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ABSTRACT
The Bethe–Salpeter equation (BSE) is a reliable model for estimating the absorption spectra in
molecules and solids on the basis of accurate calculation of the excited states from first principles.
Direct diagonalisation of the BSE matrix is practically intractable due to O(N6) complexity scaling in
the size of the atomic orbital basis set, N. In this paper, we introduce and analyse a reduced basis
approach to computation of the Bethe–Salpeter excitation energies which can lead to a relaxation
of the numerical costs down to O(N3). The BSE operator is specified in terms of the two-electron
integrals in the Hartree–Fock molecular orbital basis and the respective energies, calculated by the
tensor-based solver described in previous works. The reduced basis method includes two steps. First,
the diagonal plus low-rank approximation to fully populated blocks in the BSE matrix is calculated,
enabling an easier partial eigenvalue solver for a large auxiliary system relying only onmatrix–vector
multiplications with rank-structured matrices. Second, a small subset of eigenvectors from the auxil-
iary eigenvalue problem is selected to build a projection of the exact BSE system onto this reduced
basis set. Numerical tests demonstrate the ε-rank bounds for the blocks of the BSE matrix on exam-
ples of some compactmolecules. The accuracy of the reduced basis approach vs. the effectivematrix
rank is illustrated.

1. Introduction

In modern material science, there is a growing interest
to ab initio computation of the absorption spectra for
molecules or surfaces of solids. This computational prob-
lem can be treated either by using the time-dependent
density functional theory (TD-DFT) [1–6] or by solv-
ing the Bethe–Salpeter equation (BSE) [7,8] based on
theGreen’s function formalism andmany-body perturba-
tion theory [9–13]. A specific choice of the approximate
computational model may depend on many physical and

CONTACT Boris N. Khoromskij bokh@mis.mpg.de
∗Dedicated to Prof. Andreas Savin on occasion of his th birthday.

implementation aspects, see [9] for the detailed discus-
sion. In particular, the BSE approach leads to the chal-
lenging numerical task concerning the solution of large
eigenvalue problem for a dense matrix that, in general, is
non-symmetric.

In the present paper, we consider the computational
aspects of the large-scale algebraic BSE spectral problem
when using the data-sparse matrix structures. We follow
the particular formulation of the BSE problem based on
the non-interacting Green’s function via representation
in terms of the Hartree–Fock (HF) molecular orbitals

©  2016 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/.4/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.

The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://dx.doi.org/10.1080/00268976.2016.1149241
mailto:bokh@mis.mpg.de


MOLECULAR PHYSICS 1149

(MOs) [14,15], where it was applied to H2 molecule
in the minimal basis of two Slater functions.1 In the
framework of this specific BSE formulation, we focus
on the algebraic aspects of solving the computation-
ally extensive spectral problems arising in the case of
larger molecular systems. It is demonstrated that this
scheme becomes practically applicable to moderate-size
molecules when using tensor-structured HF calculations
[16–19], accomplished by efficient representation of the
two-electron integrals (TEI) in the MO basis in the form
of a low-rank Cholesky factorisation [17,20]. In this way,
the low-rank representation of the TEI tensor stipulates
the beneficial structure of the BSE matrix blocks, thus
enabling numerical algorithms of reduced complexity.

It is worth to note that the size of the BSEmatrix scales
quadraticallywith the size of the atomic orbital (AO) basis
set, O(N2

b ), used in ab initio HF calculations. The direct
diagonalisation is limited by theO(N6

b ) complexity, mak-
ing the problem computationally expensive already for
moderately sized molecules with a basis size Nb � 100.
Hence, a procedure that relies entirely on multiplication
of the governing BSE matrix, or its approximation, with
vectors (in the framework of some iterative procedure) is
the only viable approach. In turn, fast matrix computa-
tions can be based on the use of low-rank representations
since such data structures allow efficient storage and fast
algebraic operations with linear complexity scaling in the
matrix size.

Methods for solving partial eigenvalue problems for
matrices with the special structure as in the BSE eigen-
value problem have been intensively studied in the litera-
ture. These structures are related to the so-called Hamil-
tonian matrices, exposing a particular block structure.
Papers and books treating Hamiltonian eigenvalue prob-
lems include [21–25]; see also the recent survey [26] and
the references therein. Special cases of the BSE and other
eigenvalue problems related to HF approximations lead
to anti-block-diagonal Hamiltonian eigenproblems that
can be solved by special techniques based on minimi-
sation principles [27,28]. The algebraic structure of the
BSE matrix is not that of a Hamiltonian matrix in the
general case, but yields a so-called complex J-symmetric
matrix. Theory and numerical solution of such eigen-
value problems are discussed in [29–33], where the par-
ticular instance of the BSE matrix is considered in [33].
Other partial eigensolvers tailored for electronic structure
calculations are discussed in [34,35]. The reduced basis
method for large-scale systems is described in [36].

In this paper, we study a reduced basis approach to
the approximate numerical solution of the BSE eigen-
value problem based on model reduction via projection
onto a reduced basis, which is constructed by using the
eigenvectors of a simplified system matrix obeying a

simpler data-sparse structure. The reduced basis method
includes two steps. First, the diagonal plus low-rank
approximation to the fully populated blocks in the BSE
matrix is calculated, enabling an easier partial eigen-
value solver for a large auxiliary system relying only
on matrix–vector multiplications with rank-structured
matrices. Second, a small subset of eigenvectors from the
auxiliary eigenvalue problem is selected to build the pro-
jection of the exact BSE system onto this reduced basis
set.

The approximation error incurred by the reduced basis
approach depending on the rank truncation parameters
is investigated. Theoretical and numerical analysis on the
existence of the low-rank approximation and the respec-
tive rank bounds for matrix blocks in the BSE system
matrix are presented. One of the favourable features of
the approach is the quadratic convergence rate in approx-
imate excitation energies compared with the accuracy of
the reduced basis set thresholded by a rank truncation
parameter ε > 0 (see Remark 3.3).

The reduced basis approach applies to the BSE system
withmatrix blocks of sizeNoNv ×NoNv , whereNo andNv

denote the number of occupied and virtual HF orbitals,
respectively, such that Nb = No + Nv . Since in general,
NoNv = O(N2

b ), the direct numerical calculation of the
matrix elements, based on the precomputed TEI tensor
in the HF MO basis, has a storage and numerical cost of
the order of O(N4

b ).
The construction of the reduced basis and the pre-

ceding low-rank decomposition of matrix blocks in the
Bethe–Salpeter kernel are motivated by the use of trun-
cated Cholesky factorisation of the TEI matrix [17,20].
To that end, the BSE matrix blocks are represented in
terms of the precomputedCholesky factors in theHFMO
basis. Along with the diagonal energy matrix, this consti-
tutes the structured representations of the dielectric and
response functions, as well as the static screened interac-
tion matrix. Taking into account the rank decomposition
of TEI, the above quantities tolerate the low-rank approx-
imation up to a chosen threshold.2 This yields the con-
struction of a so-called simplified BSEmatrix with a diag-
onal plus low-rank structure in the matrix blocks, thus
admitting efficient storage and matrix–vector products.
The reduced basis is obtained by calculating several of the
lowest eigenvectors of the auxiliary eigenvalue problem
for the simplified matrix. A projection of the exact BSE
matrix onto the reduced basis set and diagonalisation of
the arising small-size matrix completes the reduced basis
scheme.

Numerical tests for single molecules and finite chains
of hydrogen atoms indicate the convergence in the senior
excitation energies by the increase of the separation
ranks.
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The rest of the paper is organised as follows. Section 2
recalls the truncated Cholesky decomposition scheme for
low-rank factorisation of the TEI tensor in the HF MO
basis, that is the building block in the construction of
the BSE matrix. Section 3 describes the algebraic com-
putational scheme for evaluation of the entries in the
BSE matrix, analyses the low-rank structure in different
matrix blocks and describes the reduced basis approach.
Section 4 presents numerical tests for several compact
and extended molecules demonstrating the computa-
tional features of the reduced basis method applied to the
full BSE system as well as to simplified model by the so-
called Tamm–Dancoff approximation (TDA).

2. Low-rank approximation of the two-electron
integrals in Hartree–Fock calculus

2.1. Cholesky decomposition of the TEImatrix

The numerical treatment of the TEI tensor (also known
as the electron repulsion integrals) is one of the bottle-
necks in the numerical solution of the HF equation and
in density function theory (DFT) calculations for large
molecules [37].

Given the AO basis set {gμ}1≤μ≤Nb , gμ ∈ H1(R3), the
associated TEI tensor B = [bμνλσ ] [38] is defined entry-
wise by

bμνλσ =
∫
R3

∫
R3

gμ(x)gν (x)gλ(y)gσ (y)
‖x − y‖ dxdy,

μ, ν, λ, σ ∈ {1, . . . ,Nb} =: Ib. (2.1)

The corresponding N2
b × N2

b TEI matrix over the
large index set I × J , I = J = Ib ⊗ Ib, with
Ib := {1, . . . ,Nb},

B = mat(B) = [bμν;λσ ] ∈ R
N2
b×N2

b ,

is obtained bymatrix unfolding of the tensorB= [bμνλσ ].
The matrix B is proven to be symmetric and positive
definite ensuring application of the incomplete Cholesky
decomposition [37,39–41]. The tensor-based HF solver
[16,19] employs the efficient calculation of the Cholesky
factors [17,20] in

B ≈ LLT , L ∈ R
N2
b×RB, RB = O(Nb), (2.2)

where the adaptively chosen column vectors in B are cal-
culated in an efficient way. This allows the partial decou-
pling of the index sets {μν} and {λσ }.

Notice that the Cholesky factorisation (2.2) can be
written in the following index form:

bμν;λσ ≈
RB∑
k=1

Lk(μ; ν)Lk(σ ; λ), (2.3)

where the second factor corresponds to the transposed
matrix LTk . Here Lk = Lk(μ; ν), k = 1, …, RB, denotes the
Nb × Nb matrix unfolding of the column vector L(:, k)
from the Cholesky factor L ∈ R

N2
b×RB .

Numerical experiments indicate that the truncated
Cholesky decomposition with the separation rank O(Nb)
ensures a satisfactory numerical precision ε > 0 of order
10−5 to 10−6. The refined rank estimate O(Nb|log ε|) was
observed for every molecular system considered so far
[17,20].

In the standard quantum chemical implementations
in the Gaussian-type AO basis, the numerically con-
firmed rank bound, rank(B) ≤ CBNb (CB is of order
1–10), allows to reduce the complexity of building up the
Fock matrix F to O(N3

b ), which is by far dominated by
the computational cost for the exchange term K(D) (see
Section 2.2 ).

2.2. Rank bounds for the TEI matrix V

The 2No-electron HF equation for No pairwise L2-
orthogonal occupied electronic orbitals, ψi : R

3 → R,
ψi ∈ H1(R3), reads as [38]

Fψi(x) :=
[
−1
2
� +Vc(x) +VH (x) + K

]
ψi(x)

= εi ψi(x),
∫
R3

ψiψ jdx = δi j, (2.4)

i, j = 1, …, No, where the nonlinear Fock operator F on
the left-hand side includes the nuclear andHartree poten-
tials Vc(x) and VH(x) as well as the integral exchange
operatorK.

In HF calculations, the full HF operator F is rep-
resented in the basis set {gμ}1≤μ≤Nb , gμ ∈ H1(R3), of
Gaussian-type AOs. We consider the complete set of
HF MOs {Cp ∈ R

Nb}, i.e. the pth column vectors in the
coefficients matrix C ∈ R

Nb×Nb , and the corresponding
energies {εp}, p = 1, 2, …, Nb. The occupied MOs
ψ i are represented (approximately) by the coefficient
matrix Co = [Cμi] ∈ R

Nb×No (submatrix of C) as ψi =∑Nb
μ=1Cμigμ, i = 1, . . . ,No.
The coefficients matrixC ∈ R

Nb×Nb solves the nonlin-
ear eigenvalue problem

[H + J(D) + K(D)]C = SCE, E = diag(ε1, . . . , εNb ),
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CTSC = INb, (2.5)

where H is the core Hamiltonian matrix, S is the mass
matrix and

J(D)μν =
Nb∑

κ,λ=1

bμν,κλDκλ,

K(D)μν = −1
2

Nb∑
κ,λ=1

bμλ,νκDκλ, (2.6)

with D = 2CoCT
o ∈ R

Nb×Nb denoting the rank-No sym-
metric density matrix.

In BSE calculations, the TEI tensor B = [bμνλσ ], cor-
responding to the AO basis set, is represented in the MO
basis:

B 	→ V = [via jb] : via jb =
Nb∑

μ,ν,λ,σ=1

CμiCνaCλ jCσbbμν,λσ ,

a, b, i, j ∈ {1, . . . ,Nb}. (2.7)

The BSE calculations utilise the two subtensors ofV spec-
ified by the index sets Io := {1, . . . ,No} and Iv := {No +
1, . . . ,Nb}, with No denoting the number of occupied
orbitals. The first subtensor is defined as in the MP2 cal-
culations [17]:

V = [via jb] : a, b ∈ Iv , i, j ∈ Io, (2.8)

while the second one lives on the extended index set:

V̂ = [̂vturs] : r, s ∈ Iv , t, u ∈ Io. (2.9)

In the following, {Ci} and {Ca} denote the sets of occu-
pied and virtual orbitals, respectively. We shall also use
the notation Nv = Nb − No,Nov = NoNv .

Denote the associated matrix by V = [via, jb] ∈
R

Nov×Nov in case (2.8), and similar by V̂ = [̂vtu,rs] ∈
R

N2
o×N2

v in case (2.9). The straightforward computation
of the matrix V by the above representations accounts
for the dominating impact on the overall numerical cost
of order O(N5

b ) in the evaluation of the block entries in
the BSE matrix. A method of complexity O(N4

b ) based
on the low-rank tensor decomposition of the matrix V
on the full index set was described in [17].

It can be shown that the rank RB = O(Nb) approxi-
mation to matrix B � LLT with the N × RB Cholesky
factor, L, allows to introduce the low-rank representation
of the tensor V, and then to reduce the asymptotic com-
plexity of calculations toO(N4

b ) (see [17]). Indeed, let Cm
be the mth column of the coefficient matrix C = {Cμi} ∈
R

Nb×Nb . Then, inserting (2.3) in (2.7) in the case of (2.8)

leads to

via jb =
RB∑
k=1

Nb∑
μ,ν,λ,σ=1

CμiCνaCλ jCσbLk(μ; ν)Lk(σ ; λ)

=
RB∑
k=1

( Nb∑
μ,ν=1

CμiCνaLk(μ; ν)

)( Nb∑
λ,σ=1

Cλ jCσbLk(σ ; λ)

)

=
RB∑
k=1

(CT
i LkCa)(CT

b L
T
k Cj ) =

RB∑
k=1

(CT
i LkCa)(CT

j LkCb)
T .

(2.10)

A similar factorisation can be derived in the case of (2.9).
The precise formulation is given by the following lemma
[17], which will be used in further considerations.

Lemma 2.1: Let the rank-RB Cholesky decomposition of
the matrix B be given by (2.2), then the matrix unfolding
V = [via; jb] corresponding to (2.8) allows a rank decompo-
sition with rank(V ) ≤ RB. The RB-term representation of
the matrix V = [via; jb] takes the following form:

V = LVLTV , LV ∈ R
Nov×RB,

where the columns of LV are given by

LV ((i − 1)Nv ir + a − Norb; k) = CT
i LkCa,

k = 1, . . . ,RB, a ∈ Iv , i ∈ Io.

On the index set (2.9), we have V̂ = UV̂WT
V̂ ∈ R

N2
o×N2

v

with UV̂ ∈ R
N2
o×RB ,WV̂ ∈ R

N2
v ×RB .

The numerical cost is determined by the computation
complexity and storage size for the factors LV, UV̂ andWV̂
in the above rank-structured factorisations.

Lemma 2.1 provides the upper bounds on rank(V )

in the representation (2.10) which might be reduced by
the ε-rank truncation. It can be shown that the ε-rank
of the matrix V remains of the same magnitude as that
for the TEI matrix B obtained by its ε-rank truncated
Cholesky factorisation (see the numerical illustration in
Section 3.2).

Numerical tests in [17] indicate that the singular values
of the TEI matrix B decay exponentially as

σk ≤ Ce−
z
Nb

k
, (2.11)

where the constant z> 0 depends weakly on themolecule
configuration. If we define RB(ε) as the minimal number
satisfying the condition

RB∑
k=RB(ε)+1

σ 2
k ≤ ε2, (2.12)
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then the estimate (2.11) leads to the ε-rank bound RB(ε)
� CNb|log ε|, which will be postulated in the following
discussion.

Our goal is to justify thatRV(ε) increases only logarith-
mically in ε, similar to the bound for RB(ε). To that end,
we introduce the singular value decomposition (SVD)
decomposition of the matrix B,

B = UDBUT , U ∈ R
N2
b×RB, DB ∈ R

RB×RB,

which can be written in the following index form:

bμν;λσ =
RB∑
k=1

σkUk(μ; ν)Uk(σ ; λ), (2.13)

with Uk = [Uk(μ; ν)] ∈ R
Nb×Nb and ‖Uk‖F = 1, k = 1,

…, RB.

Lemma 2.2: For given ε > 0, there exists a rank-r approx-
imation Vr to the matrix V, and a constant C > 0 not
depending on ε, such that r � RB(ε) and

‖Vr −V‖ ≤ CNbε| log ε|.

Proof. We estimate the RB(ε)-term truncation error by
using the representation (2.13),

via jb =
RB∑
k=1

σk

Nb∑
μ,ν,λ,σ=1

CμiCνaCλ jCσbUk(μ; ν)Uk(σ ; λ)

=
RB∑
k=1

σk

( Nb∑
μ,ν=1

CμiCνaUk(μ; ν)

)

×
( Nb∑

λ,σ=1

Cλ jCσbUk(σ ; λ)

)

=
RB∑
k=1

σk(CT
i UkCa)(CT

b U
T
k Cj)

=
RB∑
k=1

σk(CT
i UkCa)(CT

j UkCb)
T , (2.14)

which can be presented in the matrix form V =∑RB
k=1 σkVkVT

k , whereVk(i; a) = CT
i UkCa. By definition of

RB(ε), we have (2.12). Hence, the error of the rank-RB(ε)
approximation defined by Vr = ∑RB(ε)

k=1 σkVkVT
k , can be

bounded by

∥∥∥∥∥∥
RB∑

k=RB(ε)+1

σkVkVT
k

∥∥∥∥∥∥ ≤
⎛⎝ RB∑

k=RB(ε)+1

σ 2
k

⎞⎠1/2 ⎛⎝ RB∑
k=RB(ε)+1

‖Vk‖4
⎞⎠1/2

≤ ε

⎛⎝ RB∑
k=RB(ε)+1

‖Vk‖4
⎞⎠1/2

≤ ε(RB − RB(ε))‖C‖2Io‖C‖2Iv
, (2.15)

taking into account that ‖Uk‖ = 1, k = 1, …, RB, and the
Frobenius norm estimate

‖Vk‖2 = ‖Vk(i; a)‖2F = ‖CT
i UkCa‖2F ≤ ‖Uk‖2

∑
i,a

‖Ci‖2‖Ca‖2

≤
∑
i∈Io

‖Ci‖2
∑
a∈Iv

‖Ca‖2

holds. We suppose that RB = O(Nb|log ε|), then the mul-
tiple of ε|log ε| in (2.15) does not depend on ε, which
proves our lemma. �

The storage cost of these decompositions restricted to
the active index set Iv × Io amounts to RV(ε)NvNo.

Figure 1 represents the singular values of the matrix V
for H32 chain, N2H4 and C2H5NO2 (Glycine amino acid)
molecules with the size of the basis set (Nb, No) equal to
(128, 16), (82, 9) and (170, 20), respectively. They indicate
that RV(ε) is linearly proportional to |log ε|. Moreover, it
is of the same order of magnitude as RB(ε) (see [20]).

The calculation ofVr is based on the reduced truncated
SVD algorithm applied to the initial rank-RB Cholesky
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Figure . Decay of singular values of the matrix V for H-chain ( × ), NH ( × ), and CHNO ( × ) molecules.
Size of V is given in brackets.
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decomposition of the matrix V inherited from that for
the TEI matrix B (see Lemma 2.1). Complexity of this
straightforward computation on the active index set can
be estimated by O(R2

BNov ) = O(N2
bNov ).

3. Tensor factorisation of the BSEmatrix blocks

Here we discuss the main ingredients for calculation of
blocks in the BSEmatrix and their reduced rank approxi-
mate representation. We compose the 2Nov × 2Nov BSE
matrix by Equations (46a) and (46b) in [14], though
the construction of static screened interaction matrix
w(ij, ab) in Equation (3.4) may slightly differ.

3.1. Tensor representations using TEImatrix in
MTO basis

Construction of the BSE matrix includes computation
of several auxiliary quantities. First, introduce a fourth-
order diagonal ‘energy’ matrix by

�ε = [�εia, jb] ∈ R
Nov×Nov : �εia, jb = (εa − εi)δi jδab,

that can be represented in the Kronecker product form

�ε = Io ⊗ diag{εa : a ∈ Iv} − diag{εi : i ∈ Io} ⊗ Iv ,

where Io and Iv are the identity matrices on respective
index sets. It is worth noting that if the so-called homo–
lumo gap of the system is positive, i.e.

εa − εi > δ > 0, a ∈ Iv , i ∈ Io,

then the matrix �ε is invertible.
Using thematrix�ε and theNov ×Nov TEImatrixV=

[via, jb] represented in the MO basis as in (2.7), the dielec-
tric function (Nov ×Nov matrix) Z= [zpq, rs] is defined by

zpq,rs := δprδqs − vpq,rs[χ0(ω = 0)]rs,rs,

with χ0(ω) being the matrix form of the so-called
Lehmann representation to the response function. In turn,
the matrix representation of the inverse of χ0(ω) is
known to have the following form:

χ−1
0 (ω) = −

(
�ε 0
0 �ε

)
+ ω

(
1 0
0 −1

)
,

implying

χ0(0) = −
(

�ε−1 0
0 �ε−1

)
.

Let 1 ∈ R
Nov and dε = diag{�ε−1} ∈ R

Nov be the all-
ones and diagonal vectors of �ε−1, respectively, specify-
ing the rank-1 matrix 1�dε . In this notation, the matrix
Z = [zpq, rs] takes a compact form

Z = Io ⊗ Iv +V 
 (
1 · dTε

)
, (3.1)

where � denotes the Hadamard product of matrices.
Introducing the inverse matrix Z−1, we finally define the
so-called static screened interactionmatrix (tensor) by

W = [wpq,rs] : wpq,rs :=
∑

t∈Iv ,u∈Io
z−1
pq,tuvtu,rs. (3.2)

In the forthcoming calculations, this equation should
be considered on the conventional and extended index
sets {p, s ∈ Io} × {q, r ∈ Iv} and {p, q ∈ Io} × {r, s ∈
Iv}, respectively, such that vtu, rs corresponds either to
subtensor in (2.8) or in (2.9).

Hence, on the conventional index set, we obtain the
following matrix factorisation ofW := [wia, jb]:

W = Z−1V provided that a, b ∈ Iv , i, j ∈ Io,

where V is calculated by (2.8). Lemma 2.1 suggests the
existence of a low-rank factorisation for the matrix W
defined above.
Lemma 3.1: Let the matrix Z defined by (3.1) over the
index set a, b ∈ Iv , i, j ∈ Io be invertible. Then the rank
of the respective matrix W = Z−1V is bounded by

rank(W ) ≤ rank(V ) ≤ RB.

Proof. Lemma 2.1 proves the representation V =
LVLTV , LV ∈ R

Nov×RB , which ensures the rank-RB
factorisation

W = Z−1V = (Z−1LV )LTV ,

which can be calculated by solving linear system with
structured data (see Section 3.2). �

Furthermore, Equation (46a) in [14] includes matrix
entries wij, ab for a, b ∈ Iv , i, j ∈ Io. To this end, the
modifiedmatrixŴ = [ŵpq,rs] is computed by (3.2) on the
index set {p, q ∈ Io} × {r, s ∈ Iv} by using entries v̂i j,ab in
the matrix unfolding of the tensor V̂ in (2.9) multiplied
from the left with the N2

o × N2
o submatrix of Z−1.

Now the matrix representation of the BSE in the (ov ,
vo) subspace reads as the following eigenvalue problem
determining the excitation energies ωn:

F
(
xn
yn

)
≡

(
A B
B∗ A∗

)(
xn
yn

)
= ωn

(
I 0
0 −I

)(
xn
yn

)
,

(3.3)
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where the matrix blocks are defined in the index notation
by (see (46a) and (46b) in [14] for more details):

aia, jb := �εia, jb + via, jb − ŵi j,ab, (3.4)

bia, jb := via,b j − wib,a j, a, b ∈ Iv , i, j ∈ Io. (3.5)

In the matrix form, we obtain

A = �ε +V −W ,

where thematrix elements inW = [wia, jb] are defined by
wia, jb = ŵi j,ab, computed by (3.2) and (2.9) as described
above. Here the diagonal plus low-rank sparsity structure
in �ε +V can be recognised in view of Lemma 2.1. For
the matrix block B, we have

B = Ṽ − W̃ = V − W̃ ,

where the matrix Ṽ , corresponding to the partly trans-
posed tensor, is defined entrywise by

Ṽ = [̃via jb] := [viab j] = [via jb],

thus coincidingwithV in (2.8) due to the symmetry prop-
erties. HereW̃ is defined by permutation,W̃ = [w̃ia, jb] =
[wib,a j]. In the following, we investigate the ε-rank struc-
ture in the matrix blocks A and B resulting from the cor-
responding factorisations of V.

Solutions of Equation (3.3) come in pairs: excitation
energies ωn with eigenvectors (xn, yn), and de-excitation
energies −ωn with eigenvectors (x∗

n, y∗
n).

The block structure in thematricesA andB is inherited
from the symmetry of the TEImatrixV, via, jb = v∗

ai,b j and
the matrix W, wia, jb = w∗

b j,ai. In particular, it is known
from the literature that the matrixA is Hermitian and the
matrix B is (complex) symmetric (since via, bj = vjb, ai and
wib, aj = wja, bi), which we control in the matrix construc-
tion (see also [33] for implications on the algebraic prop-
erties of the BSE matrix).

In the following, we confine ourselves to the case of
real spin orbitals, i.e. the matrices A and B remain real.
It is known that for the real spin orbitals and if A + B
andA− B are positive definite, the problem can be trans-
formed into a half-size symmetric eigenvalue equation
[3]. Indeed, in this case for every eigenpair, we have

Ax + By = ωx, Bx + Ay = −ωy,

implying

(A + B)(x + y) = ω(x − y),
(A − B)(x − y) = ω(x + y).

Now, if A + B and A − B are both positive definite, then
the previous equations transform to

Mz = ω2z with M = (A − B)1/2(A + B)(A − B)1/2,

(3.6)

with respect to the normalised eigenvectors z = √
ω(A −

B)1/2(x + y). However, in this case the computation of
the large fully populated matrix (A − B)1/2 may become
the bottleneck.

The dimension of the matrix in (3.3) is 2NoNv ×
2NoNv , where No and Nv denote the number of occu-
pied and virtual orbitals, respectively. In general, NoNv

is asymptotically of the size O(N2
b ), i.e. the spectral

problem (3.3) may be computationally extensive. Indeed,
the direct eigenvalue solver for (3.3) (diagonalisation)
becomes infeasible due toO(N6

b ) complexity scaling. Fur-
thermore, the numerical cost for calculation of thematrix
elements based on the precomputed TEI integrals from
the HF equation scales as O(N3

b )–O(N4
b ), depending on

how to compute the matrixW. Here, the low-rank struc-
ture in the matrix V can be adapted.

The challenging computational tasks arise in the case
of lattice-structured compounds, where the number of
basis functions increases proportionally to the lattice size
L× L× L, i.e.Nb ∼ n0L3, that quickly leads to intractable
problems even for small lattices.

3.2. The reduced basis approach using low-rank
approximations

The large matrix size in Equation (3.3) makes the solu-
tion of the full eigenvalue problem computationally
intractable even for moderate-size molecules, not to
speak of lattice-structured compounds. Hence, in realis-
tic quantum chemical simulations of excitation energies,
the calculation of several (tens of) eigenpairs may be suf-
ficient.

In the following, we show that the part �ε +V in the
matrix blockA has diagonal plus low-rank (DPLR) struc-
ture, while the submatrix Ṽ in the block B exhibits low-
rank approximability. Taking into account these struc-
tures, we propose a special partial eigenvalue problem
solver based on the use of a reduced basis obtained
from the eigenvectors of the reduced matrix that picks
up only the essential part of the initial BSE matrix with
the DPLR structure. The iterative solver is based on fast
matrix–vector multiplication and efficient storage of all
data involved in the computational scheme. Using the
reduced basis approach, we then approximate the initial
problem by its projection onto a reduced basis of moder-
ate size.
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We begin with the low-rank decomposition of the
matrix V,

V ≈ LVLTV , LV ∈ R
Nov×RV , RV ≤ RB,

where the rank parameter RV = RV(ε)=O(Nb|log ε|) can
be optimised depending on the truncation error ε > 0
(see [17] and Section 2.2).

First, we represent all matrix blocks and intermediate
matrices included in the representation of the BSEmatrix
by using the above decomposition and diagonal matrices
as follows. The properties of theHadamard product imply
that the matrix Z exhibits the representation

Z = Io ⊗ Iv + LVLTV 
 (
1 · dTε

) = INov + LV (LV 
 dε )
T ,

where the rank of the second summand does not exceed
RV. Hence, the linear system solver W = Z−1V can be
implemented by algorithms tailored to the DPLR struc-
ture by adapting the Sherman–Morrison formula.

The computational cost for setting up the full BSE
matrix F in (3.3) can be estimated by O(N2

ov ), which
includes the cost O(NovRB) for generation the matrix V
and the dominating cost O(N2

ov ) for setting upW .
In the following, we rewrite the spectral problem (3.3)

in the following equivalent form:

F1
(
xn
yn

)
≡

(
A B

−B∗ −A∗

)(
xn
yn

)
= ωn

(
xn
yn

)
. (3.7)

The main idea of the reduced basis approach proposed
in this paper is as follows. Instead of solving the partial
eigenvalue problem for finding of, say,m0 eigenpairs sat-
isfying Equation (3.7), we first solve the slightly simpli-
fied auxiliary spectral problemwith amodifiedmatrix F0.
The approximation F0 is obtained from F1 by using low-
rank approximations of the partsW and W̃ of the matrix
blocksA and B, respectively, i.e. A and B are replaced by

A0 := �ε +V −Wr and B0 := V − W̃r, (3.8)

respectively. Here we assume that the matrix V is already
represented in the low-rank format inherited from the
Cholesky decomposition of the TEI matrix B.

The modified auxiliary problem reads

F0
(
un
vn

)
≡

(
A0 B0

−B∗
0 −A∗

0

)(
un
vn

)
= λn

(
un
vn

)
. (3.9)

This eigenvalue problem is much simpler than that in
(3.3), since now the matrix blocks A0 and B0, defined in
(3.8), are composed of diagonal and low-rank matrices.

Having at hand the set of m0 eigenpairs computed for
the modified (reducedmodel) problem (3.9), {(λn,ψn)=

Table . The error |γ  − ω| vs. the size of reduced basis,m.

m      

HO . . . . . .
NH . . . . . .

Table . The number of Gaussian type orbital (GTO) basis func-
tions, Nb, and molecular orbitals, No.

HO HO NH CHOH CHNO

No , Nb ,  ,  ,  ,  , 

(λn, (un, vn)T)}, we solve the full eigenvalue problem for
the reduced matrix obtained by projection of the initial
equation onto the problem adapted small basis set {ψn}
of sizem0.

Define a matrix G1 = ψn(:, 1 : m0) ∈ R
2Nov×m0 whose

columns present the spanning vectors of the reduced
basis, compute the stiffness and mass matrices by projec-
tion onto the reduced basis specified by the columns in
G1,

M1 = GT
1 F1G1, S1 = GT

1 G1 ∈ R
m0×m0,

and then solve the projected generalised eigenvalue prob-
lem of small sizem0 × m0,

M1Y = γnS1Y, Y ∈ R
m0 . (3.10)

The portion of small eigenvalues γ n, n = 1, …, m0, is
thought to be very close to the corresponding excitation
energiesωn, (n= 1, …,m0) in the initial spectral problem
(3.3). Table 1 illustrates that the larger the size m0 of the
reduced basis is, the better is the accuracy of the lowest
excitation energy γ 1, as to be expected.

Remark 3.2: Notice that the matrixW might have rather
large ε-rank for small values of ε, which increases the cost
of high-accuracy solutions. Numerical tests show (see
Table 3) that the ε-rank approximation to the matrixW
with a moderate rank parameter allows for a numerical
error in the excitation energies of the order of few per-
cents. For this reason, we study another approximation
strategy inwhich the rank approximation of thematrixW
remains fixed, while thematricesV andW̃ are substituted
by their adaptive ε-rank approximations (see Table 3).

Matrix blocks in the auxiliary equation (3.9) are
obtained by rather rough ε-rank approximation to the
initial systemmatrix. However, we observe much smaller
approximations error γ n − ωn for the solution of the pro-
jected reduced basis system (3.10) compared with that
for auxiliary equation (3.9). Numerical tests indicate that
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Table . Accuracy (in eV) for the first eigenvalue, |γ  −ω|, and norms of the differences between the exact and reduced-
rank matrices, ‖F − F‖, vs. ε-rank for V,W and W̃ .

ε × − × − − −

HO |γ  − ω| . . . .× −

|λ − ω| . . . .× −

‖F − F‖ . . × − × −

Ranks V,W ,W̃ , ,  , ,  , ,  , , 
NH |γ  − ω| . . . .× −

|λ − ω| . . . .× −

‖F − F‖ . . × − .× −

Ranks V,W ,W̃ , ,  , ,  , ,  , , 
CHOH |γ  − ω| . . . .× −

|λ − ω| . . . .× −

‖F − F‖ . . × − .× −

Ranks V,W ,W̃ , ,  , ,  , ,  , , 

the difference γ n−ωn behavesmerely quadratically in the
rank truncation parameter ε.

Remark 3.3: In the case of a symmetric matrix, the
above-mentioned effect of ‘quadratic’ convergence rate
can be justified by a well-known property of the quadratic
error behaviour in the approximate eigenvalue, computed
by the Rayleigh quotient with respect to the perturbed
eigenvector (vectors of the reduced basis ψn in our con-
struction), compared with the perturbation error in the
eigenvector, which is of order O(ε). This beneficial prop-
erty may explain the efficiency of the proposed reduced
basis approach.

In the particular BSE formulation based on theHFMO
basis, we may have a slight perturbation of the symmetry
in the matrix blockW , i.e. the above argument does not
apply directly. However, we observe the same quadratic
error decay in all numerical experiments implemented so
far.

It is also worth to note that due to the symmetry fea-
tures of the eigenproblem, the approximation computed
by the reduced basis approach is always an upper bound
of the true excitation energies obtained from the full BSE
model. Again, this is a simple consequence of the varia-
tional properties of the Ritz values being upper bounds
on the smaller eigenvalues for symmetric matrices. The
‘upper bound’ character is also clearly visible in the
figures in Section 4.

4. Numerical tests for the reduced basis method

In this section, we present numerical illustrations of the
reduced basis approach applied to the BSE problem for
singlemolecules and finite chains of hydrogen atoms. The
TEI tensor and MOs are obtained from ab initio HF cal-
culations using tensor-structured solver [16–19] imple-
mented in MATLAB R© .

Both the core Hamiltonian and two-electron (repul-
sion) integrals are computed by rank-structured algo-
rithms using the discrete representation of the AO basis
functions on fine n × n × n three-dimensional (3D)
Cartesian grids [17,20]. In TEI calculations formolecules,
the basis functions and convolution kernels involved are
represented onfine 3Dgrids of size up to 131, 726, 3which
guaranties the sufficient accuracy of numerical quadra-
tures. The TEI matrix is precomputed in the form of low-
rank Cholesky factorisation by tensor-based algorithm
incorporating 1D density fitting [20].

4.1. Reduced basismethod for the BSE system

The numerical examples below demonstrate that a small
reduced basis set, obtained by separable approximation
of the BSE matrix blocks with rank parameters of about
several tens, allows to reveal several of the lowest excita-
tion energies. Accuracy is controlled by the rank trunca-
tion threshold. Examples below utilise the grid represen-
tation of the Gaussian basis sets of type cc-pDVZ (see e.g.
[42,43]).

Table 2 presents the size of GTO basis set, Nb, and
the number of MOs, No, in the numerical examples
considered.

Table 3 shows numerics for H2O (360 × 360), N2H4
(1314 × 1314) and C2H5OH (2860 × 2860), where
the numbers in brackets specify the BSE matrix size. It
demonstrates the quadratic decay of the error |γ 1 − ω1|
in the lowest excitation energywith respect to the approx-
imation error |λ1 − ω1| for the modified auxiliary BSE
problem (3.9). Errors for eigenvalues are given in eV. The
numerical error is controlled by a tolerance ε in the rank
truncation procedure applied to the BSE submatrices V,
W and W̃ . The resulting ε-ranks for the corresponding
matrices are presented.
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Figure . Comparison ofm =  lower eigenvalues for the reduced and exact BSE systems vs. ε in the case of NH molecule. The number
in a text box indicates the error in the first eigenvalue |γ  − ω|.

Notice that the rank decomposition of the matrix V
can be derived from the respective Cholesky factorisa-
tion of the TEI matrix B accomplished by the simple rank
reduction. The rank approximation for the symmetric
matricesW andW̃ can be calculated by pivoted Cholesky
factorisation. Table 2 demonstrates that the approxima-
tion error in the reduced basis, |γ 1 − ω1|, is at least one
order of magnitude smaller than that for auxiliary prob-
lem, |λ1 − ω1|, i.e.

|γn − ωn| � |λn − ωn|,

which justifies the use of the reduced basis equation
(3.10).

This effect can be also seen in Figure 2 for N2H4
molecule demonstrating the convergence γ n → ωn and
λn → ωn with respect to the increasing rank param-
eter determining the auxiliary problem (the size of
the reduced basis set is m0 = 30). The left and right
figures correspond to the rank truncation thresholds,
ε = 0.6 and ε = 0.1, respectively. The quantities λn,
γ n and ωn are marked by black, blue and red colours,
respectively.

Figure 3 represents similar results for amino acid
glycine, C2H5NO2, with the BSEmatrix size 6000× 6000.
In this case, the truncation thresholds ε = 0.2 leads to
the rank parameters RV = 54 , RW = 50, RW̃ = 50 and
the error for the minimal eigenvalue, ω1 = 0.72 eV. For
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Figure . Comparison of m =  lower eigenvalues for the reduced and exact BSE systems vs. ε in the case of Glycine amino acid The
number in a text box indicates the error in the first eigenvalue |γ  − ω|.
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Figure . Comparison ofm =  lower eigenvalues for the reduced and exact BSE systems for HO molecule: ε = ., left; ε = ., right.
The error in the first eigenvalue |γ  − ω| is shown in a text box.

ε = 0.08, we have the rank parameters RV = 100 , RW =
215, RW̃ = 129 and the error for the minimal eigenvalue
equals to 0.38 eV.

The lowest values of the BSE excitation energy for
H2O molecule computed by solving our exact system
is 8.72 eV which agrees with the value 8.7 eV for ice
water presented in [44]. The reduced basis method using
the rank truncation threshold ε = 10−1 provides the
value 8.95 eV.

Figure 4, left and right, illustrates the BSE energy spec-
trum of the H2Omolecule for the lowestNred = 30 eigen-
values vs. the rank truncation parameters ε = 0.6 and 0.1,
where the ranks of V and the BSE matrix block W̃ are
equal to 4, 5 and 28, 30, respectively, while the blockW
remains unchanged. For the choice ε = 0.6 and ε = 0.1,
the error in the first (lowest) eigenvalue for the solution
of the problem using the reduced basis is about 0.11 and
0.025 eV, respectively.

Next, we present BSE calculations for chains of 16
and 32 hydrogen atoms placed in a 3D bounding box

with the size 643 bohr.3 The interatomic interval equals
to 1.39 bohr. The HF calculations were performed with
64 and 128 Gaussian-type basis functions using grids of
size 32, 7683 and 16, 3843, for computation of the core
Hamiltonian and TEI, respectively. Cholesky factors of
TEI matrix are of size 4096 × 175 and 16, 384 × 348 for
the chains with 16 and 32 hydrogen atoms.

Table 4 demonstrates the decay of the error in the
lowest eigenvalues |γ 1 − ω1| with respect to the tol-
erance ε in the rank approximation of the BSE matrix
for the chains of hydrogen atoms, H16 (896 × 896)
and H32 (3584 × 3584), where the numbers in brack-
ets specify the BSE matrix size. We observe linear scal-
ing of the corresponding ranks of V,W and W̃ with
respect to the size of the system as expected. Since
the rank of W decays slowly, we studied the case,
with fixed rank(W ) = max {rank(V), rankW̃} (usually
it coincides with rank(V)). The improved accuracy of
the resulting spectrum is achieved even for rather large
ε = 2 × 10−1.

Table . Accuracy (in eV) for the first eigenvalue, |γ  − ω| vs. ε-rank for V,W and W̃ for chains of  and  hydrogen
atoms.

ε × − × − − −

H Ranks V,W ,W̃ , ,  , ,  , ,  , , 
|γ  − ω| . . .× − × −

rank(W )=rank(V) , ,  , ,  , ,  , , 
|γ  − ω| . . . .

H Ranks V,W ,W̃ , ,  , ,  , ,  , , 
|γ  − ω| . . .× − .× −

rank(W )=rank(V) , ,  , ,  , ,  , , 
|γ  − ω| . . . .
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Figure . Comparison betweenm =  lower eigenvalues μn and ωn for the TDA and full BSE models, respectively, on the examples of
HO and CHOHmolecules.

Table . Themodel error |μ −ω| in TDA approximation for dif-
ferent molecules.

HO HO NH CHOH Glycine

err(eV) . . . . .

4.2. Reduced basis approach to the Tamm–Dancoff
model

It is interesting to apply the reduced basis approach
described above to the so-called TDA [3], which corre-
sponds to setting the matrix B = 0 in Equation (3.3). It
also allows to estimate the difference between the excita-
tion energies from the full BSEmodel and those obtained
by the TDA, which introduces an additional small model
error.

TheTDAmodel simplifies Equation (3.3) to a standard
Hermitian eigenvalue problem

Axn = μnxn, xn ∈ R
Nov A ∈ R

Nov×Nov (4.1)

with the factor-two smaller matrix size Nov . The reduced
basis approach via low-rank approximation described in
Section 3.2 can be applied directly to the TDA equation.

Below we present numerical tests indicating that the
approximation error introduced by the TDA compared
with the initial BSE system (3.3) remains on the level of
0.003Hartree for several compactmolecules (see Table 5).
This table indicates a tendency to decrease the TDA
model error for larger molecules, say 0.0017 Hartree
(0.045 eV) for glycine amino acid.

Figure 5 displays the error of TDA approximation in
comparison with the full BSE system for the firstm0 = 15
lower eigenvalues on the examples of H2O and C2H5OH
molecules.

5. Conclusions

This paper introduces and analyses the reduced basis
method for computation of several lowest eigenvalues
in the BSE, based on the solution of an auxiliary, sim-
plified eigenvalue problem via diagonal plus low-rank
approximations to the BSE matrix blocks. The reduced
spectral problem of small size is derived via projection
of the full BSE matrix onto the reduced basis set, com-
posed of several dominant eigenvectors of the simplified
problem. The ε-rank bounds for the requested subten-
sors of the TEI tensor represented in the basis set of HF
MOs are proved in Lemmas 2.1 and 2.2. Asymptotic esti-
mates on storage demands are provided. Numerical tests
confirm merely quadratic error behaviour in the excita-
tion energies with respect to the accuracy of the rank
approximation. The particular construction of the BSE
matrix is based on the BSE-GWapproximationwith non-
interacting HF Green’s function (we follow the construc-
tion considered in [14]).

The main goal of the present paper is the development
and numerical verification of the reduced basis method
applied to large-scale BSE eigenvalue problems. Potential
efficiency of the approach is illustrated numerically on the
examples of single molecules and finite hydrogen chains.
The numerical studies demonstrate that eigenvalues of
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the reduced spectral problem provide a sufficient approx-
imation to the lowest excitation energies of the exact BSE
system. For all the examples considered so far, the accu-
racy of the order of 0.15 − 0.3 eV was achieved3 by the
reduced basismethodwith rathermoderate ranks as indi-
cated in Tables 3 and 4. The behaviour of the approxima-
tion error vs. rank parameters remains similar for com-
pact molecules and for finite chains of atoms.

Future work will be focused on application and devel-
opment of efficient linear algebra algorithms for fast and
accurate solution of the arising large eigenvalue problems
taking into account data-sparse block structures. In par-
ticular, the complementary structural representations to
the matrixW may enhance the accuracy of the reduced
basis method. These issues will be considered in a forth-
coming paper.

Another possible research direction is concerned with
the quantised tensor train (QTT) approximation [45] of
the long vectors and large matrices involved, in order to
perform the fast matrix–vector calculations in the QTT
tensor arithmetics with ε-rank truncation, see [46].

Notes

1. In [14], it was demonstrated that in the case of small inter-
atomic distance this model remains in a good agreement
with the reference data for full configuration–interaction
calculations though it does not describe the dissociation
case. The BSE model was shown to provide satisfactory
results in the latter case when using the exact Green’s func-
tion.

2. Though one can notice that the static-screened interaction
matrix, responsible for the exchange interaction of elec-
trons, does not allow the high-accuracy low-rank approx-
imation, as it is already known about the HF exchange.

3. For example, paper [11] assumes the BSE model errors in
the range of 0.1–0.3 eV as the acceptable precision.
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