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Summary

This thesis concerns the response of two-dimensional foams to applied shear based

on numerical simulations in the quasistatic limit. The effect of liquid fraction and area-

disorder on the discrete topological changes (T1s) which occur as a foam flows are

probed at several length scales and related to the response of the ordered hexagonal

honeycomb.

At the macroscopic scale, many T1s combine and the yielding of the foam can

be characterized through the harmonics of the stress. Stress harmonics obtained from

simulations of dry two-dimensional foams are in good agreement with experimental

data for foams and other yield stress materials.

At the mesoscopic scale, several T1s occur in a certain region of the foam causing

the flow to localize in a region of width proportional to the square root of area-disorder.

For dry two-dimensional foams I present a one-dimensional measure and a tensorial

measure of foam structure which can identify the localized region from a single still

image. The width of the localized region increases linearly with liquid fraction and for

sufficiently high values of liquid fraction and area-disorder, the T1s fill the channel and

no localization is observed.

At the microscopic scale, the links between neighbouring bubbles define a pair of

orientations that characterize the local bubble configurations at the instant of a T1.

Macroscopic flow behaviour originates at the microscopic scale and I show that the

yield stress is directly related to the orientation of the T1 events.

Liquid fraction and area-disorder have, in general, the same effect at each length

scale. The yield stress decreases with increasing liquid fraction and area-disorder; and

the amount of flowing foam and the orientations of a T1 increase with increasing liquid

fraction and area-disorder. The response of disordered foams is shown to be different

to that of ordered foams in each case.
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Chapter 1

Introduction

Foams are complex fluids which have wide ranging application, both industrial and

commercial. They consist of gas bubbles dispersed in liquid. The films, which separate

the bubbles, meet at channels called Plateau borders [1] which themselves meet at ver-

tices called Plateau border junctions (figure 1.1). This simple local structure can lead to

complex dynamic phenomena, which can be split into four broad categories:

• Foam drainage, which is the study of how the liquid flows through the Plateau

border network and films under gravity. If flow is assumed to be through the

Plateau borders only and of Poiseuille type then the following drainage equation

can be derived [3]:

∂φ

∂t̄
+
∂

∂z

(

φ2 −
√
φ

2

∂φ

∂z

)

= 0, (1.1)

where φ, t̄ and z are dimensionless parameters representing liquid fraction, time

(the time-scale is set by the liquid viscosity) and vertical position respectively.

This equation may be used, for example, to find the equilibrium distribution of

liquid in a foam.

• Coarsening, in which gas diffuses from one bubble to another through the liquid

films, driven by the pressure difference between bubbles. The rate of change

1



Chapter 1. Introduction

Plateau border

Plateau border

film

junction (vertex)

Figure 1.1: Three-dimensional foam structure (adapted from [2]): Films (transparent)

meet at Plateau borders which themselves meet at Plateau border junctions.

of bubble volume with time can be expressed exactly in terms of a measure of

the bubble’s linear size (an average of chord lengths) and the total length of the

surrounding Plateau border network [4]. In two dimensions, the rate of change of

bubble area, A, with time, t, is given by the von Neumann law [5, referenced in

2]:

dA

dt
= k(n − 6) (1.2)

where n is the number of sides of the bubble and k a constant.

• Film rupture / foam collapse, the study of what causes films to rupture, bubbles

to coalesce and ultimately a foam to fracture and collapse. Rupture is typically

attributed to films becoming too thin, perhaps because of being stretched [6] or

as liquid drains from them [7] or evaporates, or as a result of the presence of

2



Chapter 1. Introduction

antifoam particles [8].

• Rheology, which concerns the flow of the foam and the movement of individ-

ual bubbles. Foams exhibit both solid-like and liquid-like behaviour due to their

peculiar local structure, possessing elastic, plastic and viscous properties which

make them useful prototypical systems for studying complex fluids such as pastes,

gels and emulsions.

Each aspect plays an important role in different situations. This thesis concerns the

flow (rheology) of foams. Numerical bubble-scale simulations are performed in order

to predict their properties and mechanical response. In particular, I shall examine the

effect of the liquid content and the level of disorder of a foam on the structural changes

which occur as it flows. The structural changes at small length scale in turn affect the

phenomena of yielding and shear banding at larger length scales.

1.1 Motivation

Foams are familiar to us all. We encounter them daily, whether it be while grooming

in the bathroom, washing the dirty dishes or sitting on our padded office chair. Whilst

foams are used in many everyday situations, their applications in industry are also ex-

tensive. Examples of foam use include:

• Fire fighting

The lower density of foams compared to liquid is one aspect that makes them

useful for fighting fires, particularly those involving liquids [9]. In circumstances

where addition of liquid to cool the fire would aid the spreading of the fire, foams

are able to form a layer on top of the burning liquid, both cooling the fire and

denying it oxygen.

3



Chapter 1. Introduction

• Enhanced Oil Recovery

Foams are injected into oil reservoirs to improve the efficiency of oil recovery

in one of two ways [10]. Foam can be used to plug regions of the reservoir

which are unproductive or from which oil has already been extracted. A second,

more ambitious approach, involves creating large foam-filled regions within the

oil reservoir in order to redirect the flow of the injected liquid by exploiting the

foam’s yield stress.

• Separation of precious minerals from ores

Minerals can be separated from extracted ores through the process of foam flota-

tion [11]. Air is pumped into a solution containing the minerals to be separated.

With the right mixture of chemicals, the desired mineral is attracted to the air

bubbles which form a foam at the top of the liquid and the undesired compounds

are left in the solution. The process may be repeated if required.

• Personal care and drug products

A foaming property in personal care products often shows no evidence of increas-

ing the product’s efficiency but is nevertheless demanded by the consumer and is

therefore an important consideration for the manufacturer [12]. Shaving foam

is a good example of a product where a foaming property is expected from the

consumer, but there is good evidence that a non-foaming gel will perform all the

tasks required from a shaving foam with equal efficiency. A foaming property is

useful however for drug products which require injection into a body cavity since

the foam increases the probability that the drug will come into contact with all

surfaces needing treatment.

• Wet processing in the textile industry

Foams are used in place of liquids in processes such as dyeing, printing and fin-

4



Chapter 1. Introduction

ishing of textiles to cover a greater area of the fabric, using less liquid, leading to

greater savings and shorter drying times [13].

There are also many examples of solid foams that are fabricated from liquid precursors,

including metals and foods, which were liquid foams at one stage of manufacture.

Such a vast and growing number of applications pose questions regarding the dy-

namics of foams. During enhanced oil recovery, foams flow through porous rock, and

there are many instances where a foam must flow through a pipe e.g. in firefighting, food

manufacture and after the foam is collected from flotation. Predicting foam response

in these situations is useful and requires an understanding of how a foam responds to

applied stresses. To probe the effect of an applied stress on the flow of a foam, I perform

simulations in a simplified geometry, where a foam sample is placed between parallel

walls and sheared by moving one of these walls.

1.2 Foam fundamentals

1.2.1 Structure and liquid fraction

Aqueous or, more generally, liquid foams consist of gas bubbles dispersed in liquid.

They bear many similarities to emulsions, which comprise one liquid dispersed within

another continuous liquid. The gas is sometimes referred to as the dispersed phase,

and the liquid as the continuous phase. The volume fraction of the liquid phase, φl,

characterizes the amount of liquid present in the foam. The gas fraction, φg = 1 − φl

may also be used but I use the liquid fraction throughout.

Whilst the macroscopic behaviour of foams is complex, the bubble scale structure is

remarkably simple. Each film minimizes its surface energy which is equal to the product

of surface area and surface tension, γ, and is made up of two air-liquid interfaces which

5



Chapter 1. Introduction

have mean curvature

κ =
1

2

(

1

r1

+
1

r2

)

(1.3)

where r1 and r2 are the principal radii of curvature. The pressure difference across each

film, ∆P, is given by the Laplace-Young law [2], taking into account that a film consists

of two air-liquid interfaces:

∆P = 2γκ. (1.4)

Plateau [1] established the following rules for a dry foam (the limit φl → 0) at equilib-

rium from empirical observation:

• Three films meet at angles of 120◦ creating liquid channels called Plateau borders.

• Plateau borders meet fourfold at Plateau border junctions at tetrahedral angles,

cos−1(−1/3) ≈ 109.47◦.

These rules were proved by Taylor [14] to arise as a consequence of minimization of

surface energy.

The Plateau borders form a continuous network of liquid and at low liquid fraction,

the liquid is contained mainly in the Plateau borders. As the liquid fraction increases,

the Plateau borders become shorter and thicker, Plateau border junctions swell and then

merge. Strictly speaking, Plateau’s laws only apply in the dry limit, but they are a good

approximation at low liquid fraction, where only threefold Plateau borders and fourfold

Plateau border junctions are present [15], At a critical high liquid fraction, at what is

known as the rigidity-loss transition (φl ≈ 0.36 [16–18]), there is a transition from a

foam to a bubbly liquid. As a consequence, foam simulation has proved increasingly

difficult either as the liquid fraction is increased from the dry limit [19–21] or decreased

from the rigidity-loss transition [16; 22–24], and many studies are restricted either to the

dry limit or to the wet limit, leaving the intermediate range of liquid fraction relatively

unexplored.

6
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A foam structure can also be described statistically. Early work by Matzke [25]

found that pentagonal films were most common in a monodisperse foam (those where

the volume of each bubble is equal) and the average number of films per bubble was

13.70. Simulations by Kraynik et al. [26; 27] were in good agreement and extended

the study to polydisperse foams (those with bubbles of different volume). They found

that the number of films per bubble decreased with increasing polydispersity and that

the average number of sides to a film also decreases with increasing polydispersity.

1.2.2 Two-dimensional foams

Three-dimensional foams are challenging to study both computationally [26–28] and

experimentally [29]. Accurately seeing inside the foam is a significant obstacle for ex-

perimentalists, whilst the complexity of the algorithms involved (e.g. in implementing

changes in topology), coupled with the high demand on computer power and memory,

limits the extent of numerical simulation. Working in two dimensions provides many

simplifications, whilst still providing useful information about foam response [16; 19–

24; 30–43]. Although promoted as a recent technique, and certainly used to good effect

in the last ten to fifteen years, the idea is approaching its centenary. There are currently

three main methods of realizing a two-dimensional foam experimentally (figure 1.2),

sometimes referred to as quasi-two-dimensional foams:

• A single layer of bubbles floating freely on a liquid pool, known as a Bragg bubble

raft (LA) [44], promoted recently by Dennin and co-workers [45–56].

• A single layer of bubbles is confined between two glass plates, known as a Hele-

Shaw cell (GG) [57], used in recent years by Debrégeas and co-workers [40; 58;

59] and Raufaste et al. [60].

• A hybrid method in which a single layer of bubbles is confined between a liquid

7



Chapter 1. Introduction

pool and a glass plate (LG) [61–63], recently utilized by Katgert et al. [64; 65],

Dennin and co-workers [45; 49] and Graner and co-workers [66–69]

Advantages of two-dimensional experiments include the ability to see each bubble and

track its position and shape using image analysis. The disadvantage is that additional

effects arise as a consequence of the confinement. It has been demonstrated that the

external friction introduced between the glass plates and the bubbles has a significant

effect on the flow of the bubbles which must be taken into account [24; 43; 49; 64; 65;

70; 71].

Surfactants (e.g. washing up liquid) are introduced to lower the surface tension of

the liquid and stabilize the foam. Surfactant molecules have a hydrophobic head and

a hydrophilic tail, causing them to line the air-liquid interfaces and help prevent film

rupture. As in three dimensions, the chemistry of the surfactant solution can have a

large effect on foam response, since it changes the local boundary conditions for flow

[72].

In two dimensions, the mathematical idealization of a dry foam at equilibrium is that

films are circular arcs which meet threefold at 120◦ angles at point vertices representing

Plateau borders which are perpendicular to the plane of the foam. Figure 1.3 (a) and (b)

show the similarity in appearance between a quasi-two-dimensional foam, in this case

a Hele-Shaw cell (GG), and the mathematical idealization of a two-dimensional foam.

The actual structure of an ordered quasi-two-dimensional foam in a Hele-Shaw cell can

be seen in figure 1.2 (b) (ii). With only one finite radius of curvature, r, the curvature is

given by κ = 1/r and the Laplace-Young law reduces to

∆P =
2γ

r
. (1.5)

8
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(a)

Liquid Pool Glass Plate

Glass Plate Glass Plate

Liquid Pool

(b)

(i) (ii) (iii)

Figure 1.2: Quasi-two-dimensional foams: realizations of two-dimensional foams for

experiment from different perspectives courtesy of (a) Vaz & Cox [73] and (b) Cox &

Janiaud [74]. (i) A single layer of bubbles floating on a liquid pool (LA). (ii) A single

layer of bubbles confined between glass plates (GG). (iii) A single layer of bubbles

confined between a liquid pool and a glass plate (LG).

This implies that each film has constant mean curvature, so that it must be an arc of a

circle. The surface energy is given by the line tension of the films multiplied by their

length and, as in the three-dimensional case, the threefold vertices with 120◦ angles

arise as a consequence of minimization of this energy.

At finite liquid fraction, Plateau borders are no longer points but have finite size

(figure 1.3 (c) and (d)). There is a 0◦ contact angle (i.e. a smooth transition) between

the air-liquid interfaces forming a Plateau border and the air-liquid-air interfaces sep-

arating bubbles. The decoration theorem [2] states that if an equilibrium dry foam is

‘decorated’ with threefold Plateau borders such that the Plateau borders do not touch,

then the result is an equilibrium (“wet”) foam with finite liquid fraction. As a result, the

dry foam limit can be used as an approximation of a low but finite liquid fraction.

9
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(a) (b)

(c) (d)

Figure 1.3: (a) A quasi-two-dimensional foam (GG) used in experiment (picture cour-

tesy of S. A. Jones). (b) The mathematical idealization of a dry two-dimensional foam:

three films meet at 120◦ angles at point vertices representing Plateau borders. (c) At

finite liquid fraction, Plateau borders have finite cross-section and must be included ex-

plicitly in the mathematical model. (d) Close-up of a single Plateau border. The contact

angle where air-liquid interfaces meet air-liquid-air interfaces is 0◦.

10



Chapter 1. Introduction

Figure 1.4: A T1 topological rearrangement (picture courtesy of Cox et al. [41]), a

fundamental process in the flow of foams. Bubbles change neighbours as a film shrinks

to zero length, to be replaced by a new film with different orientation and connectivity.

1.2.3 Topological changes

Foams dissipate energy through discrete changes in topology, which are a manifesta-

tion of plasticity. There are several types of topological change in three dimensions but

the crucial topological change allowing the flow of a two-dimensional foam is the T1

topological change (figure 1.4) [75]. As a film shrinks to zero length, an unstable four-

fold vertex is formed, which dissociates into two new threefold vertices. The topology

(number of neighbours, loosely speaking) of the bubbles involved has changed. Bub-

bles that were nearest neighbours before the T1 become next nearest neighbours and

vice-versa.

1.2.4 Disorder

The disorder of a foam can be characterized in terms of volumetric (area in two di-

mensions) or topological dispersity. A hexagonal (honeycomb) structure is perfectly

ordered: it has all bubbles areas equal (zero area-disorder) and all bubbles have six

sides (zero topological disorder). If the plane is partitioned into regions of equal area,

the partition that has least perimeter is the hexagonal structure [76], i.e. the hexagonal

foam is the monodisperse foam of minimum energy. Hexagonal foams therefore pro-

vide a good starting point for the study of foams [30; 32; 34; 35], but are not always

representative of real, disordered foams.

11



Chapter 1. Introduction

The second moment of the distribution of the areas of the bubbles is often used to

quantify the level of disorder in a two-dimensional foam [69; 77], here normalized by

the square of average bubble area:

µA
2 =

〈(

A

〈A〉 − 1

)2〉

, (1.6)

where A is the bubble area and 〈.〉 denotes an average over an entire foam sample. It is

representative of how far a foam sample is from being monodisperse foam.

The topological disorder, i.e. the deviation from a fully hexagonal sample, can be

characterized by the second moment of the distribution of the number of neighbours per

bubble, n:

µn
2 = 〈(n − 6)2〉. (1.7)

Quilliet et al. [69] show that both measures are correlated if a foam is annealed through

several oscillatory shear cycles to a deep energy minimum. T1 topological rearrange-

ments cause µn
2

to fluctuate, whilst µA
2

is often constant over the timescale of an exper-

iment, or fixed in theoretical calculations. Since this will be the case in what follows

(i.e. there will be no coarsening or film rupture), I will use µA
2

to describe the level of

foam disorder.

1.2.5 Confining geometries

Experimental and theoretical studies of foams in two dimensions are performed under a

wide variety of geometries with different boundary conditions and it will be beneficial

to take a moment to define them (figure 1.5):

• Linear Couette shear describes the confinement of bubbles between parallel

walls. Where the walls end there can be an open pool of bubbles (experiment)

or a periodic boundary condition (theory and simulation). If the foam sample is
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Chapter 1. Introduction

large enough, this has the effect of having a foam of infinite length and eliminates

many artifacts arising from having a foam of finite length. The foam is sheared

by moving either wall, or both walls in opposite directions [16; 22; 39–41; 71].

• Cylindrical Couette shear refers to the confinement of bubbles between concen-

tric cylinders. Again, the foam is sheared by moving either wall, or both walls in

opposite directions [40; 50–56; 58; 59; 64; 70].

• Fully periodic shear is possible in simulation or continuum theory only. It refers

to a foam sample (a representative element) with periodic boundary conditions

in both the x and y directions (figure 1.6), and is essentially an infinite sample

and is therefore useful while trying to eliminate boundary effects. It can therefore

be thought of as a section of foam in the middle of a very large foam, far from

any boundaries. Films crossing periodic boundaries (dashed lines) reappear at

the opposite boundary. Care must be taken however to avoid introducing artifacts

through having too small a sample. Shear is introduced by changing the shape of

the periodic box [30; 37; 38; 43; 77; 78].

• Pure shear describes a foam which is wholly confined between two sets of par-

allel walls [66; 69; 79; 80].

1.3 Rheology of foams

Foams are elasto-visco-plastic complex fluids which exhibit rich flow behaviour that

remains to be fully understood [81]. The strain, a measure of the relative deformation

of the foam, and the stress, the force per unit area within the foam, have an intricate

relationship. Foams respond like elastic solids to small applied strains, with shear stress

proportional to applied strain via a shear modulus, G. As the applied strain is increased

13
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(a) (b)

(c)
(d)

x

y

Figure 1.5: Two-dimensional foam studies use the following main geometries, solid

lines represent solid boundaries and lightly dashed lines represent boundaries which

may be periodic. (a) Linear Couette: The foam sample is placed between parallel walls

and sheared by moving either or both walls. In theoretical or numerical work, periodic

boundary conditions may be employed at the ends of the channel. (b) Cylindrical Cou-

ette: The foam sample is confined between concentric cylinders and sheared by moving

either or both walls. (c) Fully periodic boundary conditions: The foam is fully periodic

in both the x and y directions. The foam is sheared by changing the shape of the periodic

box (figure 1.6). This method is possible with numerical or theoretical work only. (d)

Pure shear: The foam is confined by two sets of parallel walls and sheared by moving

three of the walls e.g. to a position shown by the bold dashed line.
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Figure 1.6: A representative element with periodic boundary conditions: Vertices or

films crossing a periodic boundary (dashed) reappear at the opposite boundary. The

same portion of foam is repeated endlessly, with the effect of creating a very large

foam with relatively few bubbles, eliminating the need for a solid boundary which may

affect the behaviour of the bubbles. The foam can be sheared by changing the periodic

boundary conditions, creating a parallelogram, forcing the foam to respond to restore

equilibrium.
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they undergo plastic structural changes and at high rates of shear they flow like viscous

liquids.

The elasticity arises from the increase in surface area in response to an applied strain

[82]. The shear modulus scales with interfacial area per unit volume (perimeter per unit

area in two dimensions) [83; 84] and in two dimensions has been shown to decrease

with increasing area-disorder [77]. The shear modulus of both foams and emulsions

decreases with increasing liquid fraction [17; 18; 21] and vanishes at the rigidity-loss

transition (φl ≈ 0.36) [16].

As the applied strain is increased, foams dissipate energy through discrete plastic

changes in topology (T1s), during which bubbles change neighbours. T1 transitions in

three-dimensions are complex [84; 85] but there is only one kind in two dimensions,

described in section 1.2.3. With further applied strain, T1s occur with greater frequency,

in proportion to the applied strain [37; 86], the shear stress exceeds a critical yield stress

and the foam flows like a non-Newtonian viscous liquid. Other mechanisms of energy

dissipation include viscous dissipation as the films stretch [33; 35; 87] or relax after a

topological change [88]. Energy is also dissipated as the liquid in the Plateau borders is

sheared as the bubbles slide past each other [16; 89] or along a bounding glass plate in

a quasi-two-dimensional experiment [24; 42; 71].

The yield stress, τy, of foams has been studied by many authors. It has been shown

to decrease with increasing liquid fraction in experiment [17], in numerical work with

two-dimensional ordered foams [30] and in simulations of disordered foams under ex-

tensional shear [21]. Like the shear modulus, the yield stress vanishes at the rigidity-loss

transition where the foam loses any solid-like characteristics and is better described as

a bubbly liquid.

After the foam yields, it flows as a fluid with effective viscosity orders of magni-

tude greater than that of the liquid phase [90; 91]. Experimental data of the velocity
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profiles of two-dimensional foams has been fitted to the Herschel-Bulkley [92] consti-

tutive relation (or a slight variation) for the stress, τ, by some authors [55; 64]. The

Herschel-Bulkley model is given by

γ̇ = 0 for τ < τy

τ = τy + ξHγ̇
nH for τ > τy

(1.8)

where ξH and nH are material parameters. Others observe a flow profile consistent with

shear-thinning power law behaviour [56] and no yield stress:

τ = ξPγ̇
np (1.9)

where ξP and nP are material parameters. The absence of a yield stress in this case is

surprising given that foams are yield stress fluids. Several authors have observed co-

existing regions of flowing and static foam, where the flowing region is consistent with

flow profiles of either a power law fluid [54] or flow profiles which decay exponentially

with increasing distance from the moving wall [59].

Observations in three-dimensions in the parallel plate geometry have shown fluctu-

ating velocity profiles [29] whilst others have found discontinuous flow profiles [93; 94]

in the cylindrical Couette geometry. Each study is different and a comprehensive picture

of the flowing nature of foams remains elusive, though recent advances in continuum

theory and numerical simulations [24; 70; 71] can explain many experimental observa-

tions in terms of the external friction present in two-dimensional experiments.

Models of continuum foam rheology aim to incorporate all components of foam

response [71; 95; 96] by averaging macroscopic quantities over regions of the foam

sample. They have proved successful in capturing many aspects of foam response, in-

cluding shear localization in the presence of external dissipation or a non-homogeneous
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stress profile, but none have predicted coexisting flowing and static regions in the ab-

sence of either of these factors; nonetheless, localization has been observed in quasi-

static bubble-scale simulations of foam rheology in linear Couette shear [40]. Recent

developments with a continuum model [97] suggest that a non-monatonic relationship

between stress and applied strain could account for the localization in these cases but

the discrete nature of the bubbles play a role in the foam rheology and it is not always

clear when the foam may be treated as a continuum fluid and when it must be regarded

as a discrete system. For example, recent work by Goyon et al. [98] with concentrated

emulsions demonstrated that below the jamming point (i.e. concentrations of the con-

tinuous phase above the rigidity-loss transition) flow curves relating local shear rate to

local shear stress for emulsions in a wide gap Couette viscometer superimpose onto the

same master curve for different applied torques. The same was observed in a narrow

microchannel with different pressure drops. Furthermore, the flow curves are well de-

scribed by the Herschel-Bulkley model (equation (1.8)). However, above the jamming

point, whilst the Herschel-Bulkley model was able to reproduce the flow curves for the

cylindrical Couette geometry, the flow curves from the narrow microchannel no longer

fell onto a master curve and the Herschel-Bulkley model fails.

1.4 Summary

Foams are widely used commercially and industrially. Their simple local structure leads

to complex flow behaviour which is not yet fully understood. Investigation of foam

behaviour can be simplified by restricting the number of dimensions to two, whilst still

obtaining meaningful information about foam behaviour.

At low stresses foams deform elastically. At stresses above the yield stress, foams

flow through irreversible topological changes and in some instances regions of flowing
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and static foam coexist. The focus of this thesis is to investigate, through numerical

simulation, the effect of liquid fraction and area-disorder on the T1 topological changes

and the resulting effect on the yielding and flow of a two-dimensional foam. Bubble-

scale simulations are used since this will allow precise control over the liquid fraction

and area-disorder and allow the location of the T1s to be recorded, which is not possible

using continuum models.

The thesis will proceed as follows. Methods of foam simulation are reviewed in

Chapter 2. The merits of each method are presented and my chosen method described

in detail. The yield stress of a foam has been shown in different situations to depend

on liquid fraction, I consider the effects of liquid fraction and area-disorder on the yield

stress in linear Couette shear and probe the solid-liquid transition through oscillatory

shear simulations in Chapter 3.

The yielding occurs as a macroscopic manifestation of many T1s. Initially T1s

occur without any apparent spatial pattern, but it has been shown in experiments using

a wide gap Couette viscometer [54; 59] and also in linear Couette shear in the presence

of external friction [49; 64; 65], that after this initial transient, the T1s become localized

in a band. The result is coexisting regions of flowing and static foam, often referred to

as shear banding or shear localization. The occurrence of, and explanations for, shear

banding form a controversial topic. Some argue that the shear banding arises as a result

of introducing external friction through bounding glass plates [49; 71] whilst others

have observed shear banding in the absence of external friction in simulation [40] or in

the bulk of a three-dimensional foam [29]. I show in Chapter 4 that results that seem

conflicting need not be contradictory, since there are other factors, namely area-disorder

and liquid fraction, which influence shear localization in foams. I will also consider the

flow of the bubbles in localized flows and identify structural features which characterize

regions of flowing and static foam.
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Finally in Chapter 5 I consider the local configuration of bubbles undergoing topo-

logical changes. A pair of orientations can be associated to each T1, relative to the

direction of shear, which describes the local configuration of bubbles undergoing plas-

tic rearrangement. It has been demonstrated that T1s have preferred orientations [46],

suggesting specific local geometric configurations when bubbles undergo a T1. I con-

sider the effect of liquid fraction and area-disorder on the orientation of T1 events and

relate it to foam yielding and shear localization.

Parts of this thesis have been published [99; 100] and others are being prepared for

publication [101; 102].
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Chapter 2

Methods of foam simulation

2.1 Introduction

Simulations of foam rheology take many forms, with different methods appropriate in

different situations. The significant choices to be made are based on an estimate of

appropriate liquid fraction, rate of applied shear, accuracy in representing the foam

structure, boundary conditions and computational time. A study of coarsening might

require tens of thousands of bubbles to obtain adequate statistics, but the accuracy of the

foam structure is less important and therefore it would be beneficial to choose a method

which sacrifices structural accuracy for shorter computation time. On the other hand,

in a rheological simulation, accurate control of liquid fraction and disorder may be re-

quired to study their role and therefore a smaller foam sample will be used and longer

computation times tolerated. My chosen methods are based on a quasistatic assump-

tion, in which the timescale at which the foam returns to equilibrium is shorter than all

other timescales, and is implemented in the Surface Evolver software [103]. I begin by

discussing the features of the most commonly used models for two-dimensional foam

rheology, many of which have their three-dimensional counterparts, before highlighting

the advantages of my chosen methods and describing them in detail.
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Chapter 2. Methods of foam simulation

2.2 Two-dimensional foam rheology simulation

A description of common simulation methods follows. The methods vary in terms of

the approximations made and the amount of computational time required to run simu-

lations. All methods described are poor approximations in comparison to the hydrody-

namic simulations of Higdon [104] and Li et al. [105]. These methods involve solving

the Stokes equation for the flow within each phase. In the work of Li et al. [105] the

case of a fully periodic hexagonal foam is considered and the equations governing the

flow are solved exactly subject to the assumption of a low Reynolds number. These cal-

culations are time consuming and Higdon and co workers have developed algorithms

with improved efficiency but even so using these methods would require too much com-

putational time for the system sizes generally required for studies of foam rheology.

Simulations of foam rheology fall into two categories; those performed in the qua-

sistatic limit and those which are not. As mentioned in the introduction, the underlying

assumption of quasistatic foam simulation is that the timescale for the relaxation of the

foam system is shorter than any others and therefore at any instant the foam can be

considered to be in an equilibrium configuration. Foam simulation now becomes an op-

timization problem, where the minimum energy configuration of the system is sought.

With the foam at equilibrium, it can be described precisely as circular arcs meeting

threefold at point vertices at 120◦ angles. This aids simulation methods since it is a

quick way of satisfying the Laplace-Young law introduced in Chapter 1, although not

all quasistatic methods, e.g. the Q-Potts model, utilize this property. Rheological sim-

ulations are performed by imposing small perturbations on the foam system and then

relaxing it to find a new equilibrium state; therefore the foam passes through a sequence

of equilibrium configurations. The interpretation of the quasistatic assumption then is

that the rate of relaxation of the foam system is much faster than any other mecha-

nisms like shear or coarsening. It may also be useful to think of the foam as moving
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Figure 2.1: Quasistatic methods: (a) Typical output from the 2D-Froth method or Sur-

face Evolver methods where the foam structure is accurately represented as circular arcs

meeting threefold at vertices. (b) Typical output from PLAT or from Surface Evolver

methods extended to include the Plateau borders. (c) The large Q-Potts model uses rec-

tangular lattice sites to approximate the foam structure. Each group of sites with the

same number represents a bubble.

infinitesimally slowly.

Non-quasistatic methods make sacrifices, usually in terms of structural resolution

or computational time, to allow the inclusion of viscous dissipation. Such sacrifices are

necessary since the structure of the foam no longer has a simple description when not at

equilibrium. With dissipation included in the models, strain-rate dependent effects can

be considered.

2.2.1 Quasistatic methods

2.2.1.1 2D-Froth

The 2D-Froth method of Kermode and Weaire [106] represents a foam system as circu-

lar arcs meeting threefold at vertices (figure 2.1 (a)). An equilibrium configuration of

the foam satisfying Plateau’s laws and the Laplace-Young law (see Chapter 1) is found

by relaxing the foam in the local vicinity of each vertex in turn, until convergence is

achieved. The method has been used with fully periodic boundary conditions to study

coarsening [31], extensional shear [107] and simple shear [108]. A variation of the

model was implemented by Herdtle and Aref [109] in the context of coarsening.
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2.2.1.2 PLAT

PLAT is the extension of the 2D-Froth model by Weaire and co-workers to explicitly

include the Plateau borders [20; 21; 36] and simulate wet two-dimensional foams (fig-

ure 2.1 (b)). There are two types of interfaces, which are represented as circular arcs,

one separating adjacent bubbles and another separating bubbles and Plateau borders.

A vertex now defines the point at which different types of interface meet. An equilib-

rium configuration is found in a similar way to that of the 2D-Froth method, with the

pressure assumed to be the same throughout the liquid phase. The method has been

used to study the rigidity-loss transition and properties of random wet foams through

extensional shear of a fully periodic two-dimensional foam.

2.2.1.3 Large Q-Potts model

The large Q-Potts model uses a rectangular lattice divided into domains to describe a

foam (figure 2.1 (c)). Each lattice site is assigned an integer value according to which

bubble that site belongs to, and each group of lattice sites with the same number consti-

tutes a bubble. The interfaces between lattice sites of differing values serve as the films

between bubbles. The total energy of the foam is given by a Hamiltonian, which can

be extended to enable shear of the foam [39]. The Monte Carlo simulation procedure

using a modified Metropolis algorithm [110] proceeds by reassigning lattice sites if the

change would result in a decrease in the energy of the system. Only lattice sites at an

interface are tested and lattice sites are only reassigned to a neighbouring lattice site.

The model has also been used by Raufaste et al [67] to simulate a Stokes experiment,

in which foam flows around an obstacle, to study coarsening by Thomas et al. [80]

and Glazier et al [111], and to study drainage by Jiang and Glazier [112]. Attempts

have been made to extend the model beyond the quasistatic limit but results remain

unconvincing [39].
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2.2.1.4 Surface Evolver methods

The Surface Evolver [103] is free software for minimizing the energy of surfaces and

is described in detail in section 2.4. It provides the necessary framework within which

to perform quasistatic simulation of both dry and wet foams (figure 2.1 (a) and (b)),

namely the capacity to accurately represent and subsequently view foam structures and

a means to evolve toward an equilibrium configuration through the global minimization

of surface energy. This differs from the approach of 2D-Froth and PLAT where foam

structures are computed by local equilibration of the structure. Potential differences

between the methods of equilibration may come to light by comparing the distribution

of the number of sides of Plateau borders as a function of liquid fraction. The relative

ease of use of the Surface Evolver has made it popular with many authors for studying

foam and structure [26; 27; 74], rheology [40; 41; 43; 58; 77; 80; 83; 84; 99; 113; 114]

and coarsening [78; 115] in both two and three dimensions.

2.2.2 Non-quasistatic methods

2.2.2.1 Vertex model

The Vertex model, first implemented by Fullman [116, referenced in 42] to study grain

growth in metals, was adapted by Okuzono et al. [37; 38] to study foam rheology

using periodic boundary conditions. Applicable in the dry limit (φl → 0), the foam is

approximated by modelling films as straight lines meeting threefold at vertices (figure

2.2 (a)). The foam evolves by considering the motion of the vertices. The equations of

motion for a vertex are derived from a force balance between the frictional force (e.g.

from viscous dissipation) and the potential force arising from the surface free energy of

the system. The Vertex model has also been used by Cantat & Delanney [117] to study

the migration of a large bubble in plug flow.
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(a) (b) (c)

Figure 2.2: Non-quasistatic methods. (a) Vertex model. Films are approximated by

straight lines meeting threefold at vertices. (b) A staircase structure sheared with the

Viscous Froth model. Films are not circular arcs since the foam is not at equilibrium,

but the model maintains an accurate description of the foam structure by discretizing

films into short edges. (c) The Bubble model: Bubbles are approximated as circular

discs which are allowed to overlap.

2.2.2.2 Viscous Froth model

The Viscous Froth model [42] incorporates viscous drag from bounding plates in two-

dimensional simulations by augmenting the Laplace-Young relationship between cur-

vature and bubble pressures with a drag coefficient, λd:

∆P − 2γκ = λdv (2.1)

where v is the normal velocity of the film. The model maintains an accurate description

of the foam structure by discretizing each film into a number of straight edges. The

model has been implemented in the Surface Evolver with fully periodic boundary con-

ditions [43], for staircase foam structures [43; 118] (figure 2.2 (b)) and in the cylindrical

Couette geometry [43].

2.2.2.3 Bubble model

Durian’s approach with the bubble model [16; 22] differs from the others described,

noting that in the wet limit bubbles do not deform and are circular. The foam struc-
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ture is approximated by representing each bubble as a circular disc (figure 2.2 (c)). As

the liquid fraction is decreased, discs are allowed to overlap, and repel via a one-sided

spring-like force. As a result, the approximation of the foam structure becomes increas-

ingly less realistic as the dry limit is approached. Nevertheless the bubble model still

predicts the shear modulus to a high degree of accuracy. Viscous dissipation is included

via a drag force on each disc from each neighbouring disc proportional to the veloc-

ity difference between them. Durian used the model to study linear Couette shear of

two-dimensional foams [16; 22]. The model has been extended to three dimensions by

Gardiner et al. [28; 119] to study shear and coarsening and recently Langlois et al. [24]

have extended the two-dimensional model to include external viscous dissipation from

bounding plates above and below the foam.

2.2.2.4 Lattice gas method

The lattice gas method has been implemented for foams by Sun & Hutzler [120; 121].

A fluid or gas particle is used to represent a collection of fluid or gas molecules and each

particle moves between lattice sites on a hexagonal lattice. Predefined collision rules

are applied when particles collide and each particle’s velocity is updated. The entire

range of liquid fraction is accessible up to the rigidity-loss transition. The method was

used to investigate the coordination number of a foam [120], the average number of

neighbours of a bubble, against liquid fraction and to study T1 rearrangements through

simulation of a Stokes experiment [121].

2.3 Advantages and disadvantages of methods

I employ two methods of foam simulation implemented in the Surface Evolver [103]

described in the next section. The first is for dry foams i.e. foams with liquid frac-
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tion tending to zero, and the second for wet foams, where the liquid fraction can be

varied in the range 0 < φl < 0.16. Each method is appropriate in different situations.

The dry method is less demanding of computer power and memory and therefore many

more bubbles can be simulated than with the wet method. The dry method is however

limited to effective liquid fractions up to around 0.01 (this is discussed in Chapter 3)

and is therefore not appropriate for considering the effects of varying liquid fraction.

The main advantage of the quasistatic Surface Evolver methods used here over other

methods described in the previous section is the precision with which the foam is rep-

resented. Other methods such as the Bubble model, Q-Potts model and Vertex model

make approximations to the foam structure, whilst the method used here represents the

foam structure exactly, and measured quantities such as shear stress and surface energy

are therefore precise. The most obvious disadvantage is the inability to consider strain-

rate dependent effects. In addition, these methods are relatively slow compared to those

with poorer structural resolution. Whilst the dry foam model can realistically simulate

several thousands of bubbles, the wet method is restricted to one or two hundred bub-

bles. Even the thousands possible for the dry method is small compared to the tens of

thousands possible with the Q-Potts model. It is worth noting that the software PLAT

is quicker than Surface Evolver methods, possibly because of the difference in the way

an equilibrium foam configuration is found; or because it is purpose written software.

The functionality and adaptability of the Surface Evolver makes it a more appropriate

choice in this circumstance.

There is a certain level of ambiguity associated with quasistatic simulation. Only

the final equilibrium configuration of the foam after a perturbation is of concern and

not how it was attained. It is therefore possible to have more than one valid equilib-

rium configuration after a perturbation, depending on the minimization algorithm used.

Whilst this is not ideal, it is unavoidable and I perform many simulations in order to
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obtain an overall picture of foam response as opposed to relying heavily on the out-

come of individual simulations. I note that similar obstacles arise in foam experiments

where foam properties can be history dependant. Thus, performing a large number of

simulations or experiments might lead to important averaging.

2.4 The Surface Evolver

The Surface Evolver [103] is freely available software1 which is designed to minimize

the energy of surfaces subject to user defined constraints. The program consists of a

command window and a display window where the surface is displayed (figure 2.3).

Surfaces are constructed using vertices, edges, facets and bodies. Vertices are points in

space. Edges are lines or curves connecting vertices. Facets consist of a directed loop

of edges and bodies are collections of facets. In three dimensions, curved surfaces are

discretized by triangulation of the surface into three sided facets, which are allocated a

surface tension of one unless otherwise specified.

In two dimensions, the Surface Evolver has a mode called the STRING model in

which the surface tension resides in the edges and not the facets and it is this mode I

use for my simulations. Films can be represented precisely as circular arcs (figure 2.1

(a)) and each body is defined to have one facet which represents each bubble.

The Surface Evolver changes the surface by moving the vertices in an attempt to

minimize the energy function E. The energy function can take many forms but for the

case of a two-dimensional soap froth we have

E =
∑

i

γili +
∑

j

(

A j0 − A j

)

P j (2.2)

where the first sum is a sum over the edges, each of length li and surface tension γi, and

1The Surface Evolver can be downloaded at http://www.susqu.edu/brakke/evolver/evolver.html
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Figure 2.3: The Surface Evolver consists of a command window where instructions are

given and a display window which shows the current state of the surface.

the second sum is a sum over all bodies (representing the bubbles), with A j the current

area of body j, A j0 the target area of body j and P j is the pressure inside body j. The

second sum is to ensure that the area of each body remains close to the specified target

area. By minimizing the energy function, E, the pressure of each bubble is determined

as a Lagrange multiplier, P j [122].

The main iterative step of energy minimization in the Surface Evolver is a gradient

descent method. The negative gradient of the energy is calculated from the forces on

each vertex and the vertices are moved in the appropriate direction by a scale factor

multiplied by the force at each vertex. The Surface Evolver has other methods for

minimizing the energy. In addition to the gradient descent method I use the conjugate

gradient method and Hessian minimization. The conjugate gradient method adds an

orthogonal vector to the direction of steepest gradient before moving in a direction

roughly perpendicular to that vector. This is far more efficient than the gradient descent

method. A more direct way to find the minimum energy is to calculate the Hessian
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matrix of the energy and solve for the motion that gives zero gradient [103]. However,

care must be taken when using the Hessian, since it can be unpredictable if used too far

from a local minimum.

After each gradient descent or Hessian iteration, the total surface area and energy

of the surface is printed. If the surface tension is set to one throughout then these two

quantities are numerically equal. After a gradient descent iteration, the scale factor is

also printed. This can be set by the user or left in optimization mode.

A further important feature in the Surface Evolver is the ability to perform T1s,

described in section 1.2.3, which are fundamental to the flow of foams. Short edges

can be deleted to create fourfold vertices which can subsequently be popped: here the

Surface Evolver replaces the fourfold vertex with two threefold vertices joined by an

edge. Depending on the local configuration of edges, the new edge will either have the

same adjoining facets as the old edge (a “failed” T1), or the edge will now be between

two new facets and a T1 will have occurred.

Taking all of the above into account, the Surface Evolver provides the necessary

framework within which to conduct simulations of two-dimensional foam rheology

whilst retaining accurate structural information about the foam under consideration.

2.5 Dry foam preparation

Here I present the method used for simulating dry two-dimensional foams with liquid

fractions in the limit of φl → 0, although a non-zero liquid fraction is achievable and it

is possible to simulate foams with liquid fraction up to φl ≈ 0.01 (see below).

To create a dry foam in a channel of length L between parallel plates a distance

W apart in the Surface Evolver I begin with a Voronoi tessellation of two-dimensional

space which is periodic in the x and y directions (figure 2.4). The structure is imported
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into the Surface Evolver and peripheral edges at the top and bottom are deleted to leave a

structure which is periodic in the x direction only. Edges at the top and bottom are fixed

to constraints to create walls at y = 0 and y = W and then the structure is relaxed toward

an equilibrium configuration by minimizing the free energy of the system, E, using the

methods described in section 2.4, where each edge is given tension γ1 = 2, representing

two air-liquid interfaces each with tension 1. When an edge falls below a minimum cut-

off length, lc, it is deleted and the resulting fourfold vertex is popped resulting in a T1

topological change. The process of energy minimization and T1 initiation is repeated

until the energy of the system has converged to 16 significant figures.

To obtain a specific distribution of bubble areas, a target area can be set for each

bubble which acts as a constraint during the minimization procedure to ensure that each

bubble area will evolve toward its desired area. When using disordered foams, I allocate

the bubble areas according to a Weibull distribution with probability density function

(PDF):

f (A; β, λ) =
β

λ

(

A

λ

)β−1

e−(A/λ)β . (2.3)

λ > 0 is the scale parameter which depends on the average bubble size, λΓ(1 + 1/λ) =

〈A〉 where Γ is the Gamma function, and β > 0 is the shape parameter which determines

the area-disorder. The second moment of this distribution is [99]

µA
2 =
Γ
(

1 + 2
β

)

Γ
(

1 + 1
β

)2
− 1. (2.4)

The limit β → ∞ corresponds to a monodisperse foam (µA
2
= 0) and decreasing

β leads to foams with increasing area-disorder. In practice, monodisperse foams are

created by setting each bubble area equal to the average bubble area, 〈A〉. For β ≤ 1,

bubbles with zero area are possible therefore I keep β > 1. Since the bubble samples to

be studied are finite, the value of µA
2

calculated from the sample may differ slightly to

32



Chapter 2. Methods of foam simulation

(a) (b)

W

L x

y

(c) (d)

Figure 2.4: The procedure for creating dry foams between parallel plates in the Surface

Evolver [99]: (a) A fully periodic tessellation of two-dimensional space created by

Voronoi construction [123]. (b) Edges at the top and bottom are deleted to create a

structure which is periodic in the x direction only. (c) The peripheral edges are set

to constraints to form walls. (d) The straight line edges are converted to circular arcs

and the structure is relaxed to give an equilibrium foam configuration from which a

rheological simulation can begin.
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the value expected from the assigned distribution. The effect of varying β can be seen in

figures 2.5 and 2.6. As β → ∞ the distribution becomes narrower and the peak moves

toward the average bubble area. As β is decreased, the distribution becomes broader

with a preference toward smaller bubbles.

Although this is a method for simulating dry foams, the cut-off length, lc, is a mea-

sure of the effective liquid fraction. A T1 is initiated when two Plateau borders touch,

i.e. the length of the film joining the Plateau borders, l2, is zero (figure 2.7). lc is there-

fore the value of l1 when l2 = 0. For dry foams, the Plateau borders are very small,

and are therefore represented as point vertices, situated at their geometric centre. When

l1 = lc, this is equivalent to Plateau borders touching and a T1 is initiated. Wetter foams

have larger Plateau borders and therefore there is a smaller distance between the Plateau

borders when a T1 is initiated. With Plateau borders omitted, this is represented by hav-

ing a larger cut-off length. Cox et al. [124] derived the following relationship between

cut-off length and liquid fraction based on a hexagonal foam:

φl ≈ 0.242l2
c/ 〈A〉 . (2.5)
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 0  0.5  1  1.5  2  2.5  3

A/〈A〉

β = 1.5 (µA
2
= 0.461)

β = 3 (µA
2
= 0.132)
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2
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f(
A

;β
,λ

)

Figure 2.5: The Weibull PDF for different values of β. As β is decreased the distribu-

tions become broader and the area-disorder is increased.
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(a) β = 1.5

(b) β = 3

x

y

(c) β = 5

Figure 2.6: Dry foams of different area-disorder prepared in the Surface Evolver. The

bubble areas are allocated via a Weibull distribution with parameter β which controls

the area disorder.
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l1

l1

l2

(a) (b)

Figure 2.7: (a) For dry foams T1s are initiated when an edge falls below a cut-off length

lc. The cut-off length determines the effective liquid fraction. In real foams, T1s begin

when two Plateau borders touch (i.e. the distance between the Plateau borders, l2, is

zero), illustrated in (b).

My simulations of wet foams, described below, place an upper limit on the validity of

this method (see Chapter 3) but at low liquid fraction quantitative measurements can be

obtained.

2.6 Wet foam preparation

To simulate foams with higher liquid fraction, the liquid in the Plateau borders must be

included explicitly. With the following method it is theoretically possible to study foams

with liquid fraction in the range 0 < φl < 0.16, but my simulations will be restricted to

the range 0 < φl < 0.1 since the computation time gets very long even with relatively

few bubbles. To create a wet foam, I begin with an equilibrium dry foam structure,

created as in section 2.5, and “decorate” it with Plateau borders (using code adapted

from that supplied with the Surface Evolver source code). That is, each threefold vertex

is replaced by a three sided Plateau border. The exception is the vertices at the walls: I

changed the Surface Evolver code so that these are not decorated, in order to simplify

the numerical algorithm. The wall vertices will be fixed in the same manner as for the

dry foam simulations so that they are not in a position to undergo T1s; decorating them
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with Plateau borders would introduce unnecessary complexity. I presume that omission

of the Plateau borders at the wall will not affect the outcome of the simulation.

There are now two different types of interfaces: Air-liquid-air interfaces between

neighbouring bubbles and air-liquid interfaces between bubbles and Plateau borders

(figure 2.8). Air-liquid-air interfaces have tension γ1 as for dry foams whilst air-liquid

interfaces are given tension γ2, and the contact angle between the two different types of

interface is given by

α = cos−1

(

γ1

2γ2

)

. (2.6)

For foams, I expect γ1 = 2γ2 leading to a contact angle α of 0◦, i.e. a smooth transition,

between the two types of interface, but non-zero contact angles can arise in emulsions

[125; 126]. Setting α = 0 in my simulations is difficult in practice since the contact

angle may become negative and the Plateau border films may overlap. This configu-

ration, whilst unphysical, is energetically favourable and simulations cannot recover.

Therefore I keep the contact angle small, 1.15 < α < 11.36, and consider the effect of

changing the contact angle (see sections 3.3.2.1 and 5.2).

Initially the foam is decorated with small three-sided Plateau borders. Each Plateau

border is represented as a facet in the Surface Evolver and the facets are defined collec-

tively as one body with a target area which can be specified to set the liquid fraction.

The target areas of the bubbles are also reduced slightly to ensure that the total area of

liquid and air remains fixed. The distribution of bubble areas is therefore inherited from

the parent dry foam, and the level of disorder remains similar. If the required bubble

areas are to be different from those resulting from the Voronoi procedure, it is more

efficient to do so before introducing the Plateau borders.

The equilibrium configuration is found by minimizing the energy function in the

same manner as for dry foams. Examples of equilibrium wet foams of different liquid

fraction are shown in figure 2.9. The process for performing T1s is more difficult than
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2α

γ1

γ1

γ1

γ2

γ2

γ2

Figure 2.8: To create wet foams, point vertices in dry foams are replaced by three

sided Plateau borders. There is a contact angle, α, between air-liquid-air interfaces

separating two bubbles and air-liquid interfaces between the bubbles and the Plateau

borders, determined by their interfacial tensions, γ1, γ2.

for dry foams. When two Plateau borders touch, they merge to form a fourfold Plateau

border. This is done by removing the edge between the two threefold Plateau borders

(creating a fourfold vertex) and using the Surface Evolver’s POP DISJOIN feature to

replace the fourfold vertex with two twofold vertices which are not connected by an

edge. For each of the new twofold vertices, one of the adjoining edges is deleted to

leave a fourfold Plateau border with four edges.

Depending on the liquid fraction, this fourfold Plateau border is not necessarily

unstable (figure 2.10). It will persist until two of the Plateau border interfaces meet,

forming a new air-liquid-air interface between two threefold Plateau borders. This is

done by periodically testing each fourfold Plateau border for overlapping edges. Each

edge is a circular arc. If the distance between the centres of the two longest arcs is less
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than the sum of their radii then the arcs are split in two to form two twofold vertices.

The twofold vertices are merged to form two threefold Plateau borders sharing the new

merged vertex. This vertex is popped in the usual manner to insert a new edge between

the threefold Plateau borders.

Fourfold Plateau borders have been observed in two-dimensional simulations at

φl ≈ 0.02 [21], but are rare in unstrained foams with liquid fraction less than 0.04.

Plateau borders with five or more sides are also possible at liquid fractions greater than

approximately 0.06. I adapted this existing code [103] to deal with Plateau borders with

any number of sides by modifying it to compare each pair of Plateau border edges for

any overlap. Previously the code would have failed since Plateau borders with more

than four sides would not always be able to dissociate into two smaller Plateau borders.

2.7 Simulating shear

To simulate the linear Couette shear of either a dry or a wet foam between parallel

walls described above, I begin by fixing the vertices at the walls, in their equilibrium

positions, to create a no-slip boundary condition at the walls. This means that the

vertices will not be moved during the energy minimization process. This is a realistic

boundary condition since in many experiments sandpaper or small teeth are placed at

the walls to ensure that the first layer of bubbles does not slip.

I then apply a strain increment by moving all vertices affinely according to their

y-position (see figure 2.11 (a)) i.e. a distance

δx =
y

W
δxwall (2.7)

where δxwall represents the distance the top plate has moved and W is the channel width.

Note that the vertices at the bottom plate (y = 0) do not move. The resulting increment

39



Chapter 2. Methods of foam simulation

φl = 0.005 φl = 0.03

φl = 0.05 φl = 0.09

Figure 2.9: Examples of equilibrium wet foams between parallel walls for different

values of liquid fraction, φl.
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Figure 2.10: The T1 process for a wet foam. (a) The T1 begins when two threefold

Plateau borders touch. (b) The Plateau borders merge to form a fourfold Plateau bor-

der. (c) The fourfold Plateau border is not necessarily unstable and can persist. (d)-(e)

Two Plateau border films become closer together; when they touch the fourfold Plateau

border dissociates back into two threefold Plateau borders.

in total strain is

δǫ = δxwall/W (2.8)

I then iterate to an equilibrium configuration of the foam, initiating any T1s when an

edge length falls below the minimum cut-off length, as described in sections 2.5 and

2.6.

The alternative to shearing the foam affinely is to move only the vertices at the top

plate an amount δxwall (see figure 2.11 (b)). The displacement of each vertex is given

by the following equations for boundary shear:

δx =























δxwall (y = W)

0 (y , W)

(2.9)

which results in the same increment in total strain as for applying affine shear. In the

quasistatic limit (δxwall → 0), both functions are equivalent and therefore as long as I
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δxwall δxwall

WW

y

x

(a) Affine shear (b) Boundary shear

Figure 2.11: Two methods for shearing the foam. (a) All vertices are moved an amount

proportional to their y-position. (b) Only the vertices at the boundary are moved. In

the quasistatic limit, both methods are more-or-less equivalent, but the energy of the

structure will converge in less time after shearing the foam affinely.

ensure that δxwall is small enough that I make a good approximation to the quasistatic

limit, either method may be used. The advantage of shearing the foam affinely is that

the energy converges more quickly (figure 2.14(b)).

Throughout, I perform a selection of simulations using the boundary shear method

to verify that the same range of behaviours is observed as for shearing the foam affinely.

Note that the result will never be identical to that of shearing the foam affinely due to

inherent ambiguity associated with quasistatic simulation discussed in section 2.2.1,

i.e. the sequence in which T1s occur will different in each case, but I expect the overall

range of behaviours to be the same and measured quantities like the yield stress to be

the same to within reasonable error. Figure 2.12 (a) and (b) show two foam structures

at a strain of ǫ = 3 which have been sheared with affine and boundary shear, starting

from the same initial configuration. The final configurations are different and the shear

stress versus applied strain is shown in figure 2.12 (c) for each method. In this case, the

average shear stress after the transient using the two methods differ by only 1.5% and

the maximum shear stresses differ by less than 1%.

The choice of δxwall is therefore very important since I must ensure that the sim-
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(a) Affine (b) Boundary
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Figure 2.12: (a) and (b) show foam structures at a strain of ǫ = 3 sheared with affine

shear and boundary shear respectively. Both foams started from the same initial con-

figuration, but the final configurations are different. (c) The stress strain relationship

during the shear of the foam in (a) and (b). Whilst the relationship is different since the

order of T1s is different, the maximum stress and average stress after the transient differ

by only a small amount.
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ulations are performed in the quasistatic limit. The result of a simulation must not

be significantly different if δxwall is made smaller. In figure 2.13 (a) the shear stress,

τxy, is plotted against strain for different values of δxwall for a simulation of a dry two-

dimensional foam, sheared between parallel walls. The shear stress will be defined later

on, but I use it here to illustrate the effect of varying δxwall. For decreasing values of

δxwall, the average shear stress at strains above 2 does not vary by more than approxi-

mately 5% (figure 2.13 (b)).

The average area of the bubbles in the simulations whose stress strain relationships

are given in figure 2.13 (a) is 〈A〉 = 0.0229, and bubbles have typical size
√
〈A〉 = 0.151.

The largest value of δxwall is of the same order of magnitude as a typical bubble width

and is not therefore suitable. For the smaller values of δxwall, the choice would depend

on other considerations affecting simulation time, such as the number of bubbles and

type of shear.

The dependence of simulation time on the number of bubbles, NB, is slightly greater

than O(NB) (figure 2.14). Strain increments which induce plastic rearrangements take

longer to converge than those which do not (figure 2.14 (a)). Affine shear is more ef-

ficient than boundary shear (figure 2.14 (b)). Strain increments which do not induce

plastic rearrangements take approximately the same amount of time to converge re-

gardless of the magnitude of the strain increment, therefore smaller strain increments

would take longer to reach a given strain (figure 2.14 (c)).

In each study, a balance must be found between the magnitude of δxwall, the number

of bubbles and the simulation time. Throughout this work, δxwall is chosen carefully. I

keep δǫ < 0.01 and δxwall/
√
〈A〉 < 0.17 throughout.
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Figure 2.13: (a) Shear stress versus strain for the same initial foam configuration

sheared with different values of strain increment δǫ = δxwall/W. (b) The average shear

stress, 〈τxy〉, for strains greater than two versus δxwall. The variation in the average shear

stress after the transient between simulations of different δxwall is about 5%.
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Figure 2.14: Factors affecting simulation time (processor speed 3.2Ghz). (a) The time

taken to impose a strain of one during the elastic and plastic regimes. Simulation times

are shorter in the elastic regime than the plastic regime since there is less structural

relaxation after T1s. (b) The time taken to impose a strain of one for affine shear and

boundary shear for the same value of δxwall. Shearing the foam affinely is quicker

than applying boundary shear. (c) The average simulation time per strain increment

for different values of δxwall during a total imposed strain of one. Halving the strain

increment roughly doubles the simulation time because two steps are required to reach

the same strain.
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2.8 Summary

There are many different approaches to foam simulation in the literature and the choice

of method should be appropriate to the goal of each study. Investigation of the effect

of liquid fraction and area-disorder on the flow of a foam requires precise control over

these parameters therefore I choose quasistatic methods, implemented in the Surface

Evolver, in which the foam structure can be represented to a high degree of accuracy.

In the next chapter I consider the transition of a two-dimensional foam between

solid-like and liquid-like behaviour, looking in particular at the dependence of the yield

stress on liquid fraction and area-disorder.
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Yielding

3.1 Introduction

Foams, like gels, pastes and emulsions, are yield stress fluids. At stresses below the

yield stress, foams behave as elastic solids, and above it they flow like visco-elastic

liquids. The transition from solid-like to liquid-like behaviour is called yielding, and is

often probed through oscillatory shear experiments [17; 18; 127–129]. In this chapter

I study the transition from solid-like to liquid-like behaviour through oscillatory shear

simulations and consider factors affecting the yield stress through linear Couette shear

simulations.

The stress in a two-dimensional foam is a tensor given by integrating the tension

forces along each edge [77]:

τ =

























τxx τxy

τyx τyy

























=
2

ATOT

γ

∫

edges

t ⊗ t dl (3.1)

where ATOT denotes the total area of the foam, t the tangent to the edge and γ the tension

of an air-water interface. Air-liquid-air films which comprise two interfaces are counted
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twice. The component of stress acting parallel to the plane of shear is the off-diagonal

component of the stress, known as the shear stress, τxy or τyx. Whilst the concept of

a yield stress is simple, defining it is not. There are several different definitions in the

literature:

1. The shear stress, τ
p
y , at which the first plastic deformations (T1s) occur and there-

fore the deformation is no longer completely reversible (i.e. the elastic limit).

2. The maximum shear stress the foam achieves under applied strain during the

transient, sometimes referred to as the static yield stress, τs
y. This reflects the

initial stress needed to be overcome for the foam to start flowing.

3. The average shear stress the foam achieves under applied strain after the transient

regime, sometimes referred to as the dynamic yield stress, τd
y . This can be lower

than the static yield stress and reflects the applied stress below which the foam

does not flow.

4. The average shear stress the foam achieves under applied strain after the transient

regime, in the limit that the ratio of viscous to surface tension forces (capillary

number) tends to zero. This definition reduces to τd
y in the quasistatic limit.

5. In oscillatory shear experiments, when the stress amplitude is plotted against the

strain amplitude the intersection of power law fits to the data at low and high

strain amplitude defines a yield stress and strain.

The first three definitions are illustrated in figure 3.1 which shows a typical stress versus

strain relationship for a dry foam undergoing linear Couette shear. During the transient,

of order one, the stress increases with increasing applied strain and goes through a

maximum. Thereafter the stress fluctuates about an average value. The first of the yield

stress definitions is not appropriate for dry foams since trapped stresses can lead to
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Figure 3.1: A typical stress-strain curve for a dry foam. The shear stress has been

normalized by 2γ/
√
〈A〉. Possible definitions of the yield stress are indicated. τs

y: static

yield stress. The maximum stress under applied strain. τd
y : dynamic yield stress. The

average stress for strains greater than the transient. τ
p
y : the stress at which irreversible

plastic events first occur, magnified in the insert.

short edges in a foam which could trigger a T1 at very small strains [29]. The fourth

reduces to the first in the quasistatic limit and the fifth is useful only in oscillatory shear

experiments, described in section 3.2. Whilst I shall perform some oscillatory shear

simulations, the number of shear cycles required to extract a yield stress drastically

increases computation time. Therefore it is not appropriate for determining the yield

stress over a range of liquid fraction and/or area-disorder given the size of the foam

and the number of simulations that would be required. There are even more ways of

defining the yield stress in an engineering fashion, e.g. the point at which the linear

relationship between stress and strain fails (ignoring small deviations due to T1s) but I

do not consider them further. I will consider mainly the static and dynamic yield stress

(i.e. the second and third definitions listed above) of foams in this chapter.

It is also possible to define a yield strain, ǫy, which is the strain at which the foam

yields, but this also has a list of possible definitions. In the elastic regime, the shear
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stress is proportional to the strain via a shear modulus G:

τxy = Gǫ. (3.2)

Assuming that this relationship holds at the onset of yielding, one possible definition of

the yield strain is in terms of the yield stress,

ǫy = τy/G, (3.3)

but will differ according to which definition of yield stress is used. The opposite ap-

proach may also be taken, where the yield strain is measured and the yield stress calcu-

lated accordingly. To avoid over-complication, I will consider mainly the yield stress.

To facilitate comparison with other results in the literature I will use a non-dimensional

stress τ̃ throughout:

τ̃ =

√
〈A〉

2γ
τ, (3.4)

and use the notation τ̃s
y and τ̃d

y for the non-dimensional static and dynamic yield stresses

respectively.

The solid-liquid transition in foams and emulsions has been studied by many authors

[17; 18; 127–129]. Oscillatory shear experiments are often performed, from which a

storage modulus, G′, and loss modulus, G′′, can be found, which are measures of a

material’s elastic and dissipative properties respectively. The normalized storage and

loss moduli of yield stress materials including foams, emulsions, pastes and gels have

been found to fall on the same master curve when plotted as a function of strain ampli-

tude, prompting suggestion of similar underlying mechanisms [81], e.g. elastic loading

followed by an unloading through discrete rearrangements of the constituents. Elasto-

visco-plastic models [95; 130; 131] accurately predict the storage and loss moduli but
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an elasto-plastic model [128], neglecting viscous effects is a good approximation to

the data for materials that are weakly dissipative. Higher harmonics of the stress were

found experimentally by Rouyer et al. [128], and the ability to accurately predict these

higher harmonics will be a good test of any constitutive relation for the stress, as well

as for bubble scale numerical simulations.

The yield stress (or yield strain) plays an important role in the transition from pre-

dominantly solid-like to liquid-like behaviour. There have been several experimental

studies of foam yielding in three dimensions. The static yield stress was found to de-

crease with increasing liquid fraction for foams and emulsions [17; 91; 127; 132–134],

but the variance in the reported relationship between the yield stress and the liquid frac-

tion suggests that further factors (e.g. wall slip) are involved in each study.

Princen [30] found that the static yield stress of a two-dimensional ordered hexag-

onal foam decreases with liquid fraction, whilst Hutzler et al. [21], through numerical

simulations of disordered two-dimensional foams under extensional shear, showed that

the dynamic yield stress of disordered two-dimensional foams also decreases with in-

creasing liquid fraction.

Numerical simulations by Gardiner et al. [28] using the bubble model suggest that

the static yield stress is reduced with increasing volumetric disorder whilst the dynamic

yield stress remains the same, but only two bubble volume distributions were studied.

Experimental observations by Khan et al. [91] found greater discrepancy between the

static and dynamic yield stresses at low liquid fraction than at high liquid fraction but,

even so, the difference between the static and dynamic yield stress was small. In os-

cillatory experiments with emulsions, Mason et al. [127] observe strong disagreement

between the static and dynamic yield stress. In this case shear localization was ob-

served, where different regions of the foam flows at different rates of shear; this will be

studied further in Chapter 4.

52



Chapter 3. Yielding

The yield strain of a three-dimensional foam was found to increase with increasing

shear rate [29] in experiment. Kraynik and Hansen [35] found that the dynamic yield

stress of an ordered hexagonal two-dimensional foam increases with increasing shear

rate, prompting them to define the yield stress as the average stress in the limit as cap-

illary number, the ratio of surface tension to viscous forces, tends to zero (yield stress

definition 4).

3.2 Solid-liquid transition

The solid-liquid transition in foams can be investigated by applying an oscillating strain

to the foam sample and measuring the stress response. A sinusoidal strain signal of

amplitude ǫ0 is applied to the foam:

ǫ(t) = ǫ0cos(2πt/T ), (3.5)

where T is the period of oscillation and t is the time. The shear stress response, τxy(t),

is measured, and decomposed into a Fourier series:

τxy(t) =

∞
∑

n=1

[ancos(2πnt/T ) + bnsin(2πnt/T )] (3.6)

= a1cos(2πt/T ) + b1sin(2πt/T ) +H
(

τxy (t)
)

(3.7)

where

an =
2

T

∫ T

0

τxy(t)cos(2πnt/T )dt (3.8)

and bn =
2

T

∫ T

0

τxy(t)sin(2πnt/T )dt (3.9)
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Figure 3.2: An example of the stress response of a dry two-dimensional foam to an

oscillatory strain from one of my simulations for which the strain amplitude exceeds

the yield strain. The shear stress is plotted against (a) iteration number, I, and (b) strain,

ǫ.

are the coefficients of the harmonic components of the stress response. The first two

terms in equation (3.7) are the primary harmonic components of the stress response. The

final termH
(

τxy (t)
)

contains all the contributions of the higher harmonic components.

The coefficients of the primary harmonic components, a1 and b1, when divided by

the strain amplitude, give the storage and loss moduli, G′ and G′′, traditionally used

to characterize a material’s elastic and dissipative characteristics. Solid-like materials

have G′ > G′′ and vice-versa for liquid-like materials.

In the linear viscoelastic regime, G′,G′′ completely characterize the stress response

but as the response becomes non-linear, extra information is found in the higher har-

monic components,H
(

τxy (t)
)

.

To examine the solid-liquid transition in dry two-dimensional foams I performed os-

cillatory shear simulations and calculate the harmonics from the stress response. Figure

3.2 shows the typical stress response of a dry two-dimensional foam to oscillatory shear

in the quasistatic limit, for which the strain amplitude exceeds the yield strain. Figure

3.2 (a) shows the stress response versus iteration number whilst figure 3.2 (b) shows the

stress response versus strain. The stress increases initially with iteration number and

fluctuates about an average stress above the yield strain. When the direction of shear is
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reversed, the stress strain relationship returns to linear until the foam yields once more

and the stress fluctuates around an average value. The cycle is then repeated. Since the

simulations were performed in the quasistatic regime, i.e. at very low frequency, the

only option available is to vary the strain amplitude as a control parameter. However,

this is the most appropriate option for studying the solid-liquid transition.

3.2.1 Method of oscillatory shear

Details of foam creation and shear in the linear Couette geometry are given in section

2.5. Since the simulations performed here are in the limit of low frequency and therefore

there is no time-scale, the iteration number, I, plays the role of time. Oscillatory shear

simulations require several shear cycles, which increases simulation times. Applying a

strain signal which is sinusoidal with respect to iteration number further increases the

simulation time: since the strain steps are now unequal, for the largest strain increment

to remain below an acceptable level for quasistatic simulation, strain increments must

become very small as |ǫ | → ǫ0.

To counteract this effect, I apply a saw-tooth strain signal with respect to iteration

number. I then map the iteration number to the equivalent time, t, for a sinusoidal strain

signal (figure 3.3). A saw-tooth strain signal is implemented by imposing constant

strain increments up to the strain amplitude and then reversing the direction of shear.

The period of oscillation is T = 4ǫ0/δǫ.

The function t(I) which gives the “time” values for a sinusoidal strain signal from a

saw-tooth signal of period T is

t(I) =
T

2π

{

sin−1

(

4I

T
− k

)

+
kπ

2

}

(3.10)
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Figure 3.3: The applied saw-tooth strain signal versus iteration number and the cor-

responding sinusoidal strain signal versus “time” after the iteration number has been

mapped according to equation 3.10.

where

k = 2

⌊

2I

T
− 1

2

⌋

+ 2 (3.11)

and ⌊⌋ denotes the integer part.

This is an acceptable approach in the quasistatic limit, since it is the value of stress

at a given strain which is important and not how that strain was reached. The ambiguity

in which equilibrium state of foam is reached is the same as is encountered when using

different but constant strain increments (see section 2.7).

The strain amplitude, ǫ0, is varied in the range 10−2 to 20. The value of δǫ is fixed

for each simulation (i.e. for each strain amplitude) and is chosen to be sufficiently small

such as to be a good approximation to the quasistatic limit (see section 2.7). Since

the stress signal is to be integrated numerically with the trapezoidal method which is

accurate to O(δǫ2), an extra condition is placed on the magnitude of δǫ in that it must be

sufficiently small to keep the error to an acceptable level during the integration, whilst

still remaining large enough for the simulations to be completed in a reasonable time

(up to 1 month for the largest strain amplitudes).
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Figure 3.4: The storage and loss moduli as a function of strain amplitude for two foam

samples, with the prediction of Rouyer et al. [128]

3.2.2 Storage and loss moduli

The complex shear modulus is given by

G∗(ǫ0) =
2

T ǫ0

∫ T

0

τxy(t)exp(i2πt/T ) = G′ + iG′′ (3.12)

where the storage modulus, G′, is a measure of the elastic response of a material and

the loss modulus, G′′, a measure of the dissipative response.

Figure 3.4 shows the storage and loss moduli for two simulated foams as a function

of strain amplitude. Simulation 1 has NB = 560 bubbles, W = 1.6 with approximately

10 bubbles between the plates and area-disorder, µA
2
= 0.038. Simulation 2 has NB =

1120 bubbles, W = 3.2 with approximately 21 bubbles between the plates and area-

disorder, µA
2
= 0.052. The data is normalized by the shear modulus, G, and oscillatory

yield strain ǫo
y , which are calculated as follows [17; 127].

At low strain amplitude the response is purely elastic and G′ is constant and at
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high strain amplitude G′ exhibits power-law behaviour. At intermediate values of strain

amplitude there is transitional behaviour as the foam yields. To determine the shear

modulus, G, I fit a horizontal line G′ = G to the data at low strain amplitude. To calcu-

late the oscillatory yield strain, ǫo
y , I plot the stress amplitude against strain amplitude

(data not shown) and fit a power law with exponent 1 to the data at low strain amplitude

and a constant function to the data at high strain amplitude. The intersection of the two

fits defines a yield stress and strain.

When normalized, the storage and loss moduli from both simulations fall on the

same master curve. G′ is almost constant at low strain amplitude, i.e. in the linear

viscoelastic regime, whilst G′′ is zero. This is to be expected since there is no viscous

dissipation in the quasistatic limit and no plasticity (T1s) at low strain amplitude and

therefore the response is purely elastic. As the yield strain is approached, G′ starts

to decrease and G′′ becomes non-zero as some energy is dissipated through plastic

rearrangements and the foam transits from solid-like behaviour to liquid-like behav-

iour. G′′ passes through a maximum at approximately 2ǫo
y and thereafter decreases with

power-law behaviour.

The prediction of the elasto-plastic model of Rouyer et al. [128] is also plotted

in figure 3.4. The model describes the stress strain relationship like that plotted in

figure 3.2 as a simple combination of a spring and a slider. Elastic deformation below

the yield strain is modeled as a spring with stress proportional to the applied strain.

Plastic deformation above the yield strain is modeled as a slider where the stress remains

constant, equal to the yield stress.

The result of the simulations is in excellent agreement with this simple model, which

has only two free parameters: the shear modulus, G, and oscillatory yield strain, ǫo
y . The

model assumes an abrupt transition from elastic to plastic behaviour, which is not the

case in my simulations, leading to slight discrepancies near the yield strain. An elasto-

58



Chapter 3. Yielding

visco-plastic model, due to Marmottant et al. [95], uses a smooth transition between

elastic and plastic behaviour and can also incorporate viscous dissipation, although this

is not relevant here. Both models are in good agreement with experimental data for

three-dimensional foams, pastes and emulsions and I find that the similarity also extends

to two-dimensional dry foams.

3.2.3 Higher harmonics

The nonlinear stress response can be quantified by looking at the amplitude of the higher

harmonics, hn, where n ≥ 2 and

hn =
2

T

∣

∣

∣

∣

∣

∣

∫ T

0

τxy(t)exp(−i2πnt/T )dt

∣

∣

∣

∣

∣

∣

. (3.13)

Following Rouyer et al. [128], I define the stress residual, q, to be the dimensionless

root mean square variation ofH
(

τxy (t)
)

,

q =

√

√

√
∫

H
(

τxy (t)
)

dt
∫

τ2
xy(t)dt

=

√

∑4
i=1 h2

2i+1

h2
1
+

∑4
i=1 h2

2i+1

. (3.14)

The experimental data is obtained from three-dimensional foams in a cylindrical

Couette geometry with liquid fraction φl ≈ 0.075, whilst the simulations were per-

formed in the linear Couette geometry with dry two-dimensional foams of liquid frac-

tion φl = 2.6 × 10−4.

In agreement with the experimental data (figure 3.5), most of the nonlinear response

is contributed by the third harmonic. The deviation from linear response increases

with increasing strain amplitude and the jump in nonlinear behaviour at the yield strain

is in agreement with experimental observations. The simulation data reaches higher

values of strain amplitude than the experimental data and suggests a possible plateau in
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Figure 3.5: The stress residual, q, and the amplitude of the odd stress harmonics, hn, for

n ≥ 3 as a function of strain amplitude, ǫ0, normalized by the oscillatory yield strain,

ǫo
y , for simulation and experiment. In both cases q and h3 are almost indistinguishable.

nonlinear response as the strain amplitude is increased.

The simulations overpredict the harmonics, hn, by a small amount but the agreement

is still very good considering the differences between both studies in terms of dimen-

sion, liquid fraction, dissipation and, to a lesser extent, container geometry. These

differences are likely to account for the discrepancy.

3.3 Yield Stress

3.3.1 Effect of area-disorder

First I consider the perfectly dry ordered case, studied analytically by Princen [30],

as a reference with which to compare data for disordered foams. It will also provide

a test for the simulation methods and later (section 3.3.2.1) will allow me to suitably

fix the contact angle for wet foam simulations. An ordered dry foam can be created
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Figure 3.6: A perfectly ordered dry foam at different strains, created in the Surface

Evolver using three films and periodic boundary conditions.

in the Surface Evolver with three films by using periodic boundary conditions and the

foam structure at different strains is shown in figure 3.6. The stress-strain relationship

is shown in figure 3.7, and is described by the following relationship in the dry limit

[32]:

τ̃xy =

√

〈A〉
3

ǫ
√
ǫ2 + 4

. (3.15)

Simulation of the shear of the ordered dry foam in the Surface Evolver is in excellent

agreement with the analytic result. Princen considered the static yield stress. The stress-

strain curves for the hexagonal foam are periodic and do not therefore exhibit transient

behaviour as is the case for disordered foams (figure 3.8). The definition of dynamic

yield stress cannot therefore strictly be applied. However, in order to make compari-

son with the disordered case, I will use the average stress over an entire period as the

dynamic yield stress in this case. Princen extended the analytical calculations to finite

liquid fractions, and the values of static and dynamic yield stress at φl = 2.6× 10−4 will

be used as a reference.

Bubble model simulations in three dimensions by Gardiner et al. [28] suggest that

the static yield stress strongly decreases with volumetric disorder, but the nature of

the decrease was not explored. I simulate shearing of dry two-dimensional foams of

different area-disorder as described in section 2.5, to obtain the static and dynamic yield

stress as a function of area-disorder. Dry foam simulations are used in this case (the

effect of liquid fraction is considered later) for which simulations of over a thousand
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bubbles is possible in reasonable time. Each simulated foam consists of NB = 1120

bubbles with W = 3.2 and approximately 21 bubbles between the parallel plates. The

effective liquid fraction is φl = 2.6 × 10−4.

Figure 3.9 shows the static and dynamic yield stress as a function of area-disorder.

The values for a perfectly ordered foam are shown as large squares in figure 3.9 (a). The

static yield stress appears constant at low area-disorder and decreases by approximately

20% at higher area-disorder. The dynamic yield stress appears to increase initially with

increasing area-disorder before decreasing again as the area-disorder is increased fur-

ther. The static yield stress does not converge to the value for a perfectly ordered foam

as the area-disorder tends to zero but there is weak evidence that the dynamic yield

stress may tend to the value for ordered foams as the area-disorder tends to zero. Nev-

ertheless, the dynamic yield stress is, in general, greater than the value for the ordered

case, even at low area-disorder, and it is important therefore that disordered foams are

considered when trying to predict the response of a real foam. Stress versus strain

relationships obtained from experiments also suggest that the static yield stress of dis-

ordered foams is over predicted by the ordered case and that the dynamic yield stress of

disordered foams is under predicted by the ordered case (see section 3.4).

Figure 3.10 shows the difference between the static and dynamic yield stress as a

function of area-disorder. τ̃s
y − τ̃d

y decreases as the area-disorder is increased, which

indicates that the stress overshoot observed in shear startup experiments decreases with

increasing area-disorder. The decrease appears linear in lnµA
2

for the range of area-

disorder considered and the difference between the static and dynamic yield stress will

not go to zero for realistic values of area-disorder. The fit in figure 3.10 is given by

τ̃s
y − τ̃d

y = −12.8lnµA
2 + 0.13. (3.16)
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Figure 3.9: The static and dynamic yield stress versus area-disorder, using linear axes

in the top figure and log-linear axes in the bottom figure. The values for an ordered

foam are given as squares in the top figure. The variation at low area-disorder is clearer

in the bottom figure. The static yield stress appears constant at low area-disorder but

does not converge to the value of the perfectly ordered case as the area-disorder tends

to zero. The dynamic yield stress appears to increase initially with increasing area-

disorder from the value for a perfectly ordered foam. At higher area-disorder both the

static and dynamic yield stress decrease with increasing area-disorder.
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3.3.2 Effect of liquid fraction

To study the effect of liquid fraction on the yield stress of disordered foams in linear

Couette shear, I shall use both the dry method with cut-off length and the wet method,

described in sections 2.5 and 2.6, comparing with results for ordered hexagonal foams,

extracted by reproducing the stress-strain curves from the work of Princen [30].

3.3.2.1 Ordered foams

Figure 3.11 shows the stress-strain relationship for an ordered foam at a range of values

of liquid fraction. The stress initially follows the same curve as the dry case. When

the Plateau borders touch and the T1 process begins (cf. figure 2.10) the stress strain

relationship joins a different curve before returning to the initial curve (reflected in the

lines τ̃xy = 0 and ǫ = 1/
√

3) when two air-liquid interfaces meet. Above a certain

liquid fraction (between 0.05 and 0.06 for zero contact angle) the stress-strain curves

all pass through a common intersection point at (1/
√

3, 0). Above this critical liquid

fraction, the foam passes through a configuration like that shown in figure 3.12 (a) at

ǫ = 1/
√

3 giving zero stress. Below the critical liquid fraction, this configuration is

not the minimum energy configuration. For φl = 0.05, for example, both configurations

shown in figure 3.12 have a lower energy, leading to a non-zero stress in this case.

For the wet method, a finite contact angle exists between the air-liquid interfaces

separating bubbles and Plateau borders and the air-liquid-air interfaces separating bub-

bles. As discussed in section 2.6, a zero contact angle causes the numerical method to

become unstable and therefore the contact angle is kept small but finite. Figure 3.13 il-

lustrates the effect of a finite contact angle on the stress-strain relationship of an ordered

foam. Pα denotes analytic predictions and S α denotes Surface Evolver simulations, each

of contact angle α. The strain (and therefore stress) at which the Plateau borders merge

increases with increasing contact angle, as does the strain at which the fourfold Plateau
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Figure 3.11: Stress versus strain curves for an ordered foam for various values of liquid

fraction, calculated from the analytic result of Princen [30]. The curves follow the same

curve as the perfectly dry foam until the Plateau borders meet, which occurs at lower

strains as the liquid fraction is increased.

(a) φ = 0.06 (b) φ = 0.05

Figure 3.12: Above a certain liquid fraction, the foam passes continuously through a

zero stress configuration at ǫ = 1/
√

3 like that shown in (a). Below this critical liquid

fraction there exist lower energy configurations at ǫ = 1/
√

3 with a non-zero stress, as

shown in (b).
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Figure 3.13: Stress-strain curves for ordered hexagonal foams at different liquid frac-

tions and contact angles, α (denoted as Pα), from the analytic prediction of Princen

[30]. For φl = 0.05, datapoints from simulations with the wet method, of contact angle

α (denoted S α), are also plotted, showing excellent agreement.

border dissociates back into two threefold Plateau borders.

The effect on the static and dynamic yield stress is shown in figure 3.14. τs
y and τd

y

decrease in each case with increasing φl. In general, an increased contact angle leads to

an increase in static and dynamic yield stress but at small contact angle τs
y and τd

y can

be slightly smaller than for zero contact angle as the liquid fraction is increased.

For zero contact angle the dynamic yield stress goes to zero at roughly φl = 0.053.

For finite contact angle, the dynamic yield stress does not go to zero but for α = 3.62,

τ̃d
y < 0.001 at liquid fractions greater than φ ≈ 0.05.

Simulations of disordered foams with the wet method were performed with a contact

angle of α = 3.62, which is a good approximation to the case of zero contact angle. For

68



Chapter 3. Yielding

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

Y
ie

ld
st

re
ss

,
τ̃

y

Liquid fraction, φl

τ̃s
y

τ̃d
y

P0

P3.62

P11.36

S 3.62

S 11.36

Figure 3.14: The static yield stress, from the analytic prediction of Princen [30], and

dynamic yield stress of perfectly ordered two-dimensional foams, extracted by repro-

ducing the stress-strain curves as a function of liquid fraction. Datapoints from sim-

ulations with the wet method are also plotted and are in excellent agreement with the

analytic prediction. Pα denotes analytic predictions and S α denotes Surface Evolver

simulations, each of contact angle α.

the ordered case, results for dynamic and static yield stress are in excellent agreement

with the analytic result (figure 3.14) giving confidence in the method of simulation.

3.3.2.2 Disordered foams

I now consider the effect of varying liquid fraction on the static and dynamic yield

stress of disordered two-dimensional foams in linear Couette shear using the methods

of simulation described in sections 2.5 and 2.6. Foams of NB = 1120 bubbles were used

with the dry method with finite cut-off length. Foams of NB = 100 bubbles were used

with the wet method. The static yield stress was measured by taking the maximum shear

stress achieved during a simulation, which occurs during the transient. The dynamic

yield stress was measured by taking the average shear stress after the transient.

The static yield stress decreases with increasing liquid fraction (figure 3.15 (a)) and
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Figure 3.15: The (a) static and (b) dynamic yield stress of disordered two-dimensional

foams as a function of liquid fraction for simulations with both the dry method and the

wet method. The prediction for ordered foams is plotted for comparison. Data for both

methods are in good agreement for liquid fractions up to around φl ≈ 0.01 and both the

static and dynamic yield stress decrease with increasing liquid fraction. The bold lines

are fits to equation (3.17). The fit parameters are given in the text.

is lower for disordered foams than for the ordered case. Results from different methods

are in good agreement up to a liquid fraction of around 0.01, above which the dry

method with cut-off length fails. For a discussion of the reasons the method fails see

section 3.4.3.

Figure 3.15 (b) shows the decrease of the dynamic yield stress with increasing liquid

fraction. As for the static yield stress, results for both methods are in excellent agree-

ment up to liquid fractions of around 0.01. The dynamic yield stress is higher than in
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the ordered case (cf. figure 3.9), and the difference is greater at intermediate values of

liquid fraction.

Simulations with the dry method at low liquid fraction in section 3.3.1 suggest that

there is a discontinuity in static yield stress between the ordered and disordered cases,

but that the dynamic yield stress tends to the ordered value as the area-disorder goes to

zero.

Three-dimensional yield stress data are often fitted with the following equation with

b = 2, a close to one-half and c = 0:

τ̃y = a(φc − φl)
b + c. (3.17)

In two dimensions, φc ≈ 0.16 and it is also possible to fit a curve of this type to both

the static and dynamic yield stress data, but with a very large and with very large error.

The static yield stress will not go to zero and also, since a small but finite contact angle

is used, c > 0 for the dynamic yield stress too, as for the ordered case. For the static

yield stress, a = 74294 ± 4.82 × 104, b = 6.823 ± 0.35 and c = 0.042 ± 0.0028. For

the dynamic yield stress a = 6308 ± 2727, b = 5.609 ± 0.228 and c = 0.016 ± 0.0017.

Although the static and dynamic yield stress can be fitted with an equation of the form

of equation (3.17), the magnitude and error of the coefficients suggest that it may not

be the most appropriate fit for two-dimensional foams.

Both the static and dynamic yield stress can also be estimated through a weighted

average of the static and dynamic yield stress predictions for ordered foams, Ps
α and Pd

α

(figure 3.14). No physical justification is given, but the following relationships provide

a useful rule of thumb. The static and dynamic yield stress of disordered foams is given

to a good approximation by the following combination of Princen’s predictions (figure

71



Chapter 3. Yielding

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

S 3.62 (dynamic)
S 3.62 (static)

P3.62

(Ps
3.62
+ Pd

3.62
)/2

(Ps
3.62
+ 3Pd

3.62
)/4

Liquid fraction, φl

Y
ie

ld
st

re
ss

,
τ̃

y

Figure 3.16: The static and dynamic yield stress of disordered two-dimensional foams

are given to a good approximation by a weighted average of the predictions of the static

and dynamic yield stress of ordered foams.

3.16):

τs
y ≈

Ps
α + Pd

α

2
(3.18)

τd
y ≈

Ps
α + 3Pd

α

4
. (3.19)

These relationships are a good approximation of the static and dynamic yield stress of

disordered two-dimensional foams for contact angles α = 11.36 and α = 3.62 and are

therefore likely to work for a zero contact angle also.

3.4 Discussion

3.4.1 Comparison with experiment

To my knowledge, there are no experimental studies of the effect of liquid fraction on

the yield stress of a two-dimensional foam. There are, however, stress versus strain

relationships published for two-dimensional foams, from which a rough estimation of a

non-dimensionalized yield stress can be calculated. From the work of Lauridsen et al.
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[54] at a liquid fraction of φl ≈ 0.05 I can estimate the following parameters from the

information provided:

τs
y = 2.4 mN m−1 (3.20)

τd
y = 1.75 mN m−1 (3.21)

〈A〉 = π0.0012 = 3.14 × 10−6 m2. (3.22)

To calculate τ̃s
y and τ̃d

y from equation (3.4), an estimate for the surface tension, γ, is

required. Given that this is a quasi-two-dimensional experiment, γ is a line tension with

the dimensions of force. γ depends on the surface tension of the liquid phase, γl, which

has the usual dimensions for surface tension of force per unit length, and the height,

h, of the quasi-two-dimensional foam e.g. the distance between the bounding plates

of a Hele-Shaw cell [67]. For a liquid phase with surface tension γl = 26.1 mN m−1,

Raufaste et al. [67] estimate

γ/h ≈ 110 mN m−1, (3.23)

and since Lauridsen et al. do not report the surface tension of the liquid phase, I shall

use the value of Raufaste et al. as an estimate in its place. Using the quoted bubble

radius as an estimate of the height of the foam in the study of Lauridsen et al.,

2γ ≈ 0.11 mN. (3.24)

A comparison of the experimental values of the static and dynamic yield stress with the

corresponding values for a perfectly ordered two-dimensional foam and my simulations

of disordered two-dimensional foams for a liquid fraction of φl = 0.05 is shown in

table 3.1. The values for disordered foams are calculated by taking the average of

the yield stress values of the individual simulations at φl = 0.05. The dynamic yield
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τ̃s
y τ̃d

y

Ordered two-dimensional prediction 0.170857 0.000807

Disordered two-dimensional simulations 0.060911 0.026898

Quasi-two-dimensional experiment 0.038672 0.028198

Table 3.1: Comparison of the static and dynamic yield stress of two-dimensional foams

from simulation and experiment.

stress for ordered two-dimensional foams under predicts the experimental value, whilst

simulations of disordered two-dimensional foams are in excellent agreement with the

experimental observation. The static yield stress is over predicted by both the prediction

of ordered foams and the simulations of disordered two-dimensional foams. A possible

explanation for the difference is that in the experiment, the foam experiences a pre-shear

as a result of inserting the foam into the experimental device, thus reducing the static

yield stress.

3.4.2 Comparison with other two-dimensional simulations

The only other study of the variation of the yield stress of a two-dimensional foam

with liquid fraction is found in the work of Hutzler et al. [21] where a fully periodic

foam sample is subjected to extensional shear using the programme PLAT (see section

2.2.1.2). The yield stress is found by fitting a curve of the form

τ = τytanh
(

ǫ/ǫy

)

(3.25)

to the data. At high liquid fraction this is difficult and therefore the average stress is

used as in my simulations.

Comparison of my data with both wet and dry Surface Evolver methods with the

data of Hutzler et al. is shown in figure 3.17. The fit to data at low liquid fraction from
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the work of Hutzler et al. is also plotted and is of the form

τy = d − eφ
1/2

l
. (3.26)

where d and e are constants.

There is good agreement between my data and the data of Hutzler et al., especially

at high liquid fraction, although my data appears to be slightly lower than that of Hutzler

et al. At low liquid fraction there is a steeper decrease of yield stress with liquid fraction

in the work of Hutzler et al. than I found in my simulations.

The area-disorder of the samples is a possible explanation for the small discrepancy.

The area-disorder is not quoted in the study of Hutzler et al. but from examination of

the figures, is likely to be lower than the area-disorder in my simulations, which was

kept to within a small range. The method of shear is another possible explanation for

the difference, since I simulated the linear Couette shear of a foam sample between

parallel plates and Hutzler et al. simulated extensional shear of a fully periodic foam

sample. Finally, it may also be the case that it is the method of calculating the yield

stress that causes the difference. This may explain why the agreement between the data

sets is better at high liquid fraction than as the liquid fraction approaches zero, since at

high liquid fraction, Hutzler et al. use the average stress as the yield stress in the same

manner as I do. The agreement on the whole is very good, with the data of Hutzler et

al. occurring at the fringes of my data.

3.4.3 Failure of dry method with cut-off length

Plateau borders with three or more sides occur with very low frequency below a liquid

fraction of 4%, so the question arises of why the dry method with effective liquid frac-

tion fails at around 1% liquid (figure 3.15). One would expect the occurence of stable
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Figure 3.17: Comparison of yield stress versus liquid fraction data between my Surface

Evolver simulations and PLAT simulations from the work of Hutzler et al. [21].

fourfold Plateau borders to be the important factor in the failure of the dry method, but

it seems that earlier failure is due to the disordered nature of the foams.

The effective liquid fraction is determined from ordered hexagonal foams. In a dis-

ordered foam, small bubbles are surrounded by small edges which often fall below the

cut-off length. If the Plateau borders are included explicitly, Plateau borders surround-

ing small bubbles are smaller than those surrounding big bubbles and therefore the

cut-off length should be smaller in these cases. This is illustrated in figure 3.18. Figure

3.18 (a) shows an example of a foam with φl = 0.02 and the Plateau borders included

explicitly. No threefold Plateau borders have merged. In figure 3.18 (b), the Plateau

borders have been removed and the films which fall below the cut-off length for an ef-

fective liquid fraction of 2% (using equation (2.5)) have been highlighted in red. Even

though no Plateau borders have merged in figure 3.18 (a), when the Plateau borders are

removed, several films are smaller than the cut-off length. The result is a deletion of

films and creation of fourfold vertices which when popped, returns the film to its orig-

inal position and no T1 has occurred. The new film remains below the cut-off length
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Figure 3.18: (a) A foam with φl = 0.02 and the Plateau borders included explicitly.

All the Plateau borders are three-sided. (b) The foam from (a) with the Plateau borders

removed. Edges which fall below the cut-off length for an effective liquid fraction of

0.02 are highlighted in red. In simulations with the dry method, using an effective liquid

fraction, these edges would be deleted to initiate a T1 whereas with the wet method no

T1 would occur.

and is repeatedly deleted and popped so that the foam is unable to converge to an equi-

librium configuration. Now that the reason for failure is known, it may be possible to

adjust the cutoff length according to the area of the surrounding bubbles. Further failure

is still expected at the point at which fourfold Plateau borders become stable, but this

could also be incorporated into the method by allowing fourfold vertices to persist and

represent fourfold Plateau borders. Development of this method would be beneficial

since it would be much faster than incorporating the Plateau borders explicitly.

3.5 Summary

Foams are yield stress fluids which exhibit solid-like behaviour at stresses below the

yield stress and liquid-like behaviour at stresses above the yield stress. The transition

from solid-like to liquid-like behaviour can be seen in oscillatory shear experiments.
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For small strain amplitude, the response is purely elastic. For sufficiently large strain

amplitudes, the foam is repeatedly required to yield, flow and then return to solid-like

behaviour.

The primary harmonics of the stress response to a simulated applied oscillatory

shear of a two-dimensional dry foam are in good agreement with experimental data for

foams as well as other yield stress fluids such as gels, emulsions and pastes (figure 3.4).

Furthermore, the higher harmonics of the stress response are also in good agreement

with experimental results for foams (figure 3.5) despite significant differences in the

conditions of the studies thus suggesting that there may be some generic foam response

independent of container geometry and liquid fraction.

The yield stress has been defined in several ways in the literature and here I con-

centrated on the definitions of static and dynamic yield stress, both of which decrease

with increasing liquid fraction and area-disorder (above a certain level of area-disorder,

figures 3.9 and 3.15). For dry foams at low area-disorder, the static yield stress is found

to be constant with increasing area-disorder whilst the dynamic yield stress increases

with increasing area-disorder.

Whilst the variation of the static and dynamic yield stress of ordered two-dimensional

foams with liquid fraction is in qualitative agreement with my results for disordered

foams (figure 3.15), values of static yield stress for disordered foams are lower than the

value for the ordered case and values of dynamic yield stress are higher in general than

the value for the ordered case, highlighting the importance of including disorder when

considering the response of real foam systems.

Comparison of yield stress data obtained from dry foam simulations with finite cut-

off length and with wet foam simulations shows that the validity of the dry method

is limited to liquid fractions below around 1%. The dry method fails since the cut-

off length is based on calculations with a perfectly ordered foam. Implementation of

78



Chapter 3. Yielding

a variable cut-off length based on local area-disorder could extend the range of liquid

fractions for which a cut-off length may be used.

In the next chapter I consider the flow of a two-dimensional foam after it has yielded.

Previously it has been shown that the topological changes in dry two-dimensional foams

localize in space. I consider the effect of liquid fraction and area-disorder on the position

and size of the region of localized T1s. The bubble dynamics during localized flow is

examined and measures which can identify the region of localized T1s from information

about the foam structure are presented.
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Shear localization

4.1 Introduction

Shear localization or shear banding is a common phenomenon arising in non-Newtonian

fluids, particularly those with a yield stress. It refers to the existence of two (or more)

co-existing regions of fluid flowing in bands at different shear rates (figure 4.1). At its

most severe, one region is static (zero shear rate) and this behaviour has been observed

in foams: co-existing flowing (liquid-like) and static (solid-like) regions have been ob-

served in experiment [49; 54; 59; 64; 65] and simulation [39–41; 43; 58]. Regions of

flow must be accompanied by T1 topological changes and therefore we can also think

of shear banding in terms of regions of localized T1s (T1 localization).

Studies of shear localization in three-dimensional foams are relatively few when

compared with the two-dimensional foam literature. Experiments by Coussot et al.

[93] with both emulsions and suspensions, which often exhibit similar properties to

foams, find that in the cylindrical Couette and cone and plate geometries the materials

show co-existing solid and liquid regions under shear. The liquid region exhibits simple

power-law fluid behaviour and more of the material flows as the shear rate is increased.

For the suspension, the size of the liquid region decreases with increased jamming, i.e.
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Moving plate Moving plate Moving plate

(a) (b) (c)

Figure 4.1: Shear localization: (a) The expected flow profile of a Newtonian fluid be-

tween parallel plates. For foams with this flow profile I would expect T1s to be dis-

tributed evenly throughout the channel. (b) In instances of shear localization, the flow

splits into co-existing regions (or bands) of different shear rate. For foams with this flow

profile I would expect T1s to occur throughout the channel, with a higher proportion

near the moving plate. (c) When shear localization is severe, one region may have zero

shear rate. In this scenario I would expect T1s to occur near the top plate only.

with a higher fraction of the suspension consisting of solid particles. Experiments in

a cylindrical Couette geometry by Baudez & Coussot [135], both with foams and with

polymeric gels, show that there is a critical strain at which there is an abrupt transition

from solid-like to liquid-like behaviour. At the critical strain, the material begins to

flow with finite shear rate. Rodts et al. [94], using a cylindrical Couette geometry,

demonstrate with creep experiments, in which a constant stress is applied to a material

and the strain is measured as a function of time, that a foam cannot flow steadily below

a critical shear rate resulting in shear localization; the size of the liquid region increases

with increasing shear rate. If the width of the flowing region is less than around 25

bubble diameters then a continuum assumption for a foam is no longer valid. In a

parallel plate geometry, Rouyer et al. [29] observe uniform flow for strains much larger

than the yield strain before fluctuating velocity profiles are observed, indicating the

possible onset of shear localization. Three-dimensional bubble model simulations [28]

however do not report any shear localization.

Shear localization in foams has been studied far more extensively in two dimen-

sions than in three dimensions for the reasons discussed in Chapter 1. Results often
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seem contradictory but many inconsistencies can now be explained in terms of the dif-

fering conditions and control parameters in each study. Some unanswered questions

do however remain and I shall address some of these in this chapter. Shear localiza-

tion in a two-dimensional foam experiment was first brought to the attention of the

research community by Debrégeas et al. [59] in a cylindrical Couette geometry. The

foam was confined between two glass plates (GG) and the inner cylinder was rotated.

They found velocity profiles in which the azimuthal velocity decreased exponentially

with the radial distance from the inner cylinder. T1 localization was also evident, since

the two-dimensional experiment allowed T1 positions to be recorded: they all occurred

within 5 bubble widths of the moving cylinder. The velocity profiles were found to be

increasingly localized as the liquid fraction was decreased, i.e. as the liquid fraction is

decreased the velocity decays at a greater rate as a function of distance from the moving

cylinder.

On the other hand, Lauridsen et al. [56] used a cylindrical Couette geometry and

found velocity profiles consistent with that of a shear-thinning fluid and no shear local-

ization. In this instance however, a bubble raft (LA) was used and the outer cylinder

rotated. Further experiments by Lauridsen et al. [54], at lower shear rates and lower

liquid fraction but using the same geometry, did exhibit shear localization: a solid-like

region of foam coexisted with a flowing region. The flowing region again had velocity

profiles consistent with those of a shear thinning fluid, but the foam achieved a shear

rate equal to the rotation rate of the outer cylinder at a critical radius that was smaller

than the radius of the outer cylinder. Above this critical radius, the foam moves elas-

tically and does not flow. Two rates of strain were used, with the critical radius of the

smaller shear rate larger than that of the larger shear rate i.e. more of the foam is under-

going shear at slower shear rates, in contrast to the results of Rodts et al. [94] in three

dimensions.
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Shear localization in the cylindrical Couette geometry has also been predicted in

simulations. Quasistatic simulations of a dry two-dimensional foam by Cox et al. [41]

show shear localization near the inner cylinder when the outer cylinder is rotated. Fur-

ther simulations with the Viscous Froth model [43], incorporating viscous drag from

the bounding glass plates of a Hele-Shaw cell (GG), show that as the velocity of the

outer cylinder is increased, the localized region moves from the inner cylinder to the

outer cylinder.

Theoretical work by Clancy et al. [70] explains much of the flow behaviour ob-

served in the cylindrical Couette geometry. They assume a constitutive relation for the

stress given by

τrθ = τy f (ǫ/ǫy) + ηǫ̇, (4.1)

where τrθ is the shear stress in the cylindrical Couette geometry, ǫ, ǫy and ǫ̇ are the strain,

yield strain and strain-rate respectively, τy is the yield stress, η is the viscosity and f

is a function representing the equilibrium relationship between stress and strain. Note

that if f = 1, the relation reduces to that of the Bingham model [92]. In the cylindrical

Couette geometry, a stress balance between the fluid and the drag at the bounding plates

gives

∂τrθ

∂r
+

2τrθ

r
= βdvθ (4.2)

where r is the radial distance from the centre of the cylinders, vθ is the azimuthal veloc-

ity and βd is a drag coefficient representing the drag imposed by the bounding plates of

a Hele-Shaw cell.

The predicted velocity profiles are a combination of exponential profiles in sheared

regions, i.e. those regions with non-zero local strain rate, and constant velocity in non-

sheared regions. The decay length of the exponential scales like (η/βd)1/2 and depends

therefore on a competition between the internal dissipation in the system and the ex-
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ternal friction. The balance between η and βd depends on the boundary velocity [136],

container geometry, method of confinement and boundary conditions. In some cases,

there exists two different sheared regions (one near each wall) and therefore the shear

band width is defined as the combined width of the sheared regions. They predict that

the shear band width decreases with increasing drag. If the width is bigger than the

channel size, the result is no shear localization.

The presence of shear localization when the inner cylinder is rotated (as in Debrégeas

et al. [59]) is explained in terms of the viscous drag imposed by the bounding plates

of the Hele-Shaw cell. The presence of external friction dominates the internal dissipa-

tion; the shear band width is smaller than the system size and the velocity profiles are

exponential.

They observe a greater range of behaviour when the outer cylinder is rotated, iden-

tifying four differing regimes depending on the velocity of the moving plate, channel

width and viscous drag. In one regime there is continuous shear across the gap and

in another the localization occurs near the inner boundary. There is a regime in which

localization occurs at the outer boundary and finally a regime in which localization oc-

curs at both boundaries. The first two regimes account for the results of Lauridsen et al.

[54; 56], in which localization is observed in one experiment and not in another. The

third is consistent with the results of Cox [43] in which localization moves to the outer

cylinder as the shear rate is increased. The case in which localization occurs at both

boundaries has since been realized by Krishan & Dennin [45]. They found that when

the flow is driven by the outer cylinder for a bubble raft (LA), shear localization occurs

near the inner boundary, but with a confined bubble raft (LG), a second flowing region

appears at the outer boundary as the shear rate is increased.

It seems therefore that external drag is an important factor when considering the

shear localization of two-dimensional foams, but we shall see that it is not the only fac-
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tor. There are some examples of shear localization in the cylindrical Couette geometry

which remain unexplained [41; 43; 137] and these will be discussed later.

In recent years, several experimental studies have been conducted in the linear Cou-

ette geometry, although simulations of foam rheology in this geometry date back to

Durian [16; 22]. In bubble model simulations of wet foams (see section 2.2.2.3), no

shear localization is reported. The first prediction of localized flow in linear Couette

shear of foams is found in the work of Jiang et al. [39], pre-dating the experimental ob-

servations of Debrégeas et al. [59] using the cylindrical geometry. Jiang et al. [39] used

an extended Q-Potts model (see section 2.2.1.3) to simulate both boundary shear and

affine (bulk) shear for both ordered monodisperse and disordered polydisperse foam

systems. In the case of ordered monodisperse foams, they report T1s localized near

both boundaries for boundary shear but a sliding plane of T1s away from the boundary

for affine shear. For a disordered polydisperse system they did not observe any shear

localization.

Kabla & Debrégeas [40] used the Surface Evolver software with a modified al-

gorithm to simulate linear Couette shear of a dry two-dimensional foam of low area-

disorder between jagged boundaries. They found that the T1s localize at either of the

boundaries. Cox et al. [41] found that the T1s may localize in narrow bands at both

boundaries for dry monodisperse foams using the Surface Evolver, in agreement with

Jiang et al. [39].

Shear localization has only been observed experimentally in the linear Couette

geometry in studies where external friction from a bounding plate is present. Wang

et al. [49] showed that a top plate confining a bubble raft has a significant effect on the

flow profiles of the foam. A fairly monodisperse foam was sheared by driving bands at

the channel walls rotating in opposite directions. In the absence of a top bounding plate

(LA), the profiles were almost linear across the channel, with T1s occurring throughout
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the channel, but on inclusion of a bounding plate (LG), T1s became localized near both

plates and the velocity decayed rapidly with increasing distance from the moving walls.

They also observed that the velocity profiles were independent of the applied shear rate.

Katgert et al. [64] also observed shear localization for bubble rafts with a bounding

plate. They studied both monodisperse and polydisperse foams and found that the ve-

locity profiles of the monodisperse system were independent of the applied shear rate

in agreement with Wang et al. [49]. However, for polydisperse foams there was a de-

pendence on shear rate. The shear localization becomes more pronounced as the shear

rate is increased, as in the cylindrical Couette case [54]. In a further study by Katgert

et al. [65], varying the liquid fraction by controlling the distance between the bounding

plate and the liquid pool, the velocity profiles were found to be increasingly localized

as the liquid fraction was increased. This is in apparent contradiction with the results of

Debrégeas et al. [59] with a Hele-Shaw cell in the cylindrical Couette geometry.

Once more, the theoretical framework developed by Janiaud et al. [71] and Clancy

et al. [70] offers explanations for many of the features described here for linear Couette

shear. In this case the model predicts velocity profiles in qualitative agreement with

those of Wang et al. [49] and Katgert et al. [64]. By varying the drag coefficient of

the model, both almost-linear velocity profiles and localized velocity profiles can be

achieved. An analysis of the dependence of the degree of localization on boundary

velocity, consistent with this continuum model, is given by Weaire et al. [97; 136].

Simulations by Langlois et al. [24] using the bubble model, modified to include

the viscous drag from bounding plates, produce velocity profiles in excellent agreement

with those of Janiaud et al. [71].

It seems that the presence of external friction can account for many observations

of shear localization in the literature for linear Couette shear as it did for cylindrical

Couette shear. The degree of external friction influences the size of the localized region
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[49; 70]. This width of the localized region also depends on the applied shear rate [49;

56; 64]. When the width of the localized region is greater than the channel width, there

is no localization and, conversely, when the width of the localization region is less than

the channel width this results in coexisting regions of flowing and rigid foam. There are

however several cases for which shear localization cannot be explained in terms of drag

and shear rate. For example, simulations performed in the quasistatic limit, without

viscous dissipation and in which the shear rate is assumed to be much slower than

the rate of relaxation of the foam, predict localization in both the cylindrical Couette

geometry [41; 43; 137] and the linear Couette geometry [39–41]. What causes the

shear localization in these cases? Indeed, what is the relationship between quasistatic

simulations and the low shear rate limit of other simulations methods and the theory of

Clancy. For the case of the cylindrical Couette geometry, the fact that the stress is higher

near the inner cylinder means that some of the foam is above the yield stress and flows,

whilst some is not and is static. This explanation does not account for the observed shear

localization in linear Couette shear, in which the stress is uniform across the channel.

Weaire et al. [97] suggest that it is due to the non-monotonic increase of stress with

strain at low strain rates, i.e. the existence of a static and dynamic yield stress, which

allows for sheared and unsheared regions to coexist. Other obvious candidates affecting

the flow of foams are liquid fraction and area-disorder. In this chapter I shall investigate

how both parameters affect the shear localization of two-dimensional foams.

4.2 Effect of disorder

To quantify the effect of disorder on the shear localization of foams I shall consider

foams in the dry limit, in which I can simulate over a thousand bubbles in order to reduce

the possibility that finite size effects might interfere with the results. It is always best
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to use as many bubbles as possible whilst keeping simulations tractable. System-wide

events still occur even with a large system, but their occurrence becomes more remark-

able with increasing system size. Disorder can be characterized in terms of topology

using µn
2
, the second moment of the distribution of the number of sides per bubble, n,

or in terms of bubble areas using µA
2
, the second moment of the distribution of bubble

areas, A. Quilliet et al. [69] show that both measures correlate robustly after many

shear cycles, but in my simulations, in which the shear is not cycled, the measures still

show good correlation both before shearing and after 500 iterations (an applied strain

of ǫ = 3.91). Figure 4.2 shows

√

µA
2

versus
√

µn
2
/〈n〉, enabling comparison with the fit

from the work of Quilliet et al. [69]. Even though the topological disorder varies as the

foam is sheared, there is still an obvious correlation between both measures without any

cycling. At low disorder however, the values of topological disorder remain high with

respect to the expected value after several shear cycles since it is possible to have disor-

dered monodisperse foams, but the topological disorder has reduced by approximately

the same amount in each case under linear Couette shear.

First, I consider the flow of an ordered foam between parallel plates, i.e. hexagonal

foams with no area-disorder and no topological disorder. Then I shall consider the

effect of varying the area-disorder on the shear localization of a two-dimensional foam.

I use the area-disorder rather than topological disorder as a control parameter since it is

constant throughout each simulation. I will quantify the effects of varying area-disorder

by introducing measures to characterize the position and width of the localized region.

4.2.1 Ordered foams in linear Couette shear

In this section I consider the linear Couette shear of an ordered two-dimensional foam

between parallel plates in order to quantify the effect of area-disorder on the shear

localization of the foam when disorder is introduced in subsequent sections.
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Figure 4.2: Topological disorder and area-disorder correlate robustly after several shear

cycles (dashed line) [69]. In my simulations, where the shear is not cycled, a relation-

ship between topological disorder and area-disorder is evident, both before any shear

has taken place and after 500 shear steps.

I create an ordered two-dimensional foam consisting of 600 (30 × 20) bubbles be-

tween parallel plates (figure 4.3 (a)), and shear it affinely as described in section 2.7.

The effective liquid fraction is φl = 1 × 10−5. If the bubbles at the boundary were re-

placed with half hexagons of half the area, then the evolution of the structure would be

identical to that of a perfectly ordered foam with periodic boundary conditions studied

by Princen [30] in which the stress-strain relationship is given in section 3.3.1. Here, in

order to preserve perfect ordering in terms of area, the bubbles at the boundary are given

the same area as those in the bulk. The only effect that this has is to slightly increase

the stress, due to the extra film length of the bubbles at the wall. The ordered foam does

not exhibit any shear localization. The displacement profile (figure 4.4 (a)) is linear.

Figure 4.4 (b) gives the y-coordinate of each T1 as a function of strain and shows that

the T1s occur simultaneously and periodically. When considered in combination with

figure 4.4 (c) which shows the (x, y)-coordinates of each T1 during an instant in which
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(a)

x

y

(b)

Figure 4.3: (a) Ordered foam of 600 bubbles between parallel plates. (b) As the foam

is sheared affinely, each hexagon has two shrinking edges and all T1s occur simultane-

ously.

T1s occur, we see that the T1s occur uniformly throughout the foam as each shrinking

film falls below the cut-off length at the same time (figure 4.3 (b)).

The absence of shear localization in the ordered case is due to the uniform distribu-

tion of T1s. The T1s do not localize and therefore the flow does not localize and shear

localization does not occur. In the next section I show that if this precise ordering is

disrupted, even by a small amount, then the effect on the flow is significant.
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Figure 4.4: Ordered foams: (a) The average bubble displacement per unit strain is

almost linear with respect to the distance from the moving wall. (b) T1s occur simulta-

neously during single system-wide rearrangements. (c) The location of each T1 during

a strain increment in which T1s occur. The T1s are distributed uniformly in space.

91



Chapter 4. Shear localization

4.2.2 Disordered foams in linear Couette shear

As discussed earlier, topological disorder and area disorder are related [69] and hence-

forth I shall only consider the effect of varying the area-disorder on the flow of the foam.

I consider foams with 0 < µA
2
< 0.8. Foams of 1120 bubbles are created as described

in section 2.5 and examples of foams of different area-disorder are given in figure 2.6.

The response of low area-disorder foams to applied strain is dramatically different to

that of an ordered foam (section 4.2.1). Initially, a transient is observed in which the

T1s occur throughout the foam, with no apparent spatial pattern. They then localize in a

narrow band near one of the walls (figure 4.5 (a)). The transient behaviour is equivalent

to a pre-shear typically applied in experiments, during which the material “forgets” the

way in which it was created or inserted into the device.

As the area-disorder increases, the same behaviour is observed but the band of T1s

near the wall becomes wider and therefore more of the foam is flowing (figure 4.5 (b)).

Figure 4.6 gives the (x, y)-coordinate of each T1 after the transient (above a strain of

2), and shows no apparent spatial preference for T1s in the x direction. For the lowest

value of area-disorder shown, µA
2
= 0.0008 the vast majority of T1s occur between the

first and second layer of bubbles - this foam has crystallized i.e. the first two layers

of bubbles have hexagonal ordering. For µA
2
= 0.067, the T1s can still be identified as

occurring at the same places as the first two layers of bubbles slide over the others. For

µA
2
= 0.0549, the area-disorder is sufficient to prevent the T1s occurring in the same

spots and to allow T1s to spread further into the bulk, but the T1s still remain close to

the wall. The increase in the width of the band of T1s can also be seen in figure 4.6 (b).

The displacement profile for very low area-disorder (µA
2
= 0.0008) shows an abrupt

jump in displacement since only a single layer of bubbles is flowing whilst the others

remain rigid. As the area-disorder is increased and the band of T1s widens, more layers

of bubbles are flowing. The displacement profiles now appear exponential, like those of
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Figure 4.5: T1 localization for foams with low area-disorder. (a) y-position of each

T1 versus applied strain and (b) displacement profiles for foams of low area-disorder:

µA
2
= 0.0008 (top), µA

2
= 0.0067 (middle), µA

2
= 0.0549 (bottom). After an initial

transient, the T1s localize in a band close to either of the walls. The width of this band

increases with increasing area-disorder. The blue line is a fit of an exponential curve.
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Figure 4.6: (x, y)-coordinate of each T1 for foams of low area-disorder: µA
2
= 0.0008

(top), µA
2
= 0.0067 (middle), µA

2
= 0.0549 (bottom), (a) during the transient regime and

(b) after the transient regime. There is no apparent spatial pattern for the T1s during the

transient regime, but afterwards most T1s occur in a band.
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Kabla & Debrégeas [40] who simulated foams of similar area-disorder.

As the area-disorder is increased further, it becomes evident that T1 localization

near one of the walls, along with the associated displacement profiles, are a sample of a

range of possible behaviours which can be obtained through variation of area-disorder.

With increasing area-disorder, the localized T1s need not be restricted to one of the

walls and may choose a different location to localize or, more commonly, whilst the

T1s will localize in space for significant intervals of applied strain, the position of the

region of localized T1s is not restricted to its original location and is free to move.

Figure 4.7 gives two examples of such foams. T1s remain in a given y-interval of the

foam for strain intervals as long as one, but then move to a different region. Plotting

the (x, y)-coordinates of each T1 for strains greater than 2 (after the transient regime)

shows that when averaged over a larger intervals of applied strain, the T1s are far more

evenly distributed in space than in foams of lower area-disorder (cf. figure 4.6 (b)).

The effect on the displacement profiles becomes significant. Whilst the displace-

ment profiles averaged over small intervals of applied strain reflect the localized nature

of the T1s, displacement profiles averaged over the entire applied strain interval after the

transient are not exponential but are almost linear. The whole foam is flowing through a

combination of an continued increase in the width of the band of T1s with area-disorder

and the effect of a moving localized region. This observation is consistent with those of

Jiang et al. [39] who observed regions of localized T1s for ordered foams, but not for

disordered foams. I shall now quantify the effect of area-disorder on the position and

width of the localized T1s and the effect this has on the flow of the foam.

4.2.3 Position of localized region

I now quantify the effect of area-disorder on the region of localized T1s, and in particu-

lar the position and movement of this region after the transient regime. I first calculate
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Figure 4.7: (a) The y-position of each T1 versus applied strain for foams of moderate

area-disorder. (b) (x, y)-coordinate of each T1 for foams of moderate area-disorder

after the transient. (c) Displacement of bubbles averaged over strain increments of 0.3

(red) and 3 (blue) for foams of moderate area-disorder. For sufficiently high values

of area-disorder, although the T1s remain localized during large increments of applied

strain, the region of localized T1s moves around, resulting in a more even distribution

of T1s when the entire strain interval of applied strain after the transient is considered.

Displacement profiles are localized when averaged over strain increments of 0.3 and

almost linear when averaged over a strain increment of 3.
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the mean y-coordinate, PI , of all T1s (each occurring at position yT1) in iteration inter-

vals of size NI , centred at I i.e. in the interval BI = [I − NI/2, I + NI/2].

PI(NI) =
1

NT1

∑

yT1∈BI

yT1 (4.3)

where NT1 is the number of T1s that occur in the interval BI .

To determine the extent to which the localized region moves around, I then calculate

the mean, YT1, and range, RT1, of PI over all I (from I = 200, after the transient, to the

end of the simulation at I = Imax) at fixed NI:

YT1 =
1

Imax − NI − 200

Imax−NI
∑

I=200

PI(NI) (4.4)

RT1 =
max

I∈[200,Imax−NI ] PI(NI)− min
I∈[200,Imax−NI ] PI(NI) (4.5)

The mean, YT1, and range, RT1, of the instantaneous positions of the localized re-

gion, PI , for each iteration after the transient will be a good indicator of how much the

localized region moves around under applied strain and of whether the localized region

is restricted to be near one of the walls. The number of iterations chosen per bin does

not have a significant effect on the outcome (data not shown).

As the area-disorder is increased the mean position of the localized region, YT1,

moves away from the walls into the bulk of the foam (figure 4.8 (a)), and the position

of the localized region becomes more volatile (figure 4.8 (b)). At low area-disorder

the localized region remains within a very small range and RT1 is small. As the area-

disorder increases so does RT1 and so the localized region moves around a lot more. This

is consistent with what has been observed in previous sections (figures 4.5 and 4.7): the

mobility of the localized region increases the amount of foam where T1s occur, when

a larger interval of applied strain is considered. Therefore the stable shear bands that

occur at low area-disorder lose their stability as the area-disorder is increased. The
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Figure 4.8: (a) The mean position of the localized region, YT1 versus area-disorder,

µA
2
. As the area disorder is increased, the localized region can occur away from the

walls of the channel. (b) The range of the position of the localized region, RT1, versus

area-disorder, µA
2
. The localized region moves to cover an increasing fraction of the

channel as the area-disorder is increased. In each case the y-position is normalized by

the channel width on the left hand axis and by bubble diameter on the right hand axis.
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outlying points on both graphs, coloured blue, are examples of low area-disorder foams

in which the shear band became temporarily unstable and the region of localized T1s

moved away from the walls of the channel, either briefly or for an extended period. It

is not clear why this is the case for foams of such low area-disorder but it seems that a

shear band can become unstable even at low area-disorder.

4.2.4 Width of localized region

I now introduce a measure of the width of the localized region, wT1. The standard

deviation of the y-positions of the T1s is not used as a measure of width since it is

very sensitive to outlying T1s and does not provide an accurate representation of the

observed width of the localized region.

I calculate the mean y-coordinate, PI , of all T1s in the interval BI = [I − NI/2, I +

NI/2] as in the previous section, given by equation (4.3). Next, I introduce y-positions,

wu and wd, to define the interval YI(NI) = [PI − wd, PI + wu]. The fraction of T1s

occurring during the interval BI whose y-coordinate are in YI(NI) is denoted ψT1. I

choose a value for ψT1 and increase wd and wu from zero until this value is reached.

If, at any time, wu or wd reaches half a typical bubble width from the walls i.e.

wu = W − 1

2

√

〈A〉 or wd =
1

2

√

〈A〉 (4.6)

then the interval stops growing at the end which is near the wall and grows on the other

side only. The instantaneous width of the localized region, wI , at iteration I is the size

of the interval YI and is given by

wI = wu + wd (4.7)
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and the localization width is calculated by averaging all of the wI:

wT1 =
1

Imax − NI − 200

Imax−NI
∑

I=200

wI . (4.8)

wT1 has two parameters which affect the resulting width. The number of iterations

in a bin, NI , and the percentage of T1s from each bin required in the y-interval, ψT1. A

suitable choice of parameters is required to accurately represent the true width of the

localized region. Figure 4.9 illustrates some combinations of parameters for different

foams. An appropriate choice of parameters should not be affected by a moving lo-

calized region and provide a good measure of the true width for a range of different

foams.

Firstly note that for a foam of relatively low area-disorder, where the localized re-

gion does not move around, ψT1 and NI have a small effect on the measured width.

When the area-disorder is higher, more care must be taken in choosing the parameters

since the localized region may move around. As the bin size increases, the measured

width increases and reaches a plateau for each value of ψT1, since the bin size is too

large to detect regions of localized T1s. In fact, if NI is large then wT1 is roughly equiv-

alent to RT1, the range of the instantaneous positions of the localized region. If the

bin size is too small, there will be bins with no T1s, and the measured width will be

too small. For the first foam, the localization width is approximately 1-2 typical bubble

widths, for the last two foams in figure 4.9 the localization width should represent bands

of T1s of approximately 7 and 10 typical bubble widths. The parameters ψT1 = 0.8 and

NI = 50 result in a good measure of the width of the localized region in each case.

Figure 4.10 shows the relationship between localization width and area-disorder using

these parameters.

wT1 exhibits power law behaviour as functions of disorder. The fit in figure 4.10 is
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Figure 4.9: (a) The localization width, wT1, versus bin size, NI , for different values of

ψT1 for foams in which the y-position of each T1 versus iteration number is given in (b).
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Figure 4.10: The localization width wT1 versus area-disorder µA
2

plotted on different

axes. The fit is given by equation (4.9). The localization width increases with increasing

area-disorder and is approximately proportional to the square root of area-disorder.
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given by

wT1

W
= 1.5(µA

2 )0.47 (4.9)

In terms of typical bubble widths, the localization width is given to a good approxima-

tion by

wT1√
〈A〉
≈ 10

√

µA
2
. (4.10)

for the chosen values of ψT1 and NI . The localized region extends on average up to ten

times a typical bubble width, although for foams of high disorder this can sometimes

be larger over intervals of applied strain where the localized region is moving, as in

the bottom two foams in figure 4.9. The outlying points in blue are low area-disorder

foams, in which the region of localized T1s has moved from the wall of the channel,

and correspond to the same simulations highlighted in blue in figure 4.8.

4.3 Localized foam structure

I have shown that the flowing region of a dry two-dimensional foam is influenced by

the movement of the region of localized T1s to other regions of the foam. It would

therefore be useful if it were possible to predict when and where the region of localized

T1s would move. To this end, I will highlight the differences in structure between

regions of the foam which are in the region of localized T1s and regions which are not,

and describe measures which are successful in identifying the localized region given

instantaneous information solely about a foam’s structure. Perhaps the most obvious

measures, the local topological disorder and area-disorder, are not sensitive to the region

of localized T1s. Instead, I describe a tensorial measure of local structure and a simple
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Figure 4.11: (a) A foam with µA
2
= 0.561, used to illustrate measures that can identify a

localized region. (b) The y-position of each T1 versus applied strain for the foam in (a).

one-dimensional measure which can identify the localized region of foam e.g. from

a still image. The foam in figure 4.11 (a) will be used throughout to illustrate the

ability of each measure to identify the localized region. The foam has area-disorder

µA
2
= 0.561 and was chosen since the localized region moves, providing a sterner test of

the measures ability to identify the localized region. The y-position of each T1 versus

applied strain is given in figure 4.11 (b).
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y = y0

Figure 4.12: Calculating Ly: The average length of the line segments on y = y0 (red)

that cover each bubble is calculated for each y ∈ [0,W].

4.3.1 One-dimensional measures

I describe simple one-dimensional measures which may be sensitive to the region of

localized T1s.

1. The local area-disorder, µA,loc

2
, measured in horizontal strips of the foam.

2. The local topological disorder, µn,loc

2
, measured in horizontal strips of the foam.

3. The average area of the bubbles where the y-coordinate of their centre is within a

horizontal strip of the foam, 〈A〉loc.

4. The average length, Ly, of the horizontal line y = y0 that is covered by each

bubble, and is calculated for each y ∈ [0,W] (figure 4.12), sometimes referred to

as the linear intercept method [138].

Figure 4.13 shows each measure at three different strains for the foam where the

y-position of each T1 versus strain is plotted in figure 4.11 (b). The only measure

to correctly identify the localized region is Ly, i.e. it is the only measure that has a

pronounced peak in the appropriate range of y. For ǫ = 0, Ly has no pattern. At strains

beyond the transient regime, Ly is maximized in the localized region. For ǫ = 1.5, Ly

is maximized in the centre of the channel at y/W = 0.5, coinciding with the region of
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localized T1s. For ǫ = 3.125, Ly is maximized in the top of the channel at y/W = 0.78,

with further peaks at the centre of the channel, reflecting the uncertainty in the position

of the localized region during a time of transition from the centre of the channel to the

top. For ǫ = 4, Ly is maximized in the top of the channel at y/W = 0.92 and the

localized region has now settled at the top of the channel. In figure 4.14 I superimpose

Lmax
y the y-position at which Ly reaches a maximum at the corresponding strain, onto

the y-position of the T1s versus applied strain. AlthoughLy is very noisy, it consistently

identifies the region in which the T1s have localized. The other measures in figure 4.13

either have peaks in regions where there are no T1s or are missing peaks in regions

where the T1s are localized.

4.3.2 Texture tensor

In the previous section I showed that a one-dimensional measure of a foam’s structure

can identify regions of localized T1s and regions of no T1s from a single image. The

Texture tensor [139; 140] is a tensorial measure of the foam structure and may provide

more information regarding which features of the foam structure allows identification of

the region of localized T1s. The Texture tensor, M, is calculated from a foam structure

and quantifies the local deformation of the foam. It is a symmetric tensor given, in two

dimensions, by

M =

























Mxx Mxy

Myx Myy

























= 〈l ⊗ l〉 =

























〈l2
x〉 〈lxly〉

〈lxly〉 〈l2
y〉

























(4.11)

where l denotes the link joining neighbouring bubble centres. lx and ly are the com-

ponents of l in the x and y directions respectively, ⊗ denotes a tensor product and 〈.〉

denotes an average over a representative area of foam. M can be diagonalized and the

largest eigenvalue of M, λ1, gives the degree of stretching and the corresponding eigen-
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Figure 4.13: One dimensional measures as a function of y-position at different strains

for the foam in figure 4.11. The one-dimensional measure Ly is sensitive to the region

of localized T1s whilst more obvious measures are not, i.e. it is the only measure that

has a pronounced peak in the appropriate range of y (see text and cf. figure 4.11 (b)).
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Figure 4.14: The y-position of each T1 versus applied strain for a foam with µA
2
= 0.561

(figure 4.11). The maxima of one-dimensional measure Ly, superimposed as blue dots

at strain intervals of 0.27, consistently identities the region of localized T1s.

vector, e1, points in the direction in which bubbles are being stretched. The eigenvector,

e2, of the other eigenvalue, λ2, will be perpendicular to e1. The angle that the direction

of stretching makes with the direction of shear, θT , is a measure of the orientation of

the bubbles. I choose to use arrows to represent the Texture tensor: they point in the

direction of the eigenvectors with length proportional to the eigenvalues. The Texture

tensor can also be represented as an ellipse with major and minor axes of magnitude

proportional to the eigenvalues of M (figure 4.15).

Figure 4.16 gives the y-position of each T1 versus strain for a 1120 bubble dry foam

with µA
2
=0.561 (as in figure 4.11) and the Texture tensor calculated at strain intervals

of one and averaged over 20 horizontal strips of the foam. At zero strain the foam is

undeformed, both eigenvalues are roughly equal and eigenvectors are mostly in the x or

y directions implying little bubble orientation or deformation. As the foam is strained,

bubbles re-orient, indicated by the direction of the arrows, and the arrows stretch further

in the regions where the foam is most strained, causing T1s to occur. At ǫ = 3, the foam
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lx

ly

Figure 4.15: The Texture tensor is calculated from the x and y components, lx and

ly, of all bubble centre-to-centre links within a chosen region of a foam, and can be

represented as an ellipse, or by two perpendicular arrows. The largest arrow points in

the direction of the largest eigenvector of M and indicates the direction in which the

foam is being stretched, and the orientation of the bubbles.

is in a transitional period where the region of T1s is moving and this uncertainty in T1

position is reflected in the Texture tensor. In cases where the regions of T1s are not well

defined it can be difficult to pick out these regions just by looking at the texture tensor.

I plot each individual component of the Texture tensor, along with the eigenvalues,

for a better understanding of which features of the Texture tensor cause it to identify the

localized regions. Figure 4.17 gives the components of M as a function of y-position.

Mxx and Myy, which are measures of stretching in the x and y directions respectively,

have similar starting values. As the foam is strained, Mxx increases whilst Myy de-

creases. The average values of Mxx and Myy stay the same after the transient, but show

fluctuations across the channel. Mxy is a measure of the local shear strain, and starts

at zero and increases to a value which is constant on average but fluctuates across the

channel. As the foam is strained, Mxx and Mxy are maximized in the localized region.

At ǫ = 3, where the region of localized T1s is moving, there are two peaks for Mxx as a

function of y-position. There seems to be no relationship between Myy and the localized
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Figure 4.16: The Texture tensor is sensitive to the region of localized T1s. The Texture

tensor is calculated for horizontal strips in the foam shown in figure 4.11 (a) at different

strains. The y-position of each T1 versus strain is repeated here for easy comparison

with the Texture tensor. When measured for the undeformed foam (ǫ = 0), there is no

apparent pattern, but for other applied strains, the Texture tensor picks out regions of

T1s. The case ǫ = 3 occurs during a transitional period where the region of localized

T1s is moving and this uncertainty is reflected in the Texture tensor.
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region. Therefore it is the component of centre-to-centre links in the direction of shear

which is sensitive to the region of localized T1s, which contributes to both Mxx and Mxy.

Mxy is a measure of local strain [141], the shear modulus can therefore be approxi-

mated by

G =
dτxy

dǫ

∣

∣

∣

∣

∣

∣

ǫ=0

≈
τxy

Mxy

. (4.12)

Since Mxy is maximized in the localized region and in the linear Couette geometry the

shear stress should be homogeneous throughout the channel, G will be minimized in

the localized region, indicating that localization arises as a consequence of a localized

structural “weakness” in the foam. If the localization is thought of in terms of the foam

fracturing, this picture is consistent with other elastoplastic materials, where a crack or

weakness in the material propagates and results in fracture. The fact that the localized

region can move to another region of the foam suggests that a foam can recover from

this failure.

Figure 4.17 also gives the eigenvalues of the Texture tensor as a function of y-

position. Initially there is no pattern to the profile, but at subsequent strains, λ1 is

maximized in the region of localized T1s. λ2 shows a weaker, if any, correlation with

the localized region. Of the two eigenvalues, it is λ1 that identifies the region of local-

ization and this can be seen in figure 4.16 where the arrows are longest in the localized

region. The bubbles are therefore more stretched in the localized region. The direction

in which they are stretched is given by θT , the angle that the eigenvector corresponding

to the largest eigenvalue makes with the direction of shear. In figure 4.17, this orien-

tation is plotted as a function of y-position. Initially, since the foam is not under any

applied strain, the eigenvalues are of similar magnitude. The direction of stretching has

little relevance in this case since the bubbles are largely unstrained and therefore the

orientation of the bubbles loses its significance [141]. θT at ǫ = 0 is not plotted in figure

4.17 since it fluctuates greatly and obscures the data for θT at other strains. As the foam
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Figure 4.17: The individual components of the Texture tensor, eigenvalues and orienta-

tion as a function of y-position for the same foam as in figure 4.16 compared with their

values at ǫ = 0. The average value of Mxx,Mxy and Myy doesn’t change, but fluctuates.

λ1, Mxx and Mxy are sensitive to the region of localized T1s in that they have peaks

corresponding to the localized regions whilst the θT is minimized in the same region.
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is strained, the bubble orientation is smallest in the region of localized T1s, provided

that the points at the boundary, which are fixed at about 15◦ to 20◦, are not considered.

4.4 Bubble dynamics during flow localization

Thus far in this chapter I have shown that for quasistatic shear of dry foams, the T1s

become localized in space, and that the position and size of the localized region depends

on the area-disorder of the foam. In this section I consider the movement of the bubbles

as the foam is sheared. Having seen that area-disorder has a significant impact on

the position and spatial distribution of T1s and hence the flow of dry two-dimensional

foams, I shall turn my attention to the behaviour of the individual bubbles during the

flow. To do so I shall examine instantaneous displacement vector plots.

Figure 4.19 gives the instantaneous displacement fields at different strains during the

transient flow of the linear Couette shear of the 1120 bubble foam shown in figure 4.11.

The arrows represent the displacement of the bubble centres during a strain increment

of δǫ = 0.0078 where the magnitude of the vectors has been multiplied by four. At low

strains there are no T1s and most strain increments result in affine displacement of the

bubbles, as in figure 4.19 (a). Even a single T1, as in figure 4.19 (b), has little impact

on the overall flow field. As the applied strain increases, there is a smaller proportion

of strain increments in which no T1s occur and the displacement fields are like those

shown in figure 4.19 (c) and (d), where T1s occur in spatial clusters, forming what are

known as quadrupolar macroscopic rearrangements (figure 4.18) [142]. The effects of

the T1s are felt across the channel so that the presence of the channel wall has an impact

on the rearrangement dynamics (figure 4.19 (d)). The extent of this impact is considered

later in this section.

Figure 4.20 gives the instantaneous displacement fields at different strains during
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Figure 4.18: Displacement field during a quadrupolar macroscopic rearrangement,

courtesy of Cox et al. [142]

the flow of the foam after the transient regime, i.e. during the period of localized flow.

A greater proportion of strain increments now include T1 rearrangements, although

there are still periods of affine displacement in which no T1s occur. The flow of the

bubbles after the transient regime becomes highly non-linear and rich flow behaviour

is observed. This was not observed by Kabla et al. [58] who found that the T1s lo-

calize only near the wall after the transient. The bubbles undergo collective large-scale

swirling motions involving more T1s than in the transient regime. These form vor-

tices (figure 4.20 (a)) where the T1s have localized away from the walls, as well as

large quadrupolar rearrangements (figure 4.20 (b)) involving many T1s. Figure 4.20 (c)

shows the displacement field during an interval in which a localized region is moving

from the centre to the upper wall and figure 4.20 (d) shows the displacement field dur-

ing localized flow at the upper wall. Figures 4.20 (a) and (d) occur as combinations

of the smaller quadrupolar rearrangements aligning, resulting in a fracture with large

movement of bubbles. In figure 4.20 (d), which is similar to the displacement profiles

of Kabla et al. [58], the fracture occurs near the wall and therefore vortices do not

appear.
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(a) ǫ = 0.04
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Figure 4.19: Displacement fields for the foam of 1120 bubbles, whose T1 positions are

given in figure 4.14, during the transient regime. The position of the T1s are marked

with red plusses. Most steps during the transient have no T1s and the displacement is

affine like that shown in (a). A single T1 like that shown in (b) at (0.82,0.6) has little

effect on the displacement field. As the end of the transient is approached, more T1s

are involved in each macroscopic rearrangement and quadrupolar rearrangements can

be identified in (c) and (d).
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(a) ǫ = 1.52
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(d) ǫ = 3.49
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Figure 4.20: Displacement fields for the foam of 1120 bubbles, whose T1 positions are

given in figure 4.14, after the transient regime. The positions of the T1s are marked with

red plusses. After the transient, macroscopic rearrangements involve many more T1s,

forming large quadrupolar rearrangements which combine to form swirling vortices.

Localization must occur away from the walls for the vortices to occur, as in (a). When

the localization is near one of the walls, as in (d), the displacement field is like those

observed by Kabla et al. [58].
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Figure 4.21: A dry foam consisting of 5000 bubbles with area-disorder µA
2
= 0.32. Time

constraints limit the number of foams of this size that can be simulated.

In order to establish to what extent the effects we see are obstructed by the walls of

the channel, I performed a simulation with 5000 bubbles and area-disorder µA
2
= 0.32

(figure 4.21). Only one such simulation was performed due to the huge amount of

computational time (∼ 3 months) required to simulate the shear of so many bubbles up

to a strain of 3. The liquid fraction was set at φl = 0.005 in order that the transient

regime be reached at lower strain and therefore shorter computational time.

The y-position of each T1 versus applied strain is given in figure 4.22 (a) for this

large foam. The transient behaviour is the same as for previous simulations, in that the

T1s occur with no apparent pattern. Thereafter, the T1s localize in space away from

the walls for large intervals of applied strain (greater than 1) and the position of the

localized region moves, consistent with observations of smaller foam systems. There is

a stationary region close to the non-moving bottom wall, extending for about 15 typical

bubble widths (figure 4.22 (b)), and a similar plug flow region next to the moving wall.

These are interpolated with a linear displacement profile (figure 4.22 (c)).
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Figure 4.22: (a) y-position of each T1 versus applied strain for the 5000 bubble foam.

The T1s localize away from walls and the position of the localized region moves. (b)

(x, y)-position of each T1 after the transient for the 5000 bubble foam. There is an ab-

sence of T1s at the walls since the foam has localized near the middle. (c) Displacement

profile of the 5000 bubble foam averaged over strain increments of 0.19 and 1.9.
118



Chapter 4. Shear localization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1
 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60  70

y-
p
o
si

ti
o
n
/

W

x-position / W

y-
p
o
si

ti
o
n
/
√ 〈

A
〉

x-position /
√
〈A〉

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1  0.2  0.3  0.4  0.5

 35

 40

 45

 50

 55

 60

 65

 70

 5  10  15  20  25  30  35  40

y-
p
o
si

ti
o
n
/

W

x-position / W

y-
p
o
si

ti
o
n
/
√ 〈

A
〉

x-position /
√
〈A〉

Figure 4.23: (a) Non-affine displacement field for the 5000 bubble foam during a strain

step with a few T1s. The position of the T1s are marked with red plusses. The T1s

cause a quadrupolar rearrangement which extends far into the bulk. (b) Closer view of

the rearrangement.
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Figure 4.24: Non-affine displacement field for the 5000 bubble foam during a strain step

with many T1s (ǫ = 1.43). The position of the T1s are marked with red plusses. The

T1s cause large vortex-like rearrangements which align along the direction of shear,

and impact almost the whole foam.
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Figure 4.23 gives instantaneous displacement fields during T1 events. The effect of

a single T1 on the otherwise affine displacement field is minimal, as in the 1120-bubble

case. The effect is small, with only a few bubbles affected. Figure 4.23 (a) shows how

the effect of a combination of relatively few T1 events extends far into the foam. In con-

trast to the displacement fields for the 1120 bubble foam, the non-affine displacement

field is plotted i.e. the expected affine displacement of each bubble in the absence of

any T1s is subtracted from the actual displacement to show only the deviation from the

linear displacement field. The T1s combine to create a large quadrupolar rearrangement

which affects approximately 15 bubbles in each direction. Figure 4.24 shows an exam-

ple of the non-affine displacement field of a larger rearrangement where vortices align

and the foam fractures, affecting approximately 30 bubbles above and below. This be-

haviour is reminiscent of that seen at particle scale in Lennard-Jones glasses [143; 144]

where interaction between particles is governed by a pairwise potential. Elastic inter-

actions between bubbles in two dimensions are represented to a good approximation by

a pairwise harmonic potential dependent on the bubble radii [145] which may account

for why, for a dry foam at least, bubbles can behave like particles.

4.5 Effect of liquid fraction

The liquid fraction of a foam is one of the most important parameters affecting its

rheology, and as I have shown in Chapter 3, the effect of varying liquid fraction on the

yield stress of two-dimensional foams is dramatic. In this section I consider the effect

of varying liquid fraction on the shear localization of two-dimensional foams. To do so

I use the simulation method for wet foams described in section 2.6, and simulate the

linear Couette shear of two-dimensional wet foams consisting of 100 bubbles between

parallel walls (as shown in figure 2.9). Previously in this chapter I showed that area-
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disorder has an effect on the shear localization of foams, and so for the purposes of

investigating the effect of varying liquid fraction I keep the area-disorder to within a

small range, 0.095 < µA
2
< 0.13. I vary the liquid fraction in the range 0 < φl < 0.1, and

measure the width of the region of localized region of T1s, wT1, in the same manner

as described in section 4.2. Here the T1 position is taken to be the point at which

two Plateau borders merge (figure 2.10). If during a single strain step, Plateau borders

repeatedly merge and separate, then a separate T1 is recorded each time the Plateau

borders merge. This will not have a significant effect on the overall result, since the

situation arises infrequently and only at high liquid fraction. Some simulations were

performed with 200 bubbles to increase confidence in the validity of the results.

Figures 4.25 and 4.26 show the y-position of each T1 versus applied strain for dif-

ferent liquid fractions. For φl = 0.01 the T1s are localized in space and the position of

the localized region is mobile. From the simulations performed with dry foams, this is

to be expected for this value of area-disorder (µA
2
= 0.1269, cf figure 4.8). For φl = 0.02,

the T1s remain localized in space, but the localized region is wider. For φl = 0.05, re-

gions of T1s are wider and it becomes more difficult to identify a localized region. For

φl = 0.09, no regions of localized T1s can be identified.

Figures 4.27 and 4.28 show the displacement profiles for different liquid fractions,

for the same foams as in figures 4.25 and 4.26. At low liquid fractions a similar picture is

seen to that encountered for dry foams earlier in the chapter (figure 4.27): displacement

profiles, averaged over strain intervals of 1, are localized, exhibiting areas where the

foam is not flowing. The effect is reduced when the displacement is averaged over larger

intervals of applied strain due to the moving localized region. At higher liquid fraction

(figure 4.28) displacement profiles deviate less from a linear profile when averaged over

applied strain intervals of both δǫ = 1 and δǫ = 4. Once the liquid fraction is sufficient

for the T1s to fill the majority of the channel, the displacement profiles become very
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Figure 4.25: y-position of each T1 versus applied strain for foams with liquid fractions

φl = 0.01 and φl = 0.02. For φl = 0.01, the T1s are localized in space, whilst a localized

region for φl = 0.02 also moves and is wider than that for φl = 0.01.
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Figure 4.26: y-position of each T1 versus applied strain for foams with liquid fractions

φl = 0.05 and φl = 0.09. For these liquid fractions, the T1s span the majority of the

channel. There may be evidence of intermittent T1 localization at φl = 0.05.
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similar.

I quantify the position and width of the localized region in the same manner as in

sections 4.2.3 and 4.2.4. The mean position of the localized region, YT1, versus liquid

fraction is plotted in figure 4.29 (a). At low liquid fraction, the mean position of the

localized regions is away from the walls and scattered since the localized region is

moving. As the liquid fraction increases, the mean position settles in the centre of the

channel as the width of the localized region grows to fill the channel.

The range of the position of the instantaneous localized region, RT1, is plotted in

figure 4.29 (b) against liquid fraction. The scatter at low liquid fraction indicates that the

localized region can move in a region which is anywhere between 2 and 7 typical bubble

widths in size. As the liquid fraction increases the movement of the localized region

decreases. Since the width of the localized region is growing with increasing liquid

fraction and T1s fill a greater proportion of the channel, the position of the localized

region is less free to move.

The width of the localized region is given in figure 4.30, with the choice of NI = 50

and ψT1 = 0.8, the same values used for dry foams in section 4.2.4. The predicted local-

ization width for foams in the dry limit from equation (4.10) is also plotted in figure 4.30

(b), with µA
2
= 0.1, and is in good agreement with data from the wet foam simulations.

The localization width, wT1, increases with increasing liquid fraction. The localization

width plateaus at approximately φl = 0.05 coinciding with the liquid fraction at which

the mean position of the localized region settles at the centre of the channel (figure 4.29

(a)) as T1s fill the channel (cf. figure 4.26).

Note that since the channel consists of approximately 10 by 10 bubbles, there will be

very few T1s whose y-position is within one typical bubble with of the walls (
√
〈A〉 =

0.1), allowing T1s to fill a maximum of approximately 0.8 times the channel width, W.

With ψT1 = 0.8, the localization width is unlikely to exceed 0.8 × ψT1 = 0.64, although
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Figure 4.27: Displacement profiles for foams with φl = 0.01 and φl = 0.02 for ǫ >

1. When averaged over small strain intervals the displacement profiles are non-linear,

but when averaged over larger strain intervals, a moving localized region leads to a

smoother displacement profile which deviates less from a linear profile.
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Figure 4.28: Displacement profiles for foams with φl = 0.05 and φl = 0.09 for ǫ > 1.

The profiles are smoother deviate less from a linear profile than dryer foams when

averaged over both small and large strain intervals.
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Figure 4.29: (a) The mean y position of the localized region, YT1, versus liquid fraction,

φl. (b) The range of the positions of the localized region, RT1, versus liquid fraction, φl.
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Figure 4.30: The localization width, wT1, with ψT1 = 0.8 and NI = 50 as for the dry

case for wet foams with area-disorder 0.095 < µA
2
< 0.128. The prediction from dry

foam simulations (φl = 2.6 × 10−4) using equation (4.10) with µA
2
= 0.1 is also plotted.

wT1 increases with increasing liquid fraction.

one could conceive special cases where it would be possible. Therefore as wT1 reaches

a plateau at approximately 0.6, this is interpreted as the T1s filling the channel and is

consistent with what is observed in figure 4.26.

It is to be expected that for wider channels, the localization width would not plateau

but continue to increase. It was not possible to test this hypothesis due to the restrictions

on the number of bubbles that can be simulated at high liquid fraction.

Referring back to the displacement profiles in figures 4.27 and 4.28, the displace-

ment profiles are almost linear when averaged over large intervals of applied strain. At

low liquid fraction this arises from a small localized region which moves around. As

the liquid fraction increases, the almost linear profile occurs as a result of the localized

region filling the channel. The liquid fraction therefore has a significant effect on the

localized region and through this, the flow of the foam.

These results are consistent with the observations of Debrégeas et al. [59] with a

Hele-Shaw cell (GG) but seem to contradict those of Katgert et al. [65] with a confined
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bubble raft (LG). In the latter case, the only means of controlling the liquid fraction

is to vary the distance between the bounding plate and the liquid pool. Subsequently,

the bubbles change shape, becoming more stretched at low liquid fractions and having

a flat pancake-like shape at high liquid fraction. It may be the shape of the bubbles, as

opposed to the volume fraction of liquid, which sets the degree of localization in this

case.

4.6 Summary

T1 localization has been observed in some studies but not in others. The presence of

external friction accounts for many instances in which the T1 localization is observed

in quasi-two-dimensional experiments, with some exceptions, but it does not account

for T1 localization observed in quasistatic simulation of dry foams.

The position and size of the localized region depends on both the liquid fraction

and area-disorder of the foam, which could further explain why T1 localization occurs

in some studies but not in others. The width of the localized region increases approx-

imately linearly with increasing liquid fraction (figure 4.30) and as the square root of

area-disorder (equation (4.10), figure 4.10), resulting in a greater amount of flowing

foam. At low liquid fraction the degree to which the position of the localized region

moves around increases as the area-disorder is increased (figure 4.8), allowing different

regions of foam to flow in turn. The overall effect is an increase in flowing foam. If the

liquid fraction and area-disorder are sufficient, the localized region fills the channel and

no localized flow is observed (figure 4.28).

It is plausible therefore that T1 localization occurs when there is some restriction on

the free flow of bubbles, as is the case when external friction is present or when using

the cylindrical Couette geometry, since part of the foam is at a stress above the yield
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stress whilst the remainder is at a stress below the yield stress. To these conditions

I would now include that localization may occur when the foam is very dry or very

ordered.

I also note that the behaviour of foams at low area-disorder differs significantly from

the ordered case, reinforcing the claim in Chapter 3 that the inclusion of disorder is es-

sential when considering real foam systems. The importance of considering disordered

systems can also be seen when looking at bubble dynamics. During localized flow the

bubbles undergo large scale vortex-like motion (figure 4.20 (d)), similar to what is ob-

served in Lennard Jones glasses, but which only appears when the localized region is

away from the walls, which requires a certain amount of area-disorder.

The region of localized T1s in a dry two-dimensional foam can be identified from

information solely about the foam structure using either a tensorial measure of foam

structure or a simple one-dimensional measure, both of which can be calculated from a

single still image. The next step after identification of the localized region is to be able

to predict to which region of the foam the localized region will move.

In the next chapter I consider the local bubble configuration during a T1 and whether

the individual T1 events at small scale can be related to the phenomena of yielding and

T1 localization at the longer length scales considered in this and the previous chapter.
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T1 orientation

5.1 Introduction

I have thus far shown that the phenomena of foam yielding and T1 localization depend

on the liquid fraction and area-disorder of the foam. These large scale phenomena are

the manifestation of the combination of many local structural rearrangements at the bub-

ble scale, i.e. T1s, a fundamental process in the flow of foams. In this chapter, I relate

yielding and localization to the topological changes at the bubble scale by considering

the local bubble configuration during a T1 process.

Recall that in a dry two-dimensional foam, a T1 occurs when a film shrinks to zero

length, resulting in a fourfold Plateau border which immediately dissociates into two

threefold Plateau borders joined by a film roughly perpendicular to the one which has

disappeared (figure 1.4). As the liquid fraction is increased, fourfold Plateau borders

become stable and may remain as fourfold Plateau borders for finite intervals of applied

strain before dissociating back into threefold Plateau borders. (figure 2.10).

To maintain a consistent description of a T1 for both wet and dry foams, it is better

to think in terms of nearest neighbours, i.e. two bubbles that share a common film

[46; 141]. A T1 process involves the rearrangement of four bubbles, two of which
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are nearest neighbours beforehand, and another two which become nearest neighbours

after the event. Following Graner et al. [141], nearest neighbours are defined to be

those that have a film in common, and a line joining their centres defines a link. A T1 is

initiated and a link disappears when Plateau borders merge and the film between them

disappears. When Plateau borders separate, a new film and a new link are created. The

local bubble configuration during a T1 can be characterized by its orientations (θd, θc),

defined as the angles that the disappearing and created links (respectively) make with

the direction of shear. Examples of T1s and their orientations are given in figure 5.1.

For higher liquid fraction, five or more sided Plateau borders may be formed, e.g.

when a fourfold Plateau border and a threefold Plateau border merge to create a fivefold

Plateau border. In the same manner as when fourfold Plateau borders are formed, θd

is measured when the Plateau borders merge and a link disappears and θc is measured

when a Plateau border of five or more sides dissociates back into two Plateau borders

with fewer sides and a new link is created.

T1 orientations have been measured experimentally in a bubble raft by Wang et al

[46] (figure 5.2 (i)). They found that the distributions of θd and θc had peaks at 45◦

and 130◦ respectively, suggesting more-likely local geometries for bubbles separating

and coming together. The distribution of θd was broader than that of θc. At low shear

rates the distributions were smooth and bell-shaped with secondary peaks. As the shear

rate was increased, the distributions became more spiked and the secondary peaks dis-

appeared. The location of the primary peaks appeared to decrease slightly as the shear

rate is increased, in agreement with simulations of Cox of ordered two-dimensional

foams using the Viscous Froth model [146].

In figure 5.2 (ii) I give an example of the orientations of T1s in simulations of dry

two-dimensional foams. The distributions of θd and θc have peaks in the region of 30◦

and 140◦ respectively and the distribution of θc is broader than that of θd.

133



Chapter 5. T1 orientation

(a) (b) (c) (d)

θd

θd
θd

θd

θc

θc

θc

θc

Figure 5.1: Examples of T1s and their orientations θd, θc. The evolution of the structures

proceeds from top to bottom in each case. (a) Ordered dry foam, (b) disordered dry

foam, (c) ordered wet foam and (d) disordered wet foam. The orientations are calculated

at the instants at which two threefold Plateau borders merge (θd) and at which a fourfold

Plateau border dissociates into two threefold Plateau borders (θc). For dry foams this

occurs at the same instant.
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Figure 5.2: (i) Previous results of Wang et al. [46] for the orientation of T1s in a bubble

raft. (ii) Example of the distribution of T1 orientations from my simulations of a dry

two-dimensional foams which will be discussed later. In each case the distribution of

θd is shown in the upper figure and the distribution of θc in the lower figure.

The orientation of the new film created after a T1 has been measured from two-

dimensional simulations of a coarsening foam under a constant applied stress by Vincent-

Bonnieu et al. [147]. The orientation of the new film was found to be related to the

macroscopic strain step occurring as a result of the individual T1. The orientation of

the new film is not the same as either θd or θc, but is likely to be related to both in some

way for dry foams.

In this chapter I investigate the effect of liquid fraction and area-disorder on the

distributions of the T1 orientations and show that the distributions of Wang et al. and

data from dry foam simulations are consistent with the variation of the distributions

of T1 orientation with liquid fraction and area-disorder. I also relate T1 orientation to

foam yielding and T1 localization, showing a non-trivial link between the individual T1
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events and the foam response to applied strain at larger length scales. The orientation of

the disappearing link, θd, is a measure of local strain at the instant a T1 occurs. A high

value of θd indicates a low local strain and vice-versa. The yielding and flow of a foam

requires that many T1s occur and the distribution of the orientation of the T1s is related

to mesoscopic phenomena involving collections of bubbles, such as T1 localization, and

macroscopic phenomena such as foam yielding and flow.

5.2 Reference case: Ordered foam

I begin by considering the T1 orientations of a fully-ordered hexagonal foam (figure 5.1

(a) and (c)). To calculate the orientations, all that is required are the strains at which (i)

two threefold Plateau borders merge, ǫd, and (ii) the fourfold Plateau border separates,

ǫc. These values can be obtained from the analysis of Princen [30], described in Chapter

3. Then

tan θd =
1

ǫd + 1/
√

3
, (5.1)

tan θc =
1

ǫc −
√

3
. (5.2)

Figure 5.3 shows the variation of θd and θc with liquid fraction for different contact

angles. As in previous chapters, the effect of a finite contact angle is considered since

simulations of disordered wet foams are performed with contact angle α = 3.62. The

same notation is used as in Chapter 3 to distinguish between analytic predictions, Pα,

and Surface Evolver simulations, S α, of different contact angle, α.

For a perfectly dry hexagonal foam, the T1 occurs at ǫ = 2/
√

3, resulting in θd = 30◦

and θc = 120◦. θd increases as the liquid fraction increases since the strain at which the

T1 occurs decreases with increasing liquid fraction.
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Figure 5.3: The T1 orientations θd, θc in an ordered hexagonal foam versus liquid frac-

tion. Pα denotes analytic predictions and S α denotes Surface Evolver simulations, each

of contact angle α. θd increases monotonically with increasing liquid fraction whilst θc

exhibits a change in behaviour at the point at which a fourfold Plateau border becomes

stable over a finite interval of applied strain.

θc exhibits more complex behaviour as a function of liquid fraction. It initially in-

creases from 120◦ with increasing liquid fraction. At φl ≈ 0.02, the behaviour changes

and θc decreases as the liquid fraction increases. The change in behaviour is related to

the stability of a fourfold Plateau border. At low liquid fractions, fourfold Plateau bor-

ders are unstable and immediately dissociate back into two threefold Plateau borders. θd

and θc are therefore measured at the same strain, and since the T1 occurs at decreasing

strains as the liquid fraction increases, this results in an increase in θc. Once the liquid

fraction is sufficiently high that a fourfold Plateau remains stable for a finite strain in-

terval, the behaviour changes. θc is measured at the strain at which the fourfold Plateau

border dissociates into two threefold Plateau borders and this occurs at increasing strain

as the liquid fraction increases, resulting in a decrease in θc as the liquid fraction is

increased.

The effect of a finite contact angle is to increase θd and decrease θc, since an in-
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creased contact angle results in both threefold Plateau borders merging and fourfold

Plateau borders separating at higher strains. The effect is greater on θd, but a contact

angle of α = 3.62 remains a good approximation to the zero contact angle case.

Simulations in the Surface Evolver with the wet method described in section 2.6

reproduce the analytic result for finite contact angles; therefore it can be used with

confidence to extend the study to disordered foams.

5.3 Effect of area-disorder on T1 orientation in dry foams

Having looked at the predicted orientation of T1 events for ordered foams over a range

of liquid fractions, I consider what effect the introduction of area-disorder has on the

T1 orientation. In order to obtain good statistical averages, I consider foams in the dry

limit φl = 2.6×10−4 where simulations with over a thousand bubbles can be performed.

The orientations of each T1 versus applied strain are shown in figure 5.4 for a foam

with µA
2
= 0.2809. After an initial transient up to a strain of order one, as for the stress

in Chapter 3, the orientations remain within a certain range and therefore I consider

the orientations of T1s after a strain of 2 only, to ensure that any transient behaviour is

omitted.

The evolution of the distribution of θd with area-disorder is shown in figure 5.5.

For an ordered foam, such a graph would appear as a delta function. With increasing

area-disorder the distribution broadens.

θd is well-fitted by a normal distribution of mean λd and standard deviation σd. The

probability density function (PDF) is given by

fd(θd) =
1

√
2πσd

exp

(

(θd − λd)2

2σ2
d

)

. (5.3)

To produce the histograms the interval was divided into 25 bins, giving a bin size of
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Figure 5.4: The orientation of each T1 versus applied strain. After an initial transient,

the orientations remain within a certain range. Note that θd is sometimes negative,

shown as values close to 180◦.

7.2◦ which was found to have sufficient detail to capture the shape of the distribution

and large enough that the distribution does not appear noisy.

The mean and width of the fitted distributions are given in figure 5.6 (a) and (b).

λd appears to decrease initially with increasing area-disorder and then increase slightly

with increasing area disorder. At low area-disorder the orientation approaches the value

for the ordered case (θd ≈ 31◦ at φl = 2.6 × 10−4 from figure 5.3). σd increases with

power law behaviour as the area-disorder is increased, implying that the width would

reduce to zero as the area-disorder tends to zero. Simulations of monodisperse foams

do however have finite values of σd (data not shown) and this must be attributed to

the foam being topologically disordered. The mean and width of the distribution of

the disappearing link are plotted together in figure 5.6 (c). The variation in the mean

of the distribution is small relative to the width of the distribution, especially at high

area-disorder.
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Figure 5.5: The distribution of the orientation of the disappearing link, θd, for different

values of area-disorder, µA
2
. The distribution of θd is well-fitted by a normal distribution.

The steps are histograms of the data and the bold line is the PDF of the fitted normal

distribution. As the area-disorder increases, a greater variation in orientation is observed

and the distribution broadens.
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Figure 5.6: The variation of (a) the mean, λd, and (b) width,σd, of the distributions fitted

to the orientation of the disappearing link, θd, with area-disorder, µA
2
. Above a certain

values of area-disorder, λd increases with increasing area-disorder. As the area-disorder

decreases, λd approaches the value for the ordered case (θd ≈ 31◦ at φl = 2.6 × 10−4).

σd increases with increasing area-disorder. The solid line is a power law fit to the data.

λd and σd are plotted together in (c). The mean is shown as crosses and the width of the

distribution by the red bars.
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The outlying points at low area-disorder correspond to simulations in which the

localized region jumps from the wall to the centre of the channel, leading to an increased

localization width (cf. section 4.2.4). This suggests a link between T1 localization and

T1 orientation, which is discussed later in section 5.5.2.

The evolution of the distribution of θc with area-disorder is shown in figure 5.7. The

distribution appears to have two modes, with the low θc mode growing in prominence

as the area-disorder is increased. The distribution is well-fitted by a bimodal normal

distribution with PDF

fc(θc) = p fc1(θc) + (1 − p) fc2(θc) (5.4)

where

fci(θc) =
1

√
2πσci

exp

(

(θc − λci)
2

2σ2
ci

)

, i = 1, 2 (5.5)

are normal PDFs with mean λci and standard deviation σci (of the same form as PDF

(5.3) for θd) and p is a mixing parameter. i = 1 denotes the distribution with smallest

mean and i = 2 the distribution with the largest mean.

Figure 5.8 shows the variation of the distribution parameters with area-disorder. At

low area-disorder both means, λc1, λc2, are similar. As the area-disorder increases, one

mean grows while the other is reduced. The opposite happens to the widths of the

distributions, σc1, σc2: the distribution of the high θc mode has a low width, but this

width increases slightly with increasing area-disorder until it is of the same order as the

width of distribution of the low θc mode. The distribution of the low θc mode starts off

very wide and the spread of the data is greater than for the high θc mode, but as the mean

decreases, the spread of the points decreases until it is of the same order as the spread

of the data for the width of the high θc mode. The mixing parameter p also increases

with increasing area-disorder, i.e. at low disorder, the high θc mode dominates the

overall distribution, but as the area-disorder increases, the low θc mode becomes more
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Figure 5.7: The distribution of the orientation of the created link, θc, for different val-

ues of area-disorder, µA
2
. The steps are histograms of the data, the dotted lines are

the fit functions and the bold line is a weighted sum. The distributions are well-fitted

by a bimodal normal distribution, suggesting different underlying causes for T1s. At

low area-disorder, the high θc mode dominates the distribution. As the area-disorder

increases, the low θc mode grows in prominence.
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prominent and at high disorder is of equal or greater prominence than the high θc mode

(figure 5.7). The increase of p is linear in lnµA
2
. The solid line in figure 5.7 (c) is given

by

p = 0.053lnµA
2 + 0.63. (5.6)

The effect on the mean, λc, and width, σc, of the overall distribution is as follows.

The mean starts in the region λc ≈ 130◦ at low area-disorder and decreases with increas-

ing disorder as the mixing parameter increases (note that for ordered foams, θc ≈ 123◦

at φl = 2.6 × 10−4). The width, σc, starts low at low area-disorder and increases as the

mixing parameter increases with increasing area-disorder.

A bimodal distribution suggests different underlying causes leading to T1s. The

peaks indicate that when a T1 occurs, certain local configurations of bubbles are more

likely than others. The cause of these specific configurations is not yet known. Some

hypotheses have however been ruled out. I find that the proximity of the walls and

the number of sides of the four bubbles involved in the T1 do not have an effect on its

orientation (data not shown).

5.4 Effect of liquid fraction on T1 orientation in disor-

dered foams

To study the effect of varying liquid fraction on the orientation of T1 events in dis-

ordered foams, I use the “wet method” described in section 2.6 and the area-disorder

is kept within the range 0.09 < µA
2
< 0.13. Simulations are restricted to 100 bub-

bles in order that they can be completed in reasonable time (1-4 weeks depending on

liquid fraction). With fewer bubbles, the statistics will not be as good as for the dry

simulations performed in the previous section, and it is not possible to adequately fit a
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Figure 5.8: (a) The mean of each normal distribution, λc1, λc2, contributing to the overall

distribution of θc against area-disorder µA
2
. At low-area-disorder, the means are similar,

but one mean grows and the other is reduced as the area-disorder is increased. (b) The

width of each normal distribution, σc1, σc2, contributing to the overall distribution of

θc against area-disorder µA
2
. At low area-disorder, the width of the distribution of the

low θc mode is greater and shows more variation than that of the low θc mode. As

the area-disorder is increased, both widths have similar magnitude and spread. (c) The

mixing parameter, p, against area-disorder µA
2
. The mixing parameter determines the

influence of each normal distribution on the overall distribution of θc, and increases

with increasing area-disorder as the low θc mode grows in prominence.
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distribution to the data. However, the sample mean, 〈.〉, and standard deviation, SD(.),

of the orientations θd and θc will indicate the behaviour as a function of liquid fraction.

Recall that for a perfectly ordered foam, the orientation of the disappearing link, θd,

increases with increasing liquid fraction, whilst the orientation of the created link, θc,

decreases with increasing liquid fraction after an initial increase at low liquid fraction

(figure 5.3). The evolution of the distributions of θd and θc with liquid fraction, φl, is

shown in figures 5.9 and 5.10. Although the statistical information is not as good as

was obtained from simulations in the dry limit, a similar distribution of θd, with a single

sharp peak, is observed at low liquid fraction (φl = 0.0075) as was found for foams in

the dry limit (cf. figure 5.5). As the liquid fraction is increased the distributions broaden

and, at φl = 0.04, resemble those found by Wang et al. [46] (cf. figure 5.2 (i)). At low

shear rate the distributions of θd of Wang et al. reach a maximum value of approximately

0.25 at 45◦, and are similar in shape, position and width to the distribution I see in figure

5.9 (b) obtained from disordered wet foam simulations. A detailed comparison of my

results with the study of Wang et al. is found in section 5.5.1.

At low liquid fraction, the distribution of θc appears to have two modes (figure 5.10

(a)), as in the dry limit (cf. figure 5.7). As the liquid fraction increases, the distributions

broaden and the statistics are not good enough to identify multiple modes if they exist. If

more than one mode did exist, this would mean that at high φl there are further preferred

local arrangements of bubbles when T1s occur. Perhaps a more likely outcome is that

as the rigidity-loss transition [36] is approached, the distribution becomes uniform with

all orientations equally likely.

With increasing liquid fraction the distributions of both θd and θc span the entire

180◦ interval. As a result, additional care must be taken in calculating the sample mean

and variance. The chosen 180◦ interval over which the data is represented will influence
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Figure 5.9: The evolution of the distribution of the disappearing link, θd, with liquid

fraction. (a) At low liquid fraction the distribution has a single sharp peak, as for foams

in the dry limit (cf. figure 5.5). (b)-(c) As the liquid fraction increases, the peak becomes

less pronounced and the distribution broadens and spans the entire interval so that every

orientation is present.
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Figure 5.10: The evolution of the distribution of the created link, θc, with liquid fraction.

(a) At low liquid fraction the distribution appears to have two modes similar to those

found for foams in the dry limit (cf. figure 5.7). (b)-(c) As the liquid fraction increases,

the peak becomes less pronounced and the distribution broadens and spans the entire

interval. Multiple modes, if they exist, are harder to identify.
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the usual method of calculating the mean and variance of N datapoints:

〈x〉 = 1

N

N
∑

j=1

x j (5.7)

Var(x) =
1

N

N
∑

j=1

(

x j − 〈x〉
)2
. (5.8)

For example, representing the data with the peak in the middle of the interval will yield

different values of mean and variance than if the data was represented such that the peak

was at the lower end of the interval. Thus, I calculate a circular mean and variance

which are independent of the choice of interval. Following Mardia [148], I proceed as

follows: For each simulation, let θi, i = 1 . . .Nθ, denote the orientation of the links after

the transient. Each orientation is multiplied by a factor of two so that the data for each

simulation is 360◦ periodic, and each datapoint is considered as a point on the perimeter

of the unit circle. Let θ′i denote the new datapoints. Then

θ′i = 2θi. (5.9)

The mean, 〈θ′〉, can then be calculated from

Rcos 〈θ′〉 = C and Rsin 〈θ′〉 = S (5.10)

where

C =
1

Nθ

Nθ
∑

i=1

cosθ′i (5.11)

S =
1

Nθ

Nθ
∑

i=1

sinθ′i (5.12)

R =
√

C2 + S 2. (5.13)
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Thus, for −90◦ < tan−1(S/C) < 90◦, θ′ can be calculated as follows:

θ′ =











































tan−1
(

S
C

)

if S > 0 and C > 0

tan−1
(

S
C

)

+ 180◦ if C < 0

tan−1
(

S
C

)

+ 360◦ if S < 0 and C > 0

(5.14)

The sample mean and standard deviation of the original T1 orientations are then given

as

〈θ〉 = 〈θ′〉
2

(5.15)

SD(θ) =

√
−2lnR

2
. (5.16)

Note now that the sample mean and standard deviation are used instead of the mean and

width of the fitted distributions used in section 5.3 where there was enough information

to fit a statistical distribution.

Figure 5.11 shows the variation in the mean and standard deviation of the orientation

of the disappearing link, 〈θd〉 and SD(θd), with liquid fraction. 〈θd〉 increases with in-

creasing liquid fraction and may reach a plateau at around 45◦ - more data with φl > 0.1

is required to verify this, which is beyond the scope of my present simulations given the

computational time required. The difference between the ordered and disordered case

is not great and in this instance the ordered case provides a reasonably good approxi-

mation of disordered foam response. An increase in 〈θd〉 with liquid fraction indicates

that T1s are initiated at lower applied strain as the liquid fraction increases. SD(θd) also

increases with increasing liquid fraction. T1s occur with a wider range of orientations,

with the likelihood of one particular orientation being diminished.

The variation in the mean and standard deviation of the orientation of the created

link, 〈θc〉 and SD(θc), with liquid fraction is shown in figure 5.12. In contrast with the
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Figure 5.11: (a) The mean orientation of the disappearing link, 〈θd〉, increases with

increasing liquid fraction. The dashed line is the prediction for ordered foams. (b) The

standard deviation of the orientation of the disappearing link, SD(θd), increases with

increasing liquid fraction.
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ordered case, 〈θc〉 is constant at low liquid fraction, and may show a slight decrease at

high liquid fraction. There is no discontinuity in behaviour associated with the stability

of a fourfold Plateau border as in the ordered case, indicating that in this respect the

ordered foam, in which all T1s occur simultaneously, does not provide a good picture of

a disordered wet foam. Since only the mean orientation is considered, these conclusions

could be misleading if the distribution is bimodal, as in the dry limit.

SD(θc) increases with increasing liquid fraction. The distribution broadens with

increasing liquid fraction until all orientations are possible.

5.5 Discussion

5.5.1 Comparison with experiment

Having described the dependence of T1 orientation on liquid fraction and area-disorder,

I consider to what extent the results are consistent with the experimental study by Wang

et al. [46].

I begin by highlighting the differences between my simulations and the experiments

of Wang et al. [46]. My simulations are performed in the quasistatic limit with liquid

fraction in the range 0 < φl ≤ 0.1 and area-disorder in the range 0.00016 ≤ µA
2
≤ 0.8.

In the work of Wang et al., experiments are performed with monodisperse foams. The

liquid fraction is not specified. It is likely to be greater than 0.05 but it is hard to define

an effective liquid fraction in such an experiment [74]. The authors do not consider any

of their results to be in the quasistatic limit.

The main difference between the experimental results with those from simulations

in the dry limit presented at the beginning of the chapter (figure 5.1) is the position of

the peak of the distributions of the disappearing link. The mean depends primarily on

liquid fraction and, to a lesser extent, area-disorder. As the liquid fraction increases,
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Figure 5.12: (a) The mean orientation of the created link, 〈θc〉, is constant over a large

range of liquid fraction and decreases slightly at high liquid fraction. In contrast to the

ordered case, there is no discontinuity in the behaviour associated with the stability of

a fourfold Plateau border. (b) The standard deviation of the orientation of the created

link, SD(θc), increases with increasing liquid fraction.
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the mean orientation (and therefore the peak of the distribution) also increases (figure

5.11), to a value comparable to that observed by Wang et al. when the liquid fraction

exceeds φl ≈ 0.05.

The mean orientation of the created link does not change with liquid fraction but

does depend on area-disorder. The peak of the distribution for low area-disorder foams

(equal to the largest mean of the bimodal distribution) is approximately 130◦ in agree-

ment with the low area-disorder experiments of Wang et al.

Whilst I cannot reproduce the exact conditions of the experimental study of Wang

et al. (since the liquid fraction is unknown and my simulations are restricted to the qua-

sistatic limit), the dependence of the distributions of the disappearing and created links

on liquid fraction and area-disorder presented in this chapter indicate that for the most

part the results presented here and the experimental study of Wang et al. are compatible.

The only difference that cannot be explained with results in this chapter is the existence

of a secondary peak in the distribution of the disappearing link from the experimental

study of Wang et al.. A secondary peak is observed in the distribution of θc in dry foam

simulations but not in the distribution of θd. However, the statistical information ob-

tained for foams within a range of liquid fraction similar to the experiments of Wang et

al. may not be adequate to detect a small secondary peak to the distribution of θd since

these simulations were performed with only 100 bubbles.

5.5.2 Implications of T1 orientation

In this section I consider the implications of the results in this chapter in terms of T1

localization and yielding. It is the orientation of the disappearing link, θd, which is most

appropriate in this circumstance since it signifies the onset of a T1 whose occurrence

is driven by the applied shear. I summarize the results of this and previous chapters in

table 5.1 and include inferences regarding the dependence of the dynamic yield stress,
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Results

Dependent parameter Control parameter Figure

Dynamic yield stress, τd
y ↑ then ↓ with area-disorder, µA

2
3.9

Dynamic yield stress, τd
y ↓ with liquid fraction, φl 3.15

Localization width, wT1 ↑ with area-disorder, µA
2

4.10

Localization width, wT1 ↑ with liquid fraction, φl 4.30

Mean orientation, λd ↓ then ↑ with area-disorder, µA
2

5.6

Mean orientation, λd ↑ with liquid fraction, φl 5.11

Distribution width, σd ↑ with area-disorder, µA
2

5.6

Distribution width, σd ↑ with liquid fraction, φl 5.11

Inferences

Dynamic yield stress, τd
y ↓ with Mean orientation, λd

Dynamic yield stress, τd
y ↑ then ↓ with Distribution width, σd

Localization width, wT1 ↓ then ↑ with Mean orientation, λd

Localization width, wT1 ↑ with Distribution width, σd

Table 5.1: Summary of results concerning yield stress, localization width and T1 orien-

tation, and resulting inferences. ↑ and ↓ stand for “increases” and “decreases” respec-

tively.

τd
y , and localization width, wT1, on the mean, λd, and width, σd, of the distribution of

the orientation of the disappearing link.

First I note that the effect of liquid fraction and area-disorder is largely the same,

with the exception of the behaviour of the dynamic yield stress and mean orientation of

the disappearing link at low area-disorder. From these results I make inferences about

the variation of localization width and dynamic yield stress with the mean and width of

the distribution of the disappearing link. The relationship of the static yield stress and

the orientation of the disappearing link is not considered since the static yield stress is

a transient property and θd is measured after the transient while the foam is flowing.

The decrease of the dynamic yield stress with liquid fraction and the increase of the

mean orientation of the disappearing link with liquid fraction suggests that the dynamic

yield stress should decrease with increasing mean orientation. The variation of the

dynamic yield stress and mean orientation with area-disorder (above a certain level of
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area-disorder) supports this inference.

The width of the distribution of the disappearing link increases with increasing liq-

uid fraction and area-disorder. The dynamic yield stress decreases with increasing liq-

uid fraction and area-disorder, except at low area-disorder, suggesting that the dynamic

yield stress should decrease with increasing distribution width, with possible increase

at low distribution width (corresponding to low area-disorder).

The localization width increases with increasing liquid fraction and area-disorder.

The mean orientation of the disappearing link increases with increasing area-disorder

(above a certain level of area-disorder) and increases with increasing liquid fraction.

This suggests that the localization width will increase with increasing mean orientation

above a certain value of λd.

Finally, since the distribution width increases with both liquid fraction and area-

disorder, and the localization width increases with both liquid fraction and area-disorder,

the localization width should also increase with increasing distribution width.

These inferences can be tested by returning to the data from dry and wet foam

simulations. Figure 5.13 shows the relationship between the dynamic yield stress, τd
y ,

and the mean, λd, and width, σd of the distribution of the orientation of the disappearing

link. Data from both the dry and wet methods are in good agreement.

The dynamic yield stress decreases with increasing mean orientation in agreement

with the inference in table 5.1. Recall that a low value of the orientation of the disap-

pearing link, θd, suggests that a high local strain resulted in a T1, whilst a high value of

θd suggests that a low local strain resulted in a T1. An accumulation of many T1 events

results in a foam flowing and thus as λd is the mean of the values of θd, it is related to

the macroscopic yield strain and therefore the macroscopic yield stress also.

The clear monotonic decreasing relationship between the dynamic yield stress and

the mean orientation of the disappearing link, along with the fact that the dynamic yield
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stress increases initially and then decreases with area-disorder, supports the weaker

evidence in figure 5.6 that λd increases with increasing area-disorder following an initial

decrease.

The dynamic yield stress increases initially with the width, σd, of the distribution of

the orientation of the disappearing link, θd, and then decreases as σd increases further.

The origin of the initial increase is unclear since I would expect the yield stress to

decrease only as the σd increases and a wider range of local bubble configurations can

lead to a T1. The result is nevertheless consistent with the prediction from data of σd

and τd
y against liquid fraction and area-disorder.

The experimental study of Wang et al. [46] and simulations by Cox [146] show that

orientation of the disappearing link decreases with increasing shear-rate. The relation-

ship between the orientation of the disappearing link, θd, and the dynamic yield stress

now suggests that with increasing shear rate, the dynamic yield stress would also in-

crease and this is consistent with what is observed in the literature [29; 35], once more

establishing the link between the orientation of the disappearing link at the microscopic

scale and the macroscopic yielding behaviour of the foam.

Figure 5.14 shows the relationship between the localization width and the mean and

width of the distribution of the disappearing link. The localization width decreases ini-

tially with increasing orientation, corresponding to an increase in area-disorder. The

localization width then increases with increasing orientation corresponding to an in-

crease in liquid fraction. The data for dry and wet foams do not match up as for the

case of the yield stress. This could be an indication either that there are other factors

which determine the localization width and it is not linked solely to the orientation of a

T1, or that some finite size effects are present from using a foam with only 100 bubbles.

The width of the localized region increases with the distribution width for data obtained

for both dry and wet foams but once more the data does not appear to link up. This
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is an area in which further study would be needed, reducing the liquid fraction further

with the wet method and fixing the area-disorder. I do note however that the data for

dry foams for the same range of area-disorder in which the wet foam simulations were

performed is consistent with the data obtained from wet foam simulations. There is

therefore, on balance, a correlation between localization and T1 orientation in that both

depend in some way on liquid fraction and area-disorder but the relationship is not as

clear as the causal dependence of the dynamic yield stress on T1 orientation.

5.6 Summary

The local bubble configuration of a foam at the instant a T1 is triggered is associated to

a particular orientation of the disappearing and created links between bubbles, relative

to the direction of shear. The peaks in the distributions of the orientation of the dis-

appearing and created links indicate that there are specific local bubble configurations

which are more likely to result in a T1 event than others. The distributions of the T1

orientations depend upon the liquid fraction and area-disorder of the foam as well as

the rate at which the foam is sheared. The described dependence of the mean and width

of the distributions of the disappearing and created links is compatible with existing

experimental results.

For ordered two-dimensional foams, the orientation of the disappearing and created

links can be calculated from the strains at which threefold Plateau borders merge and

fourfold Plateau borders separate (equations (5.1) and (5.2)). For φl = 0, θd = 30◦ and

θc = 120◦.

For disordered dry two-dimensional foams in the quasistatic limit, the distribution of

θd is well-fitted by a normal distribution. The mean of the distribution initially decreases

with increasing area-disorder, followed by an increase (figure 5.6 (a)). The width of the
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distribution increases with increasing area-disorder (figure 5.6 (b)). The variation in the

mean of the distribution is small relative to the width of the distribution (figure 5.6 (c)).

The distribution of θc is a mixture of two normal distributions, suggesting different

underlying causes for the T1s. At low area-disorder, the distribution with the largest

mean dominates the overall distribution but the distribution with the smallest mean

grows in prominence with increasing area-disorder (figure 5.8). The reasons for a bi-

modal distribution are not yet known.

The orientation of the disappearing link occurs at the beginning of a T1 when two

threefold Plateau borders merge and the mean and width of the distribution of this link

correlates with the macroscopic phenomena of yielding regardless of area-disorder and

liquid fraction (figure 5.13).
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Conclusions

6.1 Summary

I have probed the response of two-dimensional foams to applied shear in the quasistatic

limit through numerical simulation and studied the phenomena of yielding and shear lo-

calization in terms of the shear-induced T1 rearrangements. In particular I have focused

on the effect of liquid fraction and area-disorder on the flow of the foam and found that

in many respects, variation of the two parameters have the same qualitative effect.

I performed oscillatory shear simulations to study the transition from solid-like to

liquid-like behaviour in dry two-dimensional foams and found that the complex shear

modulus as well as the higher stress harmonics are in good agreement with experimental

data for foams and other yield stress materials (figures 3.4 and 3.5).

The yield stress is an important parameter in the solid-liquid transition, and for two-

dimensional foams, the static and dynamic yield stress both decrease with increasing

area-disorder (figure 3.9) and liquid fraction (figure 3.15). The only exception is for

dry foams at low area-disorder, for which the static yield stress is found to be constant

with increasing area-disorder whilst the dynamic yield stress increases with increasing

area-disorder.
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When a two-dimensional foam begins to flow, the T1s can become localized in

space. The position and width of the localized region depend on liquid fraction and

area-disorder. The position of the localized region is more likely to move and cover

larger regions of the foam as the area-disorder is increased, and the width of the lo-

calized region increases approximately linearly with increasing liquid fraction (figure

4.30) and as the square root of area-disorder (equation (4.10)). The overall effect is a

greater amount of flowing foam with increasing liquid fraction and area-disorder. For

sufficiently high values of liquid fraction and area-disorder, the T1s fill the channel and

no localization is observed. A combination of liquid fraction, area-disorder and ex-

ternal friction could therefore account for the majority of variation in reported results

concerning the shear localization of foams.

For dry two-dimensional foams I presented a one-dimensional measure and a tenso-

rial measure of foam structure which can identify the localized region. Both measures

can be calculated from a single still image and are an important first step to a means of

predicting the future position and movement of the localized region.

The local bubble configuration at the instant a T1 is triggered gives rise to a particu-

lar orientation of the disappearing and created links. The distributions of the disappear-

ing and created links have peaks, indicating that there are certain local bubble configu-

rations which are more likely to result in a T1. The mean and width of the distribution

of the disappearing and created links depend on liquid fraction and area-disorder and so

therefore does the local bubble configuration leading to a T1.

The mean and width of the distribution of the disappearing link increase with in-

creasing area-disorder (figure 5.6) and liquid fraction (figure 5.11). The distribution of

the orientation of the created link for dry two-dimensional foams is a mixture of two

normal distributions. At low area-disorder, the overall distribution is dominated by the

distribution with the largest mean, but as the area-disorder is increased the distribution
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with the smallest mean has an increasing effect on the overall distribution (figure 5.8).

Macroscopic flow behaviour originates at the microscopic scale and I showed that

the dynamic yield stress was directly related to the orientation of the T1 events. The

localization width is also related to the orientation of T1 events. The relationship is not

as clear however, since the data for dry foam simulations in which the area-disorder is

a control parameter and data from wet foam simulations in which the liquid fraction is

the control parameter do not match up as they did with the dynamic yield stress.

In each chapter I used results from a perfectly ordered two-dimensional foam as

a reference. In general, the response of disordered two-dimensional foams differed

significantly from that of the ordered foam. The variation of the static and dynamic

yield stress of ordered two-dimensional foams with liquid fraction, whilst in qualitative

agreement with my results for disordered foams, differs by a significant margin quanti-

tatively. The spatial distribution of T1s and displacement profiles during linear Couette

shear change suddenly as area-disorder is introduced and the variation of the orientation

of the disappearing and created links of disordered foams differs from the ordered case.

When considering the response of real foam systems therefore, it is essential that the

role of disorder is considered.

6.2 Future work

The two-dimensional simulations described in this thesis have allowed me to make

many deductions concerning foam response to applied shear. The ultimate goal will

always be to perform simulations which accurately represent real foam systems. In this

respect, there are a number of directions in which my work can be extended.

Perhaps the most obvious extension to the work presented here is to consider three-

dimensional foam systems. Three-dimensional simulations are more challenging to
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implement as well as more time consuming to run. Nevertheless, with faster processor

speeds, three-dimensional simulations are becoming more viable. It would be inter-

esting to consider what effect the volumetric disorder and liquid fraction have on the

spatial distribution of topological changes in a three-dimensional foam, and how this in

turn effects the flow of the foam.

Wall slip is often eliminated in experimental foam studies, but will undoubtedly be

a factor in real world applications. A modification of my numerical method to allow the

films in contact with the walls to slip allows the effects of wall slip on foams undergoing

linear Couette shear to be studied. Preliminary results with a hundred bubbles suggest

that the position of the localized region depends on the boundary conditions at each

wall.

There are at least two ways of modelling slip at the walls. One method considers

that the motion is governed by static friction. Then a balance of forces where the vertex

meets the wall leads to

γcosαw = µ fγsinαw (6.1)

where γ is the tension of the film, αw is the contact angle between the film and the wall

and µ f is some coefficient representing the friction between the film and the wall. This

effectively defines a critical contact angle, αcrit
w , below which the vertices will slip, given

by

αcrit
w = tan−1

(

1/µ f

)

. (6.2)

In a simulation, films that meet the wall at an angle less than αcrit
w are moved as to

increase the angle to the critical one.

Alternatively, one could consider that the motion is governed by dynamic friction

and, in the spirit of the Viscous Froth model [42] (see section 2.2.2.2), move the vertices

in proportion to their “velocity”, v, scaled by a drag coefficient, µd, and the contact angle
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Figure 6.1: (a) T1 y-positions for a foam with no slip boundary conditions at both plates.

T1s occur near the bottom plate. (b) T1 y-positions for the same foam as in (a), with

a no slip boundary conditions at the top plate, but the films in contact with the bottom

plate are allowed to slip. The T1s now occur near the top plate.

between the film and the wall:

µ f v = γcosαw. (6.3)

Indeed, a combination of both methods could be used and future work should include

investigation of which method is most appropriate and its validity in the quasistatic

limit.

Figure 6.1 shows the T1 positions when a 100 bubble foam is sheared between

parallel plates, with different boundary conditions. In the first instance (figure 6.1 (a)),

a no slip boundary condition is used and the T1s localize in a band near the lower wall.

In the second example (figure 6.1 (b)), using the same initial bubble configuration, the

films at the lower plate are allowed to move, using the first method described above

. This reduces the stress close to the lower wall and, as a result, the T1s move to a

location near the upper wall. It may therefore be possible to control the position of the

localized region by controlling the degree of slip at the walls, but a more detailed study

is required to verify this.

It would also be interesting to extend the comparison between dry foams and glassy

systems discussed in section 4.4. One way in which this could be done would be to

perform simulations with finite strain rate. Varnik et al. [144] observe localized flow
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profiles with sheared and non-sheared regions when shearing a Lennard Jones glass

at low strain rate, similar to the displacement profiles of dry two-dimensional foams

at low area-disorder (figure 4.5 (b)). As the strain rate is increased the position of

the interface between the stationary band and the sheared band fluctuates and the flow

profiles become linear. My simulations were performed in the quasistatic limit, where

the rate of strain is assumed to be very small. The effect of a finite strain rate could be

investigated either by implementing existing models, e.g. the Viscous Froth model [42]

which includes external dissipation from the bounding plates of a Hele-Shaw cell, or by

developing new code to include the internal dissipation of the liquid as it flows in the

Plateau borders.

Finally, it may be beneficial to revive the software PLAT and modify it for linear

Couette shear. The software is faster than current Surface Evolver methods and would

allow simulation of larger foam samples at high liquid fraction. It would be interest-

ing to discover whether the difference in the approach to finding an equilibrium foam

configuration would lead to significantly different results.
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[65] G. Katgert, A. Latka, M. E. Möbius, and M. van Hecke. Flow in linearly sheared

two-dimensional foams: From bubble to bulk scale. Phys. Rev. E, 79:066318,

2009.

[66] C. Quilliet, M. A. P. Idiart, B. Dollet, L. Berthier, and A. Yenki. Bubbles in

sheared two-dimensional foams. Coll. Surf. A, 263:95–100, 2005.

[67] C. Raufaste, B. Dollet, S. Cox, Y. Jiang, and F. Graner. Yield drag in a two-

dimensional flow of foam around a circular obstacle: Effect of fluid fraction.

Eur. Phys. J. E., 23:217–228, 2007.

[68] B. Dollet and F. Graner. Two-dimensional foam flow around an obstacle: local

measurements of elasticity, plasticity and flow. J. Fluid Mech., 585:181–211,

2007.

[69] C. Quilliet, S. A. Talebi, D. Rabaud, J. Käfer, S. J. Cox, and F. Graner. Topologi-
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