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Summary

This thesis explores the use of high-latitude electric potential patterns obtained from
the Super Dual Auroral Radar Network (SuperDARN) as input to the Coupled Ther-
mosphere Ionosphere Plasmasphere (CTIP) model. By using a new method of high-
latitude convection input it is shown that some improvements to the modelling of the
spatial distribution of the electron density can be obtained.

In the earlier versions of the CTIP model the high-latitude electric potential input
was selected from a restricted library of convection patterns. By introducing the Su-
perDARN electric potential data as the high-latitude input it is now possible to model
a wide range of different convection patterns, notably patterns occurring as a result of
Interplanetary Magnetic Field (IMF) Bz positive conditions. In order to begin to val-
idate the use of this technique, images obtained from ionospheric radio tomography
experiments were used to form case studies involving periods of time where the IMF
Bz component was either stable and positive or stable and negative. This enabled the
ion densities from the tomography images to be compared to the ion densities obtained
from the CTIP model output. Initially this was done with two case-studies that had ma-
ture interpretations in order to prove that the concept of using SuperDARN convection
patterns in CTIP was valid. Subsequent case-studies involved using the model with the
new convection pattern input method to assist with the interpretation of the tomography
images obtained from the Alaskan sector.
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Chapter 1

Introduction

The structure of the plasma in the ionosphere at high-latitudes follows from a complex

chain of physical interactions that link the outer regions of the Sun and the Earth’s atmo-

sphere. The solar wind carries the interplanetary magnetic field that interacts with the

Earth’s magnetic field to open the terrestrial environment to space-weather effects. The

coupling process itself covers vast regions of space, however due to the convergence of

the Earth’s magnetic field lines near the poles this region essentially maps down to the

high-latitude ionosphere. Therefore, investigating the footprints of these interactions in

the high-latitude ionosphere enables the coupling process to be understood more clearly.

An overview of the high-latitude ionosphere is given in Chapter 2.

This thesis uses the Coupled Thermosphere Ionosphere Plasmasphere (CTIP) model

to interpret ionospheric radio tomography data from several chains in the International

Ionospheric Tomography Community (IITC). Chapter 3 outlines the main instruments

used to obtain data for these studies, in particular, the technique of ionospheric radio
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Chapter 1. Introduction

tomography. Chapter 4 is an overview of the CTIP model.

All of the case studies presented were chosen because the tomography passes were

obtained during a period of time where the IMF Bz component was either stable and

negative or stable and positive for a number of hours prior to the time of interest. By

choosing a series of radio tomography passes from times where the IMF was stable,

it is possible to identify a representative high-latitude electric potential pattern for that

time. The most important work in this thesis is the use of data from the Super Dual

Auroral Radar Network (SuperDARN) as the high-latitude input for the CTIP model.

This has vastly expanded the range of high-latitude input available to CTIP, in particular

the modelling of the plasma distribution under the conditions of IMF Bz positive. The

theory of this development to the model is described in detail in Chapter 5. Chapter

6 contains a series of case studies with mature interpretations that aim to verify that

the model results obtained using SuperDARN data are valid, using other instruments to

assist with the interpretation. Chapter 7 extends this work to look at case studies from

the Alaskan tomography chain where there is less additional instrumentation available

to aid interpretation of the data and therefore the conclusions drawn rely heavily on

the new model developments, especially with regard to interpreting the cause of the

plasma distribution under the condition of IMF Bz positive. Finally, Chapter 8 offers

some conclusions to this work together with some areas for further study.
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Chapter 2

Overview of the High-Latitude

Ionosphere

2.1 Introduction

The ionosphere consists of a weakly ionised plasma with about 1% ionisation of the

neutral atmosphere. In terms of altitude it extends from around 60km upwards to the

outer reaches of the Earth’s environment. The ionosphere is important because it sig-

nificantly influences the propagation of radio waves and therefore understanding its

properties is crucial to the operation of navigation devices such as the Global Position-

ing System (GPS) for navigation and communication radio systems. The ionosphere

is considered to comprise four main regions with the following properties in the day-

time: The D region exists from about 60 − 90km and has electron densities of about

108 − 1010 electrons m−3. The E region ranges from 105 − 160km with densities of

3



Chapter 2. Overview of the High-Latitude Ionosphere

about 1011 electrons m−3. The F region is divided into two layers, F1 and F2. The F1

layer stretches from 160−180km with densities of 1011−1012 electrons m−3 with the F2

layer at altitudes above this, reaching a maximum density at about 300km of the order

of 1012 electrons m−3. At night time, the D and E regions and the F1 layer generally

vanish as they are controlled strongly by solar radiation, although some ionisation may

persist in the E region known as sporadic E. The F2 layer persists at a much reduced

intensity. The ionosphere eventually merges with the protonosphere at an altitude of

about 1000km where H+ is the dominant ion. In the evening the protonosphere drops

in altitude leading to charge exchange between the H+ and ionospheric O+ contributing

the maintaining of the F2 layer at nighttime. Figure 2.1 (Rees, 1989) shows a diagram

of the day and night time variation of the electron density in the ionosphere for both

solar maximum and minimum.

The vertical distribution of ionisation is governed primarily by the continuity equa-

tion that relates the electron density, to production, loss and transport:

∂N

∂t
= q − L − div(Nv) (2.1)

where ∂N
∂t

is the rate of increase of the electron density with respect to time, q is the

production rate of ionisation, L is the loss rate by recombination and div(Nv) is the rate

of loss of ionisation due to transport of plasma, where N is the electron density and v is

the mean drift velocity of the plasma. The different processes governing these equation

components are outlined below:

4



Chapter 2. Overview of the High-Latitude Ionosphere

2.1.1 Production Processes

Ionisation by solar Extreme Ultra Violet (EUV) radiation is one of the main production

mechanism at mid latitudes and is also known as photoionisation. The production rate,

q, of solar radiation is proportional to the density of neutral species, n, and the intensity

of the incoming radiation, I is given by Equation 2.2:

q = ησnI (2.2)

In order that an atom or molecule is ionised, it must first absorb radiation. The

amount of radiation absorbed is expressed by the absorption cross-section, σ. However

not all the radiation absorbed by the molecule or atom will go into the ionisation pro-

cess; this is taken into account by the coefficient η which is the ionisation efficiency, or

the fraction of the absorbed radiation that goes into producing ionisation.

From Equation 2.2, S. Chapman developed a formula to predict the form of an iono-

spheric layer and how it varies throughout the day. The rate of production of ionisation

q is known as the Chapman Production Function. Chapman makes four assumptions:

1. The atmosphere is composed of a single species, exponentially distributed with

the scale height, H, constant where H is defined by Equation 2.3

H =
kT

mg
(2.3)

where k is Boltzman’s constant, T is the temperature of the material in Kelvin, m

is the mass of the gas and g is the acceleration due to gravity.

5



Chapter 2. Overview of the High-Latitude Ionosphere

2. There is no variation in the horizontal plane

3. Solar radiation is absorbed in proportion to the concentration of gas particles as

in Equation 2.2

4. The absorption coefficient η is constant, or equivalently the radiation is monochro-

matic, having only one wavelength

Equation 2.2 can be normalised to take into consideration the scale height of the iono-

sphere (Hargreaves, 1992):

q = q0 exp(1−z−sec χ·exp−z) (2.4)

where q0 is the maximum production rate, χ is the solar zenith angle and z, the reduced

height of the neutral gas defined as

z =
h − hmo

H
(2.5)

with h being the height of interest of the neutral gas and hmo is the height of maximum

production rate when χ = 0 which is equivalent to the Sun being directly overhead. Es-

sentially, as χ decreases, q increases for a given z. Thus according to Chapman theory,

the sunlit pole in the summer and the dark pole in the winter leads to greater ionisation

production in summer than winter. There are three well-known seasonal variations in

the ionosphere which affect the electron density. The winter or seasonal anomaly refers

to electron densities in the F2 layer at noon being greater in winter than the summer

electron densities (Croom et al., 1960). It is thought that this anomaly can be attributed

to seasonal changes in the chemical composition in the neutral air (Zou et al., 2000).

6



Chapter 2. Overview of the High-Latitude Ionosphere

In the F2 layer, the production of ions depends on the concentration of atomic oxygen

whereas the loss of ions depends on the concentration of molecular nitrogen and molec-

ular oxygen. A higher atomic-molecular ratio in the winter months could account for

some of the differences in the electron density. The second anomaly is that the electron

density in December is about 20% greater than that in June, which is known as the an-

nual anomaly. Approximately 6% of the difference is attributed to the elliptic nature of

the Earth’s orbit around the Sun, meaning that the Earth is not always equidistant from

the Sun leading to a variation in the intensity of solar radiation. Finally, the semian-

nual anomaly is when the maximum electron density peaks around the equinoxes and

the minimum electron density occurs around the solstices. There have been several

suggestions as to the cause of the semiannual anomaly (Zou et al., 2000) including the

influence of the solar wind, increased internal thermospheric mixing at the solstice and

the large off-set of the geographic and geomagnetic poles in the southern hemisphere,

combining with effects of the variability of the solar zenith angle. This last idea was

addressed by Millward et al. (1996b) in a paper discussing the seasonal and semiannual

variations in the F2 layer.

The other main production process is particle precipitation where energetic particles

gyrate down geomagnetic fields and collide with neutral atoms and molecules in the

ionosphere. Magnetospheric - ionospheric coupling causes the precipitation of electrons

and ions into the ionosphere, causing plasma production in the high-latitude ionosphere.

The rate at which the precipitated particles move through the ionosphere was studied by

Millward et al. (1999) using the Sheffield High-Latitude (SHL) model. Figure 2.2 shows

7
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the modelled height profiles of the ionisation produced by monoenergetic electrons and

Figure 2.3 shows a similar plot for monoenergetic ions. From these plots it can be seen

that the greater the energy in either the electrons or ions, the greater the amount of

ionisation, with the maximum amount of ionisation produced at a lower level For the

F2 layer, typical electron and ion energies would be at least 200eV . Energies lower than

this would not be sufficient to penetrate the F-layer.

2.1.2 Loss Processes

The main loss process in the ionosphere is due to chemical recombination

X+ + Y2 → YX+ + Y (2.6)

YX+ + e→ Y + X (2.7)

This two-stage process is known as disassociative recombination. In the F2 layer,

X+ is predominantly O+ and Y2 is either molecular Oxygen O2 or molecular Nitrogen

N2. The recombination rates of each of the stages in the disassociative recombination

reactions are dependent on β[X+] for Equation 2.6 and α[YX+]N for Equation 2.7 where

α is the coefficient of recombination and β is the attachment coefficient, the brackets []

indicates the number densities of the species and N is the electron density. Essentially

in the F-region, the first part of the reaction, (Equation 2.6) has a slower reaction rate

than Equation 2.7, implying that the overall recombination rate is determined by the

8
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concentrations of X+ and Y2. Furthermore, these reactions are temperature sensitive;

the rate of reaction is dependent on the effective temperature of the reaction which is

governed by both the ion temperature and ion velocity.

2.1.3 Transport

The transport aspect of Equation 2.1 explains the convection of ionisation both into

and out of the region of interest. There are two main mechanisms in the high-latitude

ionosphere, namely neutral winds and electric fields. At heights below the F-region

peak, the collision frequency between the neutrals and the ions is high so the plasma

transport is mainly controlled by the neutral winds. The neutral winds push ionisation

up or down the magnetic field lines as winds flow equatorward or poleward. However,

at F-region heights, the collision frequency between the ions and the neutrals is much

smaller and the electric fields control the plasma motion. This motion is controlled by

the interaction of free charged particles with the electric field (E) and the magnetic field

(B) through the Lorentz force described in Equation 2.8:

F = q(E + v × B) (2.8)

where F is the Lorentz force, q is the electric charge and v is the plasma velocity,

resulting in a plasma drift perpendicular to the electric field (Brekke, 1997).

As described by Schunk (2000), ion outflow, where an upward flow of ionospheric

ions are moved into the magnetosphere is another transport mechanism that is important

at high latitudes.

9



Chapter 2. Overview of the High-Latitude Ionosphere

2.2 Near-Earth and Interplanetary Space Coupling

The Earth’s environment is strongly influenced by its interaction with interplanetary

space which impacts upon the ionosphere. Overviews of these processes can be found

in text books, e.g. Hargreaves (1992).

2.2.1 Solar Wind

The solar wind was discovered by Parker (1958). It consists of a continual stream of

predominantly protons (H+ particles) emitted radially from the solar corona. At the

distance of the Earth’s orbit the average speed of the solar wind is 200 − 800kms−1.

The solar wind is the main way in which the activity of the Sun is communicated to

the vicinity of the Earth. Consequently it is very important when considering solar-

terrestrial relations. The interaction between the solar wind and the near earth envi-

ronment is characterised by the weak magnetic field carried along by the solar wind

plasma known as the Interplanetary Magnetic Field (IMF). This field is frozen into the

solar wind plasma because of the large electrical conductivity of the plasma. The IMF,

which originates at the Sun is dragged outward by the solar wind sweeping past the

planets. The components of the IMF are usually expressed as Bx, By, Bz where the

Cartesian co-ordinate system is the Geocentric Solar Magnetospheric (GSM) system,

i.e. the Earth-to-Sun is the x-axis, the z-axis parallel to the Earth’s magnetic dipole and

y-axis is positive in the duskward direction.

10
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2.2.2 Magnetosphere

The magnetosphere is the cavity formed when the solar wind meets the geomagnetic

field. Figure 2.4 (Hargreaves, 1992) shows a simplified diagram of the magnetosphere

as seen from the dawn-dusk meridian. The solar wind is unable to penetrate the geo-

magnetic field so it is swept around it, forming a bow shock and distorting the dipole

magnetic field of the Earth. On the sunward side, the dipole is compressed by the solar

wind; on the nightside the field is extended forming a magnetotail due to the solar wind

flowing anti-sunward from the Earth. Basic models of the magnetosphere predict two

neutral points on the boundary between the magnetosphere and the solar wind where

the total magnetic field is zero. These points connect at about ±78◦MLAT to the Earth’s

surface via field lines. At these regions, known as polar cusps, solar wind particles can

enter the magnetosphere without having to cross field lines.

2.2.3 Viscous Interactions

It was suggested by Axford and Hines (1961) that momentum is transferred from the

solar wind into the magnetosphere by means of viscous interactions which cause the

whole system to circulate. Typically this circulation process involves the positive ions

moving with the neutral air while the magnetic field carries the electrons. This results

in the magnetic field lines circulating over the poles from the day to the night sectors of

the Earth with the return flow around the dawn and dusk sides.
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2.2.4 Reconnection

An alternative mechanism for solar wind-Earth coupling is magnetic reconnection. This

coupling process is known as the Dungey Cycle (Dungey, 1961) and explains how the

Interplanetary Magnetic Field interacts with the Earth’s geomagnetic field. The key

component of the IMF for this process is its Bz component, though the By and Bx com-

ponents also have an effect on the reconnection (Cowley, 1998). With a southward IMF,

(i.e. Bz < 0), neutral points are formed in the equatorial plane with the IMF connecting

to the geomagnetic field near the plane. As the IMF is frozen into the solar wind and

therefore carried along with it, the field lines are dragged across the polar cap from the

dayside to the nightside. A second reconnection site occurs in the magnetotail when

the geomagnetic field and the IMF are separated. In consequence, field lines over the

poles are open in the sense that they do not link with the other hemisphere. With north-

ward IMF (i.e. Bz > 0) the neutral points are in the solar-ecliptic plane so that the

reconnection sites occur in the lobe regions, as shown in Figure 2.4.

2.2.4.1 Reconnection under IMF Bz Southward

When the IMF Bz component has a negative or southward component then reconnec-

tion can occur near to or at the the equatorial magnetopause, as shown in Figure 2.5

(Lockwood, 1995). As the magnetic field lines of the IMF meet with the magnetic field

lines of the magnetopause, the field lines merge or reconnect at the reconnection site

(marked by X in Figure 2.5) causing the newly reconnected field lines to be accelerated

away from the reconnection site by a magnetic tension force. This results in the field

12



Chapter 2. Overview of the High-Latitude Ionosphere

lines being stretched out into the magnetotail by the anti-sunward flow of the solar wind

as illustrated by field lines 2-5. A further reconnection takes place in the magnetotail,

closing the field lines (not shown in figure). A magnetic tension force pulls the field

lines Earthwards and round to the dayside. The ionospheric signature of this process

is a symmetrical two-cell pattern of F-region plasma flow which can be identified by

in-situ or ground-based instruments. The plasma motion or convection becomes more

complicated when other components of IMF are considered, most particularly a non-

zero IMF By. When IMF By < 0, the resulting effect on the convection cells is for the

dawn cell to be reduced in size while the dusk cell forms an expanded crescent shape,

where the convergence of the anti-sunward flow enters in the pre-noon sector. The re-

verse is true for IMF By > 0 where the flow convergence enters in the post-noon sector

and the polar cap is dominated by the crescent-shaped dawn cell. The top panel of Fig-

ure 2.6 (Cowley et al., 1992) shows a schematic of the ionospheric convection patterns

for IMF Bz negative with three different By scenarios taken from Cowley (1998). These

diagrams are generic views of the effect of IMF By component on IMF Bz < 0 that

have been condensed from may periods of ground and space-based observations. Each

diagram is drawn as seen from the northern polar region in a fixed magnetic latitude

(MLAT) - magnetic local time (MLT) frame. The Earth rotates under this fixed frame

with the 12MLT (Magnetic noon) facing sunwards at the centre of the dayside and the

24MLT (magnetic midnight) on the nightside. For the European sector observations

that are discussed in this thesis, magnetic noon occurs at around 0900UT.

13
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2.2.4.2 Reconnection under IMF Bz Northward

When the IMF Bz component has a positive or northward direction then the reconnec-

tion site can be at a lobe of the geomagnetic tail. Figure 2.7 (Lockwood, 1995) shows

the evolution of the field lines following a lobe reconnection event. In this configuration

the open field lines follow a path through points 1 to 6 which results in the formation of

two convection cells rotating anti-clockwise and clockwise within the polar cap. Under

these conditions the open polar cap region is bounded by an adiaroic boundary between

open and closed field lines across which there is no transfer of magnetic flux. The mag-

netic tension force initially pulls the field lines sunward before they are returned to the

geomagnetic tail by the anti-sunward flow of the solar wind. As described in Crooker

(1992), different configurations of IMF Bz northward reconnection are possible. Indeed

both lobe and magnetopause reconnection may occur simultaneously (Cowley, 1998).

The bottom panel of Figure 2.6 shows some suggested scenarios of inferred plasma

flow for different IMF By conditions, though these 4-cell patterns that are depicted in

the diagrams may not always be representative of the true plasma motion (Ruohomiemi

and Baker, 1998). Depending on the direction of By, there may be two lobe cells of cir-

culation within the polar cap as shown in Figure 2.6. However it is thought that a single

lobe cell may be prevalent during periods where By ≫ 0 (for example, Ruohomiemi and

Baker (1998)). Outside the polar cap region, crescent-shaped viscous cells are depicted

on the dawn and dusk flanks of the polar cap. These are thought to represent flow cells

located wholly on closed field lines.
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2.2.4.3 Effect of IMF Bx on Reconnection

Very little is known about the effect of IMF Bx on reconnection. It is thought that a

negative Bx gives rise to reconnection in the northern hemisphere lobe whereas a posi-

tive Bx component favours reconnection with the southern hemisphere lobes (Crooker,

1992).

2.2.4.4 Clock Angle and Reconnection

The clock angle is a useful parameter for categorising the IMF By and Bz components.

It is defined as

arctan
| By |

Bz
(2.9)

for IMF Bz positive, and

180◦ − arctan
| By |

Bz
(2.10)

for IMF Bz negative. Clock angles greater than 90◦ correspond to IMF Bz negative and

are associated with equatorial reconnection. Clock angles less than 90◦, correspond-

ing to IMF Bz positive are generally associated with lobe reconnection. However, for

clock angles between approximately 45◦ and 90◦ which corresponds to Bz positive and

| By |> Bz, it has been suggested by Sandholt et al. (1998) that both lobe and equatorial

reconnection could occur simultaneously.
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2.3 Particle Precipitation

As outlined in Section 2.1.1, particle precipitation is a mechanism whereby ionospheric

ionisation is created in-situ. The magnetosphere provides the source of particles which

precipitate into the ionosphere. The location of this source in the magnetosphere di-

rectly influences the energy and number density of the particles, which in turn deter-

mines the energy and flux of the particles as they precipitate. Siscoe (1991) identified

the principal regions of the magnetosphere as shown in Figure 2.8. The cusp region is

where the plasma has direct entry into the ionosphere following the reconnection pro-

cess. Tailward of the cusp is mantle plasma comprising de-energised magnetosheath

plasma. Equatorward of the cusp is a region known as the lower-latitude boundary

layer (LLBL). Surrounding the earth is the plasma sheet (PS), which extends down

the magnetotail and is bounded by the plasma sheet boundary layer (PSBL) and the

LLBL. The boundary plasma sheet (BPS) includes the plasma sheet boundary layer and

a part of the plasma sheet. However, the central plasma sheet (CPS) is the part of the

plasma sheet that excludes the BPS. These magnetospheric regions have been related

to observed particle precipitation using the Defence Meterological Satellite Programme

(DMSP) satellites to record and categorise precipitating particles according to energy

and particle flux (Newell and Meng, 1992).

2.3.1 Aurora

The aurora is the optical manifestation of the precipitation of energetic particles into

the ionosphere. Electron and ion precipitation into the ionosphere excites neutral at-

16



Chapter 2. Overview of the High-Latitude Ionosphere

mospheric species which emit photons as they return to their ground state. Typical

locations are poleward of 75◦MLAT dayside and 70◦MLAT on the nightside under

quiet conditions. However in disturbed conditions the aurora can extend to as low

as 60◦MLAT and can be visible in the UK. The auroral emissions have been classified

according to their magnetospheric source by Sandholt et al. (1998).

2.4 Density Enhancements and Depletions

A variety of plasma density enhancements and depletions can be found in the iono-

sphere. Some of these are detailed below.

2.4.1 Density Enhancements

Density enhancements fall into three categories based on location: those located inside

the polar cap, those located outside the polar cap e.g. boundary blobs (Crowley, 1996)

and those located within the cusp region.

2.4.1.1 Cusp Region

The cusp is the region of direct entry of solar wind particles into the polar cap. Here

soft precipitation causes F-region density structure. Processes in this region depend on

IMF orientation as this affects the location of the reconnection site and high-latitude

convection (Smith et al., 2000; Pryse et al., 2000).
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2.4.1.2 Polar Patches and Tongue-of-Ionisation

Polar patches are regions of enhanced F-region electron density which are observed

mainly under IMF southward conditions. In an extensive review of polar cap plasma,

Crowley (1996) defined a polar patch as where the enhancement is at least twice the

density of the background level. Patches are not produced by in-situ precipitation (We-

ber et al., 1984), rather they are transported by the tongue-of-ionisation (TOI) and

anti-sunward convection, which is an effect of IMF orientation. Patches have hori-

zontal scales of the order of 100km-1000km and are moved at speeds of up to around

1000ms−1.

2.4.1.3 Auroral Arcs

Auroral arcs are an optical feature observed within the polar cap under the IMF north-

ward conditions (Buchau et al., 1983). Small arcs have lengths of the order of 100km

and large arcs of about 1000km with widths being around 100km. They are formed

by soft particle precipitation (i.e. energies less than 500eV) and are associated with

enhanced electron densities.

2.4.1.4 Blobs

There are three types of blobs, depending on the location: sub auroral, boundary and

auroral. Boundary blobs are found outside the polar cap. Tsunoda (1987) and Schunk

and Sojka (1996) have suggested that the equatorward edge of the auroral oval could be

the poleward wall of the main trough. There are two suggested production mechanisms:
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Rino et al. (1983) suggested soft precipitation near equatorward edge was the cause but

de la Beaujardiere et al. (1985) suggested that long-lived plasma could be convected

across the polar cap. Sub auroral blobs are equatorward of boundary blobs (Tsunoda,

1987; Schunk and Sojka, 1996) whereas auroral blobs are to be found within the latitu-

dinal constraints of the auroral latitudes. Crowley (1996) suggests that they are formed

by precipitation.

2.4.2 Density Depletions

Density depletions in the ionosphere essentially comprise troughs and polar holes. They

have different names depending on the author (Rodger et al., 1992).

2.4.2.1 Trough

The main trough occurs at sub-auroral latitudes though it could occur at high latitudes

on the dayside. It is more predominant on the night-side and referred to as the mid-

latitude trough, observed from around 18-09UT and located between 50−60◦MLAT un-

der quiet geomagnetic conditions, (Kersley et al., 1997). It moves equatorward with in-

creasing Magnetic Local Time (MLT) and increasing geomagnetic activity as observed

by Kersley et al. (1997) and Pryse et al. (2000).

2.4.2.2 Polar Hole

A polar hole is a particular high latitude trough that is formed by stagnation of plasma

in the dark winter ionosphere (Brinton et al., 1978). More recent observations have

been detailed in Kersley et al. (1997).
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2.5 Conclusion

The sections of this chapter have introduced the basic processes that govern the struc-

ture of the high-latitude ionosphere. Ionisation can be created by solar radiation and/or

through the impact of particles entering the upper atmosphere as a result of some type

of coupling or disturbance of the Earth’s magnetic environment, such as particle pre-

cipitation or reconnection. Interactions between the IMF and the magnetosphere cause

plasma convection in the polar cap. In addition, detectable signatures of localised en-

hancements and depletions of plasma in the polar regions can be used to as a diagnostic

tool for investigating the effects of particular orientations the IMF has on the ionospheric

structure.
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Chapter 3

Instrumentation

3.1 Introduction

The instruments described in this chapter have been used in two ways: some have been

used to provide input parameters for subsequent modelling work and others have been

used to interpret and validate the model results obtained, most notably the Ionospheric

Radio Tomography experiment which was used to provide measurements of the iono-

spheric electron content.

3.2 Tomography

Kak and Slaney (1987) defined tomography as “the cross-sectional imaging of an ob-

ject or parameter using the data collected by the illumination of the target from many

different directions”. A large number of one-dimensional projections are combined in

a reconstruction algorithm to produce a tomographic image of the object or parameter.
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Radon (1917) was the first person to solve the mathematical problem of reconstructing

a function from its separate projections though it was not until the more wide-spread

use of computers that the importance of this technique in both medical and scientific

applications was realised. Godfrey Houndsfield developed the first computer-aided to-

mography (CAT) scanner in 1972 which was designed to measure the attenuation of

X-rays through the human body form a wide range of angles. After applying tomo-

graphic reconstruction technique a two-dimensional image of the section of the area of

the body under investigation was produced. Other applications of radio tomography

include oceanography and in the seismic surveying of the Earth’s structure but the main

geophysical interest for this thesis is in probing the upper atmosphere.

3.3 Ionospheric Radio Tomography

Radio tomography is a technique used to image the large-scale spatial distribution of

ionospheric electron density on horizontal scales of tens to hundreds of kilometers. The

technique involves measuring the line integral of electron density between a satellite and

a receiver station. This gives what is known as the Total Electron Content (TEC). Many

such measurements are taken over a large number of intersecting satellite to receiver

ray paths and these data are inverted to produce a spatial distribution of electron density

over the region of interest, which is determined by the location of the ground receiver

stations. Mathematically the total electron content Is is defined as the line integral of the

electron density along a radio-wave propagation path from a satellite, S , to a receiver,

R. The TEC may be expressed by Equation 3.1.
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IS =

∫ R

S

N(r, θ, φ) ds (3.1)

where N is the electron density, r is the radial distance from the centre of the Earth, θ

is the latitude, φ is the longitude and s is the distance along the satellite to receiver ray

path.

The first proposed use of tomography in ionospheric physics was detailed by Austen

et al. (1986) which presented a method involving the use of radio transmissions from the

Navy Navigational Satellite System (NNSS) now known as Navy Ionospheric Monitor-

ing System (NIMS) to get a 2D image of the ionosphere. Currently, other satellites are

now available, e.g. ARGOS, GFO, Radcal and PICOsat. The International Ionospheric

Tomography Community (IITC) has had a number of chains of receiver station spaced

out across the globe. Those used in this study are located in the UK, Scandinavia,

Alaska and Greenland. The first experimental tomography image was presented by

Andreeva et al. (1990) and the first study whereby ionospheric radio tomography was

verified by incoherent-scatter radar was detailed by Pryse and Kersley (1992). A re-

view of the early tomography experimental results was presented by Kersley and Pryse

(1994). A more recent overview of the capabilities and potential of radio tomography

was given by Pryse (2003).

One of the main difficulties with ionospheric radio tomography is the reconstruc-

tion of the vertical electron density profile. This is because of the necessary geometry

with the satellites being above the ionosphere and the receiver stations being below it,

which results in the lack of near-horizontal ray paths and limits the information on the
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ionospheric structures. The electron density of the vertical profile is consequently less

reliable than the horizontal distribution. To counter this, a priori information is inserted

into the reconstruction as described by Raymund et al. (1990), which highlighted the

importance of a background ionosphere. There are three main types of tomographic al-

gorithm: iterative, quadratic optimisation and non-iterative. Iterative algorithms include

the Simultaneous Arithmetic Reconstruction Technique (SART) (Austen et al., 1986)

and the Multiplicative Algebraic Reconstruction Technique (MART) (Raymund et al.,

1990). These methods involve the use of a tomographic grid covering the region of ray

path intersections whereby the electron densities can be obtained by weighting the TEC

between the pixels intersected by a particular ray path in proportion to the length of

the ray path within that pixel. Quadratic optimisation algorithms include methods such

as the Simultaneous Iterative Reconstruction Technique (SIRT), (Austen et al., 1988;

Pryse and Kersley, 1992; Pryse et al., 1993) and more recently Spencer et al. (1998).

Non iterative techniques, for example the Discrete Inversion Theory (DIT) (Fremouw

et al., 1992, 1994), with a subsequent extension by Pryse et al. (1998a) incorporated a

second stage which used a MART algorithm to image small-scale features.

A comparison of these different tomographic methods and algorithms can be found

in Raymnund (1995). The need for a background ionosphere was highlighted by Ray-

mund et al. (1990) with the use of a back-projected Chapman layer. Pryse et al. (1998b)

showed that careful choice of a priori information to initialise the reconstruction proce-

dure may be as important as the actual method used to perform the inversion. Further

developments to the radio tomography technique incorporated the use of data from the
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International Reference Ionosphere (IRI) model (Bilitza, 1990; Raymund et al., 1993),

ionosonde data (Kersley et al., 1993) to provide spot-values for ionospheric densities

with topside profiles developed by Heaton et al. (1995).

3.3.1 Aberystwyth University Ionospheric Radio Tomography Ex-

periment

The Aberystwyth University ionospheric radio tomography experiment was deployed

in Summer 1996 and consists of a chain of 4 satellite receiver stations located in North-

ern Scandinavia. Figure 3.1 shows the location of the respective stations, with Ny-

Ålesund and Longyearbyen in Svalbard at 78.9◦N, 11.9◦E and 78.2◦N, 15.3◦E respec-

tively, Bjørnøya at 74.5◦N, 19.0◦E and Tromsø at 69.8◦N, 19.0◦E in northern Norway.

The chain of stations receive signals from polar orbiting satellites of the Navy Iono-

spheric Monitoring System (NIMS) which are formerly known as the Navy Naviga-

tional Satellite System (NNSS). These satellites move in an approximately polar orbits

at an altitude of about 1100km. The satellites transmit two phase-coherent signals with

the lower frequency of about 150MHz which is three-eights of the upper frequency

of 400MHz. The satellites do not pass directly overhead of the chain line due to the

Earth’s orbital motion and the chain line not being exactly in a straight line. To account

for this, Mitchell et al. (1997) developed a longitude correction whereby the longitudi-

nal component of the measured TEC is removed by projecting the measurements onto

the vertical plane. However if a large longitudinal gradient exists this correction factor

may still be insufficient to compensate for the longitudinal offset of the satellite. This is
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why high-elevation (≥ 40◦) passes are chosen; other passes of lower elevation (30−40◦)

can be useful but need to be treated with caution.

3.4 DMSP

The Defence Meteorological Satellite Programme (DMSP) monitors meteorological,

oceanographic and solar-terrestrial environments. It consists of a number of satellites

in near polar, sun, synchronous orbits at an altitude of approximately 830km with an or-

bital period of about 101 minutes. The Special Sensor-Ions, Electrons, and Scintillation

(SSIES) instruments aboard all the satellites enables the cross-track plasma drift to be

obtained. A polar plot of the ion density and the satellite’s path is useful for obtaining

the amount of ions present at a particular time. This can be compared with the Super-

DARN convection pattern to infer information about the location of the ion densities in

the polar cap.

3.5 ACE

The Advanced Composition Explorer (ACE) spacecraft is designed for studying and

monitoring the interplanetary medium. ACE orbits the L1 libration point, which is a

point of Earth-Sun gravitational equilibrium situated about 1.5 million kilometers from

Earth and 148.5 million kilometers from the Sun. For this study the MAG instrument

has been used to obtain the vector components of the Interplanetary Magnetic Field.
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3.6 SuperDARN

Super Dual Auroral Radar Network (SuperDARN) is an international radar network for

studying the Earth’s upper atmosphere, ionosphere and connection into space. It con-

sists of 12 HF radars in the Northern Hemisphere and 7 in the Southern Hemisphere.

Each radar is made up of a primary array of 16 antennae and an interferometer array of

4 antennae. Each individual radar can be electronically steered to one of 16 different

beam directions enabling a large geographical area to be covered. The radars transmit

a sequence of pulses and the returning echoes are sampled. This enables three main

parameters to be determined: the back-scattered power, spectral width and the Doppler

velocity of the plasma density irregularities in the ionosphere. Usually, for each 3.25◦

beam, 75 spatial ranges are resolved with a 45km separation (Greenwald et al., 1995;

Chisham et al., 2007). The convection pattern is reconstructed using SuperDARN data

to find a functional form for the distribution of electrostatic potential in the ionosphere

which bests fits all the line-of-sight velocity measurements available at the time of inter-

est (Ruohomiemi and Baker, 1998). Figure 3.2 shows an example of such a reconstruc-

tion with the contours of constant electrostatic potential shown by the solid and dashed

black lines. These lines also represent the flow streamlines and the small black arrows

represent the individual velocity vectors. The velocity measurements are supplemented

by the use of data from the model developed by Ruohomiemi and Greenwald. The

IMF orientation and magnitude at the magnetopause at the time of interest determines

the choice of model data, which are weighted so that the impact of the modelled data

is minimised over the real data. Continual developments in the SuperDARN network
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reduces the reliance of the maps on the model data. Global convections maps can be

generated at one or two minute resolution of the radar scans. This resolution is suitable

for observing the ionospheric convection changed in the solar wind and the IMF. Some

of these data plots at 10-minute resolution are available on the SuperDARN website

(http://superdarn.jhuapl.edu/).

3.7 Conclusion

While the main instrumentation used in this thesis is the ionospheric radio tomography

experiment, the other instruments are used to assist the interpretation of the electron

density distribution in the observed images. Further, the CTIP model requires certain

parameters obtained by these instruments, notably the high-latitude electric potential

pattern data from SuperDARN.
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The CTIP Model

4.1 Introduction

The Coupled Thermosphere Ionosphere Plasmasphere (CTIP) model is a computer

model of the global higher atmosphere consisting of three separate components which

run concurrently, a global thermosphere model, a high-latitude ionosphere model and

a mid and low latitude ionosphere/plasmasphere model. The three are fully coupled

with respect to energy, momentum and continuity. The model is based upon many

magnetic flux tubes which gives it its global coverage, with open flux tubes provid-

ing the framework for the high-latitude ionosphere component. The model provides

a time-dependent three-dimensional structure of neutral wind vectors and temperature,

the number density of the three major neutral species, O, O2 and N2 and the mean

molecular mass. For the ions, H+, and O+ number densities and temperatures are deter-

mined over a height range from 100 − 10, 000km with the parameters for N+2 , O+2 and
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N+ being determined below 400km. The height and number density of the ionospheric

F2 peak is also determined.

4.2 Model History and Development

The CTIP model was developed from three separate models, the University College

London (UCL) Thermosphere model (Fuller-Rowell and Rees, 1980), the Sheffield Uni-

versity ionospheric model (Quegan et al., 1982) and the Plasmasphere model (Bailey,

1983).

The UCL thermosphere model is a global, non-linear, time-dependent thermospheric

model which includes the thermosphere’s response to geomagnetic forcing with a po-

lar convective field using the global, empirical ionospheric model developed by Chiu

(1975). This model has no terms relating to the high-latitude response to geomagnetic

activity therefore the model is limited to low geomagnetic activity because the global

energy budget is insufficient at times of moderate geomagnetic activity.

The Sheffield University ionospheric model provides a representation of the be-

haviour of the ionised atmosphere at high and mid latitudes, including the interaction

between the solar photoionisation, auroral precipitation, plasma convection and thermo-

spheric chemistry and dynamics. This is achieved by solving equations of continuity

and momentum for O+ and H+ ions within the high-latitude ionosphere and mid-latitude

plasmasphere. The coupling of the UCL thermospheric and Sheffield ionosphere model

is described by Quegan et al. (1982) and Fuller-Rowell et al. (1984). Fuller-Rowell

et al. (1984) compared this coupled model with the original UCL thermospheric model
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in terms of electron density, ion drag and neutral winds at high latitudes and estab-

lished that the stand-alone UCL thermospheric model was unable to predict the asym-

metry seen within the auroral oval, whereas the coupled model was able to predict an

asymmetry. This illustrated the importance of a self-consistent ionosphere within the

thermospheric model.

The UCL thermosphere and the Sheffield ionosphere are collectively known as the

Coupled Thermosphere Ionosphere Model or CTIM (Fuller-Rowell et al., 1987). More

recently the Chui low-latitude ionosphere model was replaced by a new low and mid

latitude ionosphere and plasmasphere model (Millward et al., 1996a) which was based

in an earlier model of Bailey (1983). The low latitude ionosphere was further modified

to include the low-latitude drifts such as those observed at the Jicamarca radar (Mill-

ward et al., 2001). In this form the new model is known as the Coupled Thermosphere

Ionosphere Plasmasphere (CTIP) model (Millward et al., 1996a).

4.2.1 Thermospheric Code

The thermospheric element of the CTIM model is designed to simulate the time-dependent

structure of the wind vector, temperature and density of the neutral atmosphere. This

is achieved by the numerical solution of non-linear equations of momentum, energy

and continuity on a three dimensional grid of latitude, longitude and pressure. The

resolution of the model is 2◦ in latitude, 18◦ in longitude with a vertical pressure distri-

bution of 15 levels divided logarithmically from a lower boundary of 1Pa at an altitude

of 80km. The upper vertical boundary varies in altitude depending on the temperature
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profile but typically is within the range of 300 − 700km, covering the E and F regions

of the ionosphere.

The momentum equation is non-linear and its solutions describe the transport of

the momentum in both the horizontal and vertical directions. The momentum equation

also includes the horizontal pressure gradients, horizontal and vertical viscosity and ion

drag. The non-linear energy equation is solved self-consistently with the momentum

equation and it describes the three dimensional transfer of energy between internal,

kinetic and potential energy. The solutions also describe the horizontal and vertical

heat conduction by both molecular and turbulent diffusion, heating as a result of solar

UV and EUV radiation, cooling due to infrared radiation and frictional heating caused

by the dissipation of ionospheric currents.

Solving the time-dependent mean mass equation was built into the model by Fuller-

Rowell and Rees (1983) which assumes that the upper atmosphere can be represented

by atomic oxygen and the sum of molecular oxygen and nitrogen. Further developments

of the model have subsequently included the solutions of the species O, O2 and N2 with

reference to chemistry, transport and the mutual diffusion between these species.

The equation of motion is essentially the Navier-Stokes expressions which can

be applied to the system assuming that the thermosphere is collision-dominant and

isotropic. The four main forces acting on a unit element of neutral gas are pressure,

Coriolis, ion drag and viscosity. The equation of motion and the resulting rate of change

of velocity of a unit element or parcel of neutral gas is given by:
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DV

Dt
= −

1
ρ
∇p − 2Ω ∧ V − νni(V − U) +

1
ρ
∇(µ∇V) (4.1)

where V is the neutral velocity, p is the gas pressure,Ω is the angular rotation rate of the

Earth, U is the ion drift velocity, νni is the neutral-ion collision frequency, ρ is the gas

density and µ is the sum of the molecular and turbulent drift velocities. Equation 4.1 is

in the Lagrangian frame of reference, i.e. the element of gas moves with respect to the

Earth. To represent the equation in the Eulerian frame of reference, i.e. where latitude

and longitude are the independent variables, the following transformation is required:

DX

Dt
=
∂X

∂t
+ (V · ∇)X (4.2)

where X is any property of the fluid, such as temperature or velocity. Further details of

the derivations of the equations in Eulerian form, particularly the equation of energy,

are given in Fuller-Rowell et al. (1996).

4.2.2 The Ionospheric Code

The equations of the ionosphere and the thermosphere are solved self-consistently pole-

ward of 23◦ latitude in both hemispheres. While it could be desirable to express the

ionospheric code in the Eulerian frame, ionospheric codes are traditionally in Lagrangian

frame allowing elements of plasma to be tracked as they progress along their convec-

tion patterns. A compromise of a semi-Lagrangian frame (Fuller-Rowell et al., 1987)

enabled a rotating frame of reference for the ionosphere, thus eliminating the need for
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a “co-rotating potential” Fuller-Rowell et al. (1996). The equation of ion continuity is

given by Equation 4.3:

∂ni

∂t
= Pi − Li − ∇ · (nivi) (4.3)

which expresses the rate of change of concentration ni of species i, where Pi and Li

are the ionospheric production and loss rates respectively, and vi is the bulk ion velocity.

Equations for ion diffusion, ion temperature and molecular ions are detailed in Fuller-

Rowell et al. (1996).

4.2.3 From CTIM To CTIP

The Coupled Thermosphere Ionosphere Plasmasphere (CTIP) model is based on CTIM

so it contains a global thermosphere model and a high-latitude ionosphere model but

with the addition of a mid and low-latitude ionosphere/plasmasphere model. This third

component of the CTIP model is based on a series of flux tubes separated in magnetic

longitude where the tube can move outwards or inwards to a different L-value which

determines the equatorial crossing height of the flux-tube above the Earth (McIlwain,

1961). Each flux-tube contains a finite distribution of points with the base-height of

each tube at 130km. The model is essentially described in terms of 300 separate tubes,

grouped in 20 bunches of 15 tubes, one bunch for each longitude and one tube for each

pressure level at that particular longitude. The flux tubes move under the influence of

E × B drift with the velocity of each tube given by
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ν =
E × B

‖B‖2
(4.4)

where E is the electric field and B is the magnetic field. In order to prevent the

flux-tubes from moving further and further away from the Earth which would have a

negative influence the spatial resolution of the model, over a 24-hour simulation period

the flux-tubes return exactly to their starting positions as described in Millward et al.

(1996a).

The equations of continuity, momentum and energy balance given in Millward et al.

(1996a) are solved along each field-line to give the densities and field-aligned velocities

of O+ and H+ and the temperatures for both of these ions and the electrons. Of particular

importance to this thesis is the calculation of the O+ densities, as in the F2 region of the

ionosphere the O+ density is equivalent to the electron density which is measured by

ionospheric radio tomography and it is these tomography measurements that have been

used to validate the improvements made to the CTIP model.

4.3 Inputs

CTIP model runs are specific to each day so as to account for the changing geometry

and activity of the Sun. It is therefore necessary to enter a day of year number and an

associated solar flux number, F10.7, obtained from on-line resources such as the UK So-

lar System Data Centre (http://www.ukssdc.ac.uk/). There are several additional

options for inputs for the CTIP model, notably a precipitation input and a high-latitude
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convection input as outlined below.

4.3.1 Precipitation

Two options are available for auroral precipitation in CTIP: the first uses data taken

from the Defense Meteorological Satellite Program (DMSP) and the second uses data

from the Television and Infrared Observation Satellites (TIROS). The main difference

between these two forms of precipitation input is that the DMSP precipitation is linked

to a Kp index which is closely linked to the high-latitude convection input as outlined

in Foster et al. (1986). It is the DMSP precipitation option that has been used in this

thesis.

4.3.2 High-Latitude Convection

The original high-latitude input in the CTIP model comprises 8 distinct high-latitude

convection patterns that can be loaded into each model run as required. Each convec-

tion pattern consists of an array of electric potential values spaced at 18◦ longitude and

2◦ latitude. These values are read into the model and used to implement the convection

routine. The Sheffield version of the CTIP model which is used at Aberystwyth Univer-

sity contains an expansion of the original 8 convection patterns comprising 36 different

patterns based on data from the Millstone Hill radar. This gave a wider range of convec-

tion patterns from which the single pattern used in each model run could be selected.

Combined with the link between convection the Kp-driven DMSP precipitation (Foster

et al., 1986) it was possible to simulate a variety of conditions including a range of Kp

36



Chapter 4. The CTIP Model

values and cross-polar cap potentials.

There are two draw-backs of the convection pattern system in CTIP: first, the library

of convection patterns contained only convection patterns representative of the IMF Bz

negative condition. Secondly, while the library of patterns had been expanded from 8

to 36 it is still a long way from being representative of the large variations of conditions

that occur in the ionosphere and with the high-latitude convection changing minute by

minute it is unrealistic to expect just 36 patterns to be representative of all conditions.

The goal of this thesis is to address these two limitations to the high-latitude con-

vection pattern system in CTIP. Subsequent chapters will address how the model has

been modified to accept high-latitude input from the Super Dual Auroral Radar Net-

work (SuperDARN) which enables a measured convection pattern to be used as input,

including those representative of IMF Bz positive conditions. The SuperDARN con-

vection patterns are available on the internet (http://superdarn.jhuapl.edu/) at

10-minute intervals this also allows the use of a convection pattern pertinent to the day

and time of interest for a particular model simulation.

4.4 Alternative Models

The CTIM-CTIP type models are just two of the available ionospheric models. This

section discusses some of the alternatives. Within the ionosphere-thermosphere system

three different types of models can be identified each with their own characteristics:

1. semi-empirical and empirical models
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2. physical models

3. ionospheric profilers: models based on routinely scaled ionospheric data

One of the best known empirical models that is widely used for a range of different

applications is the International Reference Ionosphere (IRI) (Bilitza, 1990) which, for

a given location, time and date, describes the electron concentration, electron tempera-

ture, ion temperature and ion composition in the altitude range from about 50−2000km.

It also measures the Total Electron Content (TEC), which is the line integral of the elec-

tron density between the satellite and the receiver. IRI uses data from a wide range of

ground-based ionosondes in addition to incoherent scatter radars such as Jicamarca and

Millstone Hill as well as data from in situ instruments.

D. N. Anderson and colleagues of the Phillips Laboratory of the USA have devel-

oped a range of semi-empirical models whereby a combination of databases of coef-

ficients that reproduce theoretically calculated profiles based on existing physical data

are used. Examples of such models include the Semi-Empirical Low-Latitude Model

(SLIM) (Anderson et al., 1987) which determines the electron concentration profiles for

different latitudes by solving the continuity equation for O+ ions and the Parameterised

Real-time Ionospheric Specification Model (PRISM) (Daniell et al., 1995) which con-

sists of both a Parameterised Ionospheric Model (PIM) and near-real time-data obtained

from ground and satellite sensors.

Probably the best know semi-empirical thermospheric model is the Mass Spectrom-

eter and Incoherent Scatter (MSIS) model which was developed by the Goddard Space

Flight Centre (GSFC). It is based on satellite mass spectrometer data and ground inco-
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herent scatter data. GSFC have also developed an empirical thermospheric Horizontal

Wind Model (HWM) and these two thermospheric models are often used as inputs for

physical modelling (Lathuillre et al., 2002).

Physical models depend on describing the general behaviour of ionospheric ions us-

ing a set of transport equations for continuity, momentum, energy and heat flow which

are derived from Schunk (1977). However there is also the need to model particles

such as precipitating electrons that move along the magnetic field lines, producing heat

and ionisation. These particles are modelled by a kinetic approach, using data sets as

input for parameters such as auroral precipitation or high-latitude convection. the result

is a need for a fully-coupled model using both the physical and empirical approaches

to completely describe the ionosphere. In addition to the CTIP model, other models

that follow this approach include the Utah State university Model of the global iono-

sphere Schunk and Sojka (1996), FLIP, the University of Alabama Field Line Integrated

Plasma model (Richard and Torr, 1996), GTIM, the Phillips Laboratory Global Theoret-

ical Ionospheric Model (Anderson et al., 1996) and the TRANSCAR model (Lilensten

and P.L. Blelly, 2002). All of these models are suitable for being used to investigate the

influence of different physical processes on the ionosphere. Typical outputs from these

types of model include electron concentration distribution, electron and ion tempera-

tures and ion velocity.

The final type of ionospheric model under discussion in this section is known as

“ionospheric profiler”. These models use data assimilation techniques to estimate the

variation of electron concentration distribution with height. One of the early profilers
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by Bradley and Dudeney (1973) describes the electron concentration profile up to the

peak of the F2-region. A more recent model by Di Giovanni and Radicella (1990) is

able to describe the electron profile in the E, F1 and F2-regions of the ionosphere.

4.5 Previous CTIP Results Relevant to this Thesis

A number of prior results are outline in this section: The importance of convection on

the winter high-latitude ionosphere density structure was highlighted by Fuller-Rowell

et al. (1987, 1998, 1991b) and Millward et al. (1993). Fuller-Rowell et al. (1987, 1998)

showed that the plasma convection was dominant in the formation of the dayside trough

in winter whilst during the summer months, plasma up-welling is cited as the dominant

formation mechanism. Enhanced electric fields can also lead to the depletion of the

electron density causing the formation of the trough as described by Millward et al.

(1993). Fuller-Rowell et al. (1991b) also illustrated the importance of the tongue-of-

ionisation and precipitation in producing the poleward wall of the trough.

Millward et al. (1993) modelled the effects of introducing localised enhancements in

the high-latitude dawn convection electric field similar to electric field spikes described

and analysed by Winser et al. (1990). The effect of the enhanced electric field was to

increase the eastward velocities which heat the neutrals and ions via frictional heating.

These increased temperatures affects recombination rates to reduce the electron density

which causes a trough in the ion density.

Schoendorf et al. (1996) studied the effectiveness of the statistical magnetospheric

inputs in predicting the high-latitude ionosphere with CTIM. Observations from 9 days
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of EISCAT data under solar maximum and 4 different Kp conditions were averaged

hourly and compared to two latitudes: 68◦GLAT and 72◦GLAT at altitudes of 140km

and 300km. High latitude inputs of convection and auroral precipitation were altered

to determine how they effect the high-latitude ionosphere. It was found that the auroral

precipitation input was too wide latitudinally when it was compared to the EISCAT data.

Care needs to be taken in attempting to improve the model and it is vital that the model

is in no way “tweaked” to suit the observations. However the model is able to predict

the general behaviour of the high latitude ionosphere when compared to EISCAT data

for a specific three-day period.

Pryse et al. (2005) used the CTIP model to investigate the electron density in the

high-latitude ionosphere over a continuous range of latitude and compared these results

to those obtained by ionospheric radio tomography over a similar latitudinal range. The

time of interest for this work was a 6-hour period in the post-noon sector. The results

of this study revealed that the model tends to over-predict the electron densities at high

latitudes and that the complex interplay between the different ionospheric processes is

not yet fully understood.

4.6 Conclusion

This Chapter has sought to outline the basic workings of the CTIP model. Some of the

key model results that are relevant to this thesis have been discussed. Finally, the CTIP

model has been placed in context with other types of ionospheric model.
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Modifications to the CTIP Model

5.1 Introduction

As has been outlined in Chapter 4, one of the weaknesses of the original CTIP model

is the lack of scope for a range of high-latitude convection patterns. It is also well-

established that the polarity of the IMF Bz component influences the form of the high-

latitude plasma convection pattern. This in turn affects the distribution of ionospheric

plasma at polar and auroral latitudes, drawing dayside plasma anti-sunwards across the

polar cap in a tongue-of-ionisation. Therefore, the ability to model the ionised density

distributions under a wide range of different electric potential patterns is particularly

useful in the study of how the high-latitude convection influences the distribution of

plasma in the polar regions.

Before the modified method of inputting electric potential patterns into the CTIP

model can be used to assist with the interpretation of data from sources such as the
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Aberystwyth University Radio Tomography Experiment it is important in the first in-

stance, to check that the technique works and second, use the modelling results to con-

firm that the new method agrees with mature interpretations of existing data studies.

Once these two things have been established it is possible then to go on to use the mod-

ified electric potential inputs to assist with the interpretation of new data. This Chapter

covers the first of these issues and subsequent chapters will extend the validation pro-

cess to include comparing the new electric potential pattern method with a study by

Middleton et al. (2008) and finally the technique will be used to interpret data from the

Alaskan tomography chain.

5.2 Structure of the CTIP Convection Pattern

If an electric field E is applied perpendicular to the magnetic field B then the plasma

particles drift at velocity ν given by Equation 5.1

ν =
E × B

‖B‖2
(5.1)

which is normal to both E and B. The electric field is obtained from the gradient of the

electric potential and the high-latitude convection pattern in the CTIP model consists of

an array of such electric potential values. Before any changes can be made to the CTIP

convection pattern, it is important to have a good understanding of how the electric

potential values are used by the model. The high-latitude convection pattern in CTIP is

identified with an array of values that defines the electric potential in kV over a range of
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latitudes and longitudes. As the CTIP model has a grid pixel dimension of 2◦ in latitude

and 18◦ in longitude, there is an electric potential value for each of these grid-points as

shown in Figure 5.1.

The convection pattern is made up of 20 groups of electric potential values, one

group for each of the 18◦ longitude or 1.2 hours in MLT. Within each longitude group

there are 23 different electric potentials, one for each latitude extending from 89◦ to

45◦MLAT in 2◦ intervals, so one electric potential pattern consists of 460 distinct val-

ues, with, in the case of the IMF Bz negative condition as found in the original library of

convection patterns, the negative electric potentials on the duskward side and the posi-

tive electric potentials on the dawnward side. Clearly, it is important that this structure

is kept when different patterns are used in the CTIP model. By looking at the model

code and plotting various electric potential patterns it was possible to determine exactly

which positions in the array of numbers correspond to the 460 different grid-points and

by using different electric potential values for each of the grid-points it is possible to

custom-design a convection pattern. While the adaptations to the convection pattern in

the CTIP model are interesting in their own right, the whole purpose of this work is to

then go on to use the CTIP model with its new range of convection patterns to interpret

some of the ionosphere’s large-scale features detected by radio tomography instrumen-

tation. It was decided to make use of the SuperDARN electric potential patterns which

have the advantage of being real convection patterns based on real data so they can be

used to represent the high-latitude convection at any given time, in particular at the time

of interest of the ionospheric radio tomography passes that were used in this thesis.
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5.3 SuperDARN Electric Potential Patterns

SuperDARN electric potential patterns at 10-minute intervals are available on the in-

ternet (http://superdarn.jhuapl.edu/) both as images and as raw data. While it

is possible for a greater level of accuracy and more frequent images to be obtained by

contacting the Principal Investigator in the UK, the idea behind using the images and

data directly from the internet is to enable the convection patterns to be readily available

to use as input to CTIP. Typically it is possible to browse through the images on any

given day and select one that is suitable for the study being undertaken, taking care to

use a pattern with many data points as the larger the number of data points the more the

electric potential lines are shaped by real data. Initially this was done by selecting a pat-

tern that was IMF Bz negative similar to a pattern from the original library of Millstone

Hill convection inputs so that the technique of inputting the data into the model could

be verified. By examining the downloaded electric potential file from the SuperDARN

website, it was clear that the resolution of the SuperDARN data was much higher than

the 460 electric potential values required for a CTIP convection input file. Given that

the intention was to use CTIP for the large-scale modelling of features in the order of

tens to hundreds of kilometers (for example, to look at the tongue-of-ionisation), it was

not deemed necessary or time-efficient to recode the entire CTIP model to take into

account of the enhanced SuperDARN data resolution. Instead, a short IDL routine was

written to take the SuperDARN data file, extract the required 460 electric potential val-

ues and output a file that could be loaded directly into CTIP. This code searches the

electric potential file for the electric potential value that corresponds to each MLT and
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magnetic latitude point required to represent the convection pattern.

5.4 Using SuperDARN Input in CTIP

To check that the new method of inputting high-latitude electric potential patterns works,

two days in December 2002 were chosen where the IMF Bz component was in the first

case, stable and negative and in the second case, stable and positive. This means that

it was possible to choose a representative convection pattern for each of the two IMF

cases. Figure 5.2 shows that the IMF was stable and, on average, negative during the

period between 25 December 2002 and about 16UT on 26 December 2002.

Figure 5.3 shows that the IMF Bz component remained positive throughout 17-19

December 2002.

5.4.1 Modelling Parameters

CTIP model simulations were run for 21 December (day 355) which is a day chosen to

be representative of the two days from which the convection patterns were taken and

also representative of winter solstice. The geomagnetic index was K p = 2 and the solar

index F10.7 = 150, the average solar condition for December 2002. The model was run

without particle precipitation. Representative high-latitude convection input for IMF Bz

negative as obtained from the SuperDARN website is shown in Figure 5.4. Figure 5.5

shows a similar plot for the condition of IMF Bz positive.

Both of these electric potential patterns were chosen because they represent the

typical convection cell for the day of interest as shown on the SuperDARN website.
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5.4.2 CTIP Model Output

To illustrate the difference between the tongue-of-ionisation under IMF Bz negative and

IMF Bz positive, selected plots are shown in Figure 5.6 and Figure 5.7. These two

figures clearly show the difference that the convection pattern has on the tongue-of-

ionisation. Figure 5.6 shows the tongue of ionisation growing to a peak at 18UT under

IMF Bz negative conditions as plasma is drawn anti-sunward across the polar cap. In

the 18UT plot, the tongue-of-ionisation is drawn towards the duskward side, following

the shape of the convection pattern used for this model run (see Figure 5.4).

In contrast, the IMF Bz positive electric potential patterns prevent the tongue-of-

ionisation from being drawn across the polar cap. This is clearly shown by comparing

the red (4.0 × 1011m−3 contour) from the 18UT plot in Figures 5.6 and 5.7. This is

because the positive convection pattern is of a very different nature to the negative

pattern. Instead of the classic two-cell convection pattern as seen in the IMF Bz negative

plot (Figure 5.6), there are lobe cells present as shown in Figure 5.7. This alters the

convection pattern especially with regard to the anti-sunward flow, which in the case

of positive convection patterns occurs at lower latitudes than with the IMF Bz negative

case, as the anti-sunward flow is located more at the periphery of the polar cap.

5.5 Variable Convection

One major flaw in the CTIP model is that the convection pattern chosen needs to be

representative of the entire day that is being modelled. In reality, high-latitude con-

vection is changing on a moment-by-moment basis. The use of varying the convection
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pattern with time goes a small way towards addressing the need for continuously chang-

ing electric potential patterns. Within the coding of the CTIP model there is scope to

introduce up to 7 different high-latitude convection patterns, enabling the pattern to be

changed at 12-minute intervals throughout the day being modelled. Once the validity

of the technique of using SuperDARN convection patterns and the high-latitude input

had been established, it was possible to include any of the patterns found on the Su-

perDARN website and introduce these different patterns into the CTIP model every 12

minutes. Clearly this is an improvement on just having one electric potential pattern

held at steady-state for the modelling day, but it is far from the continuously changing

convection patterns that occur in the high-latitude ionosphere. Ideally it would be possi-

ble to take all the SuperDARN electric potential data for a given day and read it into the

CTIP model continuously so that the convection pattern routine resembles as closely as

possible what is physically happening in the ionosphere at that time. However there are

issues here with model stability: CTIP has been coded to enable changes in convection

every 12 minutes so varying the convection pattern more frequently than this would first

require substantial re-coding of the model and secondly potentially create problems in

the convergence of some of the equations that are solved. The model is further limited

to 7 different convection patterns and again, expanding this number would call for a

substantial re-write of the code.

Now that work has been done to validate the use of SuperDARN convection pat-

terns in CTIP, one way in which the scope for variable convection has been used is to

investigate the results of using two very different high-latitude convection patterns: one
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IMF Bz negative and one IMF Bz positive. By showing that it is possible to successfully

change the convection pattern in CTIP it would then be possible to use ionospheric ra-

dio tomography data taken from a time where the IMF changes from a stable IMF Bz

negative pattern to a stable IMF Bz positive pattern to validate the use of this technique.

5.5.1 Results

The two SuperDARN IMF Bz negative and positive convection patterns that were used

in Section 5.4.1 were put into the CTIP model so that the model would read each con-

vection pattern in turn. The electric potential patterns are called in CTIP every 12

minutes so it would be possible to change the convection pattern much more quickly.

However as this work is aimed at eventually using CTIP to assist with the interpretation

of tomography data taken from a period of time where the IMF has switched from one

stable IMF Bz orientation to another, for a first attempt at variable convection it was

decided to change the convection only once, half-way through the day for which the

model is run. The CTIP modelling day commences at 13UT, therefore in each case the

first convection pattern is introduced at this time and the second convection pattern 12

hours later at 1UT, so by examining UTs 8 − 15 it is possible to observe the change in

convection produced by the model.

Figure 5.8 shows the response of the modelled electron density as a result of the

convection changing from IMF Bz negative to positive with time. The dial plots from

8UT to 12UT show the negative convection pattern causing the tongue-of-ionisation

to build up as plasma is swept anti-sunwards across the polar cap. Once the positive
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convection pattern is introduced at 13UT, instead of the tongue-of-ionisation continuing

to increase and to a peak at 18UT as in Figure 5.6, the new convection pattern begins

to draw plasma anti-sunward at lower latitudes while the plasma from the tongue-of-

ionisation decays.

Figure 5.9 shows the convection changing in the other direction, from IMF Bz posi-

tive to negative with time. The dial plots from 8UT to 12UT show the positive convec-

tion pattern causing very little in the way of plasma being moved across the polar cap.

After the negative convection pattern has been introduced at 13UT, very quickly the

tongue-of-ionisation begins to establish itself as the convection drags the plasma across

the polar cap.

Both of these modelling examples show that it is possible to use the SuperDARN

electric potential patterns to represent time-varying convection, though much more

work needs to be done on this aspect of the CTIP model before it can be reliably used

to interpret data.

5.6 Conclusion

This chapter has outlined the methodology of using SuperDARN electric potential pat-

terns as the convection input in the CTIP model. The model results presented here show

that it is technically possible to use SuperDARN data to greatly enhance the scope of

the high-latitude convection routine in CTIP by using real convection patterns rather

than those determined by statistical data. At this stage, no attempt has been made to

verify the technique against data - this is done in subsequent chapters with the use of
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ionospheric radio tomography.
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Chapter 6

CTIP Modelling with SuperDARN

Electric Potential Input: Verification

by Radio Tomography

6.1 Introduction

In Chapter 5, the method for using SuperDARN electric ptential input for the CTIP

model was outlined. This work is now verified by the use of radio tomogrpahy data

from the European sector. As in the polar and auroral latitudes the ionised atmosphere

is a highly structured plasma, the technique of radio tomography (see Section 3.3) is

particularly useful for studying the larger electron density structures of the ionosphere.

Such features are on scales of tens to hundreds of kilometres, which are reviewed by

Crowley (1996). A prominent example is the tongue-of-ionisation (TOI), where pho-
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toionisation from sub-auroral latitudes on the dayside is drawn anti-sunward by the

high-latitude plasma convection pattern towards the polar cap (Valladares et al., 1994).

At high F-region altitudes the lifetime of the plasma is long enough for the ionisation to

be drawn through the polar region and into the nightside sector. A modelling study by

Bowline et al. (1996) indicated that the TOI is expected to be prominent at Ny-Ålesund

in the European sector in the evening. During its transit through the polar cap the TOI

may be modulated into polar patches and various processes have been proposed for this

(for example Anderson et al. (1988), Sojka et al. (1993), Rodger et al. (1994) and Mi-

lan et al. (2002)). Observations of the remnants of the TOI and polar patches on the

nightside are reported by Middleton et al. (2008) and Pryse et al. (2006b).

Large-scale high-latitude ionisation enhancements have been observed by several

experimental techniques including ionospheric sounders, radiotomography and inco-

herent scatter radar. However, there are very few direct comparisons of the ionospheric

observations with modelled distributions. Middleton et al. (2008) presented multi-

instrument observations of a cold high-altitude plasma enhancement on the nightside,

interpreted as plasma produced on the dayside and transported across the polar cap in

the convective flow and into the auroral region. The interpretation was supported by

model runs of the CTIP model, although there were disparities in the location and den-

sity levels of the observations and model output. Schoendorf et al. (1996) compared

electron densities measured in the auroral region by the European incoherent scatter

radar (EISCAT) with CTIP model output. This study also showed the potential of the

model to reproduce the observed densities, but also highlighted the important role of
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the high-latitude input parameters to the model to obtain agreement at all geographic

locations and UTs. One way to begin to address the disparities between the location

and density levels of the observations and the model output is to use the modified CTIP

model with SuperDARN high-latitude electric potential patterns used as input. The aim

of this study is to use radio tomography images in order to validate the use of Super-

DARN electric potential data in the CTIP model.

6.2 Method

Two particular case studies are considered in this work with contrasting IMF condi-

tions. The first is under IMF Bz negative with the SuperDARN radar showing a classic

two-cell convection pattern characteristic of the condition. The other is a case under

IMF Bz positive with the convection pattern likely to include polar lobe cells. The

modelled output is compared with radio tomography observations made by the Interna-

tional Ionospheric Tomography Community (IITC), which give the latitudinal variation

of the electron density on a spatial scale appropriate for comparison with the model out-

put. The two case studies with different IMF orientations were chosen to coincide with

well-studied radiotomography investigations. Tomographic reconstructions from three

chains of the International Ionospheric Tomography Community (IITC) were used: two

operated by Aberystwyth University, in the Scandinavian sector and the UK, and the

third in Greenland operated by the Applied Research Laboratories, University of Texas.

The locations of the receivers in the three chains are shown in Figure 6.1. The tomog-

raphy results have already formed the focus of two previous works into the different
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physical processes at high latitudes (Middleton et al., 2005, 2008) where the observed

features were interpreted by multi-instrument investigations. By choosing these studies

with with mature interpretations, ambiguity in the comparisons of observations with the

model output was less likely.

For the model runs presented in this Chapter, the day number and solar flux F10.7 in-

dex were set in accord with the time of observations. The auroral precipitation input was

switched off, so as to focus on effects of the transport of plasma at polar and auroral lati-

tudes. Of particular interest was the electric potential pattern input, where the library in-

put was substituted by an electric potential pattern from the SuperDARN radar network.

This pattern was selected to be appropriate for the time of the tomography observations

and obtained from the SuperDARN website http://superdarn.jhuapl.edu/.

6.3 Results

6.3.1 IMF Bz negative: 12-13 December 2001

6.3.1.1 Experimental observations

The period of interest spanned an interval from about 23UT on 12 December 2001

to 03UT on 13 December 2001. The IMF governing the high-latitude plasma flow

had been negative at about -5nT for more than 10 hours prior to the time interval and

remained negative throughout the period of observations. By looking at the online

SuperDARN electric potentials patterns at 10-minute intervals showed the characteristic

two-cell pattern which is consistent with antisunward plasma flow over the polar cap
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from the day to nightside and return sunward flows at lower latitudes on the dawn and

dusk flanks. The electric potentials showed the inevitable small variations in the detail

of the cells from frame-to-frame, but on the large scale their general form remained

essentially unchanged throughout the time interval with the dawn cell being slightly

smaller than the dusk cell. This is an important consideration to the modelling of the

experimental observations with CTIP as one electric potential pattern is required to

represent the day of interest so large variations of the convection patterns over the time

of interest would lead to less representative model output.

Tomographic reconstructions from five satellite passes during the interval, three

monitored by the Scandinavian chain and two by the chain in the UK, showed a clear,

persistent density enhancement that formed the poleward wall of the main ionisation

trough in the post-magnetic midnight local time sector. Figure 6.2 shows three of the

reconstructions as examples, two obtained from the Scandinavian chain and the other

from the UK chain. The locations of the maximum density of the enhancement in all

five reconstructions are also shown mapped onto a magnetic latitude (MLAT) versus

magnetic local time (MLT) polar plot. Comparisons of the tomographic observations

with measurements by the EISCAT UHF radar on mainland Tromsø showed that the

enhanced densities were cold and at high altitudes. This supports the interpretation

of the features being cross-sections through ionisation that had originated at an earlier

time and different location, possibly on the dayside, and had been carried by the plasma

flow in a tongue-of-ionisation into the region of observations. Further details of the

observational results and their interpretation are given by Middleton et al. (2008).
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6.3.1.2 CTIP model output

The model was run for 13 December and an F10.7 index of 230. The SuperDARN elec-

tric potentials for 0240UT were taken to be representative of the interval, and showed

clearly the two-cell pattern with the dawn cell being slightly smaller than the dusk cell

(Figure 6.3). The ion density output from the model at an altitude of 320km, near the

peak of the modelled nighttime F-region peak, is shown at 3-hourly intervals of UT in

the polar plots of Figure 6.4. Magnetic noon is at the top of each panel, with 18MLT on

the left-hand-side and 06MLT on the right-hand-side. Magnetic latitude extends from

50◦MLAT on the outer circumference to the magnetic pole at the centre. The small

white region near the pole encompasses the geographic pole, a region where the model

is unable to produce reliable output due to the convergence of the lines of longitude. A

prominent plasma feature in most of the panels is the tongue-of-ionisation (TOI) com-

prising photoionisation drawn from the dayside into the nightside post-midnight sector

by the convective flow. A UT dependency is clear in the TOI, with the feature being

most prominent in the 18UT panel but with only remnants visible at 06UT. This vari-

ation is attributed to the offset of the geomagnetic and geographic reference systems,

with a larger proportion of the magnetically controlled convective flow being in sunlight

when the geomagnetic pole is closer to the Sun than the geographic pole, for example

near 18UT. The white line shows the position of the 18◦E meridian, near the location of

the Scandinavian receiver chain. The interception of the tongue by this line in the bot-

tom panels suggests that the European sector is is the right place to observe the effects

of the tongue on the nightside.
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Figure 6.5 shows the ion density output in the same format as Figure 6.4 but at

hourly intervals spanning the time of interest for the study. The panels for 22UT and

23UT are strictly for 13 December rather than 12 December when the observations

were made, however this is not of significance as there is very little variation in the

model output from day-to-day near the winter solstice when all other conditions are

kept identical. A TOI is prominent in the panels for the earlier times, being drawn over

the polar region into the nightside and then towards the dawn sector at auroral latitudes.

The 300km intersections of the satellite trajectories for each of the five tomography

reconstructions are shown on the respective panels. Those for the two reconstructions

at 0150UT (UK chain) and 0156UT (Scandinavian chain) are for the same satellite pass,

but are shown on different model panels for clarity.

6.3.1.3 Comparison between model output and radio tomography observations

Comparisons of the modelled output and the tomography reconstructions are shown in

Figure 6.6. The first column shows the latitude-versus-altitude modelled distributions

given at 18◦E for hourly intervals from 22UT to 03UT, where the main feature in each

of the panels is the intersection through the TOI drawn into the dusk side. The colour

scale used for the latitude-versus-altitude plots are slightly different to those of the polar

plots to allow direct comparison with the tomography reconstructions. The density of

the TOI intersection decreases with UT as a consequence of ionisation recombination

in winter darkness, and its latitude decreases as it is drawn further towards dawn by

the convective flow. The second column shows the corresponding tomography images.

As there is a difference latitudinal coverage of the UK and Scandinavian reconstruc-
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tions, the images have been offset accordingly to ensure consistency in the latitudinal

location of the enhancement in the column. The large density enhancement forming

the poleward wall of the main ionisation trough is a prominent feature of each recon-

struction. The smaller-scale density features seen poleward of the large enhancement

and generally at lower altitude in the images from Scandinavia are likely to be in the

auroral region, and caused by soft particle precipitation. However, these are outside

the scope of the current study and will not be considered further. The discontinuity in

the equatorward field of view of the reconstruction at 0156UT occurs because of the

satellite signal being lost at this location, and the image to the left of the discontinuity

reverts to the initial background ionosphere for the inversion process. In general, the ob-

served densities in the large enhancement are in good agreement with those modelled.

A general trend of decreasing densities with increasing UT is also revealed in the obser-

vations, although there are some slight deviations in the trend, in particular an increase

in the reconstruction at 0007UT. Possible reasons for this deviation are small temporal

variations in the convection or particle precipitation upstream at an earlier time, which

would not be taken into account in the CTIP model. There is also reasonable agree-

ment in the location of the modelled and observed enhancement. For example in the

model panel for 00UT and tomography reconstruction at 0007UT, the maximum den-

sity is near 70◦N and 69◦N for the observations and model respectively. The observed

equatorward and poleward edges as defined by the 5× 1011m−3 contour are at 64◦N and

74◦N respectively, while the corresponding equatorward edge in the model is also at

64◦N, but the northern most edge extends to almost 80◦N. Similarly, the extremes for
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the enhancement in the bottom row are 62◦ and 65◦N for the reconstruction at 0243UT

and 63◦ and 67◦N for the model at 03UT. In both examples the modelled enhancement

extends over a larger latitude range than that observed, with a tendency for the mod-

elled latitudinal gradients of the walls to be less steep than observed. The difference

in the gradient is a likely consequence of the different latitudinal spatial resolutions of

the model and observations, with the latitudinal dimension of the pixels being 0.25◦ in

the tomography reconstruction but 2◦ in the model. There are also differences in the

vertical profiles of the observations and model, however, since there is some ambiguity

in the vertical distribution of tomographic images, arising due to a limited observing

geometry (Pryse, 2003), it is not possible to draw definitive conclusions here.

Energy deposition by particle precipitation has been excluded from the main study,

with the auroral input in general being switched off in the model runs. However, out-

put from a run corresponding to that in Figure 6.4, but with the precipitation switched

on and with a Kp index of 2 appropriate for 00-03UT on 13 December, is shown in

Figure 6.7. The first panel for 06UT, when the TOI is absent, shows the effect of the

precipitation with a partial ring of enhanced ionisation representing the auroral oval.

This reaches a latitude of about 80◦MLT near noontime but extends to lower latitudes

on the nightside. Comparison with the corresponding panel in Figure 6.4 reveals that

the density level in the auroral postmagnetic midnight sector is increased from about

2 − 4 × 1011m−3 to about 5 − 7 × 1011m−3 when precipitation is included. Increased

density levels also occur in regions removed from the immediate region of the auroral

precipitation, with values in the region of smallest nightside density increasing from
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2 − 3 × 1011m−3 to 3 − 4 × 1011m−3. Care is needed in the interpretation of the colour

scales in the comparisons, as the highest red level has been increased from greater than

8 × 1011m−3 to greater than 9 × 1011m−3 in the precipitation model output in order to

clearly show the features of interest. The TOI remains a dominant feature of the pan-

els of 12UT to 00UT (Figure 6.7), maximising at 18UT to 21UT. The densities in the

tongue are enhanced by the precipitation, for example the maximum density at 00UT

in the absence of precipitation was some 6 − 7 × 1011m−3, whilst with precipitation it

is in excess of 8 × 1011m−3 and more in line with those in the enhancement observed

at 0007UT. Fuller treatment of the precipitation is outside the scope of this investiga-

tion. However, it has a marked effect that needs consideration in future as indicated by

Schoendorf et al. (1996) and Pryse et al. (2005).

6.3.2 IMF Bz positive: 26 November 2001

6.3.2.1 Experimental observations

The IMF Bz very stable between about 11UT and 16UT on 26 November 2001, being

positive with values essentially between 0nT and 1nT. During the interval six satellite

passes were monitored by the Scandinavian chain and six by the chain in Greenland

displaced by some 70◦ longitude to the west. Collectively, the reconstructions showed

a stable ionosphere with spatial rather than temporal variation. The images consistently

showed evidence of a localised density enhancement poleward and distinct from the

main photoionisation. Figure 6.8 shows the trajectories of all twelve passes, which

were mostly in the 12-18MLT time sector. A dot on each trajectory, with the exception
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of the two trajectories nearest to 12MLT, indicates the location of the maximum electron

density of the localised enhancement observed during the pass. Three sample tomog-

raphy reconstructions are also shown, showing the enhancement apparently becoming

increasingly detached from the photoionisation with increasing MLT. The full set of

reconstructions was presented and interpreted by Middleton et al. (2005) with the en-

hanced densities being identified as cross-sections through a TOI (shown schematically

by the purple curve in Figure 6.9) drawn antisunward around the periphery of a polar

cap closed to plasma inflow under the condition of northward IMF. The interpretation

was supported by satellite horizontal cross-track plasma drift measurements.

6.3.2.2 CTIP model output

The CTIP model was run for 26 November 2001 with an F10.7 value of 175, appro-

priate for the day but significantly lower than in the previous study. There were only

limited plasma drift measurements by the SuperDARN radar for this particular interval,

which lacked the large scale coverage required to shape the electric potential patterns.

As a result of this, the SuperDARN electric potentials from another time were used. The

example chosen was for 0130UT on 18 December 2002 (Figure 6.10), where the flow

measurements were abundant and showed a sunward flow on lobe cells in the polar cap.

This pattern was chosen because its general form was broadly similar to that inferred

from DMSP cross-track observation shown in Middleton et al. (2005), comprising sun-

ward flow on the dayside near 12MLT, and antisunward flow at lower latitudes on both

the dawn and dusk sides. However, given the general variations between plasma con-

vection patterns there were inevitably differences in the details. The IMF Bz influencing
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the chosen SuperDARN pattern was also positive and stable, but with values between

about 8nT and 9nT, significantly larger than those corresponding to the tomographic

images. At this stage no attempt was made to compare the chosen electric potential

pattern directly with the tomographic observations.

The modelled ion density at 3-hourly UT intervals is shown in Figure 6.11. The pan-

els take the same format as those in Figure 6.4, but are for an altitude of 270km which

was more appropriate for the height of the nighttime F-region peak in this instance. The

white line shows the 18◦E meridian near the Scandinavian chain and the black line the

54◦W meridian near the chain in Greenland. The modelled densities are substantially

less than those for the Bz negative case, which can be attributed to the lower F10.7 index

value. The variation of dayside photoionisation with UT is again clearly seen, but in

this case there is no TOI over the central polar cap. Careful inspection reveals two less

intense TOIs drawn antisunward between about 70◦MLAT and 80◦MLAT in the panels

centred on a universal time of 18UT, one on the afternoon side and the other on the

dawn side. A hint of the features can be seen in the panel for 12UT and remnants at

00UT, but it is absent in the panels for 03UT, 06UT and 09UT.

Corresponding model outputs at hourly intervals between 11UT and 18UT are shown

in Figure 6.12, encompassing the time of interest. The sequence shows the growth phase

of the TOIs, with the white line at the 18◦E meridian intersecting the afternoon tongue.

At the later UTs the line has almost “overtaken” the TOI and intersects the lower den-

sities at its nose. The 54◦W meridian shown by the black line lags the 18◦E through the

early stages of the development of the afternoon tongue. The satellite trajectories, indi-
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cated in MLT in Figure 6.7, were broadly in the vicinities of the two meridians shown

in Figure 6.10.

6.3.2.3 Comparison between model output and radiotomography observations

Latitude-versus-altitude intersections through the model output at 18◦E (Figure 6.13)

clearly show the TOI starting to separate from the main photoionisation at 13UT and

becoming increasingly distinct with increasing UT. A high-latitude afternoon trough

develops in-between the two enhancements, and by 16UT the two regions of larger

densities are completely separated on the contouring scale used.

It is not appropriate to make a one-to-one comparison between the details of the

model and tomography images in this case as was done in the previous case study,

owing to the convection pattern not corresponding directly to the time of observations.

However, the similarities of the observed and model plasma distributions are clearly

seen, with both the panels of Figure 6.11 and the three tomography reconstructions in

Figure 6.8 showing a TOI near 70◦−80◦MLAT separating from the main photoionisation

as UT and MLT increase. Decreasing density levels with increasing time also occur in

both model and observations, attributed to ionisation recombination in the absence of

sunlight. Despite differences in the finer details, such as in the absolute density levels,

the comparison shows the capability of CTIP model to reproduce the spatial structure

of the polar cap ionisation distribution under steady IMF conditions even under IMF Bz

positive.
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6.4 Discussion

The large-scale spatial structure of the polar and auroral ionosphere is governed strongly

at high latitudes by the electric potentials. The underlying physics is relatively well

understood, however the variability that the electric potentials demonstrate because of

solar wind and magnetospheric influences remains to be addressed. It is not possible

at present to predict the detail of the size and strength of the electric potential pattern

at any given time. The CTIP model uses the electric potentials as an input driver. A

limitation of the model is the restricted set of electric potential patterns available to

describe the horizontal transport of plasma within the polar and auroral regions. Those

available are provided from a library of potential patterns derived from observations by

the Millstone Hill incoherent scatter radar at mid-latitudes (Foster et al., 1986). The

set comprises patterns of various sizes and strength, but of a form usually associated

with IMF Bz negative. It does not contain patterns to describe sunward lobe-cell flow

within the polar cap as is often the case under IMF Bz positive. An unsuitable electric

potential input for a given situation leads to significant limitations in the ability of the

CTIP model to predict the plasma distribution. The current study aims to address this

shortcoming by using electric potentials obtained from the SuperDARN radar that are

readily available from the SuperDARN website. Whilst it is appreciated that second

level SuperDARN data is available on request, this was not deemed necessary for the

proof-of-concept study where the IMF conditions and electric potentials were stable

over an extended period of time. Use of the on-line potentials was also regarded in-

keeping with “near-real-time” modelling and prediction of the ionosphere.
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Two examples were considered, the first under stable IMF Bz negative and the latter

under stable Bz positive. The examples were chosen to coincide with radiotomography

reconstructions that had mature interpretations from multi-instrument studies. Radioto-

mography imaging, with a latitudinal pixel dimension of 0.25◦ for the reconstruction

grid, was particularly well suited for verification of the CTIP model which has a latitu-

dinal step dimension of 2◦ latitude. The stable conditions were essential for the model

in its current form, where only steady convection is supported. The chosen potential

patterns were therefore regarded as representative of the entire intervals of interest.

The electric potential pattern used in the model for Bz negative was obtained from

measurements made during the interval of interest, and was representative of the pat-

terns observed throughout the interval. In this case the effects of the TOI were clearly

observed in the model output in the post-magnetic midnight sector. The densities of the

modelled feature were only slightly smaller than those observed, with the exception of

the pass at 0007UT, with the differences being generally about 1×1011m−3 or less. Both

observations and model showed the trend of decreasing density with UT, attributed to

ionisation recombination in winter darkness. The latitudinal location and extent of the

feature also compared well, although the model failed to reproduce the observed gra-

dients on the walls of the enhancement, a likely consequence of the resolution of the

model being lower than that of the tomography. The model output in the study showed

significant improvement over that obtained by Middleton et al. (2008) using the Mill-

stone Hill library potential patterns, with the modelled density enhancement generally

matching that observed both in latitude and absolute density.
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There were no SuperDARN measurements at the time of the Bz positive case, and

an electric potential pattern from a different time period was used. IMF Bz was also

positive and stable during this interval, albeit larger in magnitude. The flow pattern was

representative of that anticipated for the IMF conditions and in-keeping with the form of

the DMSP horizontal drift measurements in Middleton et al. (2005). The model output

yielded an ionospheric distribution broadly similar to that observed, with a tongue-of-

ionisation being drawn around the periphery of the polar cap. However, there were

differences in the latitude of the modelled and observed tongue with the modelled loca-

tion being slightly equatorward of that observed and the model densities being smaller,

discrepancies that could have arisen because of the convection pattern not being that for

the exact interval of interest. Nevertheless, it is important to note that the model in this

instance was able to reproduce a TOI being drawn around the periphery of the polar

cap in keeping with the processes inferred from the observations. This was not possible

with the previous standard electric potential input to the model.

The results of the study pave the way for comparisons of the modelled ionosphere

with radiotomography reconstructions and observations by other experimental tech-

niques under a range of different geophysical conditions, in particular IMF orientation

and magnitude, season, and solar cycle. The dependency of the spatial distribution of

ionisation on the longitude of observation, attributed to the offset of the geographic and

geomagnetic reference systems, also requires further consideration, and future com-

parisons between the model and radiotomography observations in different longitude

sectors have the potential to establish the complementary distributions of different re-
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gions of the globe. The morphology of plasma distribution in different sectors is not

only of interest to the understanding of the physics of the density structuring, but is also

of relevance to radio applications where latitudinal gradients on the walls of plasma

enhancements and troughs are of concern to practical radio systems.

6.5 Conclusions

The presented investigation has focussed on the modelling of the ionospheric plasma

distribution in the polar and auroral regions using the CTIP model. The new aspect

has been the use of electric potentials obtained from the SuperDARN network as in-

put. Two cases were considered, both under stable conditions of IMF Bz negative and

positive respectively, where there were radiotomography reconstructions available for

comparisons. Both sets of tomography reconstructions had been the focus of previous

multi-instrument studies and had mature interpretations. The modelled plasma distribu-

tions were compared with those observed by radiotomography. No attempt was made

to tweak the model for better agreement with the observations.

Good agreement was obtained between the modelled and observed densities un-

der conditions of Bz negative with both revealing the effect of the tongue-of-ionisation

drawn from the dayside, over the pole and into the nightside. In this instance the Su-

perDARN electric potentials were derived from measurements made during the time

of interest and the convection was representative of the flows throughout the interval.

SuperDARN measurements were not available for the time period of radiotomography

observations under Bz positive, and electric potentials for a period under similar, stable
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conditions were used where the flow resembled that anticipated for Bz northward. In

this case a TOI drawn antisunward around the periphery of the polar cap was both mod-

elled and observed. Both cases illustrate the potential of SuperDARN electric potential

patterns to improve agreement between the CTIP model and observations.
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Chapter 7

Application of the CTIP Model to

Interpret Tomographic Imaging from

Two Longitude Sectors

7.1 Introduction

Electron density enhancements in the polar cap are observed by a number of techniques

such as ionospheric radio tomography, the use of riometers and ionosondes. However

with just one technique it is difficult to establish the source of the ionisation so multiple

instrumental techniques are used for observation. The exception is when one of a few

expensive incoherent scatter radar (e.g. EISCAT) is used as with such instruments it is

possible to obtain a large number of different parameters. The disadvantage of these

instruments is the limited field of view.
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Two main sources of ionisation have been identified: photoionisation and precip-

itation but these can be further complicated by ionisation being transported from the

region of origin to a different region. The ionisation can be modulated by other mech-

anisms such as in regions of fast flow and when change in the high-latitude convection

pattern reconfigures the ionisation. Also the offset in the geomagnetic and geographic

reference systems cause different proportions of the convection pattern to be in sunlight

at a particular time of interest.

Physical models have been built using physical process that underlie the observa-

tions. These models are far from perfect but nevertheless they contain the main physical

and chemical processes. Such models are particularly useful in assisting in the interpre-

tation of data especially when multi-instrument data is not available. Recent changes to

the CTIP model as described in Chapter 5 allow the high latitude convection patterns

to be put in from SuperDARN electric potential data. This means that any SuperDARN

convection pattern can be used as input to CTIP rather than relying on a restricted library

of patterns. In particular it is now possible to model a wider range of IMF conditions

including IMF Bz positive convections. This work has been described in detail in Chap-

ter 6 where tomography images with mature interpretations involving multi-instrument

studies were used to validate the use of SuperDARN IMF Bz negative convection pat-

terns and to extend this to IMF Bz positive patterns. The verification of the model with

SuperDARN input in the European sector has been given by Whittick et al. (2009) and

Pry. The next stage in this process is to use the model to assist in the interpretation

of observed data made by a single instrument and in this Chapter this will be done for
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observations both in the European sector and the northern high-latitude regions of the

Alaskan sector. Alaskan tomography data was taken from the online data index found

at http://www.haarp.alaska.edu/.

Tomography images were chosen from both the Scandinavian and Alaskan sectors

under the conditions of IMF Bz negative and Bz positive where in both cases the IMF had

been stable for at least 6 hours prior to the time of interest. To minimise the solar effect

the tomography passes were chosen from a time close to the winter solstice. Patches

of ionisation are prominent in these tomography images and the CTIP model was used

to attempt to identify the source of this ionisation. The two main ionisation production

mechanisms considered by the CTIP model are ionisation caused by solar radiation and

ionisation formed by precipitation. The ionisation created by both these mechanismns

may be transported by the high-latitude convection pattern. By executing a series of

model runs using appropriate variables it is possible to determine the likely cause of the

ionisation patches seen in the tomography images.

The model was run for day 347, which is the same day that the tomography images

were obtained. The solar input or F10.7 value was set to 230, which is representative

of the month. The Kp index was kept at 2 throughout the model runs, though it is only

relevant to the DMSP precipitation as the Kp index gives an indication of the strength

of the precipitation (Foster et al., 1986).

Figure 7.1 shows the main features of the CTIP model with just the solar F10.7 input

at 00UT, 06UT, 12UT and 18UT, plotted at a height of 320km. The precipitation input

and the high-latitude convection were both switched off. The white line represents the
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position of the Scandinavian tomography chain line at 18◦E. The 06UT plot shows the

least amount of ionisation and as the Sun rises ionisation increases with time as shown in

the plots by the red colour. At 18UT, the ionisation levels reach to just below 80◦MLAT.

However this set of plots show that while the Sun is responsible for an increase in the

ionisation levels it is not responsible for any increase that could be observed in radio

tomography images in the 0-6UT time sector. This is because in this particular time

sector the Scandinavian chain line does not intersect with the increase in ionisation

caused by the Sun.

Figure 7.2 is a similar plot but with precipitation turned on. A feature of the CTIP

model is that precipitation is either on or off throughout the whole model run. This is

in contrast to the known sporadic nature of precipitation in the ionosphere. Previous

work (Pryse et al., 2005) has shown that on the whole, precipitation in CTIP produces a

higher level of ionisation than in corresponding tomography images. With this in mind,

the precipitation and solar plots (i.e. without any high-latitude convection input) for the

time of interest would be expected to produce higher levels of ionisation. However, the

model is particularly useful for identifying the likely region of precipitation and Figure

7.2 shows this. Once again the lowest level of photoionisation is shown in the 6UT

plot with the auroral ionisation being essentially distinct from the ionisation caused by

the solar effect. By 18UT, the photoionisation and the auroral ionisation join at the

8.0 × 1011m−3 contour level. This time, the Scandinavian chain in the 0-6UT sector

clearly intersects a region of precipitation and this indicates that precipitation may be

the cause of any enhancements seen in the Scandinavian tomography images from this
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time period.

The third element of the CTIP model is the use of SuperDARN high-latitude convec-

tion patterns as input which was discussed in detail in Chapter 5. In practical terms, it is

the electron potential values defined on a grid that are put into the model. These values

represent the convection pattern in CTIP. For each tomography pass, a representative

convection pattern, i.e. one taken from the SuperDARN website that best represents the

general shape of the convection at the time of interest, is taken and used as input for

the CTIP model. In the results section, the effect of each of these convection patterns

together with the interaction with the precipitation is discussed in detail.

7.2 IMF Bz Negative

7.2.1 Scandinavia

Figure 7.3 shows each component of the IMF as measured by the ACE spacecraft. The

plot indicates that the IMF Bz component was stable and negative for the six hours prior

to the time of interest, from 18UT on 12 December 2001. The tomography images

were taken at 0007UT, 0156UT and 0243UT on 13 December 2001, where the IMF

continued to be stable and negative. This is important because the stability of the Bz

component of the IMF is related to the stability of a particular convection pattern. To

provide a clear-cut case for modelling purposes it was necessary to choose a period of

time that provided a stable IMF in order for the convection pattern to remain as similar

as possible during the time of interest. In addition, it was necessary to find such a time
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of interest which contained a number of tomography passes so that it would be possible

to trace the particular features of the image over time.

The three Scandinavian tomography images are shown in Figure 7.4. In each of

the three passes there is a clear enhancement suggesting that the enhancement is real

rather than an anomaly in the data. The location of the major enhancement in the

0007UT pass is between 64 − 74◦GLAT with a maximum density of 8 × 1011m−3 at

between 66− 73◦GLAT. With the second pass taken at 0156UT the major enhancement

spans 6.5◦ starting at 63.5◦ and finishing at 71◦GLAT with a maximum electron density

of 6 × 1011m−3 at between 65 − 67◦GLAT. Finally the third pass at 0243UT shows a

maximum enhancement at a level of 5×1011m−3 at about 62−65◦GLAT. So it can be seen

from the data that there is a consistent enhancement occurring in the time of interest.

The aim of the modelling is to see what is the cause of this enhancement. The theory

tells us that it the main possibilities are either solar production, in-situ precipitation

or some combination of both with the convection pattern moving around ionisation

created by either by the sun as photoionisation or by precipitation transported to the

site of interest. By isolating each factor in the model it is possible to show the extent

to which each of these components influence the overall electron density. It should be

noted here that the tomography images measure electron density but the CTIP model

calculates the O+ density, which is equivalent to the electron density in the F-region of

the ionosphere.

Figure 7.5 shows the CTIP model output with just the solar input set at an F10.7

value of 230 for the time of interest. The white line shown on each dial plot represents
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the approximate location of the Scandinavian radio tomography chain. As, during the

time of interest, the position of the tomography chain does not at any point coincide

with the increased ionisation due to the solar effect, these plots show that the solar input

alone is not responsible for the enhancements shown in the tomography images.

To examine the effect of the convection, a suitable SuperDARN convection pattern

was chosen to provide the high-latitude electric potential CTIP input. As the IMF Bz

component is negative and stable both prior to and during the time of interest the ac-

tual shape of the convection pattern as determined by SuperDARN during the time of

interest is very similar. Therefore, the convection pattern for 0240UT was picked as

a representative pattern. It is shown in Figure 7.6. Clearly there are a number of key

features of this pattern, but most obviously it is a two-cell convection pattern causing

the flow to move anti-sunward across the polar cap with the return flow being at lower

latitudes.

Figure 7.7 shows the CTIP model output for the time of interest with both solar and

convection pattern inputs. By looking at where the Scandinavian chain line (marked in

white) intersects with the regions of enhanced ionisation, it can be seen that the tomog-

raphy chain is in the right place to observe the plasma being swept across the polar cap

by the high-latitude convection pattern. However the third key input to the CTIP model,

the precipitation input, needs to be considered before crediting the enhancements in the

tomography to the convection pattern alone.

Figure 7.8 shows a similar set of model plots with the solar input and the DMSP

precipitation input. The plots show different regions of enhancements based on the
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model’s positioning of the auroral oval.

In general the region of enhancement in the tomography images is at latitudes lower

than the altitude of precipitation identified in the model run. This suggests that it is

important to look at the effect of convection as it is not possible for the enhancements

to be caused by in-situ precipitation; however it might be the case that the enhancement

has been caused by precipitation being convected into the region of interest. The lat-

itude scale has been extended down to 50◦MLAT for interpretation purposes. On the

duskward side of each plot there are some angular lines that are associated with the

coupling of the open and closed flux tubes. However as this region is not coincident

with the region of interest as marked in white by the chain line it does not affect the

reliability of the model densities obtained for the purposes of this study.

7.2.2 Alaska

Figure 7.9 is a plot of IMF starting at about 03UT on 11 December 2001 showing that

the IMF Bz component is stable and negative. While it would have been ideal to have

used exactly the same day as in the Scandinavian case study, there was insufficient

Alaskan tomography data for the 11-12 December 2001. As we are looking at a differ-

ent longitude, the time where it is expected that we see a tongue of ionisation is around

09-15UT and so the IMF was checked for stability 6 hours prior to this, as with the Eu-

ropean case study. The convection pattern used was the same as with the Scandinavian

case study. The justification for this is that Bz negative convection patterns are very

similar in that they consist of two cells with the flow being brought across the polar cap
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forming the tongue of ionisation and the flow returning at lower latitudes.

Three Alaskan tomography images were used in this part of the study taken at

0927UT, 1147UT and 1424UT as shown in Figure 7.10. The 0927UT image has a max-

imum enhancement at about 64◦MLAT. The 1147UT image has a maximum slightly

poleward of this, at about 67◦MLAT and the 1424UT plot again has another enhance-

ment at about 67◦MLAT. Both the 1147UT and 1124UT plots show E-region precipita-

tion characterised by the ionisation at around 100km. The CTIP model run that deals

with precipitation and solar effects enables the region of precipitation in the Alaskan

chain to be determined.

Figure 7.11 shows the CTIP model output for the solar effect plotted at the time of

interest for the Alaskan tomography. As with the Scandinavian tomography, the ap-

proximate location of the Alaskan tomography chain line at 216◦E is marked on each

dial plot. These plots show that it is not possible for the enhancements seen in the

tomography to be caused solely by photoionisation as the region of interest indicated

by the chain line on the polar plots is not coincident with the region of increased ion-

isation seen in the tomography images. This means that the enhancements seen in the

tomography must be caused by either precipitation or convection or a combination of

both.

Figure 7.12 shows the CTIP model output with solar input and high-latitude con-

vection at the time of interest. Again, the white line represents the approximate position

of the Alaskan chain line and by looking at where this intersects the enhanced region

of ionisation formed by the tongue of ionisation being swept anti-sunward across the
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polar cap as a result of the convection input it is possible to indicate whether or not the

convection component of the CTIP model makes a contribution to the density enhance-

ments observed by the radio tomography experiment. The 09UT and 10UT dial plots

show that the chain line does not intersect with the tongue of ionisation whereas later in

the day the 11UT and 12UT plots indicate a possible intersection with the 2.0×1011m−3

contour level approaching the location of the chain line at 85◦MLAT in the 13UT plot

suggesting that the enhancement observed in the 1147UT tomography pass could be

due in part to convection. The final dial plot in this group shows that by 14UT the

Alaskan chain is in the ideal position to observe the tongue of ionisation being swept

across the polar cap, as in this image the 2.0× 1011m−3 contour level of electron density

coincides with the Alaskan chain line poleward of 75◦MLAT.

To determine whether or not the enhancement at 63 − 64.5◦MLAT in the 0927UT

tomography plot is produced in-situ or transported by the convection flow, the location

of the auroral oval and the Alaskan chain line at the time of interest can be examined.

Figure 7.13 shows a series of CTIP model plots showing the electron density for the

combined effect of the solar input and the DMSP precipitation. By comparing the loca-

tion of the aurora oval at the Alaskan chain position at 09UT and 10UT it is clear that

as the chain line representing the location of the Alaskan chain does not intersect with

the position of the auroral oval. This indicates that the precipitation in this pass is not

created in-situ, rather it is transported. This can be confirmed by looking at the 09UT

and 10UT plots for the precipitation, convection and solar model run in Figure 7.13

which shows that the precipitation has been transported by the convection into the re-
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gion where the Alaskan chain is situated. The 1147UT tomography pass contains some

evidence of E-region precipitation, shown by the enhanced ion densities polewards of

67◦MLAT. The corresponding model plots for 11UT and 12UT showing the solar and

precipitation effect indicate that the Alaskan chain line intersects the auroral oval and

which suggests that the enhancement seen in the tomography is partly due to precip-

itation. Examination of Figure 7.14 which shows the CTIP model output with solar,

precipitation and convection included suggests that it is possible that the convection

has transported some of the plasma to the location observed by the tomography image.

The 1424UT tomography pass has larger F-region electron densities than in the other

two tomography passes as well as some E-region precipitation. It is likely that this has

been produced in-situ as the Alaskan tomography chain is in the right place to observe

enhancements cause by the auroral oval. However the adding in the convection input as

shown in Figure 7.14 suggests that since the 14UT polar plot shows the Alaskan chain

line very close to intersecting the tongue of ionisation it is possible that some of this

plasma has been transported to its final location as observed in the tomography image.

7.3 IMF Bz Positive

The third case study is the start of extending this work into looking at the condition of

IMF Bz positive. As the use of SuperDARN electric potential patterns has been estab-

lished as a possible method of expanding the number and type of convection patterns

in the CTIP model, it is now possible to use SuperDARN patterns to model any type of

convection pattern, specifically IMF Bz positive.

80



Chapter 7. Application of the CTIP Model to Interpret Tomographic Imaging from
Two Longitude Sectors

7.3.1 Scandinavia

As Figure 7.15 shows, the IMF Bz component is stable and positive from 18UT on 17

December 2002. The time of interest for this study is 00UT-06UT on 18 December

2002. It would have been better to have had data from December 2001 to match more

closely with the IMF Bz negative case studies however none was available close to the

2002 dates. The next best thing is to look at data from the same time of the year but in

an adjacent year. This ensures that the solar effect is similar both in the time of year and

in the position of the solar cycle.

Three Scandinavian tomography images were used from the 18 December 2002,

0050UT, 0240UT and 0615UT. These are shown in Figure 7.16. The main enhancement

in the 0050UT image is poleward of 79.5◦GLAT at an electron density contour level of

2.0 × 1011m−3. This feature is seen in the 0240UT image poleward of 73◦GLAT with

peak electron density of 5.0 × 1011m−3 at between 80.5 − 83.5◦GLAT. Finally in the

0615UT image the enhancement is observed poleward of 73◦GLAT with a peak electron

density of 6.0 × 1011m−3 between 79 − 80◦GLAT.

Figure 7.17 shows the CTIP model output covering the range of times where to-

mography images were obtained. The location of the Scandinavian tomography chain

is show by the white line and it is clear that there is no contribution from photoionisa-

tion in the model as the chain line position is in the wrong place to observe the solar

effect in the model.

The position of the auroral oval at the time of interest is given in Figure 7.18. The

position of the Scandinavian tomography chain indicated by the white line intersects the

81



Chapter 7. Application of the CTIP Model to Interpret Tomographic Imaging from
Two Longitude Sectors

position of the auroral oval at the time of interest suggesting that in-situ precipitation

contributes to the density enhancements observed in the tomography images.

As the high-latitude convection patterns for the time of interest are for IMF Bz posi-

tive, there is a lot of variation in the different electric potential patterns, as shown in Fig-

ure 7.19. Each of these three convection patterns were used in turn as the high-latitude

CTIP model input because the variability of the patterns means that it was difficult to

choose any one representative pattern with confidence.

Figures 7.20, 7.21, and 7.22 show CTIP model output for the time corresponding

to the tomography passes obtained. In each case, in addition to the solar F10.7 input,

a different convection pattern is used, demonstrating that even quite small changes in

the electric potential values result in changes to the electron density distribution. This

suggests that selecting the correct convection pattern from the SuperDARN database is

important when specific model runs are being done to assist with the interpretation of

tomography data.

Figures 7.23, 7.24 and 7.25, show CTIP model output with a different convection

pattern but this time with DMSP precipitation added. With the convection effect in-

cluded, the effect of direct precipitation is naturally reduced, but the combined effect of

the precipitation and convection gives a maximum on the dawn side for all the convec-

tion patterns. This geographical intensification is seen in the Scandinavian images with

the largest density being the 0615UT plot.
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7.3.2 Alaska

Figure 7.26 show two Alaskan tomography images taken from 18 December 2002

where the IMF Bz component was stable and positive. In both images a consistent

enhancement is seen poleward of 69◦MLAT. Corresponding CTIP model output with

just the solar input is shown in Figure 7.27 shows that the Alaskan chain line does

not intersect with the solar ionisation suggesting that the enhancements shown in the

tomography must be cause by something other than the solar effect alone.

Figure 7.28 shows the added effect of the DMSP precipitation with K p = 1. The

Alaskan chain intersects the auroral oval suggesting that precipitation may be the cause

of the enhancements seen in the tomography images. To examine the impact of the

high-latitude convection, a different convection pattern was used as with the Scandi-

navian modelling, again because of the high amount of variability in the IMF Bz pos-

itive convection patterns. Figure 7.29 shows a comparison of the two different con-

vection patterns. By looking at the red contour level which is an electron density of

8.0×1011m−3, it can be seen that the amount of plasma being convected across the polar

cap is much reduced when compared to modelled electron densities under IMF Bz neg-

ative conditions. Further, the difference between the two IMF Bz positive convection

patterns used in Figure 7.29 is responsible for the differing amounts of plasma visible

at later UTs. For example, at 15UT, the red contour level (representing an electron den-

sity of 8.0 × 1011m−3) is much more angular with the 1138UT convection than in the

1500UT convection.

Finally Figure 7.30 shows the impact of adding DMSP precipitation again, one
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row of plots for each of the two convection patterns. The DMSP precipitation level

is K p = 1. Here the different convection patterns account for the change in the plasma

distribution. Figures 7.29 and 7.30 show that even with small variations in the Super-

DARN electric potential patterns that are used as the high-latitude convection input in

CTIP, there is a marked difference in the modelled plasma distribution.

7.4 Conclusion

This work has shown that it is possible to use the CTIP model with SuperDARN high-

latitude input in order to assist with the interpretation of radio tomography data where

there is a lack of alternative instrumentation. It is clear from the variation in the nature

of the IMF Bz positive convection that this has an impact on the modelled electron

densities in the CTIP model. The extension of the CTIP model to include SuperDARN

electric potentials has expanded the number of situations where the model can be used

to interpret data in several different longitudes.
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8.1 Conclusion

The studies presented in this thesis have shown that the interpretation of the high lat-

itude plasma density distribution can be greatly enhanced by using the CTIP model

with SuperDARN electric potentials as the high-latitude input. This development to

the model has enabled both IMF Bz negative and positive conditions to be represented.

Initially this method was verified by comparing tomography data that has a mature

multi-instrument interpretation with the CTIP model output obtained by using Super-

DARN input. It was found that there was a good agreement between the modelled

and observed densities under the conditions of IMF Bz negative with both showing the

effect of the tongue-of-ionisation drawn from the dayside over the polar cap and into

the nightside. In the IMF Bz positive case, both the CTIP model output and the data

observations showed the tongue-of-ionisation being drawn anti-sunward around the pe-
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riphery of the polar cap. These two case studies serve to illustrate the potential of the

use of SuperDARN electric potential patterns to improve the agreement between the

CTIP model and the observations. As a result of this, the CTIP model has been used

to interpret the high-latitude plasma distribution in locations such as Alaska where ad-

ditional instrumentation is less widely available to assist with the interpretation of the

radio tomography data. Systematic use of the CTIP model involving isolating the three

key input parameters, solar flux, precipitation and high-latitude convection represented

by electric potential values, made it possible to determine the likely cause of some of

the density enhancements observed in the data.

8.2 Future Work

There are three possible areas of future work that arise directly from this thesis: First,

there is scope for further case studies involving other sets of tomographic images taken

from periods of stable IMF Bz, perhaps from times of the year other than the winter

solstice, which has been the focus for this work. While there is nothing in the modelling

side of the work that would suggest that the new development would be less effective at

other times of the year, the addition of more sunlight to the polar cap creates different

challenges in interpreting the data. Also the model could be used to investigate the

influence of the solar cycle by looking at winter solstice data from a variety of points in

the solar cycle to see if changing the F10.7 value has any impact on how the convection

pattern redistributes the plasma in the polar cap. All of the studies in this thesis have

been under quiet geomagnetic conditions (Kp values of 1 or 2) so choosing case studies

86



Chapter 8. Conclusion

with more active geomagnetic conditions would be an interesting comparison with the

studies presented in this thesis.

The second area of further study is to collect a large number of tomographic images

over a number of months and seek to classify them by IMF Bz component and identify

particular patterns in the images. For example, in a particular month all the tomography

images that occur under a certain stable IMF condition may contain similar characteris-

tics that could be parameterised in a similar way to the study conducted by Pryse et al.

(2006a) where the main ionospheric trough was parameterised so that the experimental

observations can be used for direct comparison and validation of ionospheric models.

Once the tomography data has been parameterised, the different conditions of IMF, so-

lar flux and precipitation can be modelled with CTIP to identify the likely cause of the

particular features identified in each IMF condition.

The third area of further study resulting from this thesis has more of a modelling

slant: all the high-latitude convection patterns in the form of electric potentials in this

thesis have been inputted into CTIP in “steady state”, that is, one set of electric potential

patterns is deemed sufficient to represent the entire day of interest. In the ionosphere,

the electric potential values and with it the corresponding convection patterns change

moment by moment. Reference has been made in Chapter 5 to the potential of the CTIP

model to vary the high-latitude input every 12 minutes, by loading 7 different electric

potential patterns into the model and using a grid to call a different pattern every 12

minutes. This is not completely time-varying but it goes some way towards a system of

high-latitude convection input that is more realistic than the present one. Using several

87



Chapter 8. Conclusion

different convection patterns as described in Chapter 5 would enable a clear-cut switch

in the IMF Bz orientation to be modelled. With suitable tomography data this technique

could be verified. Ultimately the best way to get genuine time-varying high-latitude

input into the CTIP model is to find a method of extracting the SuperDARN electric

potential data from the internet and loading it into CTIP every few minutes. This would

probably warrant a fairly major re-write in the CTIP code to enable the model to process

such a large volume of data but this enhancement would take the model from being used

as a forecasting tool to a model that is potentially able to simulate the ionosphere near

to real time. Even if this is too ambitious a project, it would be very useful to assist

with interpretation of older data sets for the CTIP model to be able to accept a large

sequence of electric potential patterns.

Finally, one further area for modelling development is that of particle precipitation.

The weakness of the particle precipitation routine in CTIP is that it is either switched

on or switched off. In the ionosphere, precipitation is much more sporadic. Using a

similar technique to that of including SuperDARN electric potential patterns, it would

be possible to investigate the inclusion of a more realistic precipitation input, perhaps

using data from the auroral Oval Variation, Assessment, Tracking, Intensity and Online

Nowcasting (OVATION) system (http://sd-www.jhuapl.edu/Aurora/ovation/

index.html) which could be read in at regular intervals by CTIP.

Both the studies presented in this thesis and the suggestions for future work indicate

that the development of the CTIP model to include high-latitude input from Super-

DARN is an important step in the progress of large-scale ionospheric modelling. While
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there is much work left to do in testing this technique across a range of different geo-

physical conditions as outlined above, it has the potential to be a useful addition to assist

with the interpretation of ionospheric data.
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Chapter 2.  Overview of the High-Latitude Ionosphere

Figure 2.1: The variation of electron density with altitude for both day and night-time 

under conditions of high and low solar activity with the D, E and F regions labelled. 

From Rees (1989).



Chapter 2.  Overview of the High-Latitude Ionosphere

Figure 2.2:  Ionisation produced by monoenergetic electron of energy 100, 200, 400,

600, 800 and 1000eV, plotted as a function of height.  From Millward (1999)

Figure 2.3:  Ionisation produced by monoenergetic ions of energy 200, 400, 600, 800,

1000 and 2000eV, plotted as a function of height.  From Millward (1999).



Chapter 2.  Overview of the High-Latitude Ionosphere

Figure 2.4:  Schematic view of the magnetosphere showing the magnetopause and the 

bow shock.  From Hargreaves (1992).



Chapter 2.  Overview of the High-Latitude Ionosphere

Figure 2.5:  Schematic diagram of magnetopause reconnection under the condition of 

IMF Bz<0.  Diagram (a) shows the site of reconnection marked by X which opens the 

magnetospheric field line marked 1 to interplanetary field lines.  Field lines marked 2-5 

show the development of  this  reconnection event  over  the  polar  cap.   Diagram (b) 

shows the motion of field lines looking down from the northern polar cap region.  The 

anti-sunward  motion  and  subsequent  lower-latitude  return  flow  is  shown.  From 

Lockwood (1995).



Chapter 2.  Overview of the High-Latitude Ionosphere

Figure 2.6:  Sketch showing the nature of the high-latitude ionospheric flow in the 

Northern Hemisphere for different orientations of IMF.  From Cowley (1991).



Chapter 2.  Overview of the High-Latitude Ionosphere



Chapter 2.  Overview of the High-Latitude Ionosphere

Figure 2.7:  Schematic diagram of lobe reconnection under the condition of IMF Bz>0. 

Diagram (a) shows the site of high-latitude reconnection marked by X which occurs in 

the tail lobe.  Field lines marked 2-5 show the development of this reconnection event 

over the polar cap.  Diagram (b) shows the motion of field lines looking down from the 

northern polar cap region.  In this case there are two smaller cells sweeping plasma in 

the sunward direction with the viscous-driven cells (V) shown at the periphery of the 

polar cap.  From Lockwood (1995).



Chapter 2.  Overview of the High-Latitude Ionosphere

Figure  2.8:   Schematic  diagram  of  the  regions  of  the  magnetosphere  based  on  a 

categorisation of plasma characteristics, from Siscoe (1991).



Chapter 3.  Instrumentation

Figure  3.1:  Map  showing  the  location  of  the  radio  receivers  of  the  Aberystwyth 

University tomography chain in Scandinavia.



Chapter 3.  Instrumentation

Figure 3.2:  Contours of the SuperDARN electric potential pattern for 0240UT on 13

December 2001. The short lines indicate the ionospheric drift velocities measured by 

the radars  with their  lengths  and colours representing the drift  magnitude  and their 

orientations indicating the direction of flow.



Chapter 5.  Modifications to the CTIP Model

Figure 5.1:  Diagram showing the polar grid in geomagnetic latitude and MLT used for 

the CTIP electric potential patterns.  See text for details.
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Chapter 5.  Modifications to the CTIP Model

Figure 5.2:  ACE data showing the IMF B components for 25-27 December 2002.  IMF 

Bz is predominantly stable and negative during this period.  Data courtesy of N. Ness at  

Bartol Research Institute and CDAWeb.



Chapter 5.  Modifications to the CTIP Model

Figure 5.3:  ACE data showing the IMF B components for 17-19 December 2002.  IMF 

Bz is stable and positive during this period.  Data courtesy of N. Ness at Bartol  

Research Institute and CDAWeb.



Chapter 5.  Modifications to the CTIP Model

Figure 5.4:  IMF Bz negative electric potential pattern from the SuperDARN website. 

This is the 0700UT electric potential pattern.  The latitudinal scale is in 10°MLAT 

steps.



Chapter 5.  Modifications to the CTIP Model

Figure 5.6:  IMF Bz negative CTIP output for selected UTs.  Each UT is plotted on a 

magnetic grid at an altitude near the F2 region peak at 270km.  Latitudes extend down 

to 50°N.

Figure 5.7:  IMF Bz positive CTIP output for selected UTs.  Each UT is plotted on a 

magnetic grid at an altitude near the F2 region peak at 270km.  Latitudes extend down 

to 50°N.



Chapter 5.  Modifications to the CTIP Model

Figure 5.8:  CTIP model output showing the electron density change as a result of 

switching the electric potential pattern from IMF Bz negative to positive.



Chapter 5.  Modifications to the CTIP Model

Figure 5.9:  CTIP model output showing the electron density change as a result of 

switching the electric potential pattern from IMF Bz positive to negative.



Chapter 5.  Modifications to the CTIP Model

Figure 5.5:  IMF Bz positive electric potential pattern from the SuperDARN website. 

This is the 0130UT electric potential pattern.  The latitudinal scale is in 10°MLAT 

steps.



Chapter 6.  CTIP Modelling with SuperDARN Electric Potential Input: Verification by 

Radio Tomography

Figure 6.1: Map showing the locations of the radio receivers of the tomography chains 

in Scandinavia, UK and Greenland.
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Chapter 6.  CTIP Modelling with SuperDARN Electric Potential Input: Verification by 

Radio Tomography

Figure 6.2:  Three sample tomography reconstructions for 2305UT (UK), 0007UT

(Scandinavia) and 0243UT (Scandinavia) on the evening of 12-13 December 2001. The

locations of the maximum electron density of the prominent enhancement in the three

reconstructions, and two other reconstructions (not shown), are indicated in the centre

panel by the purple dots on a MLAT versus MLT polar plot. Magnetic local midnight is

at the bottom of the circles, with 06UT on the right-hand-side.



Chapter 6.  CTIP Modelling with SuperDARN Electric Potential Input: Verification by 

Radio Tomography

Figure 6.3:  Contours of the SuperDARN electric potential pattern for 0240UT on 13

December 2001. The short lines indicate the ionospheric drift velocities measured by 

the radars with their lengths and colours representing the drift magnitude and their

orientations indicating the direction of flow.



Chapter 6.  CTIP Modelling with SuperDARN Electric Potential Input: Verification by 

Radio Tomography

Figure 6.4:  Ion densities modelled by CTIP for 13 December 2001. The panels are at 

3-hour  intervals  of  UT, with each panel  showing the  ion density  distribution  at  an 

altitude of 320km, near the F-region ionisation peak, as a function of MLAT and MLT. 

Magnetic latitude extends from 50°MLAT at the outer circumference to the magnetic 

pole in the centre of the circle. Magnetic noon is at the top of each panel with midnight 

at the bottom, 18MLT is on the left-hand side and 06MLT on the right-hand side. The 

small white region near the centre encompasses the geographic pole, and the white line 

shows the 18°E meridian near the longitude of the Scandinavian tomography chain.
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Chapter 6.  CTIP Modelling with SuperDARN Electric Potential Input: Verification by 

Radio Tomography

Figure 6.5:  Ion densities modelled by CTIP from 22UT to 03UT for 13 December 

2001.   The panels  are  at  hourly  intervals  of  UT, with each panel  showing the  ion 

density distribution at an altitude of 320km, near the F-region ionisation peak,  as a 

function of MLAT and MLT. The format of the panels is the same as for Figure 6.4, 

with the white line showing the 18°E meridian near the longitude of the Scandinavian 

tomography chain. The black lines indicate the 300km trajectory intersections of the 

satellite passes of the reconstructions.
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Chapter 6.  CTIP Modelling with SuperDARN Electric Potential Input: Verification by 

Radio Tomography

Figure 6.6:  Comparison of the CTIP modelled ion density (top row of each panel) and

radio tomography observations (bottom row of each panel) on a latitude-versus-altitude

grid. The modelled densities are at the 18°E meridian at hourly intervals between 22UT

and 00UT in panel (a) and between 01UT and 03UT in panel (b). These are paired with

the  corresponding  tomography  images  in  the  bottom  row  of  each  panel.  The 

reconstructions from the UK tomography chain are displaced to the left of those for the

Scandinavian  chain  for  consistency  in  the  latitudinal  placement  of  the  observed 

ionisation enhancement.
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Chapter 6.  CTIP Modelling with SuperDARN Electric Potential Input: Verification by 

Radio Tomography

Figure  6.7:   Ion  densities  modelled  by  CTIP  for  13  December  2001,  but  with 

precipitation input included in the model. The panels are at 3-hour intervals of UT, with 

each  panel  showing  the  ion  density  distribution  at  an  altitude  of  320km,  near  the 

nightside F-region ionisation peak, as a function of MLAT and MLT. The format of the 

panels is as for Figure 6.4, with the white line showing the 18°E meridian near the 

longitude of the Scandinavian tomography chain.
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Chapter 6.  CTIP Modelling with SuperDARN Electric Potential Input: Verification by 

Radio Tomography

Figure  6.8:   Three  sample  tomography  reconstructions  for  1445UT  (Greenland), 

1630UT  (Greenland)  and  1143UT  (Scandinavia)  on  26  November  2001.  The 

trajectories of the corresponding three satellite passes are shown in red in the centre 

panel on a MLAT versus MLT polar plot. The locations of the electron density feature 

detaching from the main photoionisation for these reconstructions and another seven 

reconstructions (not shown) are indicated by the purple dots in the centre panel.
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Chapter 6.  CTIP Modelling with SuperDARN Electric Potential Input: Verification by 

Radio Tomography
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Figure 6.9:  Schematic showing the TOI being drawn around the periphery of the polar 

cap under conditions of IMF Bz positive. The purple curve indicates the TOI, and the

streamlines are representative of the plasma convective flow under the pertinent IMF 

conditions.



Chapter 6.  CTIP Modelling with SuperDARN Electric Potential Input: Verification by 

Radio Tomography

Figure 6.10:  Contours of the SuperDARN electric potential pattern for 0130UT on 18

December 2002, showing sunward flow across the polar cap. The short lines indicate 

the magnitude and direction of the ionospheric drift velocities measured by the radars.



Chapter 6.  CTIP Modelling with SuperDARN Electric Potential Input: Verification by 

Radio Tomography

Figure 6.11:  Ion densities modelled by CTIP for 26 November 2001. The panels are at 

3-hour  intervals  of  UT, with each panel  showing the  ion density  distribution  at  an 

altitude of 270km, near the F-region ionisation peak, as a function of MLAT and MLT. 

The format of the panels is as for Figure 6.4, with the white line showing the 18ºE 

meridian near the longitude of the Scandinavian tomography chain and the black line 

indicating the 54ºW meridian near the longitude of the Greenland chain.



Chapter 6.  CTIP Modelling with SuperDARN Electric Potential Input: Verification by 

Radio Tomography

Figure 6.12:  Ion densities modelled by CTIP for 26 November 2001. The panels are at 

3-hour  intervals  of  UT, with each panel  showing the  ion density  distribution  at  an 

altitude of 270km, near the F-region ionisation peak, as a function of MLAT and MLT. 

The format of the panels is as for Figure 6.4, with the white line showing the 18ºE 

meridian near the longitude of the Scandinavian tomography chain and the black line 

indicating the 54ºW meridian near the longitude of the Greenland chain.
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Chapter 6.  CTIP Modelling with SuperDARN Electric Potential Input: Verification by 

Radio Tomography

Figure 6.13:  CTIP modelled ion densities at hourly intervals between 11UT and 18UT 

for latitude-versus-altitude planes at the 18°E meridian.
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Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.1:  CTIP model output for 13 December 2001 (day 347) showing only the 

electron density for the solar output for 0UT, 6UT, 12UT and 18UT.  The F10.7 value 

is  set  at  230  and  the  polar  plots  are  plotted  in  MLT at  a  height  of  320km.   The 

latitudinal scale extends from 90°MLAT to 50°MLAT in 10° steps.

00UT 06UT

12UT 18UT

0.0 2.0 4.0 6.0 8.0

Electron Density (x 1011 m-3)

00ML

06

12

18



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.2:  CTIP model output for 13 December 2001 (day 347) showing the electron 

density for the solar output with DMSP precipitation for 0UT, 6UT, 12UT and 18UT. 

The F10.7 value is set at 230 and the polar plots are plotted in MLT at a height of 

320km.  The latitudinal scale extends from 90°MLAT to 50°MLAT in 10° steps.
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Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.3:  ACE plot showing the IMF Bz component to be negative and stable from 

18UT on 12 December 2001.  Data courtesy of N. Ness at Bartol Research Institute  

and CDAWeb.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.4:  IMF Bz negative tomography plots for 000UT, 0156UT and 0243UT on 13 

December 2001.
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Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.5:  CTIP model output for 13 December 2001 showing the electron density 

due to the solar input at the time of interest.  The plots are in a geomagnetic frame of 

reference with Magnetic Local Time (MLT) and geomagnetic latitude as marked in the 

first plot.  The white line represents the location of the Scandinavian radio tomography 

chain and the white spot is the geographic pole.  For each UT the ion density is at the 

peak height for this time of interest, which is 320km.  The latitudinal scale extends 

from 90°MLAT to 50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.6:  Contours of the SuperDARN electric potential pattern for 0240UT on 13

December 2001. The short lines indicate the ionospheric drift velocities measured by 

the radars with their lengths and colours representing the drift magnitude and their

orientations indicating the direction of flow.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.7:  CTIP model output for 13 December 2001 showing the electron density 

due to the solar input at the time of interest.  The plots are in a geomagnetic frame of 

reference with Magnetic Local Time (MLT) and geomagnetic latitude as marked in the 

first plot.  The white line represents the location of the Scandinavian radio tomography 

chain and the white spot is the geographic pole.  For each UT the ion density is at the 

peak height for this time of interest, which is 320km.  The latitudinal scale extends 

from 90°MLAT to 50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.8:  CTIP model output for 13 December 2001 showing the electron density 

due to the solar input and the convection pattern at the time of interest.  The plots are in 

a geomagnetic frame of reference with Magnetic Local Time (MLT) as and 

geomagnetic latitude as marked in the first plot.  The white line represents the location 

of the Scandinavian radio tomography chain and the white spot is the geographic pole. 

For each UT the ion density is at the peak height for this time of interest, which is 

260km.  The latitudinal scale extends from 90°MLAT to 50°MLAT in 10° steps. 



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.9:  ACE plot showing the IMF Bz component to be negative and stable from 

03UT on 11 December 2001, 6 hours prior to the time of interest in Alaska.  Data 

courtesy of N. Ness at Bartol Research Institute and CDAWeb. 



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors
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Figure 7.10:  IMF Bz negative Alaskan tomography plots from 11 December 2001.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.11:  CTIP model output for 9-14UT on 11 December 2001 showing the 

electron density at a peak height of 320km.  These plots show only the effect of the 

solar F10.7 input, which for this day was 230.  The white line shows the approximate 

position of the Alaskan tomography chain.  The latitudinal scale extends from 

90°MLAT to 50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure  7.12:   CTIP  model  output  for  9-14UT  on  11  December  2001  showing  the 

electron density at a peak height of 320km.  These plots show the combined effect of 

the solar  F10.7 input,  which for  this  day was 230 and the high-latitude convection 

input,  which  was  the  same  SuperDARN  pattern  as  used  in  the  Scandinavian 

tomography study.  The white line on each dial plot shows the approximate position of 

the  Alaskan  tomography  chain.   The  latitudinal  scale  extends  from  90°MLAT  to 

50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure  7.13:   CTIP  model  output  for  9-14UT  on  11  December  2001  showing  the 

electron density at a peak height of 320km.  These plots show the combined effect of 

the solar F10.7 input, which for this day was 230 and the DMSP precipitation with Kp 

set to a value of 2.  The white line shows the approximate position of the Alaskan 

tomography chain.  The latitudinal scale extends from 90°MLAT to 50°MLAT in 10° 

steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure  7.14:   CTIP  model  output  for  9-14UT  on  11  December  2001  showing  the 

electron density at a peak height of 320km.  These plots show the combined effect of 

the solar F10.7 input, which for this day was 230, the high-latitude convection and the 

DMSP precipitation with Kp set to a value of 2.  The white line shows the approximate 

position  of  the  Alaskan  tomography  chain.   The  latitudinal  scale  extends  from 

90°MLAT to 50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.15:  ACE plot showing the IMF Bz component to be positive and stable from 

18UT on 17 December 2002, 6 hours prior to the time of interest in Scandinavia.  Data 

courtesy of N. Ness at Bartol Research Institute and CDAWeb.   



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.16:  IMF Bz positive Scandinavian tomography plots for 0005UT, 0240UT \nx 

0615UT on 18 December 2002.
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Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.17:  CTIP model output for selected UTs from 18 December 2002 showing the 

effect of the solar input only.  The F10.7 value for this day was 190.  The white line 

indicates the approximate location of the Scandinavian tomography chain.  The 

latitudinal scale extends from 90°MLAT to 50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.18:  CTIP model output for selected UTs from 18 December 2002 showing the 

effect of the solar input and the DMSP precipitation with a Kp value of 1.  The F10.7 

value for this day was 190.  The white line indicates the approximate location of the 

Scandinavian tomography chain.  The latitudinal scale extends from 90°MLAT to 

50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors
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Figure 7.19:  IMF Bz positive SuperDARN convection patterns corresponding to the 

time of each of the three Scandinavian tomography passes.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.20:  CTIP model output for selected UTs from 18 December 2002 showing the 

effect of the solar input and the 0050UT SuperDARN convection pattern.  The F10.7 

value for this day was 190.  The white line indicates the approximate location of the 

Scandinavian tomography chain.  The latitudinal scale extends from 90°MLAT to 

50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.21:  CTIP model output for selected UTs from 18 December 2002 showing the 

effect of the solar input and the 0240UT SuperDARN convection pattern.  The F10.7 

value for this day was 190.  The white line indicates the approximate location of the 

Scandinavian tomography chain.  The latitudinal scale extends from 90°MLAT to 

50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.22:  CTIP model output for selected UTs from 18 December 2002 showing the 

effect of the solar input and the 0615UT SuperDARN convection pattern.  The F10.7 

value for this day was 190.  The white line indicates the approximate location of the 

Scandinavian tomography chain.  The latitudinal scale extends from 90°MLAT to 

50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.23:  CTIP model output for selected UTs from 18 December 2002 showing the 

effect of the solar input and the 0050UT SuperDARN convection pattern with DMSP 

precipitation.  The F10.7 value for this day was 190 and the Kp value was 1.  The white 

line indicates the approximate location of the Scandinavian tomography chain.  The 

latitudinal scale extends from 90°MLAT to 50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.24:  CTIP model output for selected UTs from 18 December 2002 showing the 

effect of the solar input and the 0240UT SuperDARN convection pattern with DMSP 

precipitation.  The F10.7 value for this day was 190 and the Kp value was 1.  The white 

line indicates the approximate location of the Scandinavian tomography chain.  The 

latitudinal scale extends from 90°MLAT to 50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.25:  CTIP model output for selected UTs from 18 December 2002 showing the 

effect of the solar input and the 0615UT SuperDARN convection pattern with DMSP 

precipitation.  The F10.7 value for this day was 190 and the Kp value was 1.  The white 

line indicates the approximate location of the Scandinavian tomography chain.  The 

latitudinal scale extends from 90°MLAT to 50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors
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Figure 7.26:  IMF Bz positive Alaskan tomography plots from 18 December 2001.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.27:  CTIP model output for 18 December 2002 showing the effect of the solar 

input with the Alaskan chain line marked in white.  The F10.7 value for this day is 190. 

The latitudinal scale extends from 90°MLAT to 50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.28:  CTIP model output for 18 December 2002 showing the effect of the solar 

input and DMPS precipitation with Kp=1.  The Alaskan chain line is marked by the 

white line.  The F10.7 value for this day is 190.  The latitudinal scale extends from 

90°MLAT to 50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.29:  CTIP model output for 18 December 2002 showing the effect of the solar 

input  and  the  corresponding  SuperDARN  convection  pattern  for  each  of  the 

tomography images. The Alaskan chain line marked in white.  The F10.7 value for this 

day is 190. The latitudinal scale extends from 90°MLAT to 50°MLAT in 10° steps.



Chapter 7.  Application of the CTIP Model to Interpret Tomographic Imaging from Two 

Longitude Sectors

Figure 7.30:  CTIP model output for 18 December 2002 showing the effect of the solar 

input,  DMSP  precipitation  (Kp=1)  and  the  corresponding  SuperDARN  convection 

pattern for each of the tomography images. The Alaskan chain line marked in white. 

The F10.7 value for this day is 190. The latitudinal scale extends from 90°MLAT to 

50°MLAT in 10° steps.


