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ABSTRACT 
 

Women’s technical writing achievements often go unrecognized, both due to the 

invisibility of technical writing professionals in general, and a lack of famous technical 

communication role models in particular. The purpose of this thesis is to analyze and present an early 

major work in the technical writing of Rear Admiral “Amazing” Grace Hopper, inventor of the compiler 

and an important figure in computer science history. Although Hopper is arguably best known for 

popularizing the idea of the “computer bug,” her achievements in computer science extend from invention 

of the software compiler to tireless promotion of the programming language COBOL.  

Her work A Manual of Operation for the Automatic Sequence Controlled Calculator, written for 

the first digital computer in America, is analyzed here according to Mike Markel’s eight criteria of 

excellent technical writing: honesty, clarity, accuracy, comprehensiveness, accessibility, conciseness, 

professional appearance, and correctness. I also cover other specific strengths of Grace’s approach, 

including how she establishes sufficient context, highlights multiple uses for information, and provides 

numerous well-chosen examples for audience needs. However, I also discuss how modern research 

principles for improving technical writing, including task-orientation, attention to cognitive load, and 

minimalism, help explain the manual’s shortcomings.  

I conclude my study with a discussion of Hopper’s later work, “The Education of a Computer,” to 

demonstrate her growth as a writer. The conclusion also highlights areas awaiting further research and 

cements my recommendation that study of Grace Hopper’s work be incorporated into our historical 

understanding of the discipline. Hopper’s technical writing deserves to be more widely understood and 

appreciated as a vital contribution to early software documentation. 

 

  



v 
 

 

 

 

 

 

 

 

 

 

 

For Matthew 

  



vi 
 

ACKNOWLEDGMENTS 
 

For their inspiration, tireless support, and years-long dedication to the cause, my thanks and all 

my love to my parents.  

Many thanks to Dr. Dan Jones, for untiring patience and unflagging faith, resolve, and teamwork 

in seeing this one through. 

My thanks and gratitude to Dr. JD Applen for his quick wit and ready support. 

Many thanks to Dr. Paul Dombrowski for his support and insights in the work and the rework. 

  



vii 
 

TABLE OF CONTENTS 
LIST OF FIGURES ..................................................................................................................................... ix 

LIST OF ACRONYMS ................................................................................................................................ x 

CHAPTER ONE: INTRODUCTION ........................................................................................................... 1 

Purpose ...................................................................................................................................................... 2 

Scope ......................................................................................................................................................... 2 

Methodology and Organization ................................................................................................................ 3 

Significance............................................................................................................................................... 5 

Literature Review ...................................................................................................................................... 5 

Women in Technical Communication ...................................................................................................... 7 

Technical Communication: What’s In a Manual? .................................................................................... 9 

Grace Hopper: Computing Pioneer, Technical Communication Powerhouse ........................................ 12 

Technological Dead-End, Conceptual Marvel: The Mark I ASCC ........................................................ 13 

The Mark I ASCC Manual: Historical Lessons for Modern Technical Communicators ........................ 14 

CHAPTER TWO: AMAZING GRACE ..................................................................................................... 18 

CHAPTER THREE: THE MARVELOUS MACHINE ............................................................................. 25 

Laboring in the Shadow of ENIAC......................................................................................................... 27 

Mark I ASCC Specs and Capabilities ..................................................................................................... 28 

Programming: Problem-Solving on the Mark I ASCC ........................................................................... 28 

Programming: How It Worked ........................................................................................................... 31 

Programming: Speed ........................................................................................................................... 32 

Programming: Punched Tape and Punched Cards .............................................................................. 33 

CHAPTER FOUR: BEYOND THE EDUCATION OF A COMPUTER .................................................. 36 

The Manual of Operation ........................................................................................................................ 37 

Manual of Operation: Organization and Presentation ............................................................................. 37 

Comprehensiveness and Correctness .................................................................................................. 40 

Honesty, Clarity, and Accuracy .......................................................................................................... 42 

Room for Improvement ....................................................................................................................... 44 

“The Education of a Computer,” Electrical Engineering, and the Evolution of a Technical Writer ...... 53 

CHAPTER FIVE: CONCLUSION ............................................................................................................. 61 

Findings: Research Questions Answered ................................................................................................ 62 

Opportunities for Future Research .......................................................................................................... 66 



viii 
 

REFERENCES ........................................................................................................................................... 69 

 

  



ix 
 

LIST OF FIGURES 
Figure 1. Diagram of the Mark I ASCC mechanical drive system, shown with original text. ..... 47 

Figure 2. Proposed edited reproduction of diagram for Harvard Mark I ASCC mechanical drive 

system. .......................................................................................................................................... 48 

Figure 3. Minimum resources required for mental solution of a math problem. .......................... 54 

Figure 4. Minimum resources required for solution of a math problem using human-computer 

interaction. .................................................................................................................................... 55 

  



x 
 

LIST OF ACRONYMS 
 

ASCC – more formally, “the Harvard Mark I ASCC,” the Harvard Mark I Automatic Sequence 

Controlled Calculator, the first American digital computer. 

COBOL – Common Business Oriented Language 

ENIAC – Electronic Numerical Integrator and Computer 

FORTRAN – Formula Translation 

UNIVAC – Universal Automatic Computer 

  



1 
 

 

CHAPTER ONE: INTRODUCTION 
 

This thesis focuses on the technical writing of Rear Admiral Grace Brewster Murray 

Hopper, primarily A Manual of Operation for the Harvard Mark I Automatic Sequence 

Controlled Calculator, some of the first ever user documentation for an American computer 

(Beyer 16). This thesis also discusses a suite of three articles on the operation of the Mark I, co-

written with her mentor, Howard Aiken, for Electrical Engineering.  Hopper’s later article “The 

Education of a Computer,” is also examined, noteworthy both as a minor classic in computer 

science and the first documentation ever written for software compilers (for example, Beyer 16, 

21, 30). There are four reasons for this focus: first, while Hopper has been the subject of 

considerable prior scholarship, and is a well-known figure in computer science circles—witness 

the popular Grace Hopper Celebration of Women in Computing conference—there is little study 

of her technical writing as a corpus (Williams 2). Second, to the best of my knowledge, there is 

no scholarship discussing Hopper’s relevance as a technical communicator. In addition, the 

manual for the Mark I ASCC was one of Hopper’s first large-scale professional documentation 

projects, written and edited early in her computing career: this manual is the first of her major 

technical documentation achievements (Williams 49). Finally, the manual itself is an important 

artifact in computing and user documentation history. 

  Grace Hopper and the Marvelous Machine: Lessons for Modern Technical 

Communicators from the Harvard Mark I ASCC Manual seeks to bring lessons learned from the 

dawn of computing to today’s technical communicators, with a famed and notable expert at the 

helm.   
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Purpose 

 The purpose of this thesis is to achieve three objectives: introduce technical 

communicators to Grace Hopper’s accomplishments, emphasize Hopper’s work with the Mark I 

ASCC and confirm its place in computing history, and provide modern technical communicators 

with practical insights and applications for their own writing based on Hopper’s manual for the 

Mark I ASCC and selected other writings. For example, her Electrical Engineering articles on 

the Mark I ASCC, co-authored with Aiken, provide additional user instructions and explanations 

for working the computer, while being geared more toward computer operators—users—than 

programmers. This shift in focus makes the articles distinct yet relevant objects of further study.  

This thesis seeks to answer the following research questions: 

 What makes the Mark I ASCC a worthy object of study? What is the least we 

need to know about the device to understand its manual, and vice versa? 

 What makes the manual for the Mark I ASCC a worthy object of study as a 

technical document? 

 What can Grace Hopper’s approach to this manual, considered alongside a 

selection of her other writings, teach modern technical communicators about 

technical documentation? 

 

Scope 

This thesis is limited to an investigation of Hopper’s manual for the Mark I ASCC and 

selected other writings: her Electrical Engineering articles for the Mark I ASCC, and her article 

“The Education of a Computer,” for UNIVAC architecture. This tight focus is due in part to the 

fact that the Mark I ASCC manual, at 561 pages, is both Hopper’s first major technical 
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documentation effort, and a complete, substantive example of her early work. The Electrical 

Engineering articles, meanwhile, enhance readers’ understanding of her skills, approach, and 

style, while still explicating operation of the Mark I ASCC. “The Education of a Computer,” 

detailing similar instructions for a more advanced machine, reflects upgrades not just to 

computer technology but also to Hopper’s approach to it. While this sample of her work is not 

exhaustive, it is intended as representative, a highlight reel of Hopper’s technical documentation. 

This thesis does not examine her work with COBOL, or her lectures for the Navy in detail, as 

neither of these applied to her work on the Mark I ASCC. Frankly, an examination of all of 

Hopper’s writing—both her mathematics work and numerous articles in the computing field—is 

a task more suited to a formal dissertation, and one that must await future research. 

 

Methodology and Organization  

I conducted the research for this thesis via a thorough investigation of interdisciplinary 

sources, including academic papers in fields ranging from military history to computer science 

(Campbell-Kelley et al.; Ceruzzi Prehistory; Cohen). Many of these sources were obtained 

through exploration of scholarly online databases, including IEEE Xplore, ACM Digital Library, 

and Academic Search Premiere. Sources such as Electrical Engineering in the ACM deep 

backfile proved of particular value in contextualizing Hopper’s writing (Aiken and Hopper 

ASCC I). Other resources, such as Ceruzzi, Beyer, and Cohen, put the Mark I ASCC in its proper 

place societally and technologically, integrating computer science knowledge and history with 

historical and biographical data about Grace Hopper. These sources were used to blend 

qualitative data, such as colorful anecdotes taken from interview records, with hard quantitative 
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data such as hardware specs, to illustrate the dynamic complexity of early computing and 

highlight insights for modern technical communicators in Hopper’s work.  

I also consulted print research, including published biographies, peer-reviewed scholarly 

articles, prior dissertations, and articles written directly by Hopper. Moreover, I included a few 

modern popular articles, such as “Grace Hopper and UNIVAC: Before There Was COBOL” in 

LinuxVoice, showcasing the popular picture of Grace Hopper (Kemp). It is this writer’s 

recommendation that our discipline integrate Hopper as one of its previously unsung heroes. This 

thesis exists, in part, as a beginning effort toward doing so. 

As a final methodological note, this thesis draws extensively from secondary sources for 

biographical data. There are a variety of reasons for this. Unfortunately, Hopper herself has been 

deceased for some time and thus certain direct research methods, such as e-mail correspondence 

or personal interviews, are impossible. In addition, little of Hopper’s personal correspondence 

survives, limiting study of her life in her own words (Grudin and Williams 17). Finally, her 

manual for the Mark I ASCC is a primary source, consulted directly. Because of my specific 

focus on her written work, several quality secondary sources are sufficient for establishing 

Hopper’s biographical data.  

The organization of this thesis is fairly straightforward. This first chapter outlines the 

stakes and advantages of the research, and provides an overall literature review. The second 

chapter showcases Hopper’s achievements, such as popularizing the concept of the computer 

‘bug’ and her influential work with COBOL (Beyer Information Age, 7; Williams 76, 77). 

Chapter 3 provides detailed explanation of the Mark I ASCC and its components, because they 

are an extinct technology; punch cards, for example, are no longer used in computing. Chapter 3 

also outlines Hopper’s manual in more detail to prepare the reader for Chapter 4, which presents 
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the strengths of Grace’s writing with an eye to lessons and insights for current and future 

technical communicators. “The Education of a Computer”, in particular, showcases the growth 

of her instructional writing and provides additional lessons learned. It is also the first piece of 

documentation ever written concerning software compilers (Mitchell 2). The final chapter 

synthesizes findings, attempts to address any faults in argument, and presents potential areas for 

future research. 

  

Significance  

This is not a biography, but instead an examination of Grace’s written work. Second, to 

the best of my knowledge, no research to date considers Hopper’s technical documentation 

foremost: this thesis thus addresses a critical gap in existing research into Grace Hopper’s life 

and career as a major contributor in computing history, and it does so in terms that matter to 

technical communicators. Finally, the history of technical communication—while a thriving area 

of the discipline—does not provide enough attention to role models or specific technical writers 

in general, and to known female technical writers in particular. This thesis seeks to redress both 

issues, and, in part, establish Rear Admiral Grace Murray Brewster Hopper as a writing role 

model for modern technical communicators. 

 

Literature Review 

In order to understand the relevance of Grace Hopper’s writing for current technical 

communicators, it is first necessary to examine and contextualize her work. This literature 

review encapsulates relevant research into some of Grace Hopper’s writing milestones, and 

addresses the research gap in technical communication around the acquisition and canonization 
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of good technical communication role models, highlighting the need for more female technical 

communication role models, in particular.  

From a historical perspective, women’s contributions to the field of technical 

communication are not widely recognized. This is due in part to the origin of the discipline: 

engineering English catered to the requirements of a male-dominated field (Johnson-Eilola and 

Selber 37; Malone Fifteen Years). Another reason women’s achievements in technical writing 

may have gone unremarked is cultural: there is a general unspoken assumption that work must 

occur in the workplace, the traditional purview of men (Johnson-Eilola and Selber 36). 

Moreover, when the Great Depression placed a stranglehold on national employment, women 

working in mathematics and other scientific fields were encouraged to vacate their positions, 

freeing more opportunities for men (Williams 15). This trend increased through the following 

decade. As technology proliferated in complexity and scope after World War II, many working 

women—particularly those in scientific, industrial, or technical fields—reverted to domesticity 

to make room in the workplace for returning GIs (Williams 16). Grace Hopper was a notable 

exception, remaining a Vassar mathematics instructor during the Great Depression, and serving 

as a Naval officer during World War II (Beyer Information Age 25, 27, 35; Williams 18). Over 

the years, she returned to Naval service three separate times before retiring in 1986 at the rank of 

Rear Admiral by special appointment (Williams xi). In the intervening years, Hopper served as a 

programmer and consultant at several prominent computing corporations, and as a noted public 

speaker for the Navy (Beyer Information Age 247; Williams 91, 97).  

Current historical and biographical scholarship remembers Hopper primarily as a teacher, 

a programmer, and a Naval officer, overlooking her important contributions to technical 

communication (Mitchell; Williams; Beyer Information Age). This thesis thus focuses on 
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Grace’s most materially significant piece of user documentation, framing Hopper the legend in 

terms of Hopper the technical writer. The scope of this thesis is limited to an investigation of 

Hopper’s work on the Mark I ASCC, particularly the manual for the device itself, and 

investigation of selected additional writings by Hopper to further clarify and explain her writing 

style and no-nonsense approach to technical information. 

Women in Technical Communication 

While the role of women in technical communication history remains under-examined, 

and there are only a few studies dedicated to the “lone heroes” of technical communication in 

general, in recent years there has been extensive historical research (Todd 67; Malone Fifteen 

Years). Tebeaux, in particular, has conducted studies concentrating on the history of particular 

document types throughout the Renaissance: she examines shipwrights’ manuals, domestic 

handbooks, and gardening practices almanacs or manuals, explaining that these “domestic how-

to books” are some of the earliest technical writing by and for women (Tebeaux and Moran 211; 

Tebeaux and Lay 196). Shirk has also examined the contribution of female technical writers to 

18th century botany (1997). Durack’s history of early sewing machine manuals also delivers an 

investigation of the rhetoric, persuasive appeals, and sexist language and imagery used to market 

the device (Sewing Machine 1998).  

The domestic focus of many of these fields and technologies is partially an artifact of 

traditional gender roles: according to Durack, “history in general, and the history of technology 

in particular, have tended to omit the activities of women in part by locating significance” 

primarily in public and political arenas, traditionally the purview of men (in Johnson-Eilola and 

Selber, 36). Because of this rhetorical climate, “their work was going virtually unnoticed because 

of the lack of written accreditation based solely on gender,” and studies on female technical 
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writers who are also “lone heroes” of technical communication are almost nonexistent (Rauch 

400; Malone Fifteen Years).  

In fact, other than this thesis, the only such study of which I am aware is Rauch’s The 

Accreditation of Hildegard von Bingen as Medieval Technical Writer, examining the medical 

texts and health communication of Hildegard von Bingen—traditionally conceptualized as a 

poet, visionary abbess, and “musicologist,” she also wrote extensively on everyday pathology 

and kept patient records strikingly similar to modern physician’s reports (397, 403). While 

intriguing, this is just one study; while significant work has been done establishing the historical 

relevance and impact of women technical communicators, much more remains to be done. 

Manuals are a frequent and favorite topic in historical technical communication research 

(Tebeaux and Moran 62, 65). Technical manuals in English typically trace their lineage from 

Chaucer’s Treatise on Astrolabe, and the lucid, direct “plain language” technical writers seek to 

cultivate is often attributed to English seamstresses’ manuals (Rauch 400; Tebeaux and Moran). 

Ramey’s The Coffee Planter of Saint Domingo: a Technical Manual for the Caribbean Slave 

Owner (2012) brings critical theory to the study of technical manuals, illustrating that a technical 

document may be factually complete, precise, detailed, and well-written, yet still serve odious 

rhetorical or social purposes—in this case, legitimizing the French colonial slave trade of the 18th 

century (144). No technical document is completely neutral; while hardly in the same vein, 

Hopper’s manual also functioned as PR for the Mark I ASCC and the Harvard Computation Lab 

(Beyer Information Age 137).  

In terms of somewhat more modern American technical communication, much has been 

made of Benjamin Franklin’s technical works, including his extensive diagrams for the Franklin 

stove, and the 1912 transliteration of De Re Metallica by Herbert Hoover (Todd 70, 71; Voss 
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241). Focusing on Grace Hopper’s manual for the Mark I ASCC further establishes an American 

tradition of technical communication and serves at least two additional purposes: Todd suggests 

that “name recognition” bolsters the historical context of technical manuals, and “provides 

students with historical examples of the writing they will do after graduation” (70). Given that 

specific technical writing achievements of particular women remain underrepresented, and that 

role models are an important, if also rarely examined, factor in historical technical 

communication research, Grace Hopper’s Manual of Operation for the Harvard Mark I 

Automatic Sequence Controlled Calculator is a worthy object of study, just as Hopper herself is 

a worthy subject. 

 

Technical Communication: What’s In a Manual? 

According to Rubens, Hopper’s documentation for the Mark I ASCC is best categorized 

as a user reference manual, “a compromise between a user guide and a reference manual” (7). 

The chief distinction here is purpose-based: user guides focus on helping people complete 

specific tasks, while reference manuals describe the entire context of a product, process, or 

service (Rubens 5, 7). User reference manuals are designed to impart both short- and long-term 

knowledge, and “describe […] everything users can do with a system,” often because time or 

budget constraints prevent the completion of separate, shorter manuals tailored to individual 

audiences (Rubens 7, 16). The Mark I ASCC was built during wartime for use by scientists and 

mathematicians, and considered a national defense asset: Hopper’s intended audience was, 

necessarily, a specialized one (Rubens 7, 16; Beyer 124). At the time, computers were a 

technological breakthrough that required a great deal of conceptual information and background 

(Rubens 5, 13, 17). While the general knowledge level of Grace’s audience could be safely 
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estimated as quite high, these “subject experts” also required clear explanation of novel 

processes and procedures, such as coding a sequence tape, or knowing how frequently computer 

operations should be checked: Hopper recommended intervals of no more than twenty minutes’ 

continuous operation (Rubens 7; Hopper et al. Mark I Manual 111). 

This driving audience need for additional context meant Grace included quite a bit of 

reference information before any operational section of the manual (for example, Hopper et al. 

Hopper et al. Mark I Manual 80-95). Because of this need for context, the entire first chapter of 

the manual is devoted not to machine operations or discussion of components, but to an 

absorbing history of the mathematical devices that led to development of the Mark I ASCC, from 

the abacus to Babbage’s difference engine (Hopper et al. Hopper et al. Mark I Manual 1, 4). 

Such reference material is of interest to the intended core audience, even where it does not help 

them solve a specific problem, while operators interested in resetting the plugboard, replacing a 

relay, or debugging their code could safely proceed directly to procedural data in later chapters 

(Rubens 16).  

The hybrid purposes of a user reference guide are reflected throughout the document. 

Grace’s first explanation of any problem is quite in-depth, often approaching narrative style, and 

is probably intended to be referred to only once—standard characteristics of reference 

information (Rubens 5, 6, 16). Further problem examples, designed to be referenced repeatedly, 

are brief and operational in nature (Rubens 6, Hopper et al. Hopper et al. Mark I Manual 197, 

201). Larger procedural sections intended for reuse, such as Chapter IV, Coding, contain 

reference features that aid users seeking a specific solution (Hopper et al. Hopper et al. Mark I 

Manual 98; Rubens 13). For instance, a mathematician who wanted the Mark I ASCC to 
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generate logarithm tables would refer to page 98, based on the main table of contents, and then to 

page 162 from the inset table provided (Hopper et al. Mark I Manual 98). 

 More than just a clearly designated user reference guide, Hopper’s manual also embodies 

particular criteria of excellent technical writing (Markel 2012). Based upon Markel, there are 

eight dimensions of excellent technical writing: honesty, clarity, accuracy, comprehensiveness, 

accessibility, conciseness, professional appearance, and correctness (14). Honesty is being both 

truthful and ethical with the audience: “deliberately omitting important information can defraud, 

injure, or kill” users (13). For Markel, clarity is avoiding redundancy, while accuracy is an 

absence of agenda or “spin” in the document (14). Comprehensiveness “provides all the 

information readers need” in terms of examples, data, and concept coverage: enough for a 

novice, without weighing experts down (14). Accessibility is Markel’s term for ease of use and 

clear document organization; “readers should not be forced to flip through [unnecessary] pages” 

(14). Conciseness is use of plain language, while professional appearance and correctness refer 

to visual and stylistic integrity: “if the document looks neat and professional, readers will form a 

positive impression of it,” its author, and its content (13, 14).  

Grace Hopper’s manual distills at least four of Markel’s principles—clarity, accuracy, 

comprehensiveness, and correctness—and so qualifies as an example of excellent technical 

writing. Certain shortcomings of this manual, meanwhile, are valuable to technical 

communicators seeking to hone their skills. For example, accessibility in the manual could have 

been improved with the use of topic subheadings (Rubens 32; Markel 50). These and other 

insights into the manual itself will be covered in more detail in Chapters 3 and 4. 
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Grace Hopper: Computing Pioneer, Technical Communication Powerhouse 

When she entered the computing field in 1944, Hopper was already an accomplished 

mathematician and Vassar instructor (Williams 13, 18). Today, Hopper is arguably most famous 

for her role in a maintenance incident with the Mark II in 1947: when the computer crashed late 

one night, the Mark II team discovered that a large moth had jammed itself in the relays (Beyer 

Information Age 65). Hopper’s team removed the offending insect and taped it to a card with the 

inscription “first actual case of bug being found”; Grace is thus usually credited with 

“debugging” the machine (Beyer Information Age 65, Williams 38). “Bugs” were, at the time, 

engineering slang for any mysterious mechanical errors, but Hopper popularized “bugs” and 

“debugging” for computer code specifically (Kemp 83). She is also the inventor of the A-O 

compiler (Kemp 83). However, Hopper’s specific programming and documentation work are 

less well-known outside of computer science circles (Grudin and Williams 17, 18). I seek to 

address this knowledge gap by focusing on an extensive example of Hopper’s technical 

documentation: the manual for the Mark I ASCC.  

The inventor of the first working software compiler, Hopper was also a key developer of 

COBOL, and the original programmer of related ancestor languages such as FLOW-MATIC, 

originally written to compete with FORTRAN (Kemp 84; Williams 87; Beyer Information Age 

277, 289). While “recognized in her lifetime with ‘most of the honors that can be given anyone 

in the computer industry,’” Hopper herself remains somewhat inscrutable, perhaps due in part to 

a lack of surviving personal correspondence or papers, and a persistent gender disparity in 

computer science (Hopper, “Future Directions”; Grudin and Williams 17). If researchers are to 

form a more complete picture of Hopper as technical communicator, her writing must be studied 

directly, which is the chief aim of this thesis. 
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Technological Dead-End, Conceptual Marvel: The Mark I ASCC 

Because punched card computers are obsolete, it is necessary to explain the Mark I 

ASCC to readers before talking about Hopper’s manual for it in depth. Radically different from 

what modern audiences would recognize as a computer, the Mark I ASCC resembles a huge 

abacus that displays numerical values by physical movement of individual counters from 0 

through 9, much like an odometer (Beyer Information Age 47; Ceruzzi Prehistory 149, 150).  

The principles behind the Mark I ASCC were originally developed by Howard Aiken in 

1937 (Beyer Information Age 36). While working on his doctoral thesis in physics, Aiken 

realized certain calculations were simply beyond him: the sheer volume of arithmetic needed to 

solve differential equations and series particular to his work required more math than a human 

being could complete in years, decades, or even a lifetime (Beyer Information Age 37). Aiken 

needed mechanical assistance to offload the sheer volume of data involved, and knew that it 

would take something more accurate, and a great deal more powerful, than a desktop adding 

machine (Beyer Information Age 37; Cohen 34, 36).  

The most impressive American computer of its time, and the first American digital 

computer, the Mark I ASCC filled a room end-to-end and completed three calculations per 

second (Beyer Information Age 48). It contained 530 miles of cable and 3,500 relays, and 

completed millions of calculations in its long career, from its first use in 1944 up through the late 

1950’s (Beyer Information Age 48, 49; Ceruzzi Prehistory 160). Interestingly enough, the Mark I 

ASCC was already a technological dead-end by the conclusion of World War II: in terms of 

physical construction, the Mark I ASCC had been supplanted by radically different designs in 

superior materials on a much smaller scale (Beyer Information Age 120). ENIAC and the British 
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UNIVAC used vacuum-tube technology for memory storage, instead of Aiken’s 

electromechanical relays (Beyer Information Age 158, 159). Thus, the Mark I ASCC was 

considered something of a brute-force dinosaur within just a few years of its construction (Beyer 

Information Age 159, 160). However, in terms of programming, modern computers owe a lot to 

the Mark I ASCC: it was the first computer capable of processing commands in sequence 

without additional plug-and-play from an operator (Beyer Information Age 119, 120; Ceruzzi 

Prehistory 157). 

In terms of architecture, the Mark I ASCC introduced the important concept of “end-

around carry,” a process by which calculations were completed by adding and subtracting on the 

complements of given values (Hopper et al. Mark I Manual 4). This principle is still used in 

binary sums, the backbone of all modern machine languages (Ceruzzi Prehistory). Thus, while 

obsolete almost immediately after it was built, and antiquated in both design and mechanics, the 

Mark I ASCC still has much to teach modern computer users and the technical communicators 

who write for them, especially those not proficient in computer science. A more detailed 

explanation of the specs, capabilities, inner workings, and hardware of the Mark I ASCC is 

provided in Chapter 3 of this thesis, in order that certain instructions referred to in Chapter 4 will 

make sense. 

 

The Mark I ASCC Manual: Historical Lessons for Modern Technical Communicators 

Of primary concern are potential lessons, insights, and tips that modern technical 

communicators might glean from this manual. Hopper’s presentation of the material, her writing 

style, and her overall mindset as a technical communicator will also be examined.  
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One thing Hopper does exceptionally well is to provide adequate context: faced with the 

daunting task of describing a completely new technology to a specialized audience, she first 

traces the historical roots of Mark I by explaining its relationship to features familiar to 

mathematicians of the day, including Pascal’s adding machines, Napier’s bones, Babbage’s non-

working models for difference and analytical engines, and the Mark I’s resemblance – at least 

structurally – to an enormous abacus (Hopper et al. Mark I Manual 3, 4).  

While current technical documentation wisdom teaches that overstuffed history sections 

confuse new users and are likely to be avoided by readers, Hopper was writing about a machine 

that had never before existed in America (Beyer Information Age 129). The chief take-away for 

technical communicators here is not to include a large history in every manual or help file, but 

rather to be sure that the audience is provided adequate context for the device, using terms, 

examples, and concepts with which they are already familiar. 

Another strength of Hopper’s writing is in how she looks ahead to serve users’ future 

needs. For example, when discussing how to program the Mark I for multiplication, she refers 

users to Chapter IV on “interposed operations” as a means of reducing processing time, pointing 

out helpful data without junking up the instructions at hand (Hopper et al. Mark I Manual 23). 

Further possibilities for interposing are later discussed in Chapter V, Plugging Instructions 

(Hopper et al. Mark I Manual 245). This is reflected in the modern technical communication 

dictum to try and anticipate the user’s needs when writing a manual or help file. 

A third strength of Hopper’s manual is implied by style, and may be invisible to current 

technical communicators: she uses genderless language, referring throughout to “the operator” or 

“personnel” (Hopper et al. Mark I Manual 245, 289). Hopper renders most instructions in 

passive voice—“quantities standing in the switches must be printed or punched for checking, 
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either under control of a sequence tape or under manual control of the keyboard”—to remove the 

notion of gender entirely (Hopper et al. Mark I Manual 289; Einsohn 413). While genderless 

language—a form of bias-free writing that results in such constructs as “the operator” and the 

dreaded “he or she”—has come under fire in recent years, there was only one alternative for it in 

the 1940’s: “he,” “mankind,” “man’s achievements” (Einsohn 413, 414). Hopper’s consistent use 

of bias-free language produced a more neutral document. While she by no means welcomed 

“women’s lib” with open arms, nor did she consider herself a feminist, Hopper at least wrote in 

terms that did not deliberately exclude women (Beyer Information Age 212; Williams 75). That 

technical communicators are now able to speak of including women, rather than merely not 

excluding them, is a mark of how far we have come—and of how far ahead of the curve Hopper 

herself may have been in terms of dealing with a technologically-forward audience. 

Furthermore, Hopper’s Electrical Engineering articles diversified instructional material 

for the Mark I ASCC: co-authored with her mentor Aiken, these articles briefly explained key 

concepts from the manual, with specific instructions for computer operators, separate from the 

mathematicians writing code for it (Aiken and Hopper ASCC 1 388). Written for electrical 

engineers—read: users instead of programmers—these articles appeared after the manual was 

published, and exposed the Mark I ASCC to a wider audience (Aiken and Hopper ASCC 2 453). 

Hopper returned to generalized explanations of specialized devices in her later article “The 

Education of a Computer”, explaining UNIVAC architecture. Regarded as a minor classic in its 

own right, “The Education of a Computer” will be analyzed with the Electrical Engineering 

articles to yield a fuller picture of Hopper’s overall writing style and approach in tackling 

complex technical concepts. 



17 
 

In order to provide a strong context for the importance of Hopper’s work as a technical 

writer, a pedigree of her achievements is presented in the next chapter. This section will illustrate 

ways in which Grace’s background and expertise as a mathematician, a teacher, and a Naval 

officer helped prepare and inform her approaches to complex technical topics and a to her 

instructions for a bold new American invention: the digital computer.  
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CHAPTER TWO: AMAZING GRACE 
  

“Grace was a good man!” 

-  Howard Aiken, Inventor, Harvard Mark I ASCC 

The 1940s Navy only admitted women to deal with a drastic personnel shortage, and civilian 

prospects for women after the war were hardly rosy: the IBM corporate culture of the 1950’s was 

“an elite male fraternity” (Williams 12; Beyer Information Age 5). In this competitive 

environment, Hopper distinguished herself as a dedicated, chain-smoking, take-no-prisoners 

programmer and tireless promoter of improved software coding standards (Beyer Information 

Age 52, Mitchell 11). Many people know of “Amazing Grace” via a familiar bit of computer 

science folklore: popular legend has it that she invented the phrase “to debug” a computer, one 

muggy night in 1947 when her team discovered that a moth had flown into the relays of the IBM 

Mark II, causing a literal computer crash (Beyer Information Age 1, 64). In point of fact, though 

Hopper was responsible for removing and documenting the moth, the idea of “debugging” a 

computer was already in use via engineering parlance of the day (Beyer Information Age 64, 65; 

Williams 77). Hopper’s achievements in the field extend far beyond a catchphrase. This chapter 

demonstrates a select few of Hopper’s achievements in order to establish her as a noteworthy 

figure in her field, and to further lay the groundwork for discussion of her technical writing 

achievements in context. This chapter also demonstrates how Grace Hopper developed the 

specialized knowledge that enabled her master invention—the software compiler—which in turn 

is the target subject of her some of her most widely read later work (Beyer 322). In short, this 

chapter answers the inquiry: what makes Grace Hopper a worthy subject of technical writing 

study? 
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Later one of the first programmers in America and a computing legend in her own right, 

Hopper first distinguished herself as a Vassar mathematics professor (Williams 13). She was the 

only woman awarded a doctorate in mathematics during the latter half of the 1930’s, and one of a 

handful of female mathematics professors at a time when women were vacating the workforce to 

increase job opportunities for men during and after the Great Depression (Williams 14, 15). 

While not herself a feminist, Hopper encouraged other women to continue their studies and 

adopted a variety of nontraditional techniques to keep students eager and engaged with the 

material (Williams 15, Mitchell 19). Hopper revolutionized the mechanical drawing curriculum, 

a piece of coursework she described as “deadly,” by borrowing concepts and principles from 

animation—Disney had only recently debuted Snow White and the Seven Dwarfs, and the topic 

was a hot one (Williams 16, 18, Beyer Information Age 27). Hopper packed classrooms that 

before had been nearly empty and reached students from a variety of disciplines. In engineering 

math courses, she made ballistics problems intriguing by turning the usual bullet examples into 

problems involving rockets—devices she would later solve firing tables for on America’s first 

digital computer (Williams 50, Beyer Information Age 29). During her time at Vassar, Hopper 

honed her enthusiasm for teaching, and correcting students’ proofs improved her own 

instructions, which would later prove valuable during her time working with the Mark I ASCC 

(Beyer Information Age 32).  

Despite her civilian success as a mathematician and instructor, Hopper’s Naval career had a 

rocky start: due to a scheduling error, her commanding officer Howard Aiken had expected her 

the week prior, and when she reported for duty, he demanded to know “where the hell she had 

been” (Williams 24, Mitchell 27). Aiken handed Hopper a stack of punch cards and a slim book 

of program codes and informed her that she could find a place to live tomorrow; right now, he 
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“would be delighted to have the interpolation coefficients for the arc tangent series,” and he 

expected it by the end of next week (Williams 26). Hopper, rattled but undaunted, learned to 

code for “the beast” of a machine in record time, and came to thrive under Aiken’s take-no-

prisoners tutelage (Williams 26).  

Hopper worked most closely with fellow coder Robert Bloch, who was more of a theorist 

than an engineer— she said “it drove us all crazy that he could” write a program correctly the 

first time, longhand, where Hopper herself frequently built from subroutines she had already 

written and proven (Williams Information Age 48). Together, they surmised correctly that one 

particular problem set had to do with “atomic fission” in 1943: known to them only as Problem 

K, it was later declassified as part of an implosion envelope study for planned atomic yield at 

Hiroshima (Williams 46). Hopper’s direct, solo programming efforts for the Mark I ASCC 

included proximity values for deployment of underwater mines, as well as firing tables for self-

guided rockets, which were then a brand new invention (Williams 48, 49). She would not begin 

writing the Mark I ASCC user manual until well into her first year on the project, though of 

course she and the other coders kept notebooks of useful subroutines and commands in order to 

save all-important computing time (Beyer Information Age 45, 52). 

Hopper is arguably most famous as the inventor of the software compiler (Kemp 83). In 

many ways, Hopper’s work on the Mark I ASCC provided the necessity that was the mother of 

her invention: she had particular difficulty writing software loops, or steps that told the computer 

to perform certain actions more than once (Williams 52). Suppose a sum needed to be added a 

dozen times. Often, Hopper could not recall if she had begun a program on step one or step zero, 

so the computer might repeat the sum eleven or thirteen times (Williams 52, 53). She was not 

alone in this particular bugbear: her coding partners, Bloch and Campbell, also fell victim to the 
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tedium of writing lengthy, repetitive series of commands by hand (Beyer Information Age 98). 

Because data and parameters had to be fed manually to the tape punch, the potential for human 

error loomed in all calculations and worsened further down the program: the computer would 

automatically repeat its erroneous instructions until cued to stop (98). While codebooks did keep 

the team from constantly reinventing the wheel, Hopper was certain the computer could be made 

to automate more of its coding work, though the exact method would elude her until her later 

work for Remington Rand (Beyer Information Age 221). She was chasing the vision of 

“intuitive, user-friendly, hardware-independent” instructions that could generate efficient 

working programs of their own, something still not fully realized today (Beyer Information Age 

229). In 1952, this vision yielded Hopper’s A-0 compiler (Kemp 83). A compiler is a program 

that collects subroutines from a preset library and builds them into a program; software 

compilers “turn your source code into a program” (Liberty 11, 15). Without compilers, 

computers as we know them would not exist, and programming would be much more 

complicated (Liberty 11, 14, 16). While detailed coverage of compilers is beyond the scope of 

this thesis, there can be no doubt that Grace Hopper revolutionized modern computing via their 

creation.  

Hopper is also credited as a pioneer of COBOL (Common Business Oriented Language), a 

programming language still “spoken” by 95 percent of major banking mainframes in the United 

States (Beyer Information Age 302, 303). COBOL was one of the first computer languages to use 

recognizable English words to represent particular commands, including “ON,” “COMPARE,” 

and “DIVIDE A INTO B,” as well as the Boolean logic familiar to most of us today in 

conducting keyword searches, such as “OR,” “AND,” and “IF/THEN” (Beyer Information Age 

303, 304; Sammet 126, 127).  
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Hopper’s primary role in the success of COBOL was not inventing it, for that was a group 

effort decried by early critics as “design by committee,” nor in its development—again, a team 

effort, one spearheaded by Hopper’s protégé Betty Holberton and Jean Sammet, among others—

but Hopper’s driven and tireless promotion of COBOL to any interested party (Beyer 

Information Age 305, 306; Mitchell 48, 50). Hopper was the foremost marketer of COBOL, 

pursuing Naval and commercial audiences alike. As a result, COBOL is computing’s oldest 

surviving language, except perhaps FORTRAN, and still one of the most recognizable (Beyer 

Information Age 280; Kemp 82). While not directly related to instruction and not technical in 

focus, Hopper’s work with COBOL is no less important: the success of any invention “does not 

end with production of a prototype” (Beyer Information Age 306). Technical communicators are 

rarely granted the opportunity to appreciate the full fruits of their work in such a practical, 

concrete way, but Hopper achieved just that (Beyer Information Age 292). Ironically, Jean 

Sammet, one of the primary writers of COBOL, later admitted that “had [we] realized at the 

outset that the language we created was going to be in use for such a long period of time, we 

would have gone about it quite differently”; the initial release of COBOL was not “intended for 

longevity” (Sammet 125). 

With such an array of accomplishments available for study, why focus solely on Hopper’s 

technical writing? Several factors make Hopper’s technical writing a vital part of her legacy that 

should be more widely studied. First, to the best of this researcher’s knowledge, such a study has 

never before been attempted. While much has been made of Hopper’s contributions to 

computing (witness the Grace Hopper Celebration of Women in Computing conference) and her 

educational and public speaking prowess, no prior scholarship covers the nature or influence of 

Hopper’s writings directly (Alvarado and Judson 70; Mitchell 11; Beyer Information Age). One 
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reason for this is that despite a thorough collection of articles, memos, and even a “humor file” 

kept by Hopper herself, records of her personal correspondence are almost nonexistent, making a 

more typical narrative history somewhat difficult (Beyer 85, Mitchell 9). Scholarly emphasis on 

Hopper’s technical writing precludes this issue, making it possible to evaluate her work on its 

own merit.  

Moreover, consider that a discipline thrives on its heroes, and the heroes of technical 

communication remain largely unsung (Malone Fifteen Years). In terms of the study of technical 

communication history, much attention has been paid to the documents of particular eras, such as 

the Renaissance, and to different types of technical documents, including manuals covering a 

variety of topics, from strip mining to sewing machines (Moran and Tebeaux 76, 77). However, 

this extensive coverage often does not include any sense of authorship. Only rarely do technical 

communication histories address the idea of notable figures in our discipline. In particular, there 

is little focus on the idea of “the great writer” or lone heroes of technical communication 

(Malone Fifteen Years 334; Moran and Tebeaux 76). Where physicists have Feynman, Einstein, 

and Hawking, and scholars of literature can chart a legacy back well before Chaucer, technical 

communicators still have room to discover the champions of their discipline. 

Good exploratory work has been done. Histories establishing the origins of technical 

communication have investigated such figures as Mark Twain, Edgar Alan Poe, and Herbert 

Hoover as technical communicators (Malone Fifteen Years 334). A rhetorical link between their 

status as “great writer[s]” is both implicitly and explicitly established in a variety of ways—

aimed always at associating them with technical communication, conferring that same greatness 

upon the discipline (Malone Fifteen Years 334). It is just that there remains more work to do. 
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Therefore, when seeking out technical documentation heroes, it helps to include one who 

literally wrote the book on programming at the beginning of the computer era. 

Grace Brewster Murray Hopper, (Rear Adm USN) is not just a computer science maven, but 

also one of the great unsung technical writing heroes. Without prior experience, she drafted the 

entire manual for a machine that had never before existed, and she did so at a rate of nearly five 

pages per day (Beyer 123; Mitchell 33). Hopper also oversaw all circuit diagrams for plugging 

and coding of the machine, and drew many of them herself, though she was not in charge of 

graphics or figures for the manual (Williams 50, Hopper et al. Mark I ASCC). She also wrote 

most of the code in the coding section (Beyer 60, 61). In short, it could be argued that Grace 

Hopper is responsible for some of the first ever software documentation in American history. 

Besides her landmark manual for the Mark I ASCC, Hopper is also celebrated in computer 

science circles for her work with UNIVAC, particularly the seminal paper “The Education of a 

Computer,” which describes how to “teach” a compiler its work (Mitchell 28). It is time that this 

document was more widely read, or at least more widely understood, as a technical writing 

milestone: it is among the first series of operator instructions that resemble the software manuals 

we are familiar with today (Hopper “Education”). This thesis draws on material and insights 

from “The Education of a Computer” where applicable, because such comparison helps clarify 

Hopper’s mindset and approach as laid out in the manual for the Mark I ASCC, and also to 

contextualize the lessons future technical communicators may learn from the work of “Amazing 

Grace.” 
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CHAPTER THREE: THE MARVELOUS MACHINE 
 

Because the Mark I ASCC is a notable relic almost unrecognizable as a computer to 

current audiences, it is necessary to explain the ASCC itself in more detail before discussing 

Hopper’s manual for it. Technically obsolete as soon as it was built, the first American digital 

computer stood a class apart from the other massive postwar mainframes: the Mark I ASCC used 

the same logic as a modern computer—it could “think” like modern computers, complete certain 

commands on its own, and used programming concepts we are familiar with today, albeit in 

more primitive form (Beyer Information Age 119, 120). This chapter explains how the Mark I 

ASCC was developed: what it was made of, how its main parts functioned, and what types of 

problems it was designed to solve. Because the Mark I ASCC is extinct hardware, these 

explanations represent the least readers need to know to understand Grace Hopper’s instructions 

for the machine, and thus how her writing may benefit current and future technical 

communicators. 

The Mark I ASCC was the first American programmable computer: assuming all data 

were inputted correctly, it followed an entire tape of instructions until cued to stop (Williams 30, 

Beyer Information Age 121). IBM unveiled the Mark I ASCC to the world on August 7, 1944—

by which time it had secretly been crunching numbers for the Navy for almost a year (Ceruzzi 

134). Though Aiken had courted Harvard as a possible developer for his “Proposed Automatic 

Calculating Machine” as early as 1938, it ultimately took both his Naval connections and the 

advent of World War II to make his thesis-fueled dreams a reality—an adding machine that 

could think for itself, an IBM-funded, five-ton monster the press dubbed “Harvard’s Mechanical 

Brain” (Mitchell 26).  
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While most Mark I ASCC hardware was composed of existing IBM products, such as 

card punches and electric typewriters, Aiken was the first person to propose, design, and build a 

computer using this hardware (Beyer Information Age 36, 121). As the Mark I’s inventor, he is 

sometimes also credited as the sole author of its documentation, which is incorrect (Ceruzzi 146, 

Beyer 121). He was, however, instrumental in getting the manual written: while Hopper had 

published extensively at Vassar and conducted intensive workshops as a professor, she was taken 

aback by such a tall order, protesting that she “had never written a book!” to which Aiken 

laconically replied, “You’re in the Navy now!” (Mitchell 33; Beyer Information Age 123). 

Programming the Mark I ASCC was the end goal of Hopper’s intended audience and one 

her manual served throughout. It also functioned as a form of public relations, “to educate a 

wider audience about computers [and] highlight the heroic achievement of Aiken and his crew 

deep in a basement at Harvard during the war” (Beyer Information Age 138). In part to further 

that impression, Hopper and Aiken also co-wrote three articles for Electrical Engineering 

summarizing the manual’s key points while emphasizing the Mark I’s features and technical 

capabilities (Hopper and Aiken ASCC I). These articles, along with a flurry of press pieces such 

as “Highbrow Harvard Bows to a Robot Brain,” spurred civilian commercial interest in the Mark 

I ASCC (Beyer Information Age 91, 92; Williams 228). Companies such as General Electric and 

Eastman Kodak formally inquired about computing some of their own engineering problems, 

and Hopper’s father—a renowned New York insurance magnate—wrote to her excited about the 

computer’s potential for “keeping records, calculating premium tables, and generating premium 

and billing statements” (Beyer Information Age 91, 92). However, Aiken believed the chief 

purpose of his computer should be “to promote science” in an academic sense, and in any case, 

his crew was much too busy solving urgent ballistics and submarine navigational problems for 
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the Navy. Thus, interested civilians corporate and citizen alike received form letters concluding 

that “perhaps, at some future date, after the war, we may be of service to you” (Beyer 

Information Age 91, 140). 

Laboring in the Shadow of ENIAC 

The lofty intellectual views of its creator, combined with the wartime need for utter 

military secrecy, may partially explain why the Mark I ASCC is usually an historical footnote 

beside the more famous ENIAC (Electrical Numerical Integrator and Calculator). Personal and 

organizational difficulties may also have factored in: Aiken was famously abrasive and feuded 

bitterly with IBM executive Thomas Watson throughout the Mark I project and the careers of 

both successor machines, the Mark II and Mark III (Beyer Information Age 109, Williams 35). 

However, the most likely reason for ENIAC’s fame is its superior processing speed: ENIAC ran 

instructions a thousand times faster than the Mark I ASCC (Beyer Information Age 8; Ceruzzi 

157, 266).  

Despite this glaring disparity in speed, the Mark I ASCC did what ENIAC failed to do: it 

ran almost nonstop (Beyer Information Age 144; Williams 35, 37). Mark I ASCC hardware was 

based upon the proven technology of telephone wiring; its relays were more reliable than 

ENIAC’s vacuum tubes and also easier to service parts for in wartime. During materiel 

shortages, technicians were able to fit the Mark I ASCC relays with piano wire instead of costly 

brass needed for munitions (Williams 36, 50; Beyer Information Age 68). By contrast, ENIAC’s 

vacuum tubes had a half-life of only a few hundred watt-hours per bulb and generated so much 

heat that they required cumbersome water cooling (Beyer Information Age 69; Williams 57).  

ENIAC’s exceptional speed also came with a labor cost: because it processed information 

at near-light-speed, it could not be programmed via tape. ENIAC had to be rewired each time a 
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different problem or solution was required (Beyer Information Age 51). It also had considerably 

less memory capacity than the Mark I ASCC (Williams 57). “Essentially,” Hopper recalled, 

“[with ENIAC] you built a special computer for each job, and we were used to the concept of 

programming and controlling it by our program” (Beyer Information Age 52). Thus, while 

ENIAC captured a place in the textbooks, the Mark I ASCC was the first American computer to 

both think and run like a modern computer. Though both machines were crucial to the war effort, 

the Mark I ASCC outlasted its faster, more famous cousin by four years before being 

decommissioned in 1959 (Ceruzzi 148). 

Mark I ASCC Specs and Capabilities 

The Mark I ASCC was eight feet tall, fifty-one feet long, and weighed over 8,000 pounds 

(Williams 29; Ceruzzi 148; Beyer Information Age 37). A conveyer-fed punched card machine, 

it understood only numbers and mathematical signs (Mitchell 26). Operated with 1,400 switches, 

more than 3,500 relays, and hundreds of miles of cable, it had over half a million moving parts 

that delivered output to either two card punches or one of two electric typewriters (Beyer 

Information Age 47, 60; Ceruzzi 148). Estimates for the final cost of creating, shipping, and 

assembling the computer range from $350,000 to $750,000 in 1940s currency (Beyer 

Information Age 136; Ceruzzi 148). 

Programming: Problem-Solving on the Mark I ASCC 

In physical terms, the Mark I ASCC was like an enormous player piano for solving 

equations, wired to a huge switchboard that stored its intermediate values and complex 

operations (Beyer Information Age 47; Williams 30). The computer was originally designed to 

solve differential equations—a problem type that helps explain how it worked in general, and in 

particular how it worked on other complex equations, such as the extensive tables of Bessel 
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functions for which the Mark I ASCC earned the nickname “Ol’ Bessie” (Beyer Information Age 

113). These function tables took almost two years to complete, and were used in everything from 

radio signal analysis to calculating the heat resistance of various materials for weapons research 

and development (Williams 46). Differential equations, conceptually similar to Bessel functions, 

were Aiken’s original source of inspiration for the Mark I ASCC, and are also a good example of 

how the Mark I ASCC computed solutions: by breaking large values and involved equations into 

small, repeated basic arithmetic that could be automated by the machine and checked by 

personnel.  

As Ceruzzi explains, solving a differential equation first requires graphing the equation’s 

curve and then calculating the area underneath it (Prehistory 136). For example, “the area under 

the curve given by y = sin (X) is found by evaluating the equation y = -cos (X1), where X1  and 

X2” stand for the endpoints of the interval (136, 137). Aiken’s versions of these equations were 

so complex they could only be solved by “breaking up the area under the curve into many small 

rectangular ‘slivers,’” finding the individual area of each sliver, and then summing them all up. It 

was a tedious, labor-intensive project prone to a high degree of human error. Solved this way, the 

equations would have taken Aiken months or years to complete, even with the aid of a desk 

calculator (Ceruzzi 136, 137). By contrast, the Mark I ASCC required no more than 90 seconds 

to find each rectangular area and about 6 seconds per addition to tally them up (Hopper et al. 

Mark I Manual 51). While slower than today’s pocket calculators, the Mark I ASCC was a 

significant scientific and technological leap forward (Beyer Information Age 11). 

On its own, the Mark I ASCC could only add and subtract—albeit 23 digits at a time. 

Separate units for multiplication, division, logarithms, sines, and exponents all had to be 

connected by plugboard (Hopper et al. Mark I Manual 21, 246). Aiken’s darlings, the 
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interpolator units, also attached by plugboard and estimated values for functions and series, 

including differentials (Hopper et al. Mark I Manual 39, 246). Interestingly enough, while there 

was an exponent unit, there was no square root unit, a ubiquitous feature of pocket scientific 

calculators today (Ceruzzi Prehistory).  

The Mark I ASCC also had no central processing unit: “Harvard’s Mechanical Brain” 

had no brain of its own in the modern computing sense (Ceruzzi 152). Instead, numbers inputted 

into the computer via tape and cards were conducted across electrical relays that read values into 

and out of the central bus (“buss”) and signaled the counter wheels to turn a certain number of 

times (Hopper et al. Mark I Manual 15, 19). In terms of the Manual of Operation, a relay is the 

wired contact transmitting data, a counter is the flywheel that displays values and counts up or 

down to the solution, and registers, also called “switches,” store values and commands for use in 

a specific relay, or for moving into and out of the central bus (Hopper et al. Mark I Manual 11, 

12; 14). Though these distinctions seem obvious on the surface, the manual refers to switches 

and registers interchangeably with accumulators—and accumulators work quite differently in a 

modern machine (Ceruzzi Prehistory 152). Without delving too deeply into details, these basic 

hardware distinctions are necessary for understanding certain Mark I ASCC instructions. It helps 

to think of relays as wiring, and counters as both storage and display; switches and registers, 

meanwhile, almost always serve storage functions in Mark I ASCC instructions and programs.  

The manual also details several Mark I ASCC hardware improvements developed by the 

crew. For example, counters 64 and 65, as well as counters 68 and 69, could be “ganged” 

together to double the computer’s digit capacity from 23 places to 46. This was useful in matters 

of scientific notation and high-accuracy computations, which dealt with very large and very 

small values, respectively (Hopper et al. Mark I Manual 20). Meanwhile, register 71 “could be 
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split in half and used as two 12-digit registers” for statistics problems and in other situations 

requiring very big data sets that were “low[er] in accuracy” (Hopper et al. Mark I Manual 20, 

21). 

Programming: How It Worked 

 

The first programmers in American history were, in order, Richard Bloch, Robert 

Campbell, and Grace Hopper. They worked first on paper, breaking equations into basic 

arithmetic steps before transposing them to tape and cards (Beyer Information Age 7). Hopper 

liked to say that “you simply step by step told the computer exactly what to do,” though this 

understatement often represented hours or days of preparatory work (Beyer Information Age 53, 

Williams 30). To maximize efficiency, the three programmers kept a “codebook” of proven 

subroutines and techniques for completing a job in less time (Beyer Information Age 61). 

Programs that worked could then be copied or inserted into the new routine.  

Interposition and rounding results to a desired level were especially important on 

Problem K, the solution of the implosion envelope for the atomic bomb deployed over 

Hiroshima:  “I guess the war would have been over,” said Bloch, “by the time the machine 

would tackle it at a higher degree” of accuracy (Beyer Information Age 116). In this regard, 

Hopper’s knowledge of round-off and truncation error, learnt from a chemistry course she 

audited at Vassar, served the team especially well. Her work on partial differential equations 

with Richard Courant was also valuable here (Beyer Information Age 54, 55, 116). Because 

Problem K was a closely-guarded military secret, detailed discussion of the results are not 

possible; as it is, such mathematics are beyond the scope of this thesis. However, one can clearly 

see that saving calculating time was an urgent priority, one stressed throughout the computation 
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lab’s processes and Grace’s manual (e.g., Hopper et al. Mark I Manual 22, 27, 97). One major 

reason for this was the limited processing speed of the computer itself. 

Programming: Speed 

Though significantly slower than ENIAC, the Mark I ASCC and her crew boasted an 

uptime of nearly a hundred percent: “for the entirety of the war, the Mark I was operating 24 

hours a day, 7 days a week, with the staff working three 8-hour shifts” (Beyer Information Age 

90). The machine also represented a leap forward over human computers, mathematicians armed 

with desktop adding machines (Williams 30). According to Hopper, given that a human 

computer could work for about six hours before fatigue caused “a prohibitive number of errors,” 

the Mark I ASCC ran “well nigh 100 times as fast,” and, based on a 24-hour schedule, could 

complete almost six month’s work “in a single day” (Mark I Manual 51). 

  With a cycle time of 300 microseconds, the Mark I ASCC completed 3 instructions per 

second (Beyer Information Age 7). Simple problems such as addition and subtraction took 6 

seconds or less; more complex operations, such as finding the sine of an angle, took up to 90 

seconds for one argument (Hopper et al. Mark I Manual 51). Multiplication and division, which 

required separate specialized hardware that had to be plugged into the main computer, took much 

longer; division wasted so much computing time that Hopper recommended using multiplication 

to solve for reciprocals instead (Mark I Manual 27). Operators also had to decide beforehand 

whether they would multiply or divide, because each operation used different units that could not 

be plugged in at the same time (Hopper et al. Mark I Manual 21).  

The manual is thus rife with suggestions for saving computing time, devoting a section to 

“interposition,” a crude form of multitasking (Hopper et al. Mark I Manual 98). In many longer 

operations, such as division or an interpolation of a series of functions, additional steps could be 
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inserted into the problem: “addition, reset, reading into a print[er] counter or any other operation 

not involving the multiply-divide unit or the interpolators” could be inserted into the last line of 

code, and the typewriters could be turned on or off at the line before that—prepping the printer 

before the computer began checking its answers (Hopper et al. Mark I Manual 186). Considering 

that the completion of a large table of functions could take hours or days, every step interposed 

this way “easily translate[d] into weeks of saved run time” (Beyer Information Age 63). 

The programmers also often used pragmatism and mathematical foreknowledge to 

develop time-saving solutions on the front end. Many problems with real-world applications did 

not require a full twenty-three decimal place calculation—Bloch discovered that the pitch and 

roll of a battleship, for example, could easily be expressed with values to four places (Beyer 

Information Age 55). Hopper, meanwhile, designed and implemented interposed instructions that 

made the computer automatically add page numbers to its printouts (Beyer Information Age 60). 

Initially, Aiken opposed the idea that the computer spend precious cycles doing anything other 

than “makin’ numbers,” as he liked to call their equations, but when Hopper pointed out the 

significant time savings in error-checking and program retrieval—ie, programmers could now 

recall exactly which page or card errors were on—he relented (Beyer Information Age 60). This 

seemingly minor modification also assisted with program review and storage: in a world where 

software was stacks of punched paper, programmers could now consult an exact code on a 

specific page; it also added a certain automated, professional polish to what had before been 

difficult to re-insert, typeset, and accurately paginate by hand (Beyer Information Age 60).  

Programming: Punched Tape and Punched Cards 

 

Because they are no longer used, it is important to briefly explain punched tape and 

punched cards: often traced back to the development of Jacquard loom cards, Mark I ASCC 
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punched cards used existing IBM designs based on those invented by Herman Hollerith in 1889 

(Hopper et al. Mark I Manual 5, 95; Hopper and Aiken ASCC I 385). Punched cards and 

punched tape served distinct software roles: the “sequence tape” or “control tape,” like the paper 

tape on a player piano, ran all programs and signaled the computer to start and stop (Hopper et 

al. Mark I Manual 11). Punched cards held values or variables that were too big for the machine 

to calculate all at once, or signaled the computer to accept a different sequence tape, and could 

also be used to interpose certain values or commands (Hopper et al. Mark I Manual 42). It was 

vital that both tape and cards be inserted in proper forward order: the computer could not reverse 

itself to repeat commands or numbers (Beyer Information Age 62; Aiken and Hopper ASCC 3 

522). Instead, any program with multiple repeated steps—such as differential equations requiring 

many small additions—meant coding in each operation one-by-one. 

Mark I ASCC sequence tapes were 3-inch-wide paper ribbons with a series of sixteen 

holes per row in three separate groups of eight (Beyer Information Age 47). The first column, 

“IN,” told the computer where to find the stored value it was looking for, and the second, 

“OUT,” told it where to place answers (Hopper et al. Mark I Manual 12). The third column, 

“MISC,” was reserved for “operational codes” such as addition, movement of values into or out 

of storage, or continuing an operation to the next line (Beyer Information Age 47; Hopper et al. 

Mark I Manual 12). To complicate matters, there were automatic and non-automatic codes; the 

computer would stop after a non-automatic code unless operators intervened (Hopper et al. Mark 

I Manual 99). Numerical values, meanwhile, could be read horizontally with enough practice: 

“the number ‘753’ was represented by holes in the 7, 5, and 3 places on the tape,” with the 

number 9 representing a minus sign (Beyer Information Age 47). There was no sign for addition 

because the storage counters did not distinguish between summing numbers and storing them, 
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and simply assumed all values were positive unless prompted otherwise (Hopper et al. Mark I 

Manual 15, 16). 

From this chapter, readers should take away an idea of the grand scale and physical 

complexity of America’s first digital computer. It should also now be clear that while it was 

thick with complex “control information”  many modern technical communicators strive to 

avoid, Hopper’s manual for the Mark I ASCC served more than just its users’ basic operating 

needs (Carroll et al. 127). Hopper’s use of historical context to chart the development of the 

Mark I ASCC not only demystifies the computer itself, but rhetorically situates the computer as 

the natural and indeed almost inevitable product of grand ideas from great thinkers (Hopper et al. 

Mark I Manual 5, 6, 11). Her incorporation of these examples agrees with Todd’s theory that 

grand ideas incite professional interest and personalize technology (47). Moreover, Hopper’s 

consistent use of specific solutions to examples of real problems her users would face serves the 

audience’s need for immediately-applicable information (Carroll et al. 151).  

These factors make the Manual of Operation’s strengths and weaknesses worthy of study 

in more detail. Chapter Four will illustrate ways  Hopper’s manual embodies particular criteria of 

Markel’s measures of technical writing excellence, concluding with ways that Hopper could 

have used modern technical communication techniques to improve certain other dimensions of 

her writing, such as conciseness, accessibility, and improvements in error recovery or 

troubleshooting information (Markel 14;Carroll et al. 127). 
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CHAPTER FOUR: BEYOND THE EDUCATION OF A COMPUTER 
 

Grace Hopper’s Manual of Operation displays several strong features of good technical 

writing: in particular, Hopper does an excellent job of establishing adequate context for novel 

concepts, ensuring that her audience has sufficient background to understand and complete 

problems on their own. In addition, her information is always provided in a consistent way, 

proceeding in order of conceptual complexity. This consistency drives home the core strength of 

the Mark I manual: Hopper’s thorough detail and attention to completeness. Thus, one might say 

Hopper’s core strengths as a technical communicator are context, consistency, and completeness.  

  One useful metric for these features comes from Markel (2012), who holds that there are 

eight distinct qualities present in excellent technical writing (13, 14). As this chapter will 

illustrate, the Manual of Operation embodies at least four of these criteria: comprehensiveness, 

correctness, clarity, and accuracy. The manual also prominently features Markel’s dimensions of 

honesty and professional appearance, each of which are best represented as functions of Grace’s 

comprehensiveness and accuracy. (That is, this study will not address honesty and professional 

appearance at length, but will treat them as part of the other four major strengths her manual 

exhibits.) Ways that modern technical communication techniques could improve Hopper’s 

manual, such as the use of minimalist principles, information mapping, and topic complexity, 

will also be discussed (Carroll, et al.; Ganier; Karreman and Steehouder).  

This chapter will also introduce Hopper’s paper “The Education of a Computer,” 

 a lucid discussion of UNIVAC architecture and the first documentation ever written about 

software compilers (Mitchell 2). “The Education of a Computer” not only showcases Hopper’s 

stylistic growth and improved command of conciseness, but also offers solid insights for today’s 



37 
 

technical communication professionals in terms of Hopper’s practical, results-driven approach 

and clear concern with audience needs.  

 

The Manual of Operation 

Weighing in at 561 pages, the Manual of Operation was the antithesis of light bedside 

reading (Williams 64). Part codebook, part reference manual, and part public relations attempt, 

this massive manual was formally credited to the Harvard Computation Lab, because its 

construction represented a team effort (Hopper et al. Mark I Manual Preface, n.p.; Beyer 

Information Age 125). Grace Hopper, however, is the sole author of more than half its contents, 

and according to Aiken himself, “more than any other person is responsible for completion of the 

book” (Hopper et al. Mark I Manual Preface, n.p.). Except for some of the example problems in 

Chapter VI, co-authored with Brooks J. Lockheart, and the codebook, compiled based on shared 

work with fellow programmers Bloch and Campbell, the lion’s share of the writing is hers 

(Hopper et al. Mark I Manual Preface, n.p.).  

Manual of Operation: Organization and Presentation 

The Preface of the manual distributes writing credit amongst the members of the Harvard 

Computation Lab team: Eunice McMasters for the diagrams, Harry Goheen for the bibliography, 

and Brooks J. Lockhart for majority contribution to Chapter VI (Solution of Examples); the 

Preface also names Grace Hopper the foremost author of the documentation, lead editor of the 

volume, and a main author of Chapters IV (Coding) and V (Plugging Instructions) (Hopper et al. 

Mark I Manual Preface, n.p.). The main table of contents is the manual’s central point of 

reference; all major asides, such as Hopper’s recommendation to consult “a full discussion of all 

codes” to locate specific operations, are given as full chapter names: “in Chapter IV, Coding,” 
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without  inclusion of specific page numbers (Hopper et al. Mark I Manual Contents, n.p.; 14). 

The List of Plates (photographs) and List of Figures (diagrams) function as another table of 

contents; however, while the photographs and diagrams themselves are clearly captioned, none 

of the captions refer back to the lists of Plates and Figures, making it difficult to locate specific 

charts, particularly after a protracted search or long reading (e.g. Hopper et al. Mark I Manual 

III; Markel 309, 446). One likely reason for this discontinuity is that front and back matter are 

often some of the final work completed on a manual, and like many technical communicators, 

Hopper was writing on a tight timeline and tighter budget, without direct control of the 

document’s design (Markel 531; Hackos 404, 561). 

Chapter organization of the Mark I manual is straightforward, beginning with a history of 

the computer’s conceptual development in Chapter I. Hopper’s writing truly shines here: 

beginning with the abacus, she connects the development of computers from the lofty “ideas of 

the physicists and mathematicians” to the increasing economic complexity and trade realities of 

the seventeenth century (Hopper et al. Mark I Manual 4, 5). In Hopper’s account, Napier’s bones 

are ideologically interconnected with the pragmatics of Pascal’s adding machines, which are 

themselves seen as the ancestors of Charles Babbage’s analytical and difference engines (Hopper 

et al. Mark I Manual 5, 6). This is an important point: in her study of Babbage’s work, Grace 

discovered the research of Ada Byron Lovelace, who wrote the first loop, and who in turn was an 

inspiration for Hopper’s invention of the compiler in 1952 (Williams 82). For his own part, 

Aiken had long been aware of the reputational cachet inherent in the Mark I ASCC’s ideological 

ancestry, and had deliberately cultivated an association between his machine and Babbage’s for 

years; as early as 1938, Aiken systematically cited Babbage as his hero (Beyer Information Age 

130, 136). Aiken also corresponded with Babbage’s grandson, Richard, who was glad of the 
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recognition for his ancestor and of the interpersonal connection to noteworthy scientific ideas 

(131, 136).  

Chapter II, Description of the Machine, itemizes the Mark I’s components in intensive 

detail, from the register switches up, and Chapter III, Electrical Circuits, describes how the 

computer solved a problem, cycle-by-cycle, in terms of the wiring itself (Hopper et al. Mark I 

Manual 10; 80 - 95). Chapter III is particularly helpful to technical communicators decoding 

extinct machinery entirely from its documentation. It provides detailed images of a fully 

deconstructed relay and disassembled counter, with component parts carefully labeled (Hopper et 

al. Mark I Manual XVI, XVII). Similarly, while Hopper’s cycle-by-cycle elucidation of 

processor function is top-heavy by modern standards, containing such lexical whoppers as “The 

amount of shift combined in a storage counter with a constant dependent upon the position of the 

operating decimal point supplies the exponent required. Further examples of special controls 

associated with the multiply unit will be described later in connection with the discussion of the 

electro-mechanical tables of the elementary transcendental functions,” such thick description was 

necessary for electrical engineers and machine operators who were intimately familiar with 

electromechanical relay technology, but who had never used or even seen a computer before 

(Hopper et al. Mark I Manual 24).  

The title for Chapter IV, Coding, is somewhat misleading: from the first pages of Chapter 

I, Grace discusses mathematics in terms of how the computer ‘thinks,’ explaining that with end-

around carry, the computer solves addition in two steps by performing all carrying at once, rather 

than per-column as a human would (Hopper et al. Mark I Manual 15). Because programming is 

the end goal of Hopper’s intended audience, each chapter of the manual furthers that objective in 

some way. 
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Hopper’s organizational schema proceeds in order of conceptual complexity: when 

discussing operations, she always begins by explaining how the Mark I ASCC completes an 

addition—except in Chapter IV, Coding, where she starts with a multiplication example (Hopper 

et al. Mark I Manual 105, 111). This is both because of her audience’s presumed knowledge by 

this point, and because multiplication was a more complex task, requiring additional 

manipulation by plugboard, and therefore more detailed explanation (Hopper et al. Mark I 

Manual 111). Chapter V, Plugging Instructions, dealt with the separate needs of the plugboard 

architecture, and Chapter VI, Solution of Examples, assisted users in writing their own programs 

(Hopper et al. Mark I Manual 245, 287). The Appendices, meanwhile, were exhaustive 

references, filled with material largely of interest to technicians and operators rather than coders; 

they comprised a full list of the switches, circuits, diagrams, and so on (Hopper et al. Mark I 

Manual Contents, n.p.; Rubens 48). 

Comprehensiveness and Correctness 

 

In terms of Markel’s dimensions of technical writing excellence, comprehensiveness is 

the balancing act of leaving the user with exactly as much information as they need to understand 

concepts and complete tasks. While this may seem self-evident, it is in fact complex: good user 

manuals must balance the needs of both novice and experienced users, who will approach the 

text differently and with distinct requirements (Ganier 15). Many researchers, for example, 

distinguish between declarative information and procedural information in instructions 

(Karreman and Steehouder 34). Declarative information is background data about the equipment 

or software, such as menu descriptions, whereas procedural information shows how to complete 

tasks or perform actions. However, the specific type of information—whether procedural or 

declarative—is less important for comprehensiveness: rather, the thoroughness of the 
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information is what matters.  Modern scholars encourage an emphasis on task-oriented 

procedural information that focuses on users’ specific end goals (Carroll et al.; Ganier; Markel). 

Markel argues that “comprehensiveness is crucial because readers need complete, self-contained 

discussion in order to use the information safely, effectively, and efficiently,” and moreover that 

manuals—particularly large reference manuals, such as Hopper’s— “often serve as the official 

company record of a project, from its inception to its completion” (14). 

For Markel, correctness is chiefly grammatical: “conventions of grammar, punctuation, 

spelling, mechanics, and usage,” which can be thought of as the avoidance of lexical and syntax 

error (14). Although the grammar of Hopper’s manual can best be described as top-heavy, it is 

also scrupulously correct, with nary a clause lost among the dense compound sentences that 

detail, for example, cycle time. Moreover, Hopper’s writing unerringly follows grammatical 

conventions of the day, such as including phrasal commas that most present-day business 

communication omits: consider that “In 1617, John Napier, following his invention of 

logarithms, published an account of his numbering rods, known as ‘Napier’s Bones’” (Hopper et 

al. Mark I Manual 1). For speed and clarity, modern technical writers might be encouraged to 

structure the sentence thusly: “Following his invention of logarithms, John Napier published an 

account of his ‘Napier’s Bones’ numbering rods in 1617,” removing four of five stopping points 

while preserving each central idea and active clause (for example, Einsohn). However, Hopper’s 

original reading imparts a certain grandeur to the sentence, and to the great thinker and important 

invention at its heart; similar stately sentences are woven together to achieve an impressive and 

even intimidating long-form manual rich with detailed technical data. Hopper’s strict adherence 

to Markel’s dimensions of comprehensiveness and correctness thus creates and reinforces a 

perception of a profoundly professional document detailing a highly technical piece of 
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equipment: in this way, the entire presentation of Hopper’s manual functions as an appeal to 

ethos. 

Honesty, Clarity, and Accuracy 

 

For Hopper and the staff of the Harvard Computation Lab, Markel’s call to honesty in 

technical documents would have been redundant: the purpose of the document was to get the 

computer working as well and as fast as possible and create maximum uptime while avoiding 

any problems. Because of the urgent nature of their calculations—munitions data for active 

battlefield situations, optimal submarine deployment, rocket trajectories–and their intent for 

immediate use, there was no room for deception in the instructions. Civilian applications of the 

technology were flatly not a concern; therefore, emotional appeals in the manual were largely 

limited to the history section. While certain sections are relentlessly optimistic–consider 

Hopper’s promise of “six months’ work in a single day” – this statement itself assumes the 

machine is working perfectly, and does not represent a deliberate attempt to defraud anyone. 

Similarly, the manual is very honest about what the machine cannot do, such as its inability to 

rewind an instruction (Aiken and Hopper ASCC 3 522). 

For Markel, accuracy is a question of tone: excellent technical writing should be 

objective, with a factual presentation and a lack of “spin” (13). Markel stresses that it is vitally 

important that an accurate document be as “as objective and unbiased” as possible (13). The 

Manual of Operation fits these criteria quite well. Aside from the first chapter, which establishes 

Aiken as a great thinker with an amazing invention, the rest of the manual is crisply factual and 

almost painfully dry. Hopper does not hesitate to point out problems and peculiarities in the 

hardware: “sines of third and fourth quadrant angles cannot be computed directly [at] eleven or 

fewer operating decimal places” (182). Square roots could not be processed directly, and 
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required “two divisions, one multiplication, and four additions,” or an even more intensive “two 

multiplications and two divisions,” just to reach the first approximation needed to begin isolating 

the answer—a set of operations that would have to be repeated until the root was found, gobbling 

processing power and time (181). “The sign counter [of the multiply/divide hardware] is the only 

one in the machine which cannot be reset by button” (72). These explanations are given as bare 

fact, without hedging or euphemism, and with alternate options where possible (as with the 

square root example; Hopper et al. Mark I Manual 182). Accuracy, clarity, and utility were the 

overriding focus of Hopper’s manual, designed to be read by a specialized audience for highly 

technical purposes during wartime 

Clarity, or conveying “a single meaning the reader can understand easily,” is another 

strong feature of Hopper’s manual (Markel 13). While the technical specifications of the ASCC 

are sometimes smothered in extraneous grammar, Hopper is particularly good at explaining 

unfamiliar concepts in terms of known technology; she discusses at length the components and 

interlocking nature of the counter flywheels, and breaks down in detail the exact process by 

which the central crankshaft powers the computer (for example, Hopper et al. Mark I Manual 

59). Ganier (2004) recommends the use of coordinated, “mixed” text and graphics to maximize 

clarity when explaining technical information or machinery, which is in abundant evidence 

here—nearly a third of Chapters II and III are devoted to diagrams and photo plates (see, e.g., 

Hopper et al. Mark I Manual 18, 19, 42, 44, 57, 61; Ganier 20). Ganier also recommends 

labeling to enhance comprehension, and though it is cumbersome here, Hopper does use labeling 

to point out, for example, which relays are engaged to run the start and stop circuits for one cycle 

(Ganier 20, 21; Hopper et al. Mark I Manual 57). Hopper devotes the entirety of Chapter III to 

the layout of the circuitry itself; these diagrams and explanations would be instantly recognizable 
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to electrical engineers of the day. When wading through such dense, detailed passages—which 

acolytes of the modern minimalist approach might consider the opposite of clarity—it is 

important to remember that for Hopper’s original audience, heavy expository copy was standard 

for technical specifications, and moreover was necessary in order to explain a previously 

unheard-of piece of technology: the digital computer. 

Room for Improvement 

 

In Markel’s model, there are three more dimensions of excellent technical writing: 

conciseness, clarity, and accessibility. These were Hopper’s challenge areas, and conciseness in 

particular was a major weakness of the manual. This is obvious in comparison with the task-

oriented minimalism favored by modern technical communication researchers, such as Carroll 

and colleagues (1987). Though Hopper’s audience were neophytes who had never seen a 

computer before, one can assume that they would swiftly learn, yet still be bogged down by the 

linear, step-by-step approach she uses. Ganier (2004) notes that this is a particular problem for 

all reference manuals (15). 

Conciseness is more than the art of brevity: to be effective, leaner documents must still 

“be useful to a busy reader” (Markel 14). Flabby prose can introduce unintended meanings 

which may in turn lead to costly technical errors (Markel 14). Moreover, producing well-written, 

compact, error-free technical documents reflects positively on the technical communicator as a 

writer and as a subject matter expert, and on their organization at large; conciseness thus confers 

a powerful, professional ethos (228).  

In addition to such familiar truisms as removing unnecessary phrases, choosing shorter 

words, and using the active voice, Markel offers several additional specific suggestions to 

improve conciseness, including: (1) use lists, (2) emphasize new and important information, (3) 
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choose appropriate sentence lengths, (4) focus on the subject (5) focus on the verb, (6) improve 

parallelism, and (7) use modifiers effectively (14, 228). 

Not originally presented as a list, these suggestions were provided as one to illustrate 

Markel’s observation that hefty sentences may prevent readers from concentrating on new 

information. With lists, audiences can literally “see how many phrases they have to remember”: 

there is less cognitive load with new information when complex clauses are truncated into 

compact lists (Markel 229). 

Another of Markel’s exhortations is to be specific: whether writing about “an automobile, 

a rail, or a can of tomatoes,” use the best possible noun for it—while calling it a Ford Focus may 

be undesirable because it might be taken for endorsement, “the car” is more specific than “the 

vehicle,” and much clearer than “the thing” (Hopper “Education” 243; Markel 243). To increase 

specificity, use positive construction: “most” instead of “not all.” Saying “on schedule” is more 

powerful than “not late.” (Markel 244; Ganier 18). Moreover, arrangement “of the words on the 

page” reinforces and enhances meaning, especially when dealing with new information-- 

“sentences are often easier to understand and more emphatic if new information appears at the 

end” (Markel 229, 230, 231).  

When writing the Manual of Operation, Grace Hopper would have benefited enormously 

from the power of lists--a convention she almost exclusively reserved for diagrams (Hopper et al. 

Mark I Manual 62, 78, 99). Their use is most notable in Chapter III, Electrical Circuits, in which 

Hopper explains the ASCC’s central mechanics: her Figure 22, the Mechanical Drive System, is 

accompanied by letter labeling (for major components A – K) and described in full-prose detail 

over the next two and a half pages (Hopper et al. Mark I Manual 58 – 60). Even her abbreviated 

description written with Aiken for Electrical Engineering is daunting and dense: “The sequence 
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and interpolator mechanisms and the counter wheels are all driven by a single gear-connected 

mechanical system […in] Figure 4, A is a line shaft extending nearly the full length of the 

calculator” and “driven by the 5-horsepower motor, B. This shaft is contained in the shaft 

housing shown near the base of the machine in Figures 2 and 3. The main sequence mechanism 

and the three interpolator mechanisms are supplied with mechanical power by the roller sprocket 

drives, C and D respectively. The spiral gears, E, connect to the main drive shafts, F. These in 

turn are connected to the horizontal shafts, G, through the spiral gears, H. On the shaft, G, are 

mounted 12 or fewer gear wheels (J of figure 4) each of which supplies mechanical power to a 

single counter wheel  by engaging with the gear shown in the partially assembled counter.” 

(Aiken and Hopper ASCC I 386, 387). To observe the original diagram of the ASCC mechanical 

drive system in context, see Figure 1 on the following page.  
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Figure 1. Diagram of the Mark I ASCC mechanical drive system, shown with original text. 

 (“Mechanical Drive System” in original, as shown.) 

Source: Hopper et al. A Manual of Operation for the Automatic Sequence Controlled Calculator, pp. 58. 
 

Surely, a single “mixed” text and graphics diagram as recommended by Ganier would be 

a much more concise and equally fluent alternative (18). 

See Figure 2 on the following page for an idea of how this might be accomplished. 
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 A: main drive shaft 

B: main motor (5 horsepower) 

C, D: roller chain and sprocket 

drives (propulsion) 

E: spiral gears 

(connect A and F) 

F: main vertical shafts 

G: main horizontal shafts 

H: spiral gears 

(connect F and G) 

J: gear wheels 

(to storage counters) 

Figure 2. Proposed edited reproduction of diagram for Harvard Mark I ASCC mechanical drive system. 

Image Source: Hopper et al., A Manual of Operation for the Automatic Sequence Controlled Calculator, pp. 58.  

(Diagram format and presentation are student’s own work.) 

 

The elimination of nonrestrictive clauses could also have shortened the diagram, 

streamlining Hopper’s information in preparation for a list (237, 238). (Recall that nonrestrictive 

clauses, such as this phrase in this sentence, can be removed without impacting either the 

structure or the informational value of the sentence itself. Without its nonrestrictive clause, this 

sentence reads, “Recall that nonrestrictive clauses can be removed without impacting either the 

structure or the informational value of the sentence itself.”) 
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Moreover, even without the use of lists, and even with all her clauses intact, if Hopper 

had followed Markel’s suggestion to limit prepositional phrases—references to items “on” or 

“under” other items—these sections might have gained both greater clarity and conciseness 

(Markel 247). Consider, for example, that “the shaft housing down near the base of the machine” 

could be called “main driveshaft housing,” which is shorter and— in combination with the 

diagram—specifies a precise location (Hopper et al. Mark I Manual 58).  As a final suggestion to 

improve conciseness, Markel recommends using “your software to compute the average sentence 

length of a representative passage,” and using that data to edit for length based on your 

audience’s needs (233). I wonder what Grace would think of that.  

Carroll and colleagues (1986) likewise offer several suggestions to improve conciseness. 

Echoing Markel’s suggestions to condense information into lists and use positive construction to 

clarify commands, Carroll et al. further recommend referring to new hardware, procedures, or 

peripherals concretely: “display monitors” are monitors, and “the system” or “the computer” 

should be called by its proper name (for example, “the ASCC” or “ UNIVAC”) (127, 131). 

Hopper agrees with this advice in “The Education of a Computer”: “I shall use UNIVAC as 

synonymous with electronic digital computer; primarily because I think that way, but also 

because it is convenient” (243).  

Carroll and colleagues not only found that that conciseness promotes comprehension and 

performance among learners new to the task, system, or software; but they also focused on a 

distinct but related dimension of excellent technical writing: accessibility (Markel 14, Carroll et 

al.  127). Accessibility is an interesting criterion, because it is a new concern; before and even 

during the 1980s, large print manuals crowded with declarative information were the norm 

(Carroll et al.  127).  
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Lengthy, complex sentences were common to the military manuals of Grace’s era.  For 

example, consider a technical manual supplement for gear with a comparable purpose, audience, 

and time-frame: a 1944 United States National Defense Research Commission Army/Navy joint 

brief on sonar standards and equipment (USNDRC, “Calibration Measurements” 1944). The 

sonar brief contains this elegant but overbearing purpose statement: “One of the most important 

requirements for a standard is dependability, that is, a standard should give the same 

performance day in and day out under various conditions of use so that, once its calibration has 

been determined, it can be relied upon for an extensive period of time and under a wide range of 

testing conditions” (USNDRC “Calibration Measurements” 2). Even pointed recommendations 

are given in passive voice and bracketed with phrasal commas: “The X-cut Rochelle salt crystal, 

because of its temperature impedance, for instance, should in general be avoided for standards” 

(USNDRC “Calibration Measurements” 2). Modern technical communicators would doubtless 

include, “Tip: Avoid using X-cut Rochelle salt crystals in the creation of standard devices 

because of high temperature impedance.” Such a tip could be further enhanced with graphics, 

color, or headings to mark it as distinct from the body text—features not used in the sonar 

supplement (USNDRC “Calibration Measurements” 2; Ganier 20; Markel 206, 207). While none 

of these suggested features are present in the brief itself, the use of some or all of them would 

improve both comprehensiveness and accessibility. In short, Grace’s Manual of Operation is 

comparable in tone and style to the works of her contemporaries, which show similar areas for 

improvement. 

Moreover, though Grace was the lead writer and editor for the Manual of Operation, its 

construction was a team effort—something still common to reference manuals today. Because 

most reference manuals are comprised of many smaller sections, often written by different 
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writers, they are typically compiled out of sequence (Hackos 404). Details may be repeated 

between sections, along with added declarative “control information” intended to orient the user, 

which further lengthens and complicates the manual (Carroll et al. 127). Given these structural 

limitations of reference manuals, it is imperative that readers be able to locate their desired 

information when they need it: this is accessibility (Markel 14).  

Carroll and colleagues found that instructions highlighting specific step-by-step tasks, 

offset by clear headings, reduced cognitive load for new users and decreased their “starting up” 

time when using a new technology or learning a new skill (128). Users given a minimalist 

manual with specific task instructions learned new tasks almost 50% faster than users given a 

comparable long, reference-style self-instruction manual (Carroll et al. 140). In a follow-up 

experiment, Carroll and Mazur determined that including error recovery (troubleshooting) 

information improved performance in the minimal manual group over the traditional manual 

group (145, 146). Moreover, because minimal manual users could find error recovery 

information easily in the instructions, they spent 20% less time than traditional users relying on 

the external system library for additional help (Carroll et al.146). Minimal manual users spent an 

average of 2 minutes seeking external help, versus almost 16 minutes for the long manual group 

(Carroll et al.146). Accessibility makes a clear difference for both task completion and error 

recovery.  

To increase accessibility, Carroll et al. recommend first drafting to concrete tasks users 

will want to accomplish, then creating task-oriented procedures showcasing these specific tasks 

(129, 131). Keeping the audience’s task needs in mind increases readability, accessibility, and 

time spent learning the tasks, particularly at introductory levels (Carroll et al. 146).  
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Markel has several concrete suggestions that also improve accessibility: 1) write coherent 

titles to give readers their “first clue” whether they can find their needed information; 2) use 

clear headings to “communicate the relative importance” of ideas and convey their overall 

topical relationship; 3) use lists; and 4) use clear relationships between information (205, 207, 

213). For example, consider the importance of consistency when emphasizing information: are 

important data “set off by headings” or sectioned off into clear lists (Markel 213)? Clear 

hierarchy and structure of ideas spares the audience flipping back and forth between sections, 

because they learn when and where to consistently expect certain types of information (Markel 

14, 211). Ganier agrees that in instructional situations, clear headings both “facilitate the location 

of information” and “the comprehension and execution of instructions” (20). By following the 

minimalist principles of modern technical communicators, Hopper could have improved both 

accessibility and conciseness at one stroke.  

Certainly, accessibility and conciseness are two major areas in which Hopper could take a 

lesson from today’s technical communicators, and not the other way around. However, one of 

her best-known later works, “The Education of a Computer,” showcases ways in which Hopper 

later used many modern principles effectively (Hopper “Education” 243, 247, 248). Though no 

instructions are perfect, some still offer valuable lessons to today’s technical communicators, and 

“The Education of a Computer” is both a minor classic in computing literature and a definitive 

example of Hopper’s growth and development as a technical writer. 
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“The Education of a Computer,” Electrical Engineering, and the Evolution of a Technical Writer 

“It is the current aim to replace, as far as possible, the human brain by an electronic 

digital computer.” –Grace Hopper  

 

 

 Hopper’s article on UNIVAC architecture for the Remington Rand Corporation is not 

only the first documentation ever written concerning compilers, nor is it merely a showcase for 

the evolution of Grace’s writing style and approach to material. It is also a demonstration that, as 

far as possible, Hopper began at the beginning and always started with what played best to the 

house: a brief and flashy historical overview charting the grand ideas of great inventors, tracing 

“the mechanization of mechanical thinking” from the abacus through Pascal, Leibenitz, and 

Babbage; culminating in the work of Professor Howard H. Aiken of Harvard University, Dr. 

John W Mauchly of Eckert-Mauchly, and Dr. M. V. Wilkes of the University of Cambridge 

(Hopper Education 243; Beyer 222). She credits Aiken specifically with the “idea of a library of 

routines described in the Mark I manual,” Dr. Mauchly with “the basic principles of the ‘short-

order code’ and suggestions, criticism, and untiring patience” as informal editor and advisor; and 

“from Dr. Wilkes, the greatest help of all, a book on the subject,” for all of which Hopper most 

earnestly expresses her debt and appreciation (Hopper Education 243). Grace condensed a 

fifteen-page history of great thinkers into a compact, powerful, half-page emotional appeal that 

establishes her mentors as formidable intellects—and herself, by extension, as masterful and 

competent, possessed of expert knowledge that is worthwhile and well-vetted. 

“The Education of a Computer” also showcases the evolution of Grace’s writing style; 

she begins with graphical information this time, using Figure 2, below (also shown as Figure 2 in 

original document) to illustrate the minimum resources a person needs to solve a math problem 

(243). 
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Figure 3. Minimum resources required for mental solution of a math problem. 

(“Solution of Problem” in original, as shown.) 

Source: Grace Hopper, “The Education of a Computer” pp. 243. 
 

Hopper argues that even mental math is like programming, involving “input to the 

operations; controls, even if they be only start and stop; previously prepared tools to supply data 

to the operation; and output of products, which may, in turn, become the input of another 

operation” (Hopper Education 243, 244). She further compares programming to a production 

line: using “raw materials, controlled by human beings, possibly through instruments, supplied 

with machine tools, the operation produces an automobile, a rail, or a can of tomatoes” (Hopper 

Education 243). 

Arguing that all present users of UNIVAC—“armed services, government, and 

industry”—want not just to create new operations but also to improve existing ones, Hopper 

contends that the easiest way to do so is to offload as much menial calculation to computers as 

possible. Short of a robot uprising, this is what she means by replacing a human brain (Hopper 

Education 243). See Figure 3, following, for the full picture of human-computer interaction in 

Hopper’s model.  
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Figure 4. Minimum resources required for solution of a math problem using human-computer interaction. 

Source: Grace Hopper, “The Education of a Computer” pp. 244 

 

By the time a problem reaches Figure 3 (corresponding to Figure 4 in the article), the 

mathematician is now de facto a programmer and supplies code to the computer that turns the 

component parts of equations into UNIVAC-readable data—and so long as the novelty of 

programming holds, this solution is sufficient (Hopper Education 243). However, once the thrill 

of creating code becomes the tedium of troubleshooting it, that intensive, effort-laden process 

“now looms as an imposition on the human brain,” and with the computer paid for, the added 

costs of programming (and consumed computing labor and time) attract the notice of “vice-

presidents and project directors” (Hopper Education 243). Starting with human visualization of 

the problem, Hopper adds the UNIVAC, which draws on the instructions input by the 

mathematician “under the control of ‘a compiling routine of Type A’, using subroutines and its 

own instruction code” to produce a program, which then calculates the inputted data (Education 

244). By transferring all raw calculating responsibilities to the UNIVAC, mathematicians gain “a 

major reduction in time consumed and in sources of error” (Education 244).  
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Compilers and subroutines were a vital development in software, and are the foundation 

of the current computing paradigm (Beyer 10; 16; 223). For Hopper’s main audience—other 

mathematicians—the chief value of this new technique lay in crunching larger values faster, 

enabling exciting discoveries at the apparent press of a button. Armed with a catalog of 

subroutines, the “programmer may return to being a mathematician,” who no longer strictly 

needs to carry bulky indexes of t-tables around; “[he] does not even need to know the particular 

instruction code used by the computer,” instead requiring working knowledge of how to use 

UNIVAC’s subroutine catalog (Hopper Education 243, 244). Mathematicians fed UNIVAC data 

and subroutines from the catalog, which it then used to fetch those “subroutines and its own 

instruction code” to compile a program that ran the mathematician’s problem more or less 

automatically (Hopper Education 244). Grace emphasizes that if the available subroutine library 

is a good one, programming time has “been reduced to a matter of hours, rather than weeks” 

(Hopper Education 244). Stressing ease of use, improved results, and the capacity to solve 

problems absent the tedium of coding them manually, Hopper makes a vivid case for the 

importance of subroutines in programming, and does so in terms that matter to her core audience. 

Grace has also tailored her tone throughout to be friendlier and more commercial while 

maintaining professionalism; “[in] any event, the mathematician need only state ‘go to operation 

k,’ and the compiling routine does the rest” (“Education” 246).  

With “The Education of a Computer,” Hopper has taken Carroll and colleagues’ 

admonition to focus on users’ goals and tasks to heart. Hopper aligns her examples with tasks the 

audience wants to perform: supposing “the mathematician wishes to evaluate a function and its 

first n derivatives,” Hopper outlays how to tabulate the needed values in UNIVAC-readable 

form, using her expertise as a mathematician to appeal directly to fellow mathematicians in a 
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concrete way (“Education” 249). In line with the recommendations of Carroll et al., Hopper has 

provided minimal, abbreviated orienting information, such as “[p]resuming that code, program, 

input data, and results are familiar terms,” before discussing more specialized data, such as how 

to specify “the forms of information and routines acceptable to the system,” (Hopper 

“Education” 244). From there, defining what a subroutine is and how it works, and explaining 

the difference between compiling routines – Type A and B—and task routines all flow quite 

naturally, in order of complexity (Hopper “Education” 245, 248). Here, Hopper’s emphasis is 

clearly on conciseness and accessibility. 

Considered with her work on the Mark I ASCC manual, “The Education of a Computer” 

teaches us several things about Hopper’s approach to her audience and her subject material, from 

which modern technical communicators can learn a great deal. First, and foremost: Hopper 

consistently contextualizes issues and instructions in terms that matter to her audience. When 

addressing engineers, she explains the exigency of computers in mechanical terms: “[t]he 

increased accuracy of physical measurement has made necessary more accurate computation,” 

which computers provide (Aiken and Hopper ASCC I 386). When addressing mathematicians, 

she explains the necessity of Chapter III’s extensive mechanical details in terms of their future 

goals: “adequate preparation for the coding and plugging procedures to be discussed in the 

following two chapters […which] followed by a study of the examples […] will enable a 

mathematician to make full use of the calculator, and to exploit its facilities to the greatest 

possible advantage” (Hopper et al. Mark I Manual 97). By focusing on her audience’s goals and 

tasks, then illustrating how much more easily they can achieve the desired results with 

computers, Hopper has created not only strong persuasive appeals but also effective examples 

that help users understand and perform real tasks (e.g. Carroll et al. 128, 129). 
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Second, Hopper consistently highlights alternate uses for the information she teaches. 

When educating a computer, Hopper leverages her explanation of subroutines to show how 

kernel and threading subroutines can be used to automatically write more subroutines—the first 

major discussion of how to use a subroutine to compile code (Hopper “Education” 248, 

emphases added; Beyer 10). Hopper also stresses that, once mastered, subroutines can be used to 

“correct the computational procedure submitted”; effectively checking the both the computer’s 

results and the mathematician’s own work, then further highlights that a similar routine can be 

used to “supply estimates of running time with each program” (Hopper “Education” 249). The 

basic “87 stop” controls for the Mark I not only stop a line of coding, but can be used to 

interpose printing instructions, or to pass a partial solution to a separate plugged-in unit to finish 

the equation (Hopper Mark I Manual 99, 186). The solution for division—multiplying by 

reciprocals—is an alternate solution path to save computing time (Hopper Mark I Manual 21, 

27). Hopper consistently offers her users more than one result from the same core concept. 

Hopper’s third and final major lesson for modern technical communicators is also 

arguably her strongest: when confronting new data, a new operational model, or a brand new 

way of doing something, she provides multiple examples and addresses them in order of 

complexity, always working from least to most. When instructing Mark I users, Hopper always 

begins with the same operation: addition (for example, Mark I Manual 15). In Chapter IV, 

Coding, Hopper begins with multiplication instead, giving users a stronger test of their mettle 

while also providing detailed instructions for the additional commands needed to connect and 

use the multiplying unit (Mark I Manual 105, 111). Explaining ASCC computing to electrical 

and mechanical engineers, Hopper starts with the overarching practical need to balance cycle-

time savings with operational simplicity: the more complex the program, the more adjustments 
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programmers had to perform on switches, counters, tapes, and plugboards, all of which could 

introduce operator error (Aiken and Hopper ASCC III 523). This general call for “meticulous 

precision” fed naturally into the necessity of operating instructions for every sequence control 

tape—an exigency that Hopper used, in turn, to explain how to prepare, encode, and check the 

results of a single, specific polynomial equation “selected for its mathematical simplicity” and 

covered in detail in the article (Aiken and Hopper ASCC 3 526). Hopper uses this entire section 

as an object lesson, offering step-by-step example operating instructions--and related plugging 

instructions--for the sample equation, so that engineers, operators, and attendants alike could run 

subsequent programs to solve equations on their own (Aiken and Hopper ASCC 3 526 - 528).  

Grace Hopper’s technical writing has much to recommend it. Besides being the first 

major computer manual written in the United States, the Manual of Operation is a thorough and 

thoroughly grounded reference manual, replete with detailed historical and practical context, 

plentiful and exact example problems, and practical solutions to audience needs and goals (for 

example, Hopper et al. Mark I Manual 10, 15, 105, 111, 180). Her articles for Electrical 

Engineering, co-written with Aiken, discuss Mark I machinery in terms that matter to actual 

operators (Aiken and Hopper ASCC I 387, 388). The articles clarify certain concepts—such as 

the need for software planning documents—in plain language (Aiken and Hopper ASCC I 387; 

Aiken and Hopper ASCC III 325). While conciseness was the weakest feature of her work on the 

Mark I ASCC manual, Grace’s expansive style imparted a certain gravitas to the work that 

reflected the exigencies of wartime development and the need for precise, professional language 

when dealing with an entirely new technology (Hopper et al. Mark I Manual 1). Last, but 

certainly not least among Grace’s writings, “The Education of a Computer” is in some ways an 

inventor’s love letter; it discusses the need for a new sort of program and then elegantly explains 
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exactly how compilers can be used to achieve it, as well as what the benefits are for 

mathematicians and organizations at large. 

 Examination of Hopper’s work allows current technical communicators and future 

hopefuls a clear picture of the evolution of Grace’s writing style while illustrating her command 

of comprehensiveness, correctness, clarity, and accuracy. She is a master at establishing adequate 

context, furnishing multiple complete examples that complete users’ practical goals, and 

honestly and accurately addressing both the strengths and limitations of every device or concept 

she explains. Hopper never hesitates to be specific about what the computer can and cannot do—

such as the Mark I’s inability to rewind instructions, lack of a dedicated square root unit, 

limitations in calculating sine series, and special problems with printing or punching (Aiken and 

Hopper ASCC 3 523; Hopper Mark I Manual 170, 171, 182, 99). As for correctness, one need 

only review such intricate sentences as “The time interval necessary for the brush to traverse the 

between two successive [pins] is one-sixteenth of a cycle, the number spots being so spaced […] 

as to minimize the ratio of the mechanical backlash to the distance traversed between spots” to 

see that Hopper’s grammar and style conferred a powerful and professional ethos to urgently 

needed documentation for important technological developments (Hopper et al. Mark I Manual 

59). 
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CHAPTER FIVE: CONCLUSION 
 

  Technical communication is not a discipline one immediately associates with the idea of 

grand figures of history, science, or philosophy: though technical communication includes 

Chaucer, Benjamin Franklin, Herbert Hoover, and Hildegaard of Bingen among its luminaries, 

their work in the field is rarely discussed (for example, Todd, Malone, Rauch). While research 

interest in the history of technical communication has grown considerably in recent years, 

expanding into such areas as device schematics, shipwright’s manuals, domestic handbooks, 

gardening practices almanacs or manuals, botany, and medical documentation, research into 

specific heroes remains to be done, and the role of notable women in technical communication 

remains under-researched, in particular (for example, Todd; Tebeaux and Moran; Tebeaux and 

Lay; Durack; Shirk; Rauch).  

Because technical documentation written by women often concerns domestic devices (for 

example, sewing machines) or processes (for instance, gardening), it has often been disregarded 

in formal research (Rauch; Durack; Tebeaux). Given the dearth of research into notable technical 

communicators in general, and the lack of research into specific strong female voices in the field, 

locating and celebrating notable women technical communicators is therefore vital to the further 

research development of technical communication’s history.  

Rear Admiral Grace Brewster Murray Hopper would make an excellent addition to the 

canon of celebrated technical communicators. A Vassar-educated mathematician turned 

professor turned Naval officer, Grace was a formidable intellect and one of the earliest American 

computing geniuses; and as a technical writer, her work should be more widely examined.  

The corpus of Grace Hopper’s technical writing is worthy of study for several reasons: 

first, because little of her personal correspondence survives, her strengths as a writer must 
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instead be directly evaluated on the basis of her work (Grudin and Williams 17). Second, Hopper 

herself was first a mathematician and an educator—her instructional habits and writing skills 

were well-developed before she was ever employed on the ASCC project (for example, Mitchell 

1994). Third, Hopper worked at an exciting time in history, at the dawn of the computing age, 

using programming concepts that are still thriving today (Beyer 10, 16). Fourth, while much 

scholarship exists on Hopper’s notable roles as a teacher, a programmer, and a Naval officer, as 

far as I am aware, no other research to date has explored Hopper’s role or results as a technical 

communicator (Mitchell; Williams; Beyer Information Age). Finally, the Manual of Operation 

for the Harvard Mark I ASCC is a complete, substantive primary source which deserves deeper 

study. For all these reasons, Hopper’s technical writing presents a unique opportunity rich with 

research value, as well as both inspiration and practical lessons for today’s technical 

communicators. 

Findings: Research Questions Answered 

What makes the Mark I ASCC a worthy object of study? What is the least we need 

to know about the device to understand its manual and vice versa? In order to be useful to a 

modern reader, the components and processes of the Mark I ASCC required some introduction: 

punched cards, for example, are no longer used in computing. The ASCC was also unique among 

the early major mainframes, built using proven concepts and components from 

electromechanical engineering and telephony rather than with expensive vacuum tubes (for 

example, Williams 57, Beyer 32). Obsolete almost before it was fully built, the ASCC was 

uniquely designed and also the only computer of its era that solved equations via software like a 

modern computer (Beyer 52). Thus, illustrating how the ASCC solved problems in general, and 

how it solved differential equations specifically, was helpful in bridging the historical and 
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conceptual knowledge gap between early mainframe technology and current computers. Last, but 

certainly not least, working knowledge of the Mark I ASCC is vital to understanding the 

purpose, shortcomings, and merits of Hopper’s manual for it.. 

What makes the manual for the Mark I ASCC worthy of study as a technical 

document? The Mark I ASCC was the first American digital computer (Beyer 48). The Manual 

of Operation functions not just as an explanatory document, but also as a historical record of the 

machine itself (for example, Markel 13). Chapter III, Electrical Circuits, is of particular use to 

modern technical communicators decoding extinct hardware entirely from its documentation—it 

not only details the major physical components of the machine, but also explains how the 

computer solved problems, in per-cycle detail, literally down to the second (Hopper et al. Mark I 

Manual 10; 80 - 95). The manual’s detailed diagrams and photographs of the computer’s main 

components—relays and counters—help modern technical communicators understand these 

mechanisms. Relays and counters are shown disassembled, paired with labeled diagrams so that 

the interconnections of individual parts and their role in the machine can be better understood 

(Hopper et al. Mark I Manual XVI, XVII). Hopper’s discussion of the main crankshaft 

mechanism, while densely detailed, illustrates physical action of the computer, which helps 

explain in practical terms some of the hardline physical limitations on the Mark I’s processing 

speed (Hopper Mark I Manual 59, 60). Finally, the document has additional historical value as a 

substantive example of Hopper’s early work and serves to place her later work in context.  

What can Grace Hopper’s approach to this manual, considered alongside a selection 

of her other writings, teach modern technical communicators? Grace’s thorough-going 

approach to the Manual of Operation—written under crushing deadlines and wartime pressures 

at the bruising rate of five pages per day—offers inspiration and hope to student writers. Beyond 
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her practical, take-no-prisoners workmanship, Hopper exhibited several additional strengths as a 

writer on the ASCC project. From the beginning, Grace ensured that the audience had sufficient 

historical and practical context for novel concepts, made certain to deliver multiple examples of 

each equation and coding type throughout, and always addressed instructions in terms of the 

audience’s task necessities and future goals.  

Hopper’s work on the Mark I ASCC manual also leaves inspiration and instruction for 

future technical communicators in that the manual exhibited several features with room for 

improvement. Conciseness is the largest of these, and the favored modern approach: brevity is 

the manual’s weakest feature. To improve conciseness, Hopper could have benefitted 

enormously from greater use of lists, use of positive constructions, and the elimination of extra 

prepositional phrases (Markel 14, 223, 237, 238; Carroll et al. 127, 129; Ganier 15, 18.) More 

thorough use of headings would have further offloaded the need for full-text description, as 

would additional manipulation of “mixed” diagram and document text (Markel 206; Ganier 18). 

Research has shown that these approaches reduce cognitive load for new users and decrease their 

“starting up” time when learning a new technology, software, or other device—and also would 

have distilled Hopper’s writing while reducing its tonnage (Carroll et al. 128). 

Hopper’s collaborative articles with Aiken for Electrical Engineering did more than 

simply summarize the Mark I ASCC manual: these articles addressed the practical concerns and 

concepts necessary to hardware operation, as well as general principles for planning and 

executing software independently. The articles also left procedural writing guidelines for 

programmers looking to utilize the Mark I ASCC themselves. By providing compact, single 

examples of program logic and illustrating specific mathematical solutions in detail, Hopper 

concretized the subject in ways of interest to engineers and operators, stressing utility, 
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conceptual mastery, and practical solutions (Aiken and Hopper ASSC I 389, 390; Aiken and 

Hopper ASCC III 325).  

 “The Education of a Computer”, Hopper’s later work on UNIVAC architecture, is 

something of a minor classic in software circles and also the first user documentation ever for 

software compilers, the foundation of the modern computational paradigm (Beyer 10, 223). This 

article showcases Hopper’s clear evolution as a technical writer: here, we see extensive use of 

lists and “mixed” text and diagrams to communicate a wealth of conceptual information quickly 

over the span of two pages, the addition of brief orienting information before diving into 

complex tasks and concepts, and lists and headings organized to support the material (Markel; 

Carrol et al.; Ganier). By this point in her career, Hopper had clearly adopted streamlined 

principles of technical documentation that are still recommended as preferred strategies today 

(Markel; Carrol et al.; Ganier; Karreman and Steehouder).  

Moreover, with “The Education of a Computer” Grace’s mastery of context and core 

concept management is in full effect: she addresses mathematicians directly from the basis of her 

experience and understanding of their needs as computer users. Knowing their needs as 

mathematicians and the potential benefits for them of using the new technology, she begins with 

their mutual foundational exigence: how to solve harder problems in less time and with greater 

ease (for example, Hopper “Education” 244). From there, she addresses the minimum 

requirements a mathematician needs to manually solve a problem and then introduces novel 

factors, such as UNIVAC itself, subroutines, and machine addressing in order of complexity, and 

highlighting multiple uses for these concepts wherever possible (for example, Hopper 

“Education” 344, 345, 349). She does so in part to stress the versatility of compiling routines and 
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the power of UNIVAC, as well as both the need for and benefits of automatic computing as an 

aim in the field (for example, Hopper “Education” 344, 347). 

Opportunities for Future Research 

In terms of addressing Grace Hopper’s strengths and weaknesses as a technical 

communicator, much initial research has been done, but more remains. For one thing, the dense 

style of the Manual of Operation ensures that intensive examination of specific writing examples 

within could fill a dissertation (for example, Hopper et al. Mark I Manual 95, 98, 145, 181).  

One of the largest areas for expansion of the current research is a more detailed and direct 

comparison of Hopper’s collaborative articles with Aiken to the Manual of Operation itself: a 

specific one-to-one comparison of certain sections may highlight areas where a practical, 

condensed emphasis assisted with instruction completion, but obscured actual technical facts 

about the machine, and vice versa. Moreover, in the final article of the Electrical Engineering 

series, Hopper gives specific advice to mathematicians preparing their own programs and  

writing tape and plugging instructions for “operators” to follow (for example, Aiken and Hopper 

ASCC 3 235). There simply was not sufficient length to cover this aspect in more detail, though 

doing so would have enriched this thesis and indeed might have strengthened its central claims. 

Future research might also position Grace Hopper’s work alongside that of more modern 

technical communicators, especially women authors of note in the user documentation field. 

Consider Carol Kaehler, author of the original Macintosh user manual in 1984. Kaehler’s 

common sense approach and accessible tone contributed to and enhanced Apple’s reputation and 

consumer presentation. Kaehler described the graphical user interface (GUI) in  familiar terms at 

a time when the notion of home computing was brand new, and explained actions as natural to 

modern users as double-clicking a mouse to a largely nontechnical novice audience who had 
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never used—and perhaps never even seen—a computer mouse before. While sentences such as 

“You can start applications and get documents, work on them, and put them away again—just by 

moving the mouse and pressing the mouse button” are friendlier and more concise than “It is 

good practice to reset a storage counter just before using it. This frequently avoids the necessity 

of [using] starting tapes and preserves quantities in the machine as long as possible,” Kaehler and 

Hopper have each done their level best to highlight useful information and explain the unknown 

in terms of its practical value (Kaehler 13; Hopper et al. Manual of Operation 109). Comparison 

of their work might thus draw a fuller portrait of women’s influence in software user 

documentation, while also charting the progression of user-friendliness and task-orientation 

across two different, but equally dynamic, frontiers of the computer age. 

Another fruitful route for potential future research should examine the rhetorical and 

ethical significance of Grace’s work more directly: consider, for example, that the Mark I was 

expressly designed to complete equations that would ensure victory in war (for example, Beyer 

30). Also, Aiken quite deliberately associated himself with Babbage’s descendants in a bid for 

increased ethos by association, itself an angle worthy of more detailed examination—particularly 

in light of Aiken’s bitter and longstanding feud with IBM director Thomas J. Watson. There 

simply was not scope here to consider neither the persuasive tenor of the manual, nor the 

interpersonal and ideological conflicts that may have shaped the larger projects of which the 

manual was a part. 

It is also worth noting that Hopper has written several more articles than are examined in this 

thesis, as well as numerous speeches and conference papers on subjects near and dear to 

technical communicators, affording rich research opportunities for examination in further detail. 

While Hopper’s work on the Manual of Operation has much to teach modern technical 
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communicators, it is but one substantive example of her work, and one from early in her 

technical communication career. Further study of her later work may thus provide technical 

communicators with stronger insights and lessons, as a sort of master class in preparing 

instructions the way that “Amazing Grace” would.  Indeed, instructors interested in designing 

such a class might focus on Hopper’s thorough, deft approach to establishing sufficient context 

for new problems. Those interested in modeling the weaknesses of Hopper’s writing as pitfalls to 

be avoided could easily point to conciseness and accessibility as areas with room for 

improvement. By incorporating other milestones from Hopper’s work—including more than 

there were room or scope to examine in this thesis—interested instructors would have no 

shortage of examples from which to begin outlining either a tailored course plan or an avenue of 

further research. 

In conclusion, Grace Hopper’s experience and qualifications alone do not make her an 

excellent technical writer. Instead, it is her clear command of grammar and form, her 

understanding of her core audience’s needs, and her tireless effort to drill in multiple examples 

and highlight several uses for each bit of information she teaches that shines forth from a study 

of her work. With a forthright approach, scrupulously exact grammar, and a powerful store of 

direct knowledge to draw from, Rear Admiral Grace Brewster Murray Hopper is a technical 

communication powerhouse—one who should be more widely read and better appreciated. 
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