the grand
canonical ensemble. Such a situation where the kernel of
the retarded 1RDM response differs between the canoni-
cal and grand canonical ensembles, seems only to appear
when N = 1.

There is one exceptional case I would like to mention
in this context, where the broken symmetry due to the
interaction is actually a continuous one. This is the so-
called Runge–Lenz vector in hydrogenic systems

1
2
(
p̂∧ L̂ − L̂ ∧ p̂

) − Z
r
|r| ,

where Z is the atomic number. The Runge–Lenz vector
explains the degeneracy between the hydrogenic orbitals
with different angular momenta, but the same principle
quantum number. So in hydrogenic systems, the Runge–
Lenz vector will be part of the kernel of the 1RDM
response function, if a canonical ensemble is considered
as initial state. The Runge–Lenz vector, however, is only a
symmetry for one-electron states, because the electron–
electron interaction breaks this symmetry (the degener-
acy between the 2s and 2p state is lifted). Since the macro
canonical ensemble also includes states with more than
one electron, the Runge–Lenz vector will, therefore, not
be part of the kernel of the 1RDM response function for
the grand canonical ensemble.

For completeness, I would like to point out that the
same analysis implies that in the case of the density
response function, nothing changes when going from the
zero temperature to the finite temperature formalism.
The only potential in the kernel of the density response
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function at T = 0 is the constant potential [1,2] for
particle number conserving Hamiltonians,

[
Ĥ0, N̂

] = 0.
Since this potential corresponds to a symmetry of the
Hamiltonian, this potential will also be the only pos-
sible component in the kernel of the density response
function at T > 0. Hence, also at finite temperature the
density response function is invertible up to a constant
for particle conserving Hamiltonians. The same result
has also recently been obtained in a less general deriva-
tion, limited to the finite temperature density response
function [21].

5. What about time-independent response
functions?

In Ref. [1], I described how the T= 0 results for the time-
dependent response function carried over to the time-
independent response function for the non-degenerate
ground state case. In the ensemble case, such a transfer
is not possible. The reason is that in the time-dependent
response function, only the states are affected by the
perturbations and not the weights of the ensemble as
reflected by the commutator condition (6). So, only the
initial ensemble is in a thermodynamic equilibrium with
the bath and at later times the system is essentially uncou-
pled from the bath.

On the contrary, in the time-independent case also
perturbations in the weights are taken into account,
via their dependence on the energies. Hence, in the
time-independent case the response function does not
only depend on the perturbation of the eigenstates,
but also on the perturbation of the eigenvalues. This
additional dependence, therefore, eliminates all opera-
tors from the kernel of the time-independent 1RDM
response function for the (grand) canonical ensemble,
since both the eigenstates and the eigenvalues need to
be unaffected up to an overall constant. Only the num-
ber operator would remain for the canonical ensem-
ble, since all states in the corresponding Hilbert space
are degenerate with respect to the number operator,
i.e. the constant shift (chemical potential) does not
affect the canonical ensemble. This result is exactly
in agreement with previous work on finite tempera-
ture 1RDM functional theory by van Leeuwen [22] and
Baldsiefen [23,24].

6. Conclusion

I have further generalised the invertibility proof by van
Leeuwen for the density response function [2]. This gen-
eralised proof is not only valid for the ground state as ini-
tial state, but works for general ensembles in which the
weights of higher lying states are smaller than the weights

of lower lying states. Two conditions were derived which
are necessary and sufficient for a perturbation to yield no
response at all. Without additional assumptions on the
structure of the ensemble, these conditions are too cum-
bersome to make general statements. One of these con-
ditions could be eliminated altogether, by requiring that
the value of the weights are directly related to the ener-
gies of the states. Demanding additionally that all states
participate in the ensemble (have a weight strictly larger
than zero), the remaining condition simplifies even fur-
ther to the requirement that potentials can be part of the
kernel of the response if and only if they commute with
the initial Hamiltonian. In particular, for thermodynamic
ensembles these assumptions hold.

That the potentials in the kernel of the response func-
tion need to commute with the Hamiltonian for ther-
modynamic ensembles is a much more stringent condi-
tion on these potentials than in the pure state case. This
is a significant advantage when investigating the invert-
ibility of the 1RDM response function. In the pure state
case (zero temperature), one needs to take many ‘patho-
logical’ potentials into consideration which are related to
the structure of the ground state. At finite temperature,
only potentials related to the symmetries of the system
remain and these ‘pathological’ potentials are of no con-
cern anymore. Since such ‘pathological’ potentials were
not present in the density response function at zero tem-
perature, the kernel of the density response function is the
same in the zero and finite temperature formalism.

Notes

1. Also (wL − wK)�KL � 0 would work as a condition on
the ensemble. This option works only for Hamiltonians
bounded form above (finite basis), since the highest weight
is associated to the highest energy. Further, this option is
physically not very sensible, so this case is not explicitly
pursued.

2. In Ref. [6], it is stated that the condition δvj(t) � C1

can probably be weakened to Lipschitz continuity. This
is still sufficient for our argument, since we only need
continuity. A milder version of the Schrödinger equation
would allow for more general potentials in some Lp spaces
in time [6,20]. In that case, however, potentials which
only differ at a set of zero measure would be considered
equivalent.
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