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Abstract

In this work, X-ray techniques have been used to study coatings of zirconia and
yttria doped zirconia. The experimental techniques used were laboratory-based
X-ray diffraction (XRD) and synchrotron radiation based small-angle X-ray scat-
tering techniques in both transmission mode; small-angle X-ray scattering (SAXS),
and reflection mode; grazing-incidence small-angle x-ray scattering (GISAXS).

By using XRD and (GI)SAXS measurements, information has been gained
about the crystal structure of the coatings, and about the size- and surface struc-
ture of the scattering particles, respectively.

Two types of in situ experiments were performed; in situ dipping-and-heating
cycles, and in situ incremental heating. SAXS was used for the measurements on
the former, whilst both SAXS and GISAXS was used for the latter.

The coatings have been studied at various stages during calcination, and a novel
methodology used for tracing the morphology quantitatively in systems subject
to change, is presented here. This type of measurement and methodology is im-
portant, for example, in understanding mechanisms of corrosion and catalysis or
ageing of materials.

I found that the coatings transform from polymeric gels to particulate films
featuring agglomeration and Ostwald ripening, as the sample is heated. The yt-
tria concentration was found to influence the size- and the surface structure of the
scattering particles; the more yttria, the smaller particles. When the samples were
heated, I found that the particles within the coatings with higher yttria concen-
tration gets a rougher surface structure at lower temperature than the particles in
the lower yttria concentration coatings.
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Chapter 1

Zirconia- and yttria-stabilised

zirconia coatings

1.1 Background

Materials that are exposed to working conditions far from ambient, such as high

temperatures, oxidising or reducing atmospheres, corrosive and abrasive environ-

ments may soon exhibit reduced functionality and damage as a consequence. Ex-

amples of such devices are furnaces, incinerators and gas-turbines. One method

of protecting the material in such devices is to apply a protective coating, such as

a ceramic layer. Ceramic materials are often used for this application since they

are having long traditions as refractory materials. An example of such a ceramic

protective coating will be given in the following section, and some more theory

about this material including the relevant descriptions of the crystal structure will

1



Chapter 1. Zirconia- and yttria-stabilised zirconia coatings

be given in section 1.1.2.

1.1.1 Thermal barrier coatings

Yttria-stabilised zirconia (YSZ) is a ceramic which has been found to have many

applications as a protective coating, and for example, zirconia-based thermal bar-

rier coatings have been developed for aero gas turbines, and they are presently

used in aircraft engines [1].

The performance and efficiency of a gas turbine engine are directly related to

the operating temperature [2; 3]. In order to protect the metal, thermal barrier

coatings are used, consisting of a ceramic insulating layer on top of an intermediate

metallic bond coat layer which is deposited directly on the metal. This offers

protection for hot section components of the gas turbine against oxidation and

hot corrosion [2; 1], and the reduction in metal temperature is now of around

100 ◦C; this is nicely illustrated by Taylor et al. (see figure 1 in [2]). The potential

benefits are many; increased fuel economy, higher engine power, longer component

life and reduced emissions [1].

The necessary criteria for the ceramic insulating layer is that it is refractory,

chemically inert, phase stable, and that it possesses good mechanical strength and

thermal shock resistance, good wear and erosion resistance, low thermal conduc-

tivity and a thermal expansion coefficient similar to that of the substrate.

The thermal expansion of the metal substrate, which is relatively high, dictates

the thermal expansion needed from the ceramic layer. Few ceramics are having

2



Chapter 1. Zirconia- and yttria-stabilised zirconia coatings

a high thermal expansion coefficient, but zirconia does [2]. However, zirconia is

having a problem with phase transitions, but this problem can be solved by making

alloys with other oxides to obtain stabilised zirconia, as will be described in Section

1.1.3. Terblanche [4] studied yttria-stabilised cubic zirconia of different yttria

contents in 1989, and this author found no significant differences in the thermal

expansion of the different samples. However, in 2005 Hayashi et al. showed that

for the temperature range -170 to 603 ◦C, the thermal expansion coefficient of

YSZ decrease with the increase of yttria content [5].

1.1.2 Zirconia

Zirconia (ZrO2) is a ceramic material that is considered as one of the most shock-

resistant, corrosion-resistant and refractory materials [6]. In principle, zirconia

would therefore be a useful material for lining furnaces, incinerators etc. However,

zirconia crystal undergoes two reversible phase transitions:

1. m → t: Monoclinic (m) to tetragonal (t)

2. t → c: Tetragonal (t) to cubic (c)

as the temperature is increased. These crystal structures are described below, the

webpage in Ref. [7] is recommended for better visualisation of these structures.

At ambient temperatures, zirconia is found in the monoclinic phase belonging

to the space group P21/c (No. 14), and has four molecules per unit cell [6]. The

Zr4+ cations and O2− anions all occupy the nonequivalent 4e positions in the

lattice [8].

3
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Figure 1.1: In the fluorite structure, the cations (dark blue, Y/Zr) form a
fcc structure and the anions (yellow, oxygen/vacancies) form a simple cubic
structure.

At higher temperatures, zirconia is found in the tetragonal phase belonging to

the space group P42/nmc (No. 137). The number of ZrO2 molecules in each unit

cell is in this case two, and Zr4+ cations occupy the 2b position and O2− anions

occupy the 4d positions [8].

Zirconia can also have a cubic crystal structure, which is typically found when

zirconia has been heated to even higher temperatures. From Bragg reflections

in X-ray diffractograms, cubic zirconia has been found to form the ideal calcium

fluorite structure with lattice parameter a = 5.135(9) Å [8] and in the space group

Fm3̄m (No. 225) [8; 6; 9] with four ZrO2 molecules per unit cell. The Zr4+ ions

4
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are situated in an fcc lattice (the 4a positions), and the O2− ions are situated in

a simple cubic array within the calcium fluorite structure (the 8c positions), as

shown in figure 1.1.

The temperature for which the crystal structure of zirconia changes from mono-

clinic to tetragonal is reported differently in different studies, for example, (in

◦C): 1100 [10], 1150 [6] and 1170 [8; 11]. The experimental results are often

controlled by the small quantities of impurities, and Subbarao and Maiti claim

that the “intrinsic behaviour is never observed” [10]. The t → c transition has

been reported to take place at (in ◦C): 2350 [6] and 2370 [8; 11]. Scott [12] rather

gives the transition temperatures on cooling, and here the c → t transition is

reported to be at 2340 ◦C, and the t → m transition at 1170 ◦C. However, Salas

[6] writes that this transition has a large hysteresis such that the m → t transition

takes place at 1170 ◦C whilst the t → m transition is between 850 and 1000 ◦C.

The t → m transition causes substantial volume increase (of around 3 %), and

this reduces the mechanical performance of the material [6]. With such large dif-

ferences in volume, the thermal deviations that arises through the transformations

tend to shatter objects of pure ZrO2.

1.1.3 Yttria-stabilised zirconia

The problematic crystal structure transition can be avoided by letting zirconia

remain in the tetragonal or cubic phase when cooled to ambient temperatures.

This can be achieved by adding dopants to the zirconia. Several cations of lower

5
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Figure 1.2: Phase diagram for the ZrO2-Y2O3 system. “m”, “t”,“c” and
“l” refers to monoclinic, tetragonal, cubic fluorite and liquid structure, re-
spectively. Information from [12] and [13].

valence than zirconium have been found to stabilise the zirconia in the tetragonal-

and/or cubic phase, for example Y2O3, CaO, MgO and Ce2O3 [8]. However, since

yttria is one of the most commonly used stabilising materials, this is the one that

will be discussed further in this work.

1.1.3.1 Yttria concentration

From the phase diagram in figure 1.2, it is observed that the cubic form of yttria-

stabilised zirconia (YSZ) is stable down to room temperature for concentrations

larger than about 9 mol% yttria. When the concentration is between 0 and 2.25

mol% yttria then the temperature for the m → t phase transition is lowered

6
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progressively. [12]

1.1.3.2 Yttria stabilisation of zirconia

When zirconium is replaced with yttrium ions, then one yttria formula unit re-

places two zirconia formula units: Y2O3 → 2· ZrO2, and from this it is observed

that there must be one oxygen vacancy for each pair of zirconia molecules that is

replaced by an yttria molecule.

Salas et al. writes that [6]: “It is generally accepted that the mechanism asso-

ciated with this phase stabilisation, is the generation of metastable states in the

system due to the presence of vacancies in the oxygen sublattice which in turn

produce internal shear deformations” and that “these internal shear deformations

in the oxygen sub-lattice reduces the phase-transition temperature, leading to the

formation of stabilised zirconia at room temperature.” Additionally, by studying

YSZ during in situ heating using ASAXS (anomalous small-angle X-ray scat-

tering), the suggested mechanism for stabilisation is that pure zirconia crystals

initially nucleate and absorb yttria as they grow, which results in stabilisation of

the cubic phase [14]. These are just a couple of examples; despite a great amount

of studies performed using different techniques, the exact nature of YSZ is still

not clear [15].

1.1.3.3 Conductivity of oxygen ions

From the previous discussion, it is clear that there are oxygen vacancies in the YSZ

lattice. At high temperatures oxygen atoms in the lattice become quite mobile;

7
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hopping through the vacant sites and displaying substantial conductivity [6]. The

highest conductivity is found for dopant concentrations of around 8-10 mol% yttria

[16; 11]. When the concentration is less than 10 mol% yttria, oxygen vacancies

are found to be distributed at random, although distortion of the cubic structure

is observed. On the other hand, when the concentration exceeds 10 mol% yttria,

the ionic conductivity decreases, which is thought to be caused by the fact that

short-range ordering of oxygen vacancies arises, and this imparts the oxygen-ion

transport [15]. More work is needed, however, in order to properly explain the

effect of yttria concentration on the oxygen-ion transport.

1.1.4 Applications of YSZ

In addition to be a good material for thermal barrier coatings, as was discussed

in the beginning of this chapter, YSZ has several different applications which are

described in this section.

1.1.4.1 Ionic conduction

Because of YSZ’s ability to conduct oxygen ions, YSZ is used in particular appli-

cations where ionic conduction is needed:

Solid oxide fuel cells (SOFCs) are a class of fuel cell characterised by the

use of a solid oxide materials. The cell is constructed with an electrolyte that is

sandwiched between the two porous electrodes. When an oxygen molecule hits the

cathode-electrolyte interface, it acquires electrons from the cathode. The oxygen

8
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ions diffuse into the electrolyte material and migrate to the other side of the cell

where they contact the anode. At the electrolyte-anode interface, the oxygen ions

encounter the fuel and react catalytically, giving off water, carbon dioxide, heat

and electrons [17]. Since the anode is connected to the cathode through an external

circuit, the released electrons are transported from the anode to the cathode, and

thus providing electrical energy.

One of the requirements to the electrolyte material is that it must have a good

ability of conducting oxygen-ions, and due to the oxygen-ion conducting properties

of YSZ, it is used as electrolyte in SOFCs. A challenge in the SOFC industry, is

that there must be a trade-off between ion-conduction (high), operating tempera-

ture (low) and production costs (low). As a compromise of these, YSZ is currently

one of the best electrolyte materials available. For time being, the operating tem-

perature of SOFCs is between 600 to 1000 ◦C [17]; the oxygen-ion conduction

stops if the temperature becomes too low.

Oxygen sensors are electronic devices that measures the proportion of oxygen

(O2) in the gas or liquid that is being analysed. The most common application is

to measure the concentration of oxygen in the exhaust gas for internal combustion

engines in cars and other vehicles. Again, because of the oxygen-ion conducting

properties of YSZ, this material is used as electrolyte.

An oxygen sensor consists of an YSZ electrolyte that is sandwiched between

the two electrodes. These two electrodes are connected by an external circuit. The

output voltage measured in this circuit, corresponds to the quantity of oxygen in

9
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the exhaust relative to that in the atmosphere.

1.1.4.2 Optics

Due to the high refractive index of cubic stabilised zirconia (n=2.16) for light at

the air-material interface, one of the main uses is in glazes as an opacifier, and it

is also used to increase the refractive index of other materials [6]. The refractive

index and the scattering power of cubic zirconia is comparable to that of diamond,

and this material is therefore popular as a substitute for diamond.

1.2 Sol-gel processing

The sol-gel process combined with dip-coating is a convenient method of making

films and coatings containing a well defined doping level and a homogeneous distri-

bution of dopants. The dip-coating procedure will be described in the experimental

chapter (Section 3.2.3), and the aim in this section is to give an overview of sol-gel

theory for the sols used in this work.

The recipe used for the zirconia sol was based on previous work within our own

research group; Twilight Barnardo did an excellent job in optimising the different

parameters, especially the volumetric ratios used (which are given in Section 3.2.2).

The sol-gel processes and the reasons for using these specific ratios are described

very well in Barnardo’s thesis [18], and only the most relevant sol-gel theory for

producing zirconia-sols is repeated here.

Zirconium(IV)propoxide was used as a precursor for zirconium; this type of

10
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Figure 1.3: Schematic representation of the sol-gel reactions: Zirconium
(green), oxygen (red), carbon (black), hydrogen (purple). Upper row: Zr(O
nPr)4 reacts with water and forms ZrOH(O nPr)3 and propanol. Bottom
row: The newly formed ZrOH(O nPr)3 molecule reacts with a new precursor
molecule and starts forming a Zr-O-Zr network and residual propanol.

molecule is illustrated in the upper left hand corner of figure 1.3. When water is

added to the zirconium precursor molecules (Zr(O nPr)4), the reaction

Zr(O nPr)4 + H2O → ZrOH(O nPr)3 + nPr OH (1.1)

starts taking place, as illustrated in the upper row of figure 1.3. nPr is

CH2CH2CH3, and the last term in the equation is propanol: nPr OH = CH3CH2CH2OH.

In this reaction then, one of the (nPr) chains leaves the Zr-atom, and is replaced

11
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with an H-atom from the water molecule. The rest of the water molecule reacts

with the nPr chain that left, and forms propanol.

In the gelation process, the new modified molecules react with new precursor

molecules as illustrated in the bottom row of figure 1.3, and start forming a network

of Zr-O bonds:

Zr(O nPr)4+ZrOH(O nPr)3 → (nPr O)3−Zr−O−Zr−(O nPr)3+nPr OH (1.2)

Some additional chemicals are also needed in order to produce a clear sol

successfully, and in the case of a zirconia sol; acetylacetone, acetic acid and iso-

propanol are used, and the reasons will be explained below.

The role of acetylacetone is to be a “chelating agent”. In order to produce

clear homogeneous gels and sols for transition metals, a chelating agent needs to

be introduced to make the transition metal ions coordinately saturated.

Acetic acid is often used for its property as a proton donor. It also prevents

precipitation and acts to slow the polymerisation reactions. An overly acidic

environment will result in a clear sol where no polymerisation reactions occur.

Water makes the sol-gel reactions happen very fast, but too fast reactions are

not desirable since this often leads to precipitation. Adding isopropanol to the

water slows down the reactions.

Yttria doping was obtained by crunching the grains of yttrium nitrate hexahy-

drate (Y(NO3)3 · 6H2O) and adding it to the isopropanol+water solution before it

12
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was mixed with the other solution.

The residual hydrocarbons coexist with the polymerised metal complexes in

the sol after the gelling reactions (Eqs. (1.1) and (1.2)) have taken place. This

is the reason for why drying the produced gels is necessary. Drying is typically

achieved by heat treatment. The drying process causes the residual hydrocarbons

and the water molecules to evaporate, and the nitrates to decompose by releasing

NO and NO2.

The exact positions of the yttrium ions in the resulting gel are not clear, but it

has been suggested that pure zirconia crystals initially nucleate and absorb yttria

as they grow [14]. The yttrium ions will then substitute for zirconium ions in the

lattice.

Summary

Some of the theory on the structural properties of zirconia and yttria-stabilised

zirconia (YSZ) was reviewed in this chapter. YSZ has numerous applications,

such as thermal barrier coatings, fuel cells, oxygen sensors and several optical

applications. A convenient way of producing YSZ is by using sol-gel processes,

and some basic theory of these chemical processes are also given here. Further on

in this work, the nano-structure of zirconia and YSZ coatings are studied using

X-ray techniques, and these techniques will be described in the following chapter.

13



Chapter 2

X-ray techniques in material

science

2.1 Introduction

X-ray techniques such as SAXS (Small-Angle X-ray Scattering), GISAXS (Grazing-

Incidence -SAXS) and XRD (X-Ray Diffraction) are well suited for studying the

heating effects on coatings in situ, and the principle of small-angle X-ray scatter-

ing, starting with some background information for X-rays, is discussed in this

chapter.

2.1.1 X-rays

X-rays are electromagnetic radiation which are having wavelength (denoted by λ)

in the range 0.1 to 100 Å. The X-ray energy, E, is related to the wavelength by

14
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E = (hc)/λ, where h is Planck’s constant and c is the velocity of light in vacuum.

Consequently, the energy range of X-rays is from 120 eV to 120 keV.

The light used for studying an object needs to have a wavelength comparable to

or smaller than the size of the object in question. Consequently, it is not possible

to study the atomic structure of a crystal, where the separation of the atoms is

typically 2 Å, unless the wavelength of the light is on the order of a few Å, or

smaller.

In 1912 the German physicist Max von Laue suggested that X-rays could be

used for probing the atomic structure of crystals because of the comparable size

of the interatomic spacing and the wavelength of the X-rays. Because of this, von

Laue suggested that a crystal might be capable of strongly diffracting these rays,

acting like a grating. This has indeed been found to be the case, and William

Lawrence Bragg explained this diffraction using a simple model where X-rays are

being reflected by flat lattice planes in a crystal. The constructive interference

from the reflected beams produce a diffraction pattern.

Let d denote the distance between the lattice planes, then the difference in

path-length between two beams is given by 2d sin θB where θB is the angle be-

tween the lattice plane and the beam. Constructive interference occurs when the

difference in path-length is equal to nλ, and the resulting equation is called Bragg’s

law:

nλ = 2d sin θB (2.1)
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2.2 Small-angle X-ray scattering

In the 1930’s it was observed experimentally that certain samples cause an in-

tense, continuous scattering at small angles (< 2◦) which were lacking a typical

X-ray diffraction pattern [19]. This was first observed by Krishnamurti [20] and

Warren [21] for different samples containing fine particles of submicroscopic size.

The scattering observed is due to the halo produced by the passage of a beam in

a powder where the grain size is in the order of 100 · λ [19]. This phenomenon is

called small-angle scattering, and it is helpful for getting information from struc-

tures that are too large to be studied by X-ray diffraction.

At first it appears helpful to obtain an expression for the intensity of the

scattered waves as a function of the scattering angle. It is, however, more useful

to obtain an expression for the intensity of the scattered waves as a function of

the wave-vector transfer, I(q), where q is related to the scattering angle. From

this we will be able to see how the size- and surface structure of the scattering

objects can be found, and we start by considering the propagation of the X-rays

hitting the scattering object. The propagation of electromagnetic waves, such as

X-rays, along the direction r can, at the time t, be described by

E(r, t) = Aei(ωt−k·r)êy (2.2)

where E is the electric field with the amplitude A, êy is the unit vector along
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Figure 2.1: Illustration of the geometry of a scattering event. The scat-
tering centre is situated at a position r′ from the origin. We have assumed
that the observation point is sufficiently far away from the scattering event
that the rays can be considered to be parallel.

the electric field and ω is the angular frequency. k is the wave-vector, and the

wave-number is the absolute value of k,

k = |k| =
2π

λ
. (2.3)

Figure 2.1 illustrates a scattering event where the incoming wave has wave-

vector ki and the scattered wave kf . From this figure it is observed that

sin θ =
|q|/2

|ki|
=

qλ

4π
(2.4)

and, by rearranging, the relationship between the the magnitude of the wave-

vector transfer q and the scattering angle 2θ is obtained as

q =
4π

λ
sin θ. (2.5)

In the case of X-rays striking an object, every electron becomes the source of a

scattered wave. The intensity of this scattering is constant, and practically equal

to unity for the small angles considered here. [22]
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The scattered waves are coherent and this means that the amplitudes are

added and the intensity is then given by the modulus squared of the resulting

total amplitude:

I(q) = |A(q)|2. (2.6)

These amplitudes differ only by their phase φ which depends on the position

of the electron. Every single secondary wave can be represented by eiφ, where the

phase φ is given by [22]

φ =
2πp

λ
. (2.7)

p is the total path length difference between the optical path and some arbitrary

reference point.

In the scattering event illustrated in figure 2.1, the scattering centre is not at

the origin but at some position r′ from the origin. The distance x0 is given by

x0 = k̂i · r′ =
ki · r′

k
=

λ

2π
(ki · r′) (2.8)

and, similarly

x1 =
λ

2π
(kf · r′), (2.9)

so that the path length difference, p, becomes

18



Chapter 2. X-ray techniques in material science

p = x0 − x1 =
λ

2π
(ki · r′) −

λ

2π
(kf · r′) = − λ

2π
(q · r′) (2.10)

where

q ≡ kf − ki. (2.11)

From Eq. (2.7), we get that the total phase change induced by the path differ-

ence p is given by [22],[23]

φ =
2πp

λ
= −(q · r′). (2.12)

The total scattering amplitude is given by the sum of all the secondary waves

from the electrons, each represented by e−iq·r′ ([22], p. 19). However, since the

number of electrons is enormously large and since single electrons cannot be ex-

actly localised, it is more useful to introduce the concept of electron density, ρe(r
′).

A volume element dr′ positioned at r′ will therefore contain ρe(r
′)dr′ electrons.

Because of the large number of electrons, the summation can be replaced by an

integration over the volume V irradiated by the incident beam, and the scattering

amplitude is thus given by [22]

A(q, r′) =

∫

V

ρe(r
′)e−iq·r′dr′. (2.13)

Consider a dilute solution of identical particles of constant electron density

ρe embedded in a medium of another constant electron density ρe,0. Only the
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difference in electron density, ∆ρe = ρe − ρe,0, is relevant for scattering. If the

particles are separated widely enough, it is plausible to assume that they will make

independent, i.e. non-interacting, contributions to the scattered intensity. In this

case, only one single particle needs to be considered at first. [22]

In real materials, the X-rays will be scattered by a range of particles that are

having a variety of sizes and shapes. In order to understand the resulting patterns

from the scattering experiments, it is useful to start by solving the simplest type

of scattering problem and then advance in complexity:

(i) Scattering from one spherical particle

(ii) Scattering from many identical spherical particles

(iii) Scattering from many spherical particles of different sizes

(iv) Scattering from many particles of arbitrary shapes as well as different sizes

2.2.1 Scattering from a single particle

The simplest type of scattering problem will be considered first: The scattered

amplitude from one particle of electron density ρe is given by [24]

Ap(q, r′) = VpρeF (q, r′), (2.14)

where Vp is the volume, and F (q, r′) is the amplitude of the form factor for

the particle. Consequently, since the scattered intensity is the modulus squared

of the amplitude,
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Figure 2.2: The simulated scattering pattern from spheres. Left: homo-
geneous distribution of particles of radius R = 9.116. Right: a distribution
of particle sizes simulated by implementing a log-normal distribution for the
particle sizes, where the median of the radius was set to 9.116 and using
different standard deviations (σ).

Ip(q, r′) = V 2
p ρ2

eP (q, r′). (2.15)

P (q, r′) is the form factor for the particle, and for spherical objects P (q, r) =

F 2(q, r) [24]. The form factor for homogeneous spheres was first derived by Lord

Rayleigh in 1914 [25]. Appendix A shows the derivation of the form factor ampli-

tude for a sphere, and it is found to be

F (q, R) = 3
sin(qR) − qR cos(qR)

(qR)3
(2.16)

where R is the radius.
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2.2.2 Scattering from many particles

The scattering intensity from a single particle (see Eq. (2.15)) can be written as

Ip(q, r′) = V 2
p (∆ρe)

2P (q, r′), where ∆ρe is the difference between the particle and

the matrix electron density. For coherent scattering from many particles, this

becomes I(q, r′) = Np · Ip(q, r′), where Np is the number of irradiated particles,

and the scattering intensity from many particles is therefore given by

I(q, r′) = NpV
2
p (∆ρe)

2P (q, r′). (2.17)

The scattering pattern calculated using Eq. (2.17) with form factor from Eq. (2.16)

(using that P (q, r) = F 2(q, r)) is shown in figure 2.2 (left panel).

However, all the particles does not have the same size, and it is reasonable to

assume that the particle sizes follow a log-normal distribution (see, for example,

[26]), given by

f(R; σ, µ) =
1

Rσ
√

2π
· exp

(

−(ln R − µ)2

2σ2

)

(2.18)

where R is the radius of the particle, and µ is the mean, for different standard

deviations, σ. In the right hand panel of figure 2.2, different widths of the size

distribution are compared. In both panels, the red curve is for a homogeneous dis-

tribution of spheres. We are interested in the median R, see for example [27], and

the median of this distribution is found from the solution of (df(R; σ, µ)/dR) = 0:
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Rmedian(µ, σ) = eµ−σ2

. (2.19)

For example, setting µ = 2.3 and σ = 0.3, gives Rmedian = 9.116, and this is

the value that is used for the particle radii in Eqs. (2.16) and (2.17) for simulating

the intensities in figure 2.2.

2.2.2.1 Guinier’s approximation

It is possible to extract information from the scattering curves about the particle

sizes in the sample by investigating the behaviour of I(q) at small q-values. The

particle sizes may in theory be found by using the exact solutions discussed in the

previous section for simulations if the particle system is well characterised. How-

ever, for an unknown particle system this method is not especially practical, and

an approximation can be used with advantage. The most common approximation

for extracting the particle size, is known as the Guinier approximation, and it can

be derived as follows. First, the form factor for homogeneous spheres is found by

squaring Eq. (2.16), and using that P (q, r) = F 2(q, r) for spherical particles:

P (q, R) = 9

[

sin(qR) − qR cos(qR)

(qR)3

]2

(2.20)

and rearranging,

P (q, R) =
9

(qR)4

[

sin(qR)

qR
− cos(qR)

]2

. (2.21)
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The next step in the derivation is to expand the trigonometric terms. The

expansion for sin(qR)/(qR) is simply found by taking the Taylor expansion for

sin(qR) (from for example Ref. [28]) and dividing each term by qR:

sin(qR)

qR
≈ 1 − (qR)2

3!
+

(qR)4

5!
. (2.22)

Similarly, the expansion for cos(qR) is [28]

cos(qR) ≈ 1 − (qR)2

2!
+

(qR)4

4!
. (2.23)

Inserting these expansions into Eq. (2.21), it can be seen that

P (q, R) ≈ 9

(qR)4

[(

1 − (qR)2

6
+

(qR)4

120

)

−
(

1 − (qR)2

2
+

(qR)4

24

)]2

=
9

(qR)4

[

(qR)2

3
− (qR)4

30

]2

=

(

1 − (qR)2

10

)2

= 1 − (qR)2

5
+

(qR)4

100
. (2.24)

Since the last term is very small, P (q, R) can be written as

P (q, R) ≈ 1 − (qR)2

5
, (2.25)

and by using the expansion e−x = 1− x + (x2/2)− · · · [28], it can be observed

that the following approximation is valid for small values of qR,
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P (q, R) ≈ exp

(

−q2R2

5

)

. (2.26)

This equation can be adapted for an arbitrary shaped particle by using the

radius of gyration Rg instead of the radius R. By analogy with classical mechanics,

Rg can be considered as the electronic radius of gyration of the particle about its

electronic centre of mass [19]. For a sphere, the radius of gyration is given by

R2
g =

3R2

5
. (2.27)

By using this, the form factor is now approximated by

P (q, Rg) ≈ exp

(

−
q2R2

g

3

)

. (2.28)

The scattering intensity can be found from Eq. (2.17), where in this case

I(q) = NpV
2
p (∆ρe)

2P (q, Rg). (2.29)

Inserting Eq. (2.28) for P (q, Rg) in the equation above, the scattering curve

takes the form

I(q) ≈ NpV
2
p (∆ρe)

2 exp

(

−
q2R2

g

3

)

. (2.30)

The approximation for the form factor P (q, R) in Eq. (2.26) is called Guinier’s

approximation. It is a very good approximation at small angles, and remains valid
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for qRg . 1.3 for spherical particles [19]. This means that the particle size can be

obtained by fitting a straight line to the low-q limit in a log (I) vs. q2 plot, or by

fitting an exponential curve on the log (I) vs. log (q) plot. A great advantage of

the Guinier approximation is that the radius of gyration, i.e., a size parameter,

can be determined from uncalibrated small-angle scattering data. [29]

2.2.2.2 Porod Slope

The particle shape can be obtained by looking at the behaviour of the scattering

pattern in the region towards the highest q-values. In this region the scattering

pattern is representative of the surface properties of the particles; it is the relevant

region for Porod’s approximation which can be applied when qR ≫ 1. Here

lim
qr→∞

sin(qR)

qR
= 0, (2.31)

and Eq. (2.21) becomes

P (q) ≈ 9

(qR)4
cos2(qR). (2.32)

For a distribution of particle sizes, the average of cos2(qR) has to be used;

< cos2(qR) > = 1/2. The scattered intensity (Eq. (2.17)) in this limit follows

I(q) =
9

2R4
NpV

2
p (∆ρe)

2q−4. (2.33)

This means that for smooth spheres, the scattered intensity will fall off with
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q−4. Eq. (2.33) can be rewritten as

I(q) ∝ q−P , (2.34)

for arbitrarily shaped particles, where P is related to the surface structure and

to the shape of the particles. For example, for rods P = 1 and for discs P = 2

[30]. From the value of P , the mass- (Dm) or surface- (Ds) fractal dimension of

the scattering particles can be calculated. For a mass fractal, P = Dm, and since

1 ≤ Dm ≤ 3, this means that if the value of P is between 1 and 3, the particle

is having a mass fractal nature. On the other hand, if 3 ≤ P < 4, the particle is

having surface fractal nature since P = 6−Ds and 2 < Ds ≤ 3 (see, for example,

[31; 32]).

In a log (I) vs. log (q) plot, this slope is observed as a straight line at high

q-values, and the slope of this line will be described by q−P , where −P is the value

of the steepness of this slope, the Porod slope [29; 30]. This can be seen from, for

example, figure 2.2. In the left hand panel a line of slope -4 is included. The line

coincides with the maxima of the simulated scattering curve. The model used for

simulating the patterns in this figure is based on a smooth sphere such that P = 4

(from the above discussion). For the more realistic scenario modelled in the right

hand panel, especially for σ = 0.45, it is observed that the slope for the pattern

at high-q values is also very close to -4.
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2.2.2.3 Structure factor

If the particles are densely packed, interference effects arise. This can be accounted

for by rewriting Eq. (2.17) as

I(q, r′) = NpV
2
p (∆ρe)

2P (q, r′)S(q), (2.35)

where S(q) = 1 over the whole q-range for dilute systems (see, for example,

[24]). The form factor P (q, r′) is dependent on the shape of the particle, whilst the

structure factor S(q) depends on the way the particles interact. S(q) describes

inter-particle correlations and is a function of local order and inter-particle poten-

tials. The inter-particle interactions cause a change in the shape of the scattering

curve, particularly at low q-values, with the appearance of a maximum in this

region.

The structure factor used in this work is based on the Hosemann model for

paracrystalline systems [33; 34]. Another model was also tested; the semi-empirical

function for S(q) in [35; 36], which describes damped spherical correlations of col-

loidal particles, and was found to give worse results at high q-values than the Hose-

mann model. The derivations for the Hosemann model is given in Appendix B,

and the result is

S(q) =
1 − exp(−2w2q2)

1 − 2 exp(−w2q2) cos(qā) + exp(−2w2q2)
(2.36)

where ā is the average separation distance between scattering objects. The
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exponential function exp(−w2q2) within the expression for S(q) is a Gaussian

function where the substitution w = σ/
√

2 has been used (σ is the standard

deviation for the Gaussian distribution).

2.2.3 Beaucage’s unified model

The traditional Guinier and Porod plot methods are only valid for restricted parts

of the q-range; the Guinier method is generally only valid for qRg . 1.3 [19], and

the Porod method is only valid for the high-q slope. These limitations are corrected

for in the unified model which was developed by G. Beaucage and D. W. Schaefer

in 1994 [35], and more detailed described by Beaucage in 1995 [37]. This approach

models both Guinier exponential and structurally limited power-law regimes, i.e.

the Porod regime, without introducing new parameters, and it is given by [37]

I(q) = G exp(−q2R2
g/3) + B{[erf(qRg/

√
6)]3/q}P . (2.37)

Rg is the radius of gyration for the scattering particles, and −P is the Porod

slope. G and B is given by Eqs. (2.38) and (2.39), respectively:

G = NpV
2
p ρ2

e = Npn
2
e, (2.38)

where ne = Vpρe is the number of electrons in a particle.

B = 2πNpρ
2
eSp, (2.39)
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where the particle’s electron density is ρe = ne/Vp and Sp is the surface area

for the particle.

For example, if particles within the sample form aggregates, the small parti-

cles within the aggregates are within one structural level, and the aggregates are

within another structural level. The traditional methods described previously, the

Guinier- and Porod approximations, only account for one structural level. On

the other hand, the unified model can be extended to account for multiple struc-

tural levels, and it is therefore valid for the entire q-range. Each structural level

is described by a Guinier term (Eq. (2.30)) and an associated power-law regime

(Eq. (2.33)). In the extended unified model, the total intensity is the sum of the

contributions from each structural level [35; 38]:

I(q) =

n−1
∑

i=0

Gi exp(−q2R2
g,i/3) + Bi exp(−q2R2

g,i+1/3)

×{[erf(qRg,i/
√

6)]3/q}Pi, (2.40)

where n is the number of structural levels included, and the lowest number for

n corresponds to the largest structural level.
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2.3 X-ray reflectivity theory

When X-rays hit very large objects compared to the wavelength, some of the

beam gets refracted and some of it gets reflected. X-ray reflectivity (XRR) is a

well established technique, and the theory derived for this technique is helpful

for describing the behaviour of the principal X-ray beam as it is refracted and

reflected from the sample.

The technique of Grazing-Incidence Small-Angle X-ray Scattering (GISAXS)

is a type of SAXS experiment where the geometry is altered such that it is the

part of the beam that is reflected from the sample that hits the detector - in

other words; a SAXS experiment in reflection geometry. For this reason, it is

very useful to know some of the theory of reflectivity from surfaces. Much of the

GISAXS theory does indeed build on the more established XRR theory, and this

is the reason for why the XRR theory necessary for understanding GISAXS will

be discussed before the actual GISAXS theory.

In order to probe the surface layers of the sample, the incident angle of the

X-rays needs to be very small. The GISAXS signal originates from the scattering

and reflection of the X-ray beam by any type of surface roughness, scattering

entity or lateral contrast variation present on the surface or buried inside a film

at depths less than the penetration depth of the X-rays.
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Consider first the refraction of X-rays by an interface. For finding the refracted

angle for the beam entering a medium, Snell’s law is used. For X-rays it is normally

written as [39]

cos(αt) =
cos(αi)

n
(2.41)

where αt is the angle between the transmitted beam and the surface, αi is the

incident angle and n is the effective refractive index for the air-sample interface:

n = nf/nair, where nf is the refractive index for the film, and nair ≃ 1. The

refractive index is different for X-rays than for visible light.

2.3.1 Historical aspects

L. G. Parratt published an important paper for X-ray reflectivity in 1954, where

reflection and refraction from stratified homogeneous media are discussed [40].

The refractive index for X-rays in a medium is close to, but less than 1, and it is

also complex:

n = 1 − δ − iβ. (2.42)

β is due to absorption, and it is typically in the order of ∼ 10−7 to 10−8, and

it is related to the linear absorption coefficient µ by

β =
λµ

4π
. (2.43)
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δ is the real part of the deviation from 1 of the refractive index. It is typically

in the order of 10−6, and it will be discussed further in Section 2.3.2. It is useful to

group all the physical constants into one, and this grouping was first introduced

by Parratt;

A′ =
NA

2π

e2

mec2
. (2.44)

The factor A′ will be used again in Section 2.3.2 where δ and β are derived. In

Eq. (2.44), NA is Avogadro’s number, e and me the electronic charge and mass,

and c is the velocity of light in vacuum. Using old values for the physical constants

and CGS units, Parratt obtained a value of A′ = 2.7019 · 1010 [cm/g] in this paper

[40], but this value has now been found to be slightly different when modern values

for the physical constants and SI units were used.

Another important discovery in the history of the X-ray reflectivity technique

was done by Y. Yoneda in 1963; the discovery of a so-called “anomalous surface

reflection” at a very small exit angle [41]. Yoneda found that for incident angles

αi larger than the critical angle αc the reflected power is split into two separate

beams, one at the expected reflection angle αr = αi (equiangular or specular

reflection), and the other one at the so-called anomalous angle αa at lower angle.

O. J. Guentert investigated Yoneda’s discovery more closely in 1965, and this led

to an interesting paper (Ref. [42]), where it was found that αa ≃ αc independent

of incident angle αi, and the reason for this will be discussed in Section 2.4.2. αc
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is the critical angle of total external reflection, and the angle αa has since gotten

the name “Yoneda angle”, or αY oneda, and thus

αY oneda ≃ αc. (2.45)

The angle for total external reflection, αc, is found by using Snell’s law (Eq. (2.41)),

approximating cosα ≃ 1−α2/2, and then setting β and very small cross-products

equal to zero. Eq. (2.41) then becomes α2
t = α2

i −2δ. For total external reflection,

αt = 0 and αi = αc, and consequently

αc =
√

2δ (2.46)

where δ was found to be

δ =
NAe2ρλ2

2πmec2A
fa. (2.47)

NA is Avogadro’s number, e and me the electronic charge and mass, ρ the mass

density, λ the wavelength of the incident radiation, A the atomic mass, and fa the

atomic form factor for small scattering angles [42]. This result can be used for

finding δ in Eq. (2.42), and the procedure for deriving this value will be described

in the following section.
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’
Film

Substrate

αα

α

ki k r

tk

Figure 2.3: The incident beam with wave-vector ki is refracted (kt) and
reflected (kr) by the surface of the film. The incident and reflected angle is
αi = αr = α, and the refracted angle is αt = α′. (The angles are exaggerated
for clarity of illustration.)

2.3.2 Reflection, refraction and absorption of X-rays

2.3.2.1 Reflection and refraction

The refractive index of X-rays hitting a material depends on the parameters δ and

β of the material. In this section, the procedure for finding these parameters, and

consequently the refractive index, will derived.

Figure 2.3 shows an electromagnetic wave hitting an object and being reflected

and refracted by the surface. The equation for the electromagnetic wave is given

as

Ej = Aje
i(ωt−kj ·r)êy, (2.48)

where the subscript j = i, r, t corresponds to incoming wave, reflected wave and

transmitted wave, respectively. The wave-vector for a scattered wave is generally

denoted kf . Consider first the wave that is reflected specularly; its wave-vector is

denoted kr.

Since the angle of the refracted wave is given by Snell’s law, cos αt = cosαi/n
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(Eq. (2.41)) where n = nf/nair, the next important step is to find the refractive

index for the X-rays within a medium, nf . The derivation of nf is given below

and it is partly based on Ref. [39].

The refractive index can be found by considering the classical model of a bound

electron where the electron is exposed to three forces:

(i) the electric force: Fel = −eE from the incident X-ray beam: E = E0 exp(iωt)

(ii) the restoring force: An electron bound harmonically to an atom will show

resonance absorption at a frequency ω0 = (kF/me)
1/2, where kF is the force

constant: Fr = −kF r = −meω
2
0r

(iii) the damping force: Fd = −Γdr/dt, which is proportional to the velocity with

a constant of proportionality, Γ. This force is, in this case, mostly due to

the radiative loss of energy by the accelerated electrons, but also to photon

absorption.

Since Ftot = me · d2r/dt2, the equation of motion for the electron is given by

me
d2r

dt2
+ Γ

dr

dt
+ meω

2
0r = −eE0e

iωt. (2.49)

The amplitude of this forced oscillator can be found by solving Eq. (2.49) for

r = r0e
iωt, and first, by isolating r0,

r0 = −eE0

me

1
(

ω2
0 − ω2 + i Γ

me
ω
) . (2.50)
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The eigenfrequency of bound electrons is in the order of 1015 s−1 ([39], p. 272),

and the X-ray frequency ω = E/~ ∼ 1018 s−1. The damping constant is found by

comparing to a classical mass-spring system, where Γ/m ∼ 2ω0. Since ω ≫ ω0,

the oscillating amplitude can be reduced to

r0 ≃
eE0

meω2
. (2.51)

Consider next the dipole density caused by the uncoupled electrons of density

ρe. Since the dipole moment of one electron is given by p = −er0, and assuming

that the only contribution to the polarisation P of the medium comes from similar

electrons [43], the total polarisation of the system is given by

P = ρep = −ρee
2E0

meω2
. (2.52)

The electric displacement is given by [43]

D = ǫ0ǫE0 = ǫ0E0 + P, (2.53)

and the dielectric constant for the medium is thus found to be [43]

ǫ = 1 − ρee
2

meω2ǫ0
. (2.54)

The classical electron radius is given by re = e2/(4πǫ0mec
2) , and the X-ray

frequency ω = 2πc/λ,
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ǫ = 1 − ρereλ
2

π
. (2.55)

For finding the index of refraction, nf =
√

ǫ, the approximation
√

1 + x ≃

1 + 1
2
x is used:

nf ≃ 1 − ρereλ
2

2π
. (2.56)

Using that ρe = (NAρfa)/A where fa is the atomic scattering factor, and that

A′ =
NAre

2π
, (2.57)

where modern values from CODATA 2006 [44], and SI units, the value obtained

is A′ = 2.7009 · 1011 m/kg (note that this is slightly different value from Parratt’s

value: A′(Parratt) = 2.7019 · 1010 cm/g = 2.7019 · 1011 m/kg).

The refractive index of X-rays for a medium is then given by

nf = 1 − A′ρλ2

A
fa. (2.58)

Since

fa = fa0 + f ′ + if ′′ (2.59)

where f ′ and f ′′ are the anomalous correction factors, the refractive index

becomes
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n = 1 − A′ρλ2

A
(fa0 + f ′) − A′ρλ2

A
(if ′′). (2.60)

From Eq. (2.42), and since fa0 ≃ Z, it is seen that δ and β can now be found

by comparisons:

δ = A′ρλ2Z + f ′

A
and β = A′ρλ2f ′′

A
, (2.61)

where Z and A is the atomic number and mass, respectively. For compound

materials, δ and β can be estimated using [45]

δ = A′ρλ2

∑

i ni(Zi + f ′
i)

∑

i niAi
and β = A′ρλ2

∑

i nif
′′
i

∑

i niAi
. (2.62)

where ni is the relative molar content of each constituent element.

In summary, for calculating the refracted angle within a film, first Eq. (2.62) is

used for calculating δ and β, and the resulting values are then used in Eq. (2.42)

for finding the refractive index nf . Now the refracted angle αt can be calculated

using Snell’s law, Eq. (2.41). The physical meaning of β will also be investigated

in this section.

2.3.2.2 Absorption

As was briefly mentioned in Section 2.3.1, the parameter β is due to absorption of

the X-rays within the sample. This absorption happens because the sample mate-

rial attenuates the X-rays. In this section, the equations governing the absorption
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are derived, and the concept of penetration depth of X-rays is introduced.

From Eq. (2.48), the equation for the refracted wave is given as

Et = Ate
i(ωt−kt·r)êy, (2.63)

where

kt = nk









cos αt

sin αt









and r =









x

−z.









(2.64)

Writing out the dot product in Eq. (2.63), the transmitted wave becomes

Et = Ate
i(ωt−nk cos αtx+nk sin αtz)). (2.65)

In order to simplify the second term within the parenthesis, Snell’s law is used;

n cos αt = cosαi. Additionally, using the small-angle approximation (sin αt ≃ αt)

in the third term, the transmitted wave is now given by

Et = Ate
i(ωt−k cos αix+nkαtz). (2.66)

The absorption is governed by the real part of einkαtz, and since nαt is complex,

it can be written as nαt = a + ib. Since αt ≈ sin αt ≈ kt,z/kt and kt = nk =

(2πn)/λ, we see that

nαt ≈
λ

2π
kt,z. (2.67)
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Therefore,

a(α) =
λ

2π
ℜ(kt,z) and b(α) =

λ

2π
ℑ(kt,z). (2.68)

It follows that the electric field is given by

Et = Ate
i(ωt−k cos αix+k(a+ib)z) (2.69)

= Ate
i(ωt−k cos αix+kaz)e−kbz. (2.70)

By taking the modulus squared of this electric field, the variation of the inten-

sity I(z) with depth into the material is given by

I(z) = EtE
∗
t ∝ e−2kbz. (2.71)

The penetration depth Λ is defined as the depth where the intensity has fallen

to 1/e: I(Λ) = I(0)/e. Setting in for z = Λ and z = 0; I(Λ) = e−2kbΛ and

I(0) = 1, respectively. Now the penetration depth is found as

Λ =
λ

4πb(α)
=

1

2ℑ(kt,z)
. (2.72)

Since αt ≃ kt,z/kt = (λkt,z)/(2πn), we get that kt,z = (2πnαt)/λ. Because

n ≈ 1, we find that the penetration depth of the X-rays, Λ, can be approximated

by
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Λ ≃ λ

4πℑ(αt)
. (2.73)

In the proceeding sections, two different expressions for β have been shown;

β = (λµ)/(4π) (Eq. (2.43)), and β = A′ρλ2(f ′′/A) (Eq. (2.61b)). The derivation

of the latter was just shown in Section 2.3.2, and the derivation of the first is as

follows: Consider the transmitted wave in Eq. (2.63). For a wave normal to the

surface, the dot product becomes kt · r = nkrz. This wave can now be described

by

Et = Ate
i(ωt−nkrz), (2.74)

and therefore; e−inkrz = e−i(1−δ)krz · e−βkrz , where the first factor is the phase

factor and the second factor the amplitude factor. Since the amplitude attenuation

of the wave behaves as e−µz/2, by comparison it is found that βk = µ/2, and

therefore, by setting in for the wave-vector k = 2π/λ,

β =
λµ

4π
(2.75)

which is indeed equal to Parratt’s expression for β (Eq. (2.43) in [40]). This

expression was commonly used in literature (see, for example, [46; 47; 48]), and

it is useful when the linear absorption coefficient µ for the relevant material is

known. On the other hand, if the anomalous correction factors (f ′ and f ′′) are

known, for consistency it is better to use Eqs. (2.61) or (2.62) for calculating both
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δ and β.

2.4 GISAXS

In 1979, Marra, Eisenberger and Cho proposed a new technique utilising X-ray

diffraction in conjunction with total external reflection for studying ordered in-

terfaces and surface phenomena [49]. This experiment can be considered as a

precursor experiment for GISAXS. The first GISAXS experiment was performed

as a Ph.D. project by Joanna Levine, and the first paper was published in 1989:

“Grazing-Incidence Small-Angle X-Ray-Scattering - New Tool For Studying Thin-

Film Growth” [31].

Grazing-Incidence Small-Angle X-ray Scattering (GISAXS) is a surface sensi-

tive, non-destructive technique that is often used for the characterisation of micro-

and nano-scale density correlations and shape analysis of objects at surfaces or at

buried interfaces for various classes of materials such as ceramics, metals, semi-

conductors, polymers and soft matter. In the extreme case of a (theoretically)

perfectly flat and featureless surface, all the incoming intensity is specularly re-

flected fulfilling the law of reflection from optics, αi = αf . In such case, the

GISAXS experiment would not probe anything, and the two-dimensional detector

image would only show the specular peak. The diffuse or off-specular scattering

appears when any type of surface roughness, scattering entity or lateral contrast

variation is present on the surface or inside a film. [50]

Since GISAXS is a reciprocal space technique, it has the advantage that there is
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Figure 2.4: The principle of the GISAXS technique. The monochromatic
X-ray beam hits the sample at an angle αi relative to the sample plane. The
beam is then reflected and scattered from the surface of the sample, and the
direction of the scattered beam is described by αf and 2θf .

a large number of scattering particles that contributes to the signal, and therefore

better statistics are obtained than real space techniques can typically achieve.

A typical GISAXS experiment is illustrated in figure 2.4. The incoming beam

is described by the wave-vector ki at an angle αi between it and the sample

plane. The X-rays are scattered along kf in the direction described by the angles

(2θf , αf ).

As already mentioned, the wave-vector transfer q is given by the difference
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between the outgoing and the incoming wave-vectors. The wave-vector for the

outgoing wave, kf , is found by evaluating the sines and cosines for the angles 2θf

and αf , and similarly, the wave-vector for the incoming wave, ki, is found by the

evaluation of the sine and cosine of αi:

ki = k

















cos(αi)

0

− sin(αi)

















and kf = k

















cos(αf) cos(2θf )

cos(αf ) sin(2θf)

sin(αf)

















. (2.76)

Since both of these waves propagate in air, the absolute value of the wave-vector

is the same in both cases, and it has therefore been used that |ki| = |kf | = k. By

adding up the vectors and setting k = (2π)/λ, the wave-vector transfer vector is

obtained as

q = kf − ki =
2π

λ

















cos(αf ) cos(2θf) − cos(αi)

cos(αf) sin(2θf)

sin(αf ) + sin(αi)

















. (2.77)

By evaluating Eq. 2.77 for small and constant αf and 2θf , we see that the

following approximation is valid:

qy ≈ 4π

λ
sin(θf ), (2.78)

which is recognised as the equation for the magnitude of the wave-vector trans-
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fer vector, q, for small-angle scattering in transmission setup (see, for example,

[31]). In the measured GISAXS patterns, then, the cuts taken parallel to the sam-

ple surface (in the y-direction in figure 2.4) can be treated as conventional SAXS

patterns. However, using this procedure, only information about the horizontal

direction in the sample can be obtained, and no conclusion on structures along

the surface normal can be found.

2.4.1 Estimating optimal angles

As shown in Eqs. (2.73) and (2.41), the penetration depth of the probing X-ray

beam depends on the incident angle, and thus the smaller the incident angle, the

more surface sensitive the measurements are. Therefore, before starting a GISAXS

experiment, it is important to know which probing depth is most important to

the specific experiment and decide the incident angle accordingly. In order to

calculate the best possible angle for the incident beam at a GISAXS experiment,

it is useful to consider the Fresnel reflectivity and transmittivity. The reflected

amplitude coefficient r for X-rays hitting a medium at small angles is given by

[51]

r =
Ar

Ai
≃ αi − αt

αi + αt
, (2.79)

where Ar and Ai is the amplitude of the reflected beam and the incoming beam

respectively, and similarly, the transmitted amplitude coefficient is
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t =
At

Ai
≃ 2αi

αi + αt
, (2.80)

where At is the amplitude of the refracted beam. The intensity reflectivity is

given by

R(α) = rr∗. (2.81)

In this case the transmitted intensities are not complementary to the reflected

ones because the intensity is defined as the energy crossing unit area per second,

and the cross-sectional area of the refracted beam is different from that of the

incident beam [52].

The amplitude transmittivity is given by [51; 52; 53]

t = 1 + r, (2.82)

and consequently, the intensity transmittivity:

T (α) = tt∗. (2.83)

Figure 2.5 shows the theoretical intensity reflectivity and transmittivity for

clean silicon and for a yttria-zirconia coating containing 4.17 mol% yttria, heated

to 1000 ◦C, plotted for different incident angles. In order to improve the signal-

to-noise ratio in a GISAXS experiment, a large value of R is desirable. From this

figure it is seen that the optimal incident angle for an experiment is around the
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Figure 2.5: The theoretical intensity reflectivity (left panel) and trans-
mittivity (right panel) calculated for clean silicon (dashed line) and for a
ZrO2-Y2O3 (4.17 mol% yttria) film heated to 1000 ◦C (full line) as function
of incident angle. The two vertical lines indicate (from left to right) the inci-
dent angle used in our experiments divided by the critical angle for the film,
and the incident angle divided by the critical angle for silicon, respectively.

critical angle. For αi ≈ αc, information can be obtained only for the surface of the

material. For the study of a film, we want some of the beam to penetrate the film;

this happens when αi > αc. For αi > 1.5 · αc, the beam hitting the detector has

almost entirely been transmitted through the film, whilst for αc < αi < 1.5·αc, the

signal hitting the detector is a combination of the initial reflection and transmission

through the film.

2.4.2 Extra intensity at the critical angle;

The Yoneda feature

In a GISAXS pattern, as for example the one illustrated in figure 2.4, the brightest

line in the y-direction is situated at a certain exit angle, which has been found

to be the critical angle of total external reflection, αc. This feature is called the
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Yoneda peak or feature after Y. Yoneda who was the person that first discovered

this effect. However, Yoneda just discovered this effect; it was explained later,

most famously by Vineyard [46] in 1982, and Sinha, Sirota and Garoff [54] in

1988. The angle of the Yoneda feature, i.e. the critical angle, is practically inde-

pendent of the incident angle (Eq. (2.46)), and the physical origin for the Yoneda

feature will be discussed in this section.

One of the best explanations so far is given by Renaud, Lazzari and Leroy

in a review article from 2009 [39], where it is explained that it is necessary to

use the appropriate model when the incident angle is small (αi ≈ αc); the frame-

work for this model is called distorted wave Born approximation (DWBA). Within

DWBA, it is necessary to consider four different scattering events, as illustrated

in figure 2.6, instead of just one - as was used in the simpler Born Approximation

(BA), which is valid for larger incident angles (αi ≫ αc). The Yoneda feature

is found to be due to the interference effects between the four beams that are

scattered from each irregularity or object on the sample surface (see figure 2.6).

This is because at very small incident angles, in addition to a normal scattering

event, there are the possibilities of first a reflection followed by scattering, or a

reflection after the scattering, or reflection followed by scattering and a second

reflection [50]. It is thus clear that the Yoneda peak only can be observed for

surfaces having some degree of roughness; from a perfectly flat surface, only the

specular reflected beam will be observed.
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Term 1: Term 2: Term 3: Term 4:
qz = kf,z − ki,z qz = kf,z + ki,z qz = −kf,z − ki,z qz = −kf,z + ki,z
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(α )i

Figure 2.6: Diagram of interactions (not a geometrical representation) of
the island scattering cross section in DWBA. Based on ([39], figure 41) and
[55].

More accurately, the Yoneda peak was found to be due to:

(i) the sharp variation of the reflectivity R and of the phase shift of the re-

flected beam, close to the critical angle (see figure 2.5 (left panel) and ([39],

figure 25)).

(ii) the involved Fourier transforms F(q‖,±ki,z,±kf,z), where q‖ is the compo-

nents of q parallel to the sample surface (i.e. q‖ = qx + qy).

The differential cross-section of the scattering event is given in ([39], Eqs. (133-

135)), where it is shown how F(q‖,±ki,z,±kf,z) is built up of four terms, each term

representing one of the different scattering events illustrated in figure 2.6:

dσ

dΩ
∝ |F (q‖, kf,z − ki,z) + ri(αi)F (q‖, kf,z + ki,z)

+ rf(αf)F (q‖,−kf,z − ki,z) + ri(αi)rf(αf)F (q‖,−kf,z + ki,z)|2 (2.84)

The patterns simulated using BA and DWBA were plotted in ([39], figure 42),
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and from this figure it is observed that there is a peak at αc when DWBA was

used, but not when BA was used.

2.5 X-ray diffraction

As mentioned in Section 1.1.2, zirconia exists in three different phases; monoclinic,

tetragonal and cubic. X-ray diffraction (XRD) is used to determine the phase of

the YSZ samples and possible phase transitions; the relevant theory behind these

investigations will be given in this section.

The reason why XRD is so useful for finding the crystal structure is, as briefly

mentioned in Section 2.1, the Bragg reflections from the lattice planes. However,

many types of crystal structures exist because there are 14 unique Bravais lattices

(which describe the translational symmetry of the crystals) and 230 different space

groups.

If the space group and the locations of the atoms within the unit cell are

known, the angular positions of the Bragg peaks are known exactly. This makes

it possible to distinguish different phases of the crystalline particles within the

sample, by simulating the peak positions for the relevant phases, starting by using

Bragg’s law:

nλ = 2d sin θB. (Eq. (2.1))

For a specific reflection denoted by hkl,
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λ = 2dhkl sin θB. (2.85)

The 100, 010 and 001 reflections can now easily be calculated for a cubic

crystal, since d100 = d010 = d001 = a. The Bragg angle for a cubic crystal can thus

be found by rearranging the equation above, which gives

2θB = 2 sin−1

(

λ

2a

)

. (2.86)

Consequently, finding the position of the the Bragg angle is trivial as long as

dhkl is known. For example, for a cubic crystal, the d-spacing can be calculated

by using ([56], page 21)

1

d2
hkl

=
h2 + k2 + l2

a2
. (2.87)

From this equation it is observed that for the 100, 010 and 001 reflections, dhkl

becomes equal to a, as expected.

A method of calculating the q-value of the Bragg peaks can be found by com-

bining Bragg’s law (Eq. (2.1)) and the equation for finding q (Eq. (2.5)):

q =
2πn

d
. (2.88)

When the position of the Bragg peak is known in q-space, and the wavelength

is known, 2θB can easily be calculated by using
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2θB = 2 sin−1

(

qλ

4π

)

. (2.89)

Simplified example: Zr metal in a fcc lattice. In addition to being a simpler

system than the ZrO2-system in the space group Fm3̄m, this is also a rather

realistic example because as shown in figure 1.1, the simple cubic oxygen sublattice

has a lattice parameter half of that of the zirconium fcc lattice. This means that,

for example, the 200 reflection from the oxygen sublattice will end up having the

same Bragg angle as a 100 reflection from the Zr fcc lattice. In this example,

a lattice parameter was set to a = 5.135 Å because of previous results in other

works, see for example [8].

a) For the 100, 010 or 001 reflections, d100 = d010 = d001 = a and thus

q = (2π)/(5.135 Å) = 1.2236 Å−1. Consequently, for CuKα1 radiation (λ =

1.5406 Å), these reflections are all found at 2θB = 17.25◦.

b) For the 111 reflection, d111 = a/
√

3 = 2.9647 Å, and consequently, q = 2.1193

Å−1. For CuKα1 radiation, 2θB = 31.12◦.

Following this pattern for different combinations of hkl makes it possible to

calculate the position of all the Bragg peaks. However, the reality is not quite

that simple - the structure factor Fhkl also needs to be considered.
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2.5.1 Structure factor for a Bragg reflection

A discussion on the height and width of the Bragg peaks is also necessary. This

is because in a “perfect measurement” of a large perfect crystal the peak width of

the Bragg peak goes to zero whilst the amplitude goes to infinity. However, effects

such as divergence of the X-ray beam causes the Bragg peak to become wider.

The width of the Bragg peak is also related to the size of the crystals within the

sample; larger crystals cause narrower Bragg peaks. In reality, therefore, the peaks

are having a finite width, and consequently, the peak amplitudes are not infinite

any longer. Now the intensity (i.e. the area under the curve) of the Bragg peaks

are found to be proportional to the square of the structure factor Fhkl (see for

example [51], page 144) 1; I(q) ∝ |Fhkl|2. The structure factor is given by ([56],

page 28 and 31)

Fhkl =
∑

n

fne
iq·rn =

∑

n

fne2πi(hxn+kyn+lzn) (2.90)

where rn = xna1 +yna2 +zna3 is the basis vector. In Eq. (2.90), the first factor

within the sum is the amplitude factor and the second factor is the phase, which

is 0 or 1 depending on whether Bragg’s law (Eq. (2.1)) is satisfied for this set of

planes.

The derivation of Fhkl for a fcc crystal is given elsewhere ([56], p. 32), and is

therefore not repeated here. Remember that if m is and integer, eπim = (−1)m.

We thus find that if hkl are all odd or all even, we get

1In XRD terminology, it is normal to use the letter F for denoting structure factor.

54



Chapter 2. X-ray techniques in material science

Fhkl = 4
∑

n/4

fne2πi(hxn+kyn+lzn) (2.91)

and if hkl contain some odd and some even numbers, the structure factor

becomes

Fhkl = 0. (2.92)

This means that in an XRD pattern from a fcc crystal, all the reflections with

mixed (i.e. both odd and even) indices are missing; these peaks are systematic

absent.

By taking the complex conjugate of Fhkl, and for the case where all the atoms

are identical such that fn = fa for all the atoms in the crystal, we see that

F ∗
hklFhkl = 42f 2

a . Recall that fa = fa0 + f ′ + if ′′. This means that far from the

absorption edges, fa ≃ fa0, where fa0 ≃ Z ([56], p. 10). From this we see that

if hkl are all odd or all even, |Fhkl|2 ≈ 16 · Z2. Table 2.1 shows an example on

how different combinations of hkl, the calculated values for the Bragg reflections

(q and/or 2θ) and |Fhkl|2 can be tabulated. The process of filling in this type of

table can of course be simplified by using a computer program, and this will be

discussed in Section 6.3.
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Reflection (hkl) q [Å−1] 2θ [◦] |Fhkl|2
(100),(010),(111) 1.224 17.25 0

(111) 2.119 30.12 27906
etc. . . . . . . . . .

Table 2.1: Calculating the possible reflections from Zr arranged in an fcc
lattice.

Summary

In order to understand the GISAXS patterns, it is necessary to understand the

physics of the X-ray beam from the time it hits the material, until it hits the

detector. The behaviour of the principal X-ray beam is well-known from mature

techniques such as X-ray reflectivity (XRR), and the scattering of the X-ray beam

can be explained by small-angle scattering techniques for the energy- and angular

ranges considered in our experiments.

The GISAXS signal originates from the scattering and reflection of the X-ray

beam falling in at grazing angles by any type of surface roughness, scattering

entity or lateral contrast variation present on the surface or buried inside a film

at depths less than the penetration depth of the X-rays.

The scattered waves undergo distortion in the vertical direction due to re-

fraction; however, refraction effects are negligible in the horizontal direction. By

making cuts in the GISAXS pattern in the direction parallel to the sample at the

critical angle, 1D-SAXS patterns can be obtained, which give information about

the sample in the direction parallel to the surface, such as size of-, surface structure

of- and average separation distance between scattering objects, without having to

take refraction effects into account.
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Experimental methods

3.1 Introduction

Several methods for synthesising YSZ have previously been demonstrated [16; 57].

In this work the sol-gel method is used since this method offers the opportunity

to produce a wide range of YSZ-based glasses and ceramics, as well as dip-coated

substrates and YSZ ceramic fibers [14].

This chapter explains how our samples, i.e., the ZrO2-Y2O3 coated substrates,

were prepared, and it also includes a description of the relevant X-ray scattering

experimental set-ups.

3.2 Sample production

The samples were produced by first making a suitable sol, then applying it to the

substrate by dip-coating, and then drying the coated layer. The details of the sol
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production and dip-coating will be described in Section 3.2.2 and Section 3.2.3,

respectively.

3.2.1 Substrate

3.2.1.1 Mica

For the SAXS experiment, substrates transparent to X-rays are needed, and mica

was therefore chosen. Pieces of mica were bought from Rapid Electronics [58], and

cut in two pieces of ∼ (25 × 10) mm each.

3.2.1.2 Silicon

For the GISAXS experiments, silicon wafers (Si(100)) were used as substrates

because they are flat enough for reflecting X-rays, and they can be heated to

> 1000 ◦C without melting, although oxidation will occur. The wafers were cut

into rectangles of ∼ (25 × 10) mm before coating.

3.2.2 Coatings used as samples

Different doping levels of yttrium-to-zirconium was prepared by adding different

amounts of yttrium nitrate corresponding to 2.04, 4.17, 8.70 and 19.1 mol% Y2O3;

these samples are listed in Table 3.1. Table 3.2 shows which sol-recipes were used

at which experiment.

The zirconia sols used for the SAXS and GISAXS experiments were prepared

by mixing 10 ml zirconium(IV)propoxide (Zr(OCH2CH2CH3)4) (Sigma-Aldrich,
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Sample name nZr [mol] nY [mol] nO [mol]
nY2O3

nY2O3
+nZrO2

[mol%]

Zr-Y-A 0.322 0.013 0.664 2.04
Zr-Y-B 0.311 0.027 0.662 4.17
Zr-Y-C 0.288 0.055 0.658 8.70
Zr-Y-D 0.239 0.113 0.648 19.1

Table 3.1: Relative molar content (nZr + nY + nO = 1) of the different
coatings, which are generally referred to as the “Zr-Y coatings”.

Technique Coatings Substrate X-ray Heating
Energy
[eV] [◦C]

SAXS ZrO2 mica 8000 in situ
ZrO2, A, B,Y2O3 mica 17800∗ & 16800 500
ZrO2, B,Y2O3 mica 17800∗ & 16800 700

XRD ZrO2 mica 8048 500, 700
GISAXS A, B, D Si(100) 10008 in situ

ZrO2 (4 layers) Si(100) 10008 500
ZrO2 Si(100) 10000 in situ

XRD ZrO2 Si(100) 8048 500, 700, 900
XRD A Si(100) 8048 500, 700, 900
XRD C Si(100) 8048 500, 700, 900
XRD D Si(100) 8048 500, 700

Table 3.2: Overview of samples and techniques used. (*) The sample not
containing any yttrium (i.e. the zirconia coating) was measured on using
the indicated energy.

70 wt.% in 1-propanol), 10 ml isopropanol ((CH3)2CHOH), 2.5 ml acetylacetone

(CH3COCH2COCH3) and ∼ 0.5 ml acetic acid (CH3COOH), and adding 5 ml

isopropanol+water mixture (volume ratio 2:1). Yttria doping was obtained by

crunching the grains of yttrium nitrate hexahydrate (Y(NO3)3 · 6H2O) (Sigma-

Aldrich, 99.8% trace metals basis) by pestle and mortar and adding it to the

isopropanol+water solution before it was mixed with the other solution. Different

amounts of yttrium nitrate was used for different samples: 0.356, 0.743, 1.628 and

4.024 g for coating recipe A, B, C and D, respectively. The yttrium nitrate did
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Figure 3.1: Samples were produced by dip-coating the substrate into the
relevant sol, and this photo shows some of these sols. Left to right: zirconia
containing yttria nanoparticles (not used), 2.04 mol% yttria (recipe A), 4.17
mol% (recipe B), 19.1 mol% (recipe D), and yttrium nitrate dissolved in
water. Photo: Matt Gunn.

dissolve in the isopropanol+water solution, but stirring using a magnetic stirrer for

some time was necessary. Eventually, after mixing all the ingredients and stirring,

a clear sol was obtained from each of the recipes used; some of these are shown in

Figure 3.1.

The water in the yttrium nitrate (6 · H2O) has not been taken into account

when the water content was calculated simply because the exact amount of water

is not critical in the case where the sol does not need to undergo bulk gelation -

which is the case for the sols used for dip-coating. This is because when the film

becomes thinner, the inorganic species are progressively concentrated, leading to

aggregation, gelation, and final drying to form a type of a dry gel [59].

3.2.3 Dip-coating

Dip-coating is a controlled way of producing flat thin films from sols made by

sol-gel technique. The thickness of the film can be controlled by varying the

withdrawal velocity, the viscosity or the density of the sol [60].
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Figure 3.2: Most of the proud construction team test-running the dip-
coating machine before departure to Daresbury. Front row: Dave Francis.
Back row, from left to right: Rudi Winter, Kristin Høydalsvik, Clive Willson,
Les Dean and Matt Gunn. Photo: Steve Fearn.

3.2.3.1 The dip-coating machine

A dip-coating machine were designed and build in the home institute, and it is

shown in the figures 3.2 and 3.3.

The design of the dip-coater was developed together with Matt Gunn. Dave

Francis and John Parry in the mechanical workshop built the machine after Gunn’s

drawings. The electronics was designed and developed by Les Dean and Dave

Lewis. Matt Gunn also constructed the furnace (to the left hand side of the board

in figure 3.2). The green box on the right hand side of the machine, is the control

box to the furnace. The machine was run using LabVIEW, and the necessary

routines were written by Clive Willson.
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Figure 3.3: The dip-coating machine. The sample is attached to the rod
(A). The box at (B) is the casing for a tube furnace, with a lid that moves
when the sample is lowered down towards it. The beaker that contains the
sol is situated on top of a hotplate which is labelled (C); this was cold during
the dip-coating of these samples. In the back there are boxes for electronics,
and USB cable to the computer (not shown). Photo: Richard Fallows.
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The substrate is mounted on the end a metal rod. This was done by clamping

the substrate between the rod and a metal piece, and tightened by using a screw.

In figure 3.3, the substrate is placed in the measurement position (A), which is the

position used whilst SAXS measurements are performed. The time at which the

substrate remains in this position can be set in the software. When the machine

is used for dip-coating samples, and not SAXS measurements, it is practical to

set this time to zero. Next, the vertical movement downwards starts, and it stops

when the substrate is well within the sol. Then the upwards motion starts, slowly

and steadily as the withdrawal of the substrate from the liquid takes place. The

velocity of the withdrawal is set in the software by adjusting the “withdrawal

rate”. After the dip-coated sample is well clear of the liquid, the velocity of the

vertical motion is increased and then kept constant until the sample reaches the

measurement position where it is kept for the amount of time set in the software.

Now, if the furnace is excluded, downwards motion takes over, and so the cycle

continues. On the other hand, if the furnace is included, the sample is now moved

horizontally until it is above the furnace. Then the furnace lid opens, and the

sample is moved down into the furnace where it remains for the amount of time

which is set in the software. Then the sample is moved up again, the lid closes,

and the sample is moved horizontally until it is above the beaker - and so the cycle

continues.

The tube furnace within its box is shown in figure 3.3, labelled (B). A motor

moves the lid on and off the opening of the furnace. Limit switches ensure that
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Figure 3.4: A screenshot of the LabVIEW control program. Bars on the
left hand side of the screen: for adjusting relevant parameters (time in mea-
surement position, rate of withdrawal and the time that the sample spends
in the furnace). Buttons on the right hand side of the screen: selecting
to include or exclude the furnace in the cycles (orange), saving values and
getting ready to start the cycles (red), and start/stop (turquoise).

the furnace lid is only in the open position while the sample is actually inserted.

The hotplate underneath the beaker (labelled (C) in figure 3.3) was included

in the design in case there is a need for warming the sol, but for the yttria-zirconia

sols this was not necessary, and the hotplate is simply there in order to place the

beaker in the correct height relative to the movement of the substrate.

The motors in the dip-coating machine are operated remotely by a LabVIEW

control routine. A screenshot of this routine running is shown in figure 3.4. From

the bars to the left side, different parameters can be adjusted, and the buttons to

the right control the running of the machine.

The substrate is dipped into the relevant sol that is contained in a small beaker,

and then withdrawn with constant speed (in all our experiments, this speed was
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set to 8.1 cm/min ≈ 1.35 mm/s). After dip-coating the sample, it may be put

down into the furnace next to it, and annealed at a set temperature between

300 ◦C and 700 ◦C. However, the samples for the GISAXS experiments were dried

at 120 ◦C for ∼ 10 minutes in a separate furnace.

3.2.3.2 Dip-coating velocity

This section describes how the withdrawal velocity for the dip-coating was es-

timated. The thickness of the coating depends on, amongst other factors, the

velocity of withdrawal. These velocities were measured using a stop watch and

ruler, and the measurements were performed in a room with a stable temperature

of 17 ◦C. The distance for the withdrawal motion was measured to be s = (30±0.5)

mm. Figure 3.5 shows the measured time during withdrawal as a function of num-

ber of cycles.

In the LabVIEW control program the rate for the withdrawal velocity was set

to the same value for all the samples prepared. Using the measurements above,
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Figure 3.5: Time measured during withdrawal as function of dipping cycles
for the dip-coating machine.

after the warm-up time the withdrawal velocity was found to be vws = (1.35±0.03)

mm/s.

The withdrawal velocity was found to be stable after a warm-up-time of 50

cycles. Consequently, it was found that for the withdrawal velocity rate used

here, it was necessary to run the machine doing dipping cycles for approximately

50 minutes before the dip-coating can start in order to make the coatings as similar

as possible. Doing this, the withdrawal velocity should be constant for the rest of

the dips.
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Synchrotron Beamline D X-ray energy
[mm] [eV]

BESSY II, Germany 7T-MPW-SAXS 3345 8000
Daresbury Laboratory, UK 6.2 3750 16800 & 17800

Table 3.3: Overview of the different SAXS measurements performed. D
is the sample-detector distance. The BESSY II facility is hereafter called
“Bessy”.

3.3 Measurements

3.3.1 SAXS

A preliminary experiment for investigating the in situ heating behaviour of zirconia-

coated mica was performed at Bessy and usable results were obtained (see Sec-

tion 5.2.1 and Section 6.5.1). Further experiments for studying the changes in

SAXS patterns in between dipping- and heating cycles were conducted at Dares-

bury some time later. The experimental details of both these experiment are

described in this section; the details of the two beamlines used are listed in ta-

ble 3.3, and the general set-up is illustrated in figure 3.6.

In situ heating: This SAXS experiments were performed at the 7T-MPW-

SAXS beamline at Bessy, using a two-dimensional position sensitive gas detector

which has dimensions of 200 mm × 200 mm.

A preliminary experiment were performed on a piece of mica that was cut in

two pieces, whereof one was put in a bath in a zirconia-sol for a week, and the

other one were used for background measurements. The zirconia coated mica piece

were dried in an oven at 120 ◦C for 1 hour, and afterwards a clear coating was
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monochromator collimation
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k f q
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Figure 3.6: The general set-up for SAXS experiments. Synchrotron radia-
tion (S. R.) is collimated and hits the monochromator. The monochromated
light is collimated before hitting the sample (wave-vector ki) where the X-
rays are scattered (wave-vector kf). The detector measures the intensity of
the X-rays as function of distance from the centre. The wave-vector transfer
q is proportional to the scattering angle 2θ, and for the small angles used
here, q can be approximated to be parallel to the detector.

visible.

The first SAXS measurement on the zirconia coated mica piece was performed

under ambient temperatures, then the sample was heated to 300 ◦C and another

measurement was performed. The temperature was incrementally heated in steps

of 50 degrees, with a new measurement performed at each temperature. The

maximum temperature was 950 ◦C, and since the pattern was still changing, new

measurements were taken for another 30 minutes, keeping the heating on such

that the temperature remained 950 ◦C. Afterwards, background measurements

were taken on the bare mica piece at different temperatures.

68



Chapter 3. Experimental methods

Figure 3.7: The dip-coater mounted in the experimental hutch. The beam
comes in from the synchrotron and hits the sample which would be stationed
in the measuring position. The transmitted and scattered beam continues
down the tube, and hits the SAXS detector (not shown) a few metres away.
A WAXS (Wide-Angle X-ray Scattering) detector is also used in order to
simultaneously obtain the wide angle scattering signal.

In situ dip-coating: The dip-coater was installed directly on the beamline at

Daresbury, as shown in figure 3.7.

The dip-coater was controlled remotely by a LabVIEW program on a laptop

computer outside the experimental hutch. First the furnace was heated to the

desired temperature (500 or 700 ◦C). The measurement procedure is schematically

illustrated in figure 3.8, and to start with the clean mica piece was driven into

the measuring position, and a measurements was made. Next, the mica piece was

dipped into the sol, withdrawn at a velocity of 1.35 mm/s, and driven back to the

measuring position where a new measurement was made. Thereafter, the sample
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1) Measure the background

3) Dip

2) Measure on the clean
mica substrate

4) Measure on the
dip−coated sample

5) Sample into the furnace

6) Measure on the heated
sample

END

Figure 3.8: Figure illustrating the cycles of measuring, dipping and heating.
Further description is given in the text.

was driven into the furnace where it stayed for 10 seconds, and then it was driven

back to the measuring position where another measurement was made.

3.3.2 GISAXS

The GISAXS experiments were performed at the 7T-MPW-SAXS beamline at

Bessy, Berlin, using a two-dimensional MarCCD (2048 × 2048) pixel detector.

The X-ray energy was fixed to 10008 eV (λ = 0.12389 nm) and to 10000 eV

(λ = 0.12398 nm) during the first and second GISAXS beamtime, respectively.

The sample-detector distance was set to 2920 mm during the entire time for both

beamtimes.
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Figure 3.9: The GISAXS furnace installed at the beamline. The X-rays
come in from the tube at the back (to the right in the photo), through the
furnace windows and into the cone-shaped tube to the left in the photo. The
sample is mounted inside the hood. The rubber tubes are for water cooling
(the thin tube) and for letting in gas (the thick tube).

3.3.2.1 Furnace

A furnace for GISAXS experiments, shown in figure 3.9, was built in the institute’s

workshop; it consists of a circular hotplate with diameter 10 mm, and a copper

hood with replaceable kapton windows. The furnace is water-cooled, and it is

possible to run with an inert atmosphere within the hood. The temperature is

measured using a thermocouple wired into the heating element, and it can be

remotely controlled from the computer outside the hutch. The temperature can

safely be set to 1000 ◦C in air.

3.3.2.2 Set-up

Figure 3.10 shows the experimental set-up for the GISAXS measurements; the

centre beamstop was used to block the strong specular reflection of the incident

beam and the direct beam, i.e. the part of the beam that does not hit the sample
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Figure 3.10: Schematic of the set-up for a GISAXS experiment: The beam
is incident at an angle αi, and some of the beam misses the sample and
hits the detector further down, while the rest of the beam is reflected and
scattered from the sample with exit angles αf (along the z-axis) and 2θf

(along the y-axis). The reflected specular beam is omitted in the figure.
The sample surface plane is indicated at z0 = z(αf = 0), and the Yoneda
feature is observed at zY oneda = z(αf = αc). (The angles are exaggerated for
clarity of illustration.) [61]

and simply continues in a straight line.

The sample surface lies in the (x, y, z = 0) plane, the incident angle αi and the

exit angle αf lies in the (x, y = 0, z) plane, and the horizontal scattering angle 2θf

lies in the (x, y, z = D tanαf) plane, where D is the sample-detector distance.

In the first GISAXS experiment, where the samples were the Zr-Y coatings,

measurements at several incident angles were made first. Then the sample was

heated using the GISAXS furnace, from 400 to 1000 ◦C, in steps of 50 degrees.

The incident angle was fixed to 0.257◦, and 10 measurements was taken at each

measuring temperature, measured for 30 seconds at each. While keeping the

measuring temperature at 1000 ◦C, the different incident angle measurements

were repeated. The whole experiment was then repeated for the different Zr-Y
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coatings and for a clean Si(100) wafer. During the second GISAXS experiment,

where the relevant sample was a pure zirconia-coating, measurements at different

angles were made using the same procedure as for the previous experiment, and

the same heating programme was used. On the other hand, one suitably long

measurement was taken at each temperature. The measuring time depended on

the number of detector counts, and was typically 3-5 minutes.

3.3.2.3 Thermal expansion

The thermal expansion from the silicon wafer has been estimated using [62]

∆l

l
=

∫ T

T0

α(T )dT (3.1)

where α(T ) was found using figure 4 in [62], for T0 = 300 K to T = 1273 K. The

thickness of the silicon wafer is ∼ 300 µm, and the expansion for the silicon wafer,

∆l, was then found to be about 1 µm. A change in height of the sample surface,

does not change the angle between the reflected beam and the sample plane, and

thus the reflected beam will be measured ∆l higher on the detector. The pixel

size is 79 µm, and the thermal expansion of the Si-wafer is significantly smaller

than the pixel size of the detector. It is therefore a valid assumption to neglect the

thermal expansion of the substrate in the interpretation of the GISAXS patterns.

The thickness of a coating decreases as densification take place during heating,

and it was investigated by ellipsometry (see Section 6.2.2 for the ellipsometry

results and for further discussions). The sample thickness was found to vary from
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around 400 to 100 nm. This difference is of course also a lot smaller than the pixel

size.

3.3.3 X-ray diffraction

The X-ray diffraction measurements were performed using a Bruker D8 Advance

series 8 diffractometer in the theta-theta configuration and using a copper anode.

Multilayer mirrors were used in order to produce a parallel beam and the spot was

a few millimetres wide. A Vantec detector was used, which measures over 12◦ of

2θ space at once, and then scans over the rest of the desired 2θ space. The angular

resolution was set to ∆2θ = 0.00716◦, and the sample rotation was turned off.

For the coatings prepared on mica substrates, the total measuring time for

each sample was ∼ 45 minutes, and for the coatings prepared on the Si-wafers,

the total time measured was ∼ 83 minutes for each.

Summary

Zirconia sols that contains none or various amounts of yttria doping were prepared.

Substrates were dip-coated into the relevant sol, and the coatings containing yttria

were labelled Zr-Y-A, Zr-Y-B, Zr-Y-C and Zr-Y-D depending on yttria concentra-

tion, which corresponds to 2.04, 4.17, 8.70 and 19.1 mol% yttria, respectively.

Since mica is mostly transparent to X-rays, pieces of mica were used as sub-

strate for the SAXS measurements because these are done in transmission mode.

For reflection mode, i.e. the GISAXS measurements, Si(100) wafers were used as
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substrates since these are very flat and does not easily melt.

SAXS and GISAXS techniques were used for measuring the nano-structure of

the coatings as the sample is dip-coated or incrementally heated in situ.

Additionally, ex situ XRD measurements were performed in order to gain infor-

mation about the crystal structure for the coatings after annealing using different

temperatures.
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Data analysis

4.1 Introduction

Our measurements were performed on two different beamlines and with multiple

measurement geometries (i.e. SAXS and GISAXS). As a consequence of this, some

of the experimental parameters cannot be considered to be identical. A simple

example of such a parameter is the intensity of the incoming beam; as the stored

electron current in the synchrotron is continuously decaying, the intensity of the

incoming beam is not identical for all the measurements. Therefore, in order to

perform any quantitative comparison of any two measurements, it is necessary to

first normalise to the beam intensity.

In fact, there are several such factors which need to be taken into consideration

and not necessarily the same factors for SAXS and GISAXS measurements. There-

fore, the purpose of this chapter is to take a systematic look at the corrections
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Figure 4.1: SAXS pattern from silver behenate (AgBeh) where the X-ray
energy used was 8 keV and the sample-detector distance was 3345 mm. The
left panel shows the intensity as a function of pixel number, and the right
panel shows the new abscissa after it is converted to show q-values.

that are required for each technique used.

These corrections are summarised in table 4.1, and described in detail in the

remaining part of this chapter. After these corrections are applied, it should be

possible to compare the different plots within each in situ treatment programme

quantitatively. Such SAXS pattern plots are shown in the same figure in Chapter 5,

and the results are further discussed in Chapter 6.

4.1.1 Silver behenate calibration

In order to compare the results with the theory described in Chapter 2, the abscissa

in the measured SAXS patterns needs to be converted to q-value instead of simply

the pixel or channel number (see figure 4.1). The q-scaling can be done by directly

applying Eq. (2.5);
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q =
4π

λ
sin θ where 2θ = tan−1

(

sN

D

)

. (4.1)

In Eq. (4.1), s is the pixel size, N is the pixel or channel number and D is the

sample-detector distance.

Alternatively, the q-scaling can be found by using a calibrant. This is especially

useful if the pixel size or the sample-detector distance is not accurately known.

For the X-ray energy relevant here, silver behenate has been found to be a good

candidate because it has a well-defined d-spacing of 58.380 Å [63].

A SAXS measurement on silver behenate is performed using the same sample-

detector distance and X-ray energy as for the other measurements. If the measure-

ment was performed using a 2D detector, the resulting pattern has to be radially

averaged such that the 1D data can be readily plotted. Bragg peaks are now

observed in the intensity vs. pixel number plot.

By setting n = 1 in Eq. 2.88 it is found that the first order SAXS peak will

be situated at q = 1.0763 nm−1 (see figure 4.1), and this is then used for finding

the q-scaling. Using this procedure, there is no need for explicitly refining the

sample-detector distance.

4.2 General procedure for the data corrections

The procedures for correcting the data is different for the SAXS and GISAXS

experiments. The procedures are however comparable and, in order to give a
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simple overview, they are listed in table 4.1. Each step will be further explained

in the following sections, as indicated in the right hand columns of the table.

Step No. Procedure SAXS GISAXS
1 Image rotation 4.2.2.1
2 Normalise for measuring time and beam current 4.2.1.1 4.2.2.2
3 Radial averaging 4.2.1.2
4 Transmission corrections 4.2.1.3
5 Averaging 4.2.2.3
6 Vertical cuts 4.2.2.4
7 Horizontal cuts 4.2.2.5
8 Background correction 4.2.1.4
9 Noise reduction 4.2.1.5
10 q-scaling 4.2.1.6 4.2.2.6
11 αf -scaling 4.2.2.7

Table 4.1: Table showing which data correction procedures that were ap-
plied to which experiment. Content in the SAXS and GISAXS column means
that this correction is applied for that technique, and further explanations
can be found in the section address given.

4.2.1 SAXS

4.2.1.1 Normalising

The beamcurrent varies, and the integration time of the measurement may vary;

it is therefore necessary to normalise the measured data to the measured beam-

current and the integration time.

For the data collected using the gas detector at beamline 7T-MPW-SAXS at

Bessy, Berlin, the following procedure is used for the normalisation of the data.

The corrected data, Icorr, becomes

Icorr,i ∝
Ii

Ibct
· 1

1 − t′ · (M/t)
(4.2)
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where Ii is the measured pixel intensity at pixel i, Ibc is the beamcurrent [mA],

t is the measuring/integration time [s], t′ = 4.0 · 10−6 s and M is the monitor

counts. The second factor corrects for the dead-time of the detector.

There is also the possibility to use a CCD detector at this beamline; this de-

tector was only used for the GISAXS experiment (see Section 4.2.2.2).

For the data collected using the one-dimensional Rapid quadrant detector at

beamline 6.2 at Daresbury, England, the data were normalised using

Icorr,i ∝
Ii

Ibc · t
, (4.3)

where Ii is the value measured at channel i, Ibc is the beamcurrent and t is the

measuring time.

4.2.1.2 Radial averaging

In order to proceed with the data analysis of the two-dimensional SAXS patterns,

it is necessary to compute the radial average of these. This is done by first finding

the beamcentre, using this position as the centre of a circle, and finding the average

pixel value for each circle as the radius goes from zero to the maximum measured

pixel number, divided by the circumference of the circle in order to normalise to

the number of pixels that the circle extends over.
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4.2.1.3 Transmission corrections

In a typical set-up for a SAXS experiment, there will always be a small signal

due to background; i.e., the signal from scattering of the X-rays by, for example,

windows and other molecules between the exit of the beamline and the detector.

This background signal can be measured, and it can be subtracted from the ac-

tual measurement. However, the sample will absorb some of the X-ray intensity,

and in order to subtract the correct background intensity, the intensity from the

actual measurement and the intensity from the background measurement need

to be scaled accordingly relative to each other. This transmission correction will

be described in this section, and afterwards the procedure for subtracting the

background will be described.

The transmission correction is done by dividing the intensity in the sample

measurement with the transmission for the sample τs,

Si =
Icorr,i

τs

where τs =
τs+b

τb

. (4.4)

In Eq. (4.4), τs+b is the measured transmission; i.e., the transmission for both

sample and background, and τb is the transmission for the background measure-

ment.

First it is important to determine what the background actually is. Figure 4.2

shows measurements of the coated mica, the clean mica and the difference be-

tween the two, for the experiment performed at Bessy. The measurement taken at

ambient temperature is shown in the left hand panel; here it is observed that the
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contribution from the clean mica is small, and the curve where this contribution

is subtracted is similar but having slightly lower intensity than the curve from the

measurement on the coated mica. In this case it works well to use the clean mica

as the background measurement.

On the other hand, using the mica measurement as background for the mea-

surements at high temperature is problematic. An attempt was made to use mica

as a part of the background signal (see figure 4.2, right hand panel), however, when

this was used, the “corrected” measurement (after subtracting the background)

are seen to contain physically unrealistic features at very low pixel numbers (i.e.

small angles). Whilst the reason for this is not completely understood, a simple

alternative is given below.

A measurement performed without any sample present can be used as back-

ground measurement (“B”) since the only difference between this measurement

and the actual measurement is that there is no sample in the furnace. The mea-

surements for the coated mica will then be the sample measurement (“S”). In

other words, for the SAXS measurements from Bessy, the background is given by

Bi = Icorr,i, (4.5)

where Icorr,i is the measurement performed when the furnace was empty, after

correcting it for beamcurrent and measuring time.

In the dip-coating measurements performed at Daresbury, mica was also used
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Figure 4.2: The comparisons of the contribution from the coated sam-
ple, the clean mica and the difference between the two. Left: Both the
coated sample and the clean mica were cold when the measurements were
performed. Right: Measurement number 4 for the coated sample after set-
ting the furnace temperature to 950 ◦C, which is a typical measurement for
the high temperature range. The mica was also heated to 950 ◦C when this
measurement was performed.

as the substrate; for this experiment the mica- and the coating signal could be

separated successfully, and thus the measurement on the clean mica was used as

background; τb = τmica. For the SAXS data measured at Daresbury, the back-

ground measurement is simply given by Eq. (4.5), where in this case Icorr,i is the

normalised file for the clean mica measurements.

4.2.1.4 Background correction

In order to separate the signal from the scattering by the sample from the back-

ground contributions, such as scattering from air molecules or from the windows,

it is desirable to subtract the background contributions. This can be done by

I ′
i = Si − Bi (4.6)
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for each pixel i where Si and Bi are found from Eqs. (4.4) and (4.5), respec-

tively. This procedure worked well for the in situ dip-coating experiment, however,

it did not work for all the SAXS measurements in the in situ heating experiment,

and an alternative procedure is described below.

For the in situ heating experiment at Bessy, the reason this procedure did not

work is that Si < Bi for large q-values. The measurement on the empty furnace

(“B”) was taken after the sample measurements and the subsequent measurements

on the clean mica, where both samples had been heated to 950 ◦C, and perhaps

the reason for the increased intensity in “B” is that some of the experimental

parameters, such as beamcurrent, changed too much within this time.

However, the intensities at the highest q-values could be compared for nearly

all the measurements, since scattering from the sample was not detected at a range

of q-values towards the highest values of q. Therefore, the average intensity for

this range was compared for the sample- and the background measurements,

a =
B̄high−q

S̄high−q

, (4.7)

and the intensities of the sample-measurement was scaled according to this

result.

Figure 4.3 shows the values obtained for a, for the measurements where this

was clear, and the lines fitted to these points. a is estimated from these fits, and

used for the intensity scaling,
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Figure 4.3: The red points are the calculated values for a using Eq. (4.7).
The green and blue lines are the lines fitted to the red points. From these
fits, the value used for a is found, and applied using Eq. (4.8).

S ′
i = a · Si, (4.8)

for each temperature measurement. Eq. (4.6) is now replaced with

I ′
i = S ′

i − Bi. (4.9)

Figure 4.4 shows the same sample measurement as figure 4.2, but here the

empty furnace measurement is used as background.

4.2.1.5 Noise reduction

Due to using the detector for an experiment that it is not optimised for, the

signal-to-noise ratio in the data collected in Daresbury was not satisfactory; this

is a common problem in experimental physics. On the other hand, the detector

had many more channels than strictly necessary, and thus the position of two
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Figure 4.4: Measurement number 4 after setting the furnace temperature
to 950 ◦C. This figure shows the contribution from the coated film, the empty
furnace measurement and the difference between the two.

neighbouring channels differ by such a small angle that the difference in the mea-

sured signal count should be small, and thus any observed difference is mostly due

to interchannel noise. A common way to solve this type of problem is to use a Fast

Fourier Transform (FFT) filter, since by removing the high frequencies (which cor-

responds to the extremely small angular separations) is predominantly the noise

which is removed, and hence the signal-to-noise ratio is significantly improved.

The filtering was performed by using a purpose-made C-program based on

an FFT routine written by Dr. Rudolf Winter taken from Numerical Recipes in

C [64]. In my program, the data is first Fourier transformed into the frequency

domain, then the frequencies corresponding to unphysical interchannel noise were

removed (the upper 50 %). Finally the filtered frequency domain data was inverse

Fourier transformed to the real space domain. This data was then substituted for

the unfiltered data.

The data collected in Bessy had a far higher signal-to-noise ratio, and no
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significant improvement could be made by filtering.

4.2.1.6 q-scaling

The reason for q-scaling, as well as the general procedure, has already been dis-

cussed; see section 4.1.1. The aim of this section, however, is to describe how the

q-scaling was specifically performed for the measurements in this work.

For the data collected at Bessy (the zirconia-coated mica experiment), the q-

scaling was applied to the abscissa using the following procedure: As a calibration,

silver behenate (see section 4.1.1) was used. The pixel number for the silver

behenate peaks as function of calculated theoretical q-position was plotted and a

straight line

N ≡ f(q) = a · q + b (4.10)

was fitted to the plotted points. In this case, b was found to be at zero.

Now a can be determined. Since θ is very small, it is acceptable to use a linear

approximation in Eq. (2.5):

q =
4π

λ
sin θ ≈ 4π

λ
θ ≡ a′ · N, (4.11)

where a′ = 1/a = 2.089 · 10−3 nm−1/pix and N is the pixel number.

For the data collected at Daresbury (the dip-coating experiment), the q-scaling

procedure was performed slightly different since b 6= 0 for these measurements
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(b ≈ −10 channels):

x ≡ f(q) = a · q + b. (4.12)

where x is the channel number. Consequently,

q =
x − b

a
(4.13)

q =
4π

λ
sin θ ≈ 4π

λ
θ ≡ N

a
, (4.14)

where in this case N = x − b, and a ≈ 221 channels/nm−1.

4.2.2 GISAXS

4.2.2.1 Image rotation

Figure 4.5 shows an example of one of the raw files from the GISAXS experiment,

where the output files from the detector are 2048 × 2048 pixels tiff-files.

For ease of analysis, it is desirable that the vertical detector axis is correspond-

ing to the sample normal. Although this is almost right, it is clear from the image

that a small correction is needed. The image was therefore rotated by a small

angle which was determined by geometrical considerations, e.g. reading off the

vertical pixel value of the horizon on the outer left and right end of the picture,

and calculating the difference ∆z. ∆y is the difference in horizontal pixel number,

where the two pixels used should on be the same distance each from the mirror
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Figure 4.5: Raw image from coating B heated to 550 ◦C.

Figure 4.6: Raw image rotated (coating B heated to 550 ◦C).

axis. The rotation angle ν is found by using that tan ν = ∆z/∆y, and figure 4.6

shows the raw image from figure 4.5 rotated by an angle ν such that the sample

normal now coincides with the vertical detector axis.
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4.2.2.2 Normalising

The data were collected using a MarCCD detector during this experiment. The

rotated tiff-files are corrected, pixel by pixel, by:

I ′
i = Ii ·

tnorm

t
· Ibc,norm

Ibc
(4.15)

where Ibc is the beam current [mA], Ibc,norm = 200 mA, t is the measuring time

[s] and tnorm = 30 s. Regarding possible efficiency variation across the the detector

face, the beamline staff have performed initial tests and concluded that intensity

variations is not necessary to correct for in the case of this CCD detector.

4.2.2.3 Averaging

For the measurements for which the measuring time was short, and we have several

measurements for the same set-up, a few images are averaged to get better statis-

tics. The patterns typically change slightly during the first few measurements

after ramping up the heating. Therefore, to allow for equilibration, the average of

the last five of ten measurements in total was calculated at each temperature,

Iavg =
1

5

9
∑

j=5

I ′
frame(j), (4.16)

and this result was used for further analysis.
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4.2.2.4 Vertical cuts

A vertical cut (normal to the sample plane) is taken from the input file at a

specified pixel value, and the average of 4 pixel columns is calculated. The reason

for why 4 pixel columns are used, is that a compromise between improved statistics

and blurring due to too many pixel columns, was needed.

4.2.2.5 Horizontal cuts

The same procedure as for vertical cuts was used, only this time the cut direction

is taken to be parallel to the sample surface.

4.2.2.6 q-scaling

Section 4.1.1 described the procedure for transforming pixel numbers to q-space.

For small exit angles (αf ≈ 0), the following approximation is valid for scaling the

qy axis of the horizontal cuts:

qy =
4π

λ
sin(θf), where 2θf = tan−1

(

s(y − y0)

D

)

. (4.17)

s = 79 µm is the pixel size, D = 2920 mm is the sample-detector distance, y

is the horizontal pixel coordinate and y0 is the pixel number for the beamcentre

in the horizontal direction. The cuts are typically taken at the critical angle, and

since this angle is small, the relations above are still valid as q-scaling for the cut

at this height which is labelled zY oneda (cf. figure 3.10).

This procedure was compared to measurements of the silver behenate calibrant
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(see, for example, [63; 65]), and both methods gave the same result.

4.2.2.7 αf-scaling

The scaling for the vertical cuts was found by

αf(z) = tan−1

(

s(z − z0)

D

)

, (4.18)

where αf is the exit angle between the scattered beam and the film, z is the

pixel number in the vertical direction, and z0 is the sample plane (see figure 3.10).

z0 was found by

z0 = zY oneda −
D

s
tan αc, (4.19)

where αc was calculated from Eqs. (2.46) and (2.62), and zY oneda is the pixel

number of the Yoneda feature in the z-direction.

4.3 Other corrections for GISAXS?

In literature other corrections for GISAXS patterns are also mentioned. For ex-

ample, Kutsch et al. emphasises that: “An important point in the data treatment

of SAXS measurements in grazing incidence is the correction for absorption and

refraction effects” [66].

Absorption corrections As discussed for the transmission SAXS measure-

ments, the background intensity was subtracted in order to separate the signal
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from the background and from the sample. But first, in order to subtract the cor-

rect amount, the absorption of the X-rays within the sample had to be accounted

for (see section 4.2.1.3).

In GISAXS however, it is problematic to subtract the background. This is

because of the reflection geometry, and especially because a coating has a different

critical angle than the substrate. This means that the Yoneda feature is positioned

differently on the detector relative to the sample horizon for a measurement of a

coated substrate compared to the bare substrate. It is not trivial to account for

such an effect.

On the other hand, it might not be necessary to subtract the background.

This has indeed found to be the case when the scattering from the coating is large

compared to scattering from the substrate. For the case where the substrate is

very flat, there will be minimal scattering from the substrate. This is easily tested

by a measurement of the clean substrate.

In our measurements, silicon (100) wafers were used as substrates. The scat-

tering from these was found to be insignificant, and it was therefore assumed that

it is not necessary to subtract the contribution from the Si-substrate in these

measurements.

This discussion can be extended to air scattering between the end of the beam-

line and the flytube, as well as scattering from the windows in these devices.

Previous measurements have shown this scattering to be insignificant, and it was

therefore assumed that it is not necessary to subtract these background contribu-
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tions.

When it comes to absorption within the sample, the situation is different; the

X-rays are attenuated by the material, and this attenuation depends on the travel

distance of the rays within the sample (see section 2.3.2.2). In theory, one can

calculate the intensity reduction of the primary beam by using Fresnel’s equations

(see, for example, the equations within section 2.4.1) and that the intensity atten-

uation behaves as e−µL where µ is the linear X-ray attenuation coefficient and L is

the pathlength. However, this is not especially useful for scattering experiments,

where it is the scattering pattern that is of interest. In this case, problems arise

because the position of the scattering centres within the sample is not exactly

known. It is therefore difficult to calculate the length of the beampaths, and it is

thus problematic to calculate the absorption of the scattered beam - although one

approach is demonstrated in [66].

Before calculating these beam paths, it is worth investigating whether this

absorption correction is significant or not. This of course depends on how large the

absorption effect is, and whether the final 1D-SAXS pattern (after the reduction

of the 2D GISAXS pattern) becomes distorted as a result of not applying this

correction, i.e., whether it is independent on 2θf .

In our case, the horizontal cuts are taken at the Yoneda feature, which means

that the exit angle equals the critical angle of total external reflection. Recall from

the section about the Yoneda feature (section 2.4.2), that this effect arises from

the interference between the four beams that are scattered from each irregularity
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or object on the sample surface. The connection between this enhanced intensity

and sample absorption is not trivial.

However, intuitively it can be seen that absorption depends more on the an-

gles normal to the sample than parallel to the sample. It is therefore a reasonable

assumption that the absorption is independent on 2θf for the small angles consid-

ered here, and that it is possible to use cuts parallel to the sample without any

corrections for absorption (cuts normal to the sample would however need this

correction).

Refraction corrections: The X-ray beam is refracted as it passes the coating-

air interface, and in literature the measurements have commonly been corrected

for refraction [66; 67; 68]. The reason this is not necessary here, is that our plots

of the vertical cuts are plotted with the exit angle as abscissa, i.e., the actual

measured exit angle of the scattered beams. However, if q-scaling is to be used,

it would be necessary to scale the q-value accordingly. This is because from a

scattering event within a medium where the beam is scattered at a certain angle,

refraction occurs as the beam exits the medium, and a slightly different scattering

angle is measured. In order for the vertical plots to be informative, it is necessary

to find the wave-vector transfer q as function of the actual scattering angle, and

not the measured one.

Refraction corrections are only useful for extracting further information, such

as the radius of gyration and Porod slope, in directions different to the direction

parallel to the sample plane. For more details about refraction corrections, see for
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example, [66].

Furthermore, in the case where the incident angle and the exit angle is close to

the critical angle, it is necessary to employ DWBA due to interference effects; see

figure 2.6 and Eq. (2.84). The most realistic approach to this problem is make a

realistic model for the system and then simulate the scattering pattern (computer

programs are already available on Internet, e.g. IsGISAXS [69]).

The kind of materials studied in this work only allows for restricted models,

and spherically symmetric particles have been assumed. So far only plots along

the direction parallel to the sample surface have been investigated. Of course, the

shape of the particles are not necessarily spherical, and it would therefore also be

interesting to obtain the radius of gyration and Porod slope from plots along other

directions as well.

4.4 Quantification despite large changes in the

GISAXS pattern

As shown in figure 4.7, the GISAXS pattern changes significantly during the in

situ heating programme. This occurs because the film structure changes as the

temperature increases. At the same time, the density increases, which in turn

causes δ and β to increase (see Eq. (2.62)). According to Eq. (2.46), the critical

angle for the film, αc, will also increase, and consequently the Yoneda feature will

be observed at higher exit angle αf (Eq. (2.45)).
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Figure 4.7: The GISAXS patterns for the Zr-Y-B coating taken at differ-
ent temperatures are shown to the left, and the axes labels are shown to the
right. Note that the pattern changes significantly as the sample is heated;
from having distinct wings, via more powderlike patterns, and finally broad-
ening along the y- and z-directions. A method of extracting horizontal 1D
cuts such that the different measurements are quantitatively comparable
was developed and is described in this chapter, and a suggested model of the
sample development during heating is described in Section 6.5.3. [61]

Consequently, horizontal cuts cannot simply be taken at fixed detector chan-

nels; instead a method is needed that finds the appropriate horizontal cut for

each measurement such that the information obtained from each is comparable.

A procedure to achieve this was developed and is described as follows.

For example, figure 4.8 shows how the lines were selected for further 1D-SAXS

analysis for sample B heated to 550 ◦C. As indicated in panel (A), a vertical cut

(panel (B)) was taken at the same horizontal pixel value (width) for the entire

heating process since the sample set-up does not change in the sideways direction.

The main feature (above the horizon in panel (A) and (C)) is the Yoneda feature.

The vertical cut needs to be taken far enough away from the central beamstop so

that the diffusely reflected beam contributions do not interfere, and at the same

time near enough to distinguish the Yoneda feature for all temperatures. When

this pixel-value is selected, then the cuts are taken as shown in panel (A) and (B),
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Figure 4.8: Figure indicating how the line was selected for further 1D
analysis (Coating Zr-Y-B, 550 ◦C). [61]

following the procedure described in Section 4.2.2.4. From the vertical cuts, the

position of the Yoneda feature is found (the maximum in the plot shown in panel

(B)), and this is where the horizontal cuts are taken (panel (C)), as described

in Section 4.2.2.5; this height is zY oneda in figure 3.10. The horizontal cut at the

Yoneda height is shown in panel (D).

The line indicated in figure 4.8 (panel (A)), is the line selected for the vertical

cuts for all the measurements of sample B, and the procedure for selecting the

horizontal cuts was repeated for each temperature that was measured at. Now, the

horizontal cuts gives SAXS patterns that can be analysed further with conventional

SAXS analysis methods, and some of these cuts are shown in figure 4.9.
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Figure 4.9: 1D horizontal cuts at the Yoneda feature for the different
temperature measurements shown in figure 4.7. The shaded area corresponds
to the beamstop. [61]

Summary

The GISAXS images were first rotated such that the horizon in the image coincides

with the true horizon. For all measurements, including SAXS, the raw data were

normalised to measuring time and incoming beam current.

For the SAXS measurements, the intensity of the resulting SAXS patterns were

scaled in order to correct for absorption, and the relevant background measurement

was subtracted. For the GISAXS images, 1D cuts were taken along the y-direction

at the position of the Yoneda feature.

The resulting 1D patterns, both from the SAXS and the GISAXS experiments,

then had the abscissa converted to show the q-value instead of the pixel/channel

number. Now the resulting plots can be used for further quantitative investiga-

tions.
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Results

5.1 Introduction

Properties of the of dip-coated zirconia and yttria-doped zirconia sol-gel coatings,

such as size, surface structure and distribution of particles, are likely to depend

on yttria concentration and temperature. The aim of these experiments is thus to

investigate these properties of the coatings during in situ treatment.

Small-angle scattering techniques are especially useful for in situ experiments

because by using these techniques, measurements of high signal-to-noise ratio can

be obtained whilst using short exposure times, which means that changes that

happens to the structure of the sample over short time scales can be resolved.

Moreover, these techniques can be used whilst exposing the sample to high tem-

perature or pressure; this is for example relevant for studying thermal barrier

coatings (TBCs) and catalysis reactions whilst exposing the sample to realistic
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operating conditions. This is, in fact, a major advantage of X-ray techniques com-

pared to, for example, transmission electron microscopy (TEM) which needs to be

run under ambient conditions.

Furthermore, small angle scattering techniques are sensitive to nanometre scale

electron density fluctuations; it is found to be a excellent technique for extract-

ing information about the size of particles within the sample and their surface

structure.

Measurements performed at different temperatures during the in situ heating

programme are plotted together in order to show how the pattern changes for

increasing temperatures. For the in situ dipping experiment, the pattern measured

after different numbers of dips are plotted in the same figure, such that the effects

of the dipping- and heating cycles can be studied. In order to study the effects of

using different incident angles in the GISAXS experiment, patterns measured using

different incident angles are also shown. X-ray diffractograms for the different

samples heated to 500, 700 and 900 ◦C ex situ are also shown, such that the

crystal structure may be investigated for these coatings.

For the in situ (GI)SAXS measurements, the most interesting feature to ob-

serve is the shoulder in the pattern, and how the position of this shoulder shifts.

From Eq. (2.88), it was observed that the q-value at which the feature is posi-

tioned at and the correlation length d are inversely proportional. Since the radius

of gyration is related to the correlation length, Rg ∼ d can be used as an approx-

imation, which means that the shift of shoulder position gives information about
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the development of the size of particles within the sample as the sample undergoes

in situ treatment.

5.2 SAXS

5.2.1 In situ heating experiment

In the first SAXS experiment, the sample was prepared differently to the other

experiments (see Section 3.3.1), and it is therefore considered as a preliminary

experiment. The data was collected at Bessy, and some of the results are shown in

figure 5.1. The reason for not plotting all the result is readability of the figure. The

intermediate measurements follow the same trend as the ones that are plotted. At

temperatures less than 700 ◦C, no obvious structure is observed. Between 700 and

950 ◦C the pattern changes significantly; a new shoulder appear at the high-q end,

and it shifts towards low q-values. At 950 ◦C the pattern continues to change, and

therefore the temperature was kept stable whilst several more measurements were

performed. The shoulder kept creeping towards lower q-values, which indicates an

increase in the size of the scattering objects.

A pronounced shoulder is an indication that it is necessary to apply a structure

factor, which means that there is some degree of ordering of the scattering objects

within the sample (see Section 2.2.2.3 and Appendix B). These results will be

further discussed in Section 6.5.1.
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Figure 5.1: ZrO2 coating on mica measured by SAXS during in situ heat-
ing. The shaded area is masked, fully or partly, by the beamstop. Upper
panel: Incremental heating up to 950 ◦C. Bottom panel: Some of the results
obtained after the temperature was fixed to 950 ◦C.
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Figure 5.2: Figure showing the SAXS patterns after different numbers of
dips, for the Zr-Y-B coating (E = 16.8 keV). Left: 500 ◦C. Right: 700 ◦C.

5.2.2 In situ dipping experiment

5.2.2.1 Different temperatures

The furnace was set to give an approximate constant temperature during the entire

experiment for each sample. Sample B is the sample containing 4.17 mol% yttria,

and for this sample measurements were performed when the furnace temperature

was set to 500 and 700 ◦C, and the X-ray energy was fixed to 16.8 keV. These

results are shown in figure 5.2, in the left and the right hand panel, respectively.

For both the experiments shown in figure 5.2, it is worth noting that the inten-

sity have not been altered in any other way than the standard corrections described

in Section 4.2.1. The scattering intensity really does increase significantly with

increasing number of dips that is performed, i.e. number of layers.

Note that for the measurement performed with a furnace temperature of 500 ◦C

(figure 5.2, left hand panel), the peak position is shifting towards larger q-values.
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Possible reasons for this will be discussed in Section 6.5.2.1. In the measurement

performed with a furnace temperature of 700 ◦C, however, the peak position re-

mains at almost constant q-value (see figure 5.2, right hand panel).

5.2.2.2 Different coatings

In order to study the influence of yttria doping, a series of measurements were

performed in which the yttria concentration of the coating was varied in a few

steps between 0 to 100 %. Some of these results are shown in figure 5.3. The

measurements for the zirconia coating (figure 5.3 (upper left)) was taken using the

X-ray energy 17.8 keV, and the furnace temperature was set to 530 ◦C. For the

other measurements, the X-ray energy was set to 16.8 keV, and the temperature

to 500 ◦C. The result for the Zr-Y-A coating is shown in figure 5.3 (upper right),

the result for the Zr-Y-B coating in figure 5.3 (bottom left) (and also in 5.2, left

panel) and the result for the pure Y2O3 coating is shown in figure 5.3 (bottom

right). Notice the difference in shape and position of the peak at the high-q end

for the samples containing zirconia; the more yttria, the larger q-value this peak

is positioned at, and the narrower the peaks are.

5.3 GISAXS

5.3.1 In situ heating experiments

As already mentioned for the SAXS experiments, properties of the of dip-coated

zirconia and yttria-doped zirconia sol-gel coatings, such as size, surface structure
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Figure 5.3: Comparison of the different yttria concentrations, when the
furnace temperature was set to ≈ 500 ◦C. Recall that the different coatings
are labelled Zr-Y-A, Zr-Y-B, Zr-Y-C and Zr-Y-D corresponding to increasing
yttria content, which is 2.04, 4.17, 8.70 and 19.1 mol%, respectively (see
Table 3.1). Upper left: ZrO2. Upper right: Coating Zr-Y-A. Bottom left:
Coating Zr-Y-B. Bottom right: the pure Y2O3 coating.
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and distribution of particles, are likely to depend on temperature. Sintering and

calcination of the coating material can also be expected. In order to study the

various stages of these processes within the coating during heating, the samples

were heated in situ as described in Section 3.3.2.2.

The result obtained for the Zr-Y-B coating (i.e. sample B) has already been

shown in figure 4.7, where it was discussed that the two-dimensional (2D) GISAXS

patterns change significantly during the heating programme. Cuts are extracted

from these 2D patterns using the procedure illustrated in figure 4.8, and the results

are shown in figure 5.4. The left hand panel shows the vertical cuts for the line

indicated in figure 4.8 (A) with the abscissa scaled after Eq. (4.18). Note that the

peak position for the vertical cuts (figure 5.4 (left panel)), i.e. the Yoneda peak,

shifts slightly, from αf ≈ 0.21◦ to 0.25◦ as the sample is heated, which corresponds

to the density increase from 3750 kg/m3 to 5025 kg/m3 [70]. The right hand panel

of figure 5.4 shows the 1D horizontal cuts for the same measurements, at the cut

indicated in figure 4.8 (C). In this figure it is observed that the position of the

shoulder shifts towards lower q-values as the temperature was increased, which

corresponds to an increase in the size of the scattering objects within this coating.

5.3.1.1 Different coatings

In order to study the effect of different yttria concentrations, the results for the

zirconia sample from the second GISAXS beamtime, together with the results

from the Zr-Y-A, Zr-Y-B and Zr-Y-D coatings from the first GISAXS beamtime,

measured at 850 ◦C, are all plotted together in figure 5.5. The intensity scaling
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Figure 5.4: Coating Zr-Y-B heated in situ (incident angle, αi = 0.257◦).
(a) vertical cuts (taken as indicated in figure 4.8(A)). The peak is the Yoneda
feature. (b) Horizontal cut at the Yoneda peak. The straight lines having
slopes of -4 and -3 are put in as guides. [61]

is different between the samples and cannot be ascertained on an absolute scale

because different fractions of the beam are captured by the sample. The position of

the shoulder can, however, be compared; the position of the shoulder is very similar

for coating Zr-Y-A and Zr-Y-B, whilst for coating Zr-Y-D and for the zirconia

sample, the shoulder is positioned at larger q. At this temperature, then, the

scattering objects within coating Zr-Y-A and Zr-Y-B are larger than the scattering

objects within coating Zr-Y-D and the zirconia coating.

Zirconia Figure 5.6 shows shows a few of the GISAXS measurements for the

zirconia coated silicon wafer which was heated in situ. From all of these measure-

ments, a horizontal cut were taken at the Yoneda feature, and the result is shown

in figure 5.7. It was noted that a sudden decrease in intensity happened around

700 ◦C. The reason for this plummeting of intensity is not completely clear. The
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Figure 5.5: Comparison of the 1D horizontal cuts for the zirconia sam-
ple, and the zirconia-yttria samples containing different amounts of yttria;
measured at 850 ◦C.

Figure 5.6: In situ heating measurements of the zirconia coating. From
left to right, top to bottom: 650, 700, 750 and 800 ◦C.

109



Chapter 5. Results

 100

 1000

 10000

 1

In
te

ns
ity

 [a
rb

. u
ni

ts
]

q [nm-1]

400 °C
450 °C
500 °C
550 °C
600 °C
650 °C
700 °C

 10

 100

 1000

 1

In
te

ns
ity

 [a
rb

. u
ni

ts
]

q [nm-1]

750 °C
800 °C
850 °C
900 °C
950 °C

1000 °C

Figure 5.7: GISAXS measurements of the in situ heated zirconia coated
Si(100). The intensity falls drastically between 700 and 750 ◦C, and therefore
the plots of the measurements are split into two figures: The figure in the
left hand panel shows the measurements for temperatures up to 700 ◦C, and
the figure in the right hand panel is the plots for the 750 ◦C measurement
and up. Notice that in the right hand figure the ordinate is one tenth of the
ordinate of the left hand figure.

only experimental parameter which was altered was the angle δ:

In order to keep the detector count rate at a sensible level, the angle δ had to

be adjusted. This is the angle (height) at which the detector (and consequently

beamstop) is situated. Reducing the angle δ, as was needed to be done here, moves

the detector and the beamstop down. This should not have any influence on the

measured GISAXS patterns, so the differences in the GISAXS patterns around

700 ◦C is likely to origin from changes in the sample itself.

5.3.1.2 Different incident angles

In order to investigate the influence on the GISAXS patterns by using different

incident angles for the incoming X-ray beam, several measurements were made on

the same sample, but varying the incident angle. The sample was made by dipping
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Figure 5.8: GISAXS measured at different incident angles, 0.258, 0.357 and
0.457 degrees, respectively, for zirconia coated silicon wafer (4 dips) heated
to 500 ◦C ex situ.

a silicon wafer into the zirconia-sol four times, and dried in the furnace on the dip-

coater machine at ∼ 120 ◦C for 60 seconds between each coating. Thereafter, it

was heated to 500 ◦C in the lab furnace. The incident angle was varied for the

GISAXS measurements of this sample, and these angles were: 0.257. 0.307, 0.357,

0.407 and 0.457 degrees.

It is useful to get an overview of how these angles relate to the critical angle.

The critical angle calculated for this composition (ZrO2), density (3800 kg/m3)

and X-ray energy (10 keV), is found to be αc = 0.214◦ (Eqs. (2.46) and (2.62a)).

For the smallest incident angle used, αi/αc ≈ 1.2, and for the largest, αi/αc ≈ 2.1.

These values can be compared to figure 2.5, and it is observed that for the former

a distinct proportion of the incoming beam is reflected, whilst for the latter nearly

all of the incoming intensity is transmitted into the sample. A discussion about

how to optimise the incident angles for probing the relevant sample depth was

given in the last paragraph of Section 2.4.1.

Some of the resulting GISAXS patterns are shown in figure 5.8, and the hor-

izontal cuts at the Yoneda angle are plotted in figure 5.9. The GISAXS patterns

do not show any significant differences, and the only differences obvious in the
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Figure 5.9: Cuts taken at the Yoneda angle, for the GISAXS measurements
shown in figure 5.8.

1D-plots are the overall intensity and the extra intensity at low-q for the smallest

incident angle. These results will be further discussed in Section 6.7.

5.4 X-ray diffraction

The crystal structure of the coatings can be investigated by performing X-ray

diffraction measurements on the different samples at different temperatures. These

measurements were performed as described in Section 3.3.3, and the resulting X-

ray diffractograms are presented in this section. For investigating the crystal

structure of the sample, the position of the Bragg peaks are important, and for

just reading off these positions it is not necessary to subtract the background (i.e.

the measurement of the clean substrate). Instead the background measurement
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is shown together with the measurements of the coating present in order to dis-

tinguish which peaks originates from the substrate and from the sample. One of

the main aims of the XRD measurements, was to look for phase transitions of the

coating; these are typically well visible from the “raw” XRD data because different

phases have different positions of Bragg peaks, or fewer or additional Bragg-peaks.

Further discussions will be given in Section 6.3.

5.4.1 Coatings on mica

First, the crystal structure of the zirconia coating on the mica substrate was inves-

tigated; two different mica pieces have been coated with zirconia-sol and heated

ex situ, one to 500 and one to 700 ◦C, respectively, and the X-ray diffractograms

of these are shown in figure 5.10 (right panel). Figure 5.10 (left panel) shows the

diffractogram of bare mica. It is here observed that the Bragg peaks originating

from the coating in diffractogram from the measurement performed on the sam-

ple annealed at 500 ◦C has wider peaks than the diffractogram from the sample

annealed at 700 ◦C. This is an indication of the crystalline domains being smaller

when the sample is heated to 500 ◦C than when it is heated to 700 ◦C; this will

be further discussed in Section 6.3.2.
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Figure 5.10: X-ray diffractograms. Left panel: bare mica. Right panel:
two separate zirconia-sol coated mica pieces that have been heated ex situ
to 500 and 700 ◦C, respectively.

5.4.2 Coatings on Si(100)

5.4.2.1 Comparing different coatings

In order to study the influence the yttria doping has on the crystal structure,

diffractograms from the coatings containing varying amount of yttria, and dip-

coated onto the silicon wafer, are plotted together.

The upper left panel in figure 5.11 shows the diffractogram of the clean silicon

wafer. The other three panels show the diffractograms where the coated sample

has been heated to different temperatures, 500, 700 and 900 ◦C, respectively. Each

of these panels shows the different samples, such that differences can be compared

for the relevant temperature.

By studying this figure (figure 5.11), it can be observed that the Bragg peaks

originating from the coating (at 2θ ≈ 30, 35, 50, 60 and 63◦) are wider the more

yttria that is present in the coating. As previously mentioned, this width is an
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Figure 5.11: X-ray diffractograms. Upper left: Clean silicon wafer (not
annealed). The remaining three panels shows samples which were annealed
at 500 ◦C (upper right), 700 ◦C (bottom left) and 900 ◦C (bottom right)
together with the diffractogram from the un-annealed silicon wafer.
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indication on the size of the crystalline domains within the sample, so for the yttria

concentrations investigated here, there seems to be a correlation between yttria

content and size of the crystalline domains; the more yttria present, the smaller

these domains are. These XRD results will be further discussed in Section 6.3.3.

5.4.2.2 Comparing different annealing temperatures

In order to compare the effect of different annealing temperatures for each sample,

the diffractograms of the same sample, for different temperature, are shown in

each panel of figure 5.12. It is here observed that the width of the Bragg peaks

are smaller the higher temperature the sample has been annealed at. This is an

indication of the crystals within the sample growing as the sample is heated; the

connection between heat treatment and the size of the crystalline domains will be

further discussed in Section 6.3.
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Figure 5.12: X-ray diffractograms of the bare and the coated Si(100)-
wafers, where each panel shows the results from the different coatings: ZrO2

(upper left), coating Zr-Y-A (upper right), coating Zr-Y-C (bottom left) and
coating Zr-Y-D (bottom right). The effect of different annealing tempera-
tures can now be investigated for each sample.

Summary

For the in situ dipping experiment, the 500 and the 700 ◦C measurements were

showing distinctive differences; for the zirconia containing samples, the measure-

ments at 500 ◦C show a distinct peak at the high-q end, where the position of this

peak moves towards larger q-values as more dips are performed. The position and

the width of this peak is different for the different samples.
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For the measurements taken at 700 ◦C, not much is changing as the number

of dips are increased. However, it is worth noting that since the intensities have

not been scaled; the intensity does increase significantly as the number of dips

increase.

For the in situ heating experiment, it was observed that for the pure zirconia

samples, the pattern changed significantly in the temperature ranges

700 ◦C ≤ T ≤ 900 ◦C and 550 ◦C ≤ T ≤ 850 ◦C using SAXS and GISAXS,

respectively. For the samples containing yttria, this change was found to be more

gradual.

The XRD measurements do not show any crystal structure transitions, how-

ever, the Bragg peaks are found to be narrower as the annealing temperature is

increased. This means that the crystalline domains increase in size with increased

annealing temperature.
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Discussions

6.1 Introduction

In this chapter the results from the previous chapter are investigated and discussed

in more detail, and useful information is extracted from these results; such as size,

average separation distance and surface structure of the scattering objects. Fur-

thermore, the crystal structure of the particles within the coatings, and the effect

of yttria doping, are discussed. As expected, the in situ heating measurements are

typically seen to produce rapidly changing patterns at each temperature, and it is

not trivial to quantifiably compare these patterns. In order to do this, it is nec-

essary to apply relevant models, and the application of such models are discussed

here.
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6.2 In situ heating

6.2.1 Thermal expansion coefficient of YSZ

The thermal expansion of the substrate and for the coatings was investigated in

Section 3.3.2.3. It is now left to discuss the possible difference in thermal expansion

for different yttria concentrations within the coatings.

Hayashi et al. published an interesting paper in 2005, titled “Thermal expan-

sion coefficient of yttria stabilized zirconia for various yttria contents” [5], where

they investigated the thermal expansion coefficient for the temperature range -170

to 603 ◦C using a push-rod type differential dilatometer and molecular dynamics

simulations. This paper discusses which physical mechanism is the most impor-

tant for the thermal expansion coefficient. For example, if the thermal expansion

coefficient is dependent on the vacancies within the sample, then this would lead

to a weaker binding energy within the system, and an increased thermal expansion

coefficient for increasing yttria content. However, it seems like the bulk modulus

is mainly responsible for the observed decreased thermal expansion coefficient as

the yttria content is increased.

Hayashi et al. explains that as the yttria content is increased, an increased

number of Y-O bonds are present in the sample. They Y-O distance is longer

than the Zr-O distance (≈ 0.23 and 0.21 nm, respectively), and this leads to an

increased lattice constant within the YSZ crystal. However, due to displacement

of oxygen ions towards the vacancies (recall figure 1.1), the Zr-O distance was
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found to decrease with the increase of yttria. The authors further explain that the

increase of binding energy due to decrease of Zr-O and Y-O distance is considered

to be larger than the decrease of the binding energy due to the increase of oxygen

vacancies. Furthermore, the decrease of the Zr-O and Y-O distances leads to an

increase in the binding energy of YSZ with the increase of yttria concentration,

and this results in decreasing thermal expansion coefficient.

6.2.2 Study the structural changes in the coatings

In situ experiments are very useful for studying the development of coatings during

heating. As was shown in Chapter 5, the measured scattering patterns change

significantly as the sample is heated, and this indicates that the sample itself is

changing with increasing temperature.

The most obvious changes to the coating as it is heated, is expected to be the

evaporation of organic residue from the sols, densification of the coating and the

appearance of nanoscale crystals that grow as the temperature is increased. The

latter assumption is a result that follows from the in situ heating SAXS experi-

ment which showed the forming of a shoulder and a shift of this shoulder towards

lower q-values for higher temperatures (figure 5.1). Such a shift corresponds to

an increase in the size of scattering objects, and this growth may happen because

the particles are agglomerating or because of Ostwald ripening.

Ostwald ripening A large number of small particles is energetically unfavourable

because the energy of the system increases with surface area. This is because
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Figure 6.1: Thickness of coatings on Si(100) measured by ellipsometry.
Left panel: the results for the samples containing different yttria contents (0
mol%: ZrO2 coating, 2.04 mol%: coating A, 4.17 mol%: coating B) heated to
1000 ◦C. Right panel: five different zirconia coated Si-wafers heated one by
one to different temperatures, and the plot shows the resulting film thickness
for each.

molecules on the surface are energetically less stable than the ones in the interior

of the particle. A reduction in the number of particles and increase in particle

size, cause the overall energy of the system to decrease, and this situation is thus

more favourable. Therefore, the dispersion coarsens or ripens ([71], p. 118), and

this process is called Ostwald ripening after Wilhelm Ostwald who first explained

it in 1896 [72]. The theory of Ostwald ripening is already thoroughly described

elsewhere, see for example [71].

Densification As the film is heated it becomes denser; in order to investigate

the film thickness as the sample is heated, the coated silicon wafers were studied

by ellipsometry. The results for some of the coatings and firing temperatures are

shown in figure 6.1. The film thickness was found to be almost independent of the
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Figure 6.2: Firing temperature dependence of the thickness and mass den-
sity, as deduced from the X-ray reflectivity curves for a zirconia thin film on
a sapphire wafer. Values obtained from [70].

yttria content, but strongly dependent on annealing temperature. This is because

as the film becomes denser, it also becomes thinner.

The technique of X-ray reflectivity is very useful for determining the sample

thickness, and also the mass density of the sample. The relevant mass density for

each temperature was found by comparing with previous experiments conducted

by Lenormand et al.[70] (see figure 6.2). These authors prepared zirconia films

using similar methods to ours, and measured the thickness and mass density of

the films as they were heated using X-ray reflectivity (XRR) measurements. The

similarities worth mentioning in the comparison of Lenormand’s results (figure 6.2)

and ours (figure 6.1) is that at room temperature, the film is relatively thick, and

then the film thickness decrease significantly in the area around 300-500 degrees.
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After the temperature have reached 500 degrees, the thickness only decrease slowly.

The rate at which the film thickness decrease, especially around 400 degrees, seems

to be different in the two figures, and this is not surprising since the measurements

were performed using different experimental techniques (X-ray reflectivity and

ellipsometry) and since in the reflectivity experiment the sample was incrementally

heated whilst in the ellipsometry experiment different samples (but with the same

coating) were heated to different temperatures. This difference is not significant;

the important message is that the film thickness decrease significantly in this

temperature regime.

An assumption has now been made in that the mass densities obtained for

the pure zirconia films can be used for the yttria-zirconia films, because the mass

difference between yttrium- and zirconium atoms is small. For example, the mass

difference between crystalline zirconia and sample C (19.1 mol% yttria) in crys-

talline form is less than 2 %. For the uncalcined films it would be even smaller

because the film densities are lower than the density of the crystalline material.

Another point to mention is that no trends could be observed in the ellipsome-

try results for the film thickness of the different yttria concentration coatings (see

figure 6.1 (left panel)). Since the mass density is related to the film thickness, we

conclude that the different yttria concentrations have no significant influence on

the mass density for these coatings.

Thermal analyses methods, such as thermogravimetric analysis (TGA) and

differential scanning calorimetry (DSC), would also give useful information about
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the sample as it is heated. These techniques have been employed by others, and

for example, Chervin et al. measured TGA and DSC for zirconia aerogels. These

authors found that the majority of the mass loss is below 400 ◦C, and it is mostly

due to loss of water and residual organics. The remaining few percent mass loss

(above 400 ◦C) is likely due to elimination of water as chemisorbed hydroxyl groups

react to form additional M-O-M bonds [11].

6.2.2.1 Using GISAXS for studying these structural changes

When the temperature increases, the density also increase, which in turn cause

δ and β to increase (see Eq. (2.62)). According to Eq. (2.46), the critical angle

for the film, αc, will also increase, and consequently the Yoneda feature will be

observed at higher αf (Eq. (2.45)). The surface of the film may become rougher,

or islands may form and grow on the surface, although no cracking or delamination

could be observed by eye as the temperature was increased. The novelty in this

work is to be able to quantifiably analyse the GISAXS patterns despite the large

changes in the GISAXS pattern due to changes to the sample, such as increasing

Yoneda angle, changing surface roughness and increasing particle size.

From the expressions for δ and β (Eq. (2.62)), it is clear that knowing the

mass density of the material is very useful for further analysis. The relevant mass

densities are found in figure 6.2.

For example, for sample B heated to 1000 ◦C the film density is then

ρ = 5150 kg/m3 [70]. δ and β can now be calculated from Eq. (2.62) by setting

i = {Zr}, {Y }, {O} and ni is taken from Table 3.1. The anomalous correction
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factors, f ′ and f ′′, were found in Ref. [73] for λ = 0.124 nm; this is acceptable since

the X-ray energy used here is far from any absorption edges. The results for this

particular sample are found to be δ = 9.60 · 10−6 and β = 2.72 · 10−7. The critical

angle can now be found from Eq. (2.46), and for this sample it is αc = 0.251◦.

The film thickness was found from ex situ ellipsometry measurements, and these

showed that the thickness of this film was t = 113 ± 4 nm. The calculations

mentioned above were performed using Octave [74], and the source code can be

found in Appendix C.

During the heating experiment, the incident angle αi was fixed to 0.257◦. As

seen in figure 4.7, the GISAXS patterns change significantly. The Yoneda feature

moves slightly towards larger αf as the sample is heated (see figure 5.4 (left panel)).

The critical angle for the heated films has been calculated using Eq. (2.46), and

for example, αc(450◦C) = 0.214◦ and αc(950◦C) = 0.248◦.

6.3 X-ray diffraction

As discussed in sections 2.1 and 2.5, crystals diffract X-rays because of the regular

spacing between their lattice planes, and from the diffraction pattern, the crystal

structure of the material can be determined. In this case, we are mostly interested

in looking for phase transitions. In many cases, phase changes are obvious to see

because the different phases cause a completely different diffraction pattern. In

other cases, as for example elongation of the cubic unit cell to become tetragonal,

the phase transitions may not be that obvious, we will discuss the reason for this

126



Chapter 6. Discussions

in this section, as well as discussing how to distinguish the monoclinic, tetragonal

and cubic phases of zirconia.

In Section 2.5, an example was given about how to determine the positions of

the Bragg peaks for a fcc arrangement of Zr-atoms. However, the material studied

in this work is ZrO2, and consequently the crystal structure of ZrO2 will be used

for the further simulations. The unit cell of the cubic phase was illustrated in

figure 1.1, and it belongs to the space group Fm3̄m (No. 225). Tetragonal zirconia,

however, belongs to the space group P42/nmc (No. 137). The patterns for cubic

and tetragonal zirconia are quite similar, but that for the monoclinic phase, space

group P21/c (No. 14), the pattern is completely different, see for example [8], and

the monoclinic phase can thus be excluded as a candidate for the samples in this

work. However, determining whether the crystal structure is cubic or tetragonal

is a bit more complicated and further investigations are needed.

Recall how a table for the Bragg reflections was tabulated in table 2.1. This

table is now continued, but this time using the “proper” crystal structure (space

group Fm3̄m and P42/nmc). Of course it is more efficient to leave the calculations

to the computer by now; here the Matlab program written by Dag W. Breiby

called simDiffraction has been used [75]. The input for the computer program is

the information about the crystal structure, and it is written in the format of a

cif -file (crystallographic information framework), where the relevant coordinates

and positions are taken from International Tables for Crystallography [76]. The

following tables (Tables 6.1 and 6.1) were both generated using simDiffraction
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Reflection (hkl) q [Å−1] 2θ [◦] |Fhkl|2
(111) 2.119 30.12 27906

(002),(020),(200) 2.447 34.92 7659
(022),(202),(220) 3.461 50.21 11418
(113),(131),(311) 4.058 59.67 3887

(222) 4.239 62.62 1725

Table 6.1: Expected Bragg peaks from cubic zirconia (space group Fm3̄m,
No. 225) using lattice parameter a=5.135 Å.

Reflection (hkl) q [Å−1] 2θ [◦] |Fhkl|2
(010),(100) 1.747 24.74 5671
(011),(101) 2.127 30.24 359680

(002) 2.427 34.63 193637
(110) 2.471 35.27 171944

(012),(102) 2.991 43.02 1556
(112) 3.464 50.26 105089

(020),(200) 3.495 50.73 106504
(120),(210) 3.907 57.24 315
(013),(103) 4.039 59.35 51453
(121),(211) 4.091 60.21 49240
(022),(202) 4.255 62.88 35360
(122),(212) 4.600 68.65 242

Table 6.2: Expected Bragg peaks from tetragonal zirconia (space group
P42/nmc, No. 137) using lattice parameters a = b = 3.596 Å and c = 5.177
Å.

and the cif -file given in appendix D. The lattice parameters used here, were found

in the literature; for cubic zirconia a = 5.135 Å [8], and for tetragonal zirconia

a = b = 3.596 Å and c = 5.177 Å [77]. The wavelength used for the simulations

was set to λ = 1.5406 Å (CuKα1). Only the reflections where F 6= 0 are included

in the table, and all the peaks between Bragg angle 0 and 70 degrees are listed.

SimDiffraction can also be used for plotting simulated XRD patterns, and the

resulting patterns are shown in figure 6.3.

128



Chapter 6. Discussions

10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

12000

2 θ [degrees]

In
te

ns
ity

 [a
rb

. u
ni

ts
]

10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3
x 10

5

2 θ [degrees]

In
te

ns
ity

 [a
rb

. u
ni

ts
]

Figure 6.3: Simulated XRD patterns for zirconia. Top panel: Cubic zir-
conia, space group Fm3̄m (No. 225) with lattice parameter a = 5.135 Å.
Bottom panel: Tetragonal zirconia, space group P42/nmc (No. 137) with
lattice parameters a = b = 3.596 Å and c = 5.177 Å.
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6.3.1 Crystal structure

In order to study the crystal structure of the different samples and at different

temperatures, the X-ray diffractograms shown in the figures 5.10, 5.11 and 5.12

were compared to the simulated diffraction patterns. However, care needs to be

taken in the comparisons; if the crystalline particles within the sample are very

small, the Bragg peaks will become wider, and in combination with experimental

peak broadening, it may be that only one peak will be observed where theoretically

a split peak would be expected.

For example, Chervin et al. measured XRD from zirconia aerogel calcined at

550 ◦C, and these authors found that: “The significant amount of peak broadening

observed is due to the nanocrystalline nature of the calcined aerogel. The peak

positions are in agreement with the reported reflections for cubic zirconia [. . . ].

However, due to peak broadening and the similar peak positions for tetragonal

ZrO2, the diffraction pattern could also be indexed as tetragonal.”

Other research groups have also discussed that it is difficult to distinguish

whether the crystal structure of zirconia is cubic or tetragonal by XRD. If there

are a small amount of tetragonal domains present amongst mostly cubic domains,

XRD is not sensitive enough to pick up the signal from the tetragonal domains

[83; 84; 11].

The calcium-fluorite structure that fits the space group Fm3̄m has long been

taken as the correct model for cubic zirconia. However, the calcium-fluorite model

has been modified because weak superlattice reflections and/or diffuse diffraction
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were observed by electron diffraction, single crystal X-ray diffraction and neutron

diffraction [15]. McClellan et al. found the modified space group to be P4̄3m,

where the oxygen sublattice of the cubic structure is distorted from Fm3̄m, relative

to the cation sublattice, by displacements along the [111] directions [82; 13]. But

the exact structure of cubic YSZ is still much discussed [15].

6.3.2 Coating on mica

Consider the right hand panel of figure 5.10: First, select peaks that are due to the

ZrO2 coating, and not to the mica, and compare to figure 6.3. At first glance, the

non-mica peaks in the measured pattern seem to fit well to the simulation for the

cubic system (top panel). This zirconia coating is therefore interpreted as being

mostly cubic for both the sample that was annealed at 500 ◦C and the sample

that was annealed at 700 ◦C, but with the possibility of small tetragonal domains

for reasons discussed in Section 6.3.1.

The peaks used for size determination are situated at 2θ ≃ 30, 50 and 60◦.

The instrumental broadening was estimated by fitting the individual mica peaks

from the clean mica sample, and it was found to be practically independent of 2θ,

and thus, βinstr ≃ 0.0578. The total line broadening observed is therefore the sum

of the real and the instrumental line broadening; βobs = β + βinstr, where β is the

FWHM (full-width at half-maximum) value of the peak.

The size of the crystal particles were estimated, assuming cubic structure, using

the Scherrer equation
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t ≈ Kλ

β cos θB
, (6.1)

where K is a constant, depending on the shape of the crystallites. For example,

Bragg derived a simplified derivation of the Scherrer equation where the crystallites

were assumed to be platelets having p parallel diffraction planes; analogous to a

stack of playing cards. Bragg’s derivation results in K = 0.89 [78; 79], and this

value was used in this work. λ is the wavelength of the X-rays, and for Cu Kα1,

λ = 1.54056 Å [80]. θB is the Bragg angle for the relevant peak, and β is the

broadening of the diffraction line: β = βobs−βinstr. βobs and θB was found by curve

fitting the relevant peak to a Lorentzian distribution function (if a Gaussian curve

was used instead of Lorentzian, then the peak broadening should be calculated as

β2 = β2
obs − β2

instr [81]). The average grain size is denoted by t̄ (t is the depth of

the “platelet”, t = p · d). Finally, the average of t found for the different peaks

were averaged, and the result is; t̄ = 6.34 and t̄ = 7.93 nm for the sample that

was heated to 500 and 700 ◦C, respectively, when the value of K was assumed to

be 0.89.

6.3.3 Coating on Si(100)

Next, the samples prepared for the GISAXS experiment were investigated, and

these diffractograms were shown in figure 5.11 and figure 5.12. Consider figure 5.11

first; none of the split peaks predicted for the tetragonal phase can be distin-

guished. However, the discussion in Section 6.3.1 still valid, it is here assumed
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Temperature [◦C] ZrO2 Zr-Y-A Zr-Y-C Zr-Y-D
500 9.70 8.46 3.72 1.79
700 11.6 10.4 4.07 4.20
900 16.3 14.5 8.48 -

Table 6.3: Crystal size (t̄) in nm for the coatings on Si(100)-wafers an-
nealed at different temperatures (ex situ measurements) estimated by Scher-
rer analysis. As expected, the crystal size increase with increased tempera-
ture. Interestingly, the crystal size generally decreases with increased yttria
doping.

that this structure is mostly cubic, and this structure was found to be indepen-

dent of temperature for the range 500 ◦C ≤ T ≤ 900 ◦C. Figure 5.12 shows the

temperature dependence of each sample. Again, none of the split peaks from

a tetragonal structure are observed, and this mostly cubic structure is observed

independent of yttria doping (for the samples investigated here).

Scherrer analysis was applied to these diffractograms; the peaks situated at

2θ ≃ 30, 35, 50 and 60◦ were used and the average value was taken from the result

for the individual peaks. The results are listed in table 6.3.

An investigation of the lattice parameter would be interesting because the

result would lead to better understanding of the effect that yttria doping is having

on the crystal structure. In the case where the zirconia or yttria-doped zirconia

coating has a cubic structure (the calcium-fluorite structure), the cell parameter

a can easily be calculated from the measured data.

First, Eq. (2.87) is rearranged to isolate a

a = dhkl

√
h2 + k2 + l2, (6.2)
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Temperature [◦C] ZrO2 Zr-Y-A Zr-Y-C Zr-Y-D
500 5.078 5.087 5.134 X
700 5.079 5.080 5.113 5.156
900 5.083 5.087 5.122 X

Table 6.4: The cell parameter a calculated from the XRD measurements,
assuming the unit cell is cubic. Notice increased lattice parameter a for
increased yttria content.

and Eq. (2.85) is rearranged to isolate dhkl

dhkl =
λ

2 · sin θB
. (6.3)

This result is used to substitute for dhkl in Eq. (6.2). The lattice constant of a

cubic crystal can thus be found by using that

a =
λ

2 · sin θB

√
h2 + k2 + l2. (6.4)

In the case of these XRD measurements, a was first calculated individually for

the peaks situated at 2θ ≃ 30, 35, 50 and 60◦, which in the case of a cubic crystal

are the (111), (200), (220) and (311) reflections, respectively, and then the average

of these values was calculated. This was repeated for each temperature and for

different yttria concentrations. The result is shown in table 6.4, and it is interesting

to note that the lattice parameter generally increases with increased yttria content,

whilst any changes due to firing temperature is practically insignificant.

This means that our results agree with the results of Hayashi et al. (see

Section 6.2.1); these authors found an increase in the lattice constant for in-

creased yttria content in the YSZ, and this was explained by the increase of Y-O
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bond lengths; since the Y-O distance (0.23 nm) is longer than the Zr-O distance

(0.21 nm) [5]. These longer bond-lengths will result in a more disordered crys-

talline lattice within the samples containing more yttria.

6.4 Curve-fitting procedures

In order to get quantitative results out of the SAXS and GISAXS patterns, it is

necessary to introduce curve-fitting procedures for the data. In this section it is

discussed which model is most appropriate to these measurements, how to fit the

model to the data and the validity of the models.

6.4.1 Guinier plots

One of the simplest curve-fitting methods is the procedure where the Guinier plots

(log (I) vs. q2) are used, and the procedure is described as follows: From Guinier’s

approximation given in Eq. (2.30) it is seen that

I(q) ∝ exp

(

−
q2R2

g

3

)

, (6.5)

and by taking the logarithm:

log I = −
q2R2

g

3 ln 10
+ C. (6.6)

The slope of a log I vs. q2 plot, a, is then
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a =
R2

g

3 ln 10
. (6.7)

By rearranging:

Rg =
√

3a ln 10. (6.8)

The radius of gyration can be found by plotting the SAXS pattern as a

log (I) vs. q2 plot and extracting the slope, a, of straight sections. This type

of plot is called a Guinier plot.

6.4.1.1 Validity of Guinier’s approximation

Guinier and Fournet (Ref. [19], p.128) show that for spherical objects, Guinier’s

approximation is only relevant when qRg . 1.3. In the following it is investigated

how large effect this limit has on the results.

Recall that the scattering intensity for dispersively packed particles is propor-

tional to the particle form factor

I(q, r) = AF 2(q, r), (6.9)

where A is the amplitude at q = 0 and the form factor F (q, r) for a spherical

particle of radius R is given by

F (q, R) = 3
sin(qR) − qR cos(qR)

(qR)3
. (6.10)
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Figure 6.4: Figure illustrating the difference between the Guinier approx-
imation (Eq. (6.12)) and the simulated SAXS curve from Eq. (6.11). The
reason for why the Guinier approximation is only valid for qRg . 1.3 (for
spheres) is nicely illustrated in this figure.

Consequently, the simulated SAXS curve is then

I(q) = A

(

3
sin(qR) − qR cos(qR)

(qR)3

)2

. (6.11)

In order to illustrate the discrepancy between Guinier’s approximation and

the theoretical scattering pattern, a figure that shows log I(q) vs. (qRg)
2 would

be helpful. Since R2
g = (3/5)R2 for spherical particles, qRg =

√

(3/5)qR. The

resulting curve is plotted as a solid line in figure 6.4.

The Guinier approximation is shown in figure 6.4 as the dashed line. This line

is calculated for a scattering object using
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I(q) = A exp

(

−
q2R2

g

3

)

(6.12)

where A again is the amplitude at q = 0.

In the results from the measurements discussed in this thesis, it was found

that qshoulderRg was commonly around 2, but may be as large as 3. Note that the

ordinate in figure 6.4 is logarithmic; for example, for qRg = 3, the difference in

I(qRg) (and therefore the slope) is 281 %. For qRg = 2, the difference is smaller:

∆I(qRg) = 17.4 %. However, from figure 6.4 it can be observed that the slope

a from the Guinier plot always will have a lower value than the slope from the

simulated scattering curve. From Eq. (6.8) it is then obvious that the radius

of gyration obtained from the Guinier plots will always have a smaller value, or

similar value, to the “real” value. By using the Guinier plots, a lower limit to the

particle size can be obtained.

6.4.2 Beaucage’s unified model

Another method of obtaining the particle size, is by using Beaucage’s unified model

as explained in Section 2.2.3, and applying it to the 1D patterns. This model is

written as

I(q) = S(q) · [G exp(−q2R2
g/3) + B{[erf(qRg/

√
6)]3/q}P ] (6.13)

for one structural level. A structure factor S(q), is needed in order to account
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for interference effects from more densely packed particles (see Section 2.2.2.3).

The first term within the square parenthesis in Eq. (6.13) is labelled as the

Guinier term, and the second term the Porod term.

6.4.3 Modelling the data

A system containing spherical particles can be modelled using Eq. (6.11) and im-

plementing the log-normal particle size distribution (Eq. (2.18); this was illustrated

in figure 2.2). The simulated curve can then be compared with the data.

For the first measurement performed at 950 ◦C on the zirconia-coated mica (the

Bessy SAXS experiment) the radius of gyration obtained from the unified model

analysis was found to be Rg = 12.61 nm (R = 16.28 nm if spherical particles).

This value for R was used in Eq. (6.11) and plotted using different values for σ.

For example, σ = 0.37 was found to give a reasonable fitting curve for q > qshoulder;

this simulation is shown in figure 6.5.

The lower intensity in the measured curve than in the simulated curve for

q < qshoulder can be explained by the interference effects from more densely packed

particles, and can be corrected for using a structure factor, such as Eq. (2.36).

6.4.4 Comparing models

Guinier’s approximation has also been applied to the measurement discussed in fig-

ure 6.5 (not shown), even though qshoulderRg > 1.3, with the result Rg = 10.78 nm

(R = 13.91 nm if spherical particles). It was noted that a straight line does indeed
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Figure 6.5: Full line: Zirconia-coated mica (SAXS, Bessy), 950 ◦C, No.
1. Dashed line: Eq. (6.11) using a log-normal size distribution (Eq. (2.18))
with Rmedian = 16.28 nm (Rg = 12.61 nm), σ = 0.37 and µ = ln R + σ2.

fit the data for a short range at low q-values, but since qRg is outside the allowed

regime, this slope is not directly correlated with Rg as indicated in Eq. (6.8).

Because of its restrictions, the Guinier approximation is not a good method for

accurately obtaining the particle sizes. On the other hand, the unified model does

not have such restrictions; it is valid for the entire q-range, and it gives realistic

values for Rg compared to the simulated SAXS pattern for spherical particles.

In conclusion, the unified model is a better model for small-angle scattering

patterns. However, it can be tricky to apply and therefore Guinier’s approximation

is useful for finding the lower limit of the particle sizes, and thus mapping the

trends in, for example, in situ experiments.
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Figure 6.6: The background measurement for the experiment where the
zirconia coated mica was heated. This is the measurement of the empty
furnace. Notice the shoulder at q = 0.94 nm−1.

6.5 Fitting models to the data

6.5.1 SAXS: Zirconia on mica, in situ heating

The data from the experiment performed at Bessy, where a piece of mica was

coated with zirconia-sol, and heated in situ, was analysed using the procedure

described in Section 4.2.1, and Beaucage’s unified model was fitted to the resulting

patterns.

A background measurement of the empty furnace was also performed, and the

result is shown in figure 6.6. In this figure a shoulder is observed at q = 0.94 nm−1.

Therefore, for the measurements where the sample is present, after the subtraction

of the background data, a shoulder is observed around q = 0.94 nm−1. Conse-
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Subset Temperature Levels S(q) Fit range Fit range (q)
[◦C] label [nm−1]

I ≤ 650 1 1 a 0.1-1
700 1 b 0.1-0.3

II 750-800 2 Eq. (2.36) 0.1-1
III 850 1 Eq. (2.36) a 0.18-1

900-950 b 0.12-1
950 c 0.1-1

Table 6.5: Table summing up how the unified model (as Eq. (6.13)) was
used for the zirconia coated mica sample, for different temperature ranges.

quently, this feature does not originate from a scattering particle, but from the

background subtraction.

The basics of the unified model was explained in Section 2.2.3. As the sample

was heated, large changes in the scattering pattern was observed between 700 and

900 ◦C. Different subsets of the unified model needed to be employed in order to

get as good results as possible; these subsets are listed in table 6.5. The term

subset here means the rules for how different fitting parameters and constraints

were applied, such as number of structural levels to be used, whether the structure

factor S should be one or using Eq. (2.36), and the fit-range on the q-axis that

should be used. For example, for the measurements taken for at 750 ◦C and higher,

the structure factor was needed in the form of Eq. (2.36), in order for the model

to fit the data.

Optimally, there should be an overlap between the neighbouring subsets (as

for example, fitting subset (II) to the 700 ◦C data), in order to ensure continuity.

However, for this experiment, the changes was so large in the temperature range

700 and 900 ◦C, that the data for these measurements could not be fitted by any
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Figure 6.7: Left: The unified model (subset I-a) fitted to the SAXS pat-
tern measured when the zirconia coated mica was heated to 450 ◦C. Right:
Introducing a term to correct for the extra intensity at low q-values. The
shaded area corresponds to the detector area behind the beamstop.

other subset. Only the first measurement at 950 ◦C was fitted by both (III-b) and

(III-c). In the following, examples are given on how each subset was used in order

to obtain quantitative results from the data set.

As an example, figure 6.7 illustrates how subset (I) of the unified model was

applied to the data from the 450 ◦C measurement. This subset was only fitted

to the data at the range 0.1 nm−1 ≤ q ≤ 1 nm−1. However, some extra intensity

at low q-values is observed, and this is likely to be the contribution from larger

particles. But because the beamstop is shading for any intensity at lower q, not

enough data is obtained in this region in order to get information about the particle

size of these.
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6.5.1.1 Adapting the unified model for limited q-range.

As mentioned in section 2.2.3, fitting the measured data for the entire q-range is

possible in theory. Our measurements only extends over a limited q-range, and

suitable adaptions to the unified model are needed. By writing out Eq. (2.40) for

two structural levels (n = 2)

I(q) = G0 exp(−q2R2
g,0/3) + B0 exp(−q2R2

g,1/3) × {[erf(qRg,0/
√

6)]3/q}P0

+G1 exp(−q2R2
g,1/3) + B1 exp(−q2R2

g,2/3) × {[erf(qRg,1/
√

6)]3/q}P1

(6.14)

and consider the largest structural level first, I0, for the case where Rg,1 is

small and Rg,0 large:

lim
Rg,1→0

I0(q) = G0 exp(−q2R2
g,0/3) + B0{[erf(qRg,0/

√
6)]3/q}P0 (6.15)

and

lim
Rg,0→large

I0(q) = 0 + B0{1/q}P0 = B0q
−P0. (6.16)

The measurements where this extra intensity at low q-values are observed, can

thus be described by
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I(q) ≈ B0q
−P0 + G1 exp(−q2R2

g,1/3) + B1{[erf(qRg,1/
√

6)]3/q}P1. (6.17)

The right hand panel of figure 6.7 shows this equation fitted to the data by

letting B0, P0, G1, Rg,1, B1 and P1 float. Unfortunately, this is not a good

fit, as the fitting uncertainty for each parameter is rather large. For example,

Rg,1 = (27.4 ± 2.2) nm (8 %) and P1 = (4.1 ± 0.6) (15 %), and the corresponding

values obtained from using subset (I-a) are Rg,1 = (22.3 ± 0.1) nm (0.45 %) and

P1 = (3.59± 0.02) (0.69 %). It appears that using Eq. (6.17) for the fitting proce-

dure produce overdetermined fits, and is therefore not a suitable method; this is

why subset (I) has been chosen for fitting to the data at this temperature range.

Subset (II) (see table 6.5) is used for fitting to the measurements where the

signal from two types of particles are present, and information can be extracted

for both types. A structure factor (Eq. (2.36)) had to be included for the smaller

particle type. For example, the data for the measurement taken at 750 ◦C, and

subset (II) fitted to this data, is shown in figure 6.8. The relevant parameters

extracted from this fit is listed in table 6.6, in the top row (0.1 nm−1 ≤ q ≤ 1

nm−1). The uncertainties of the fit parameters are relative large, and therefore

each structural level was investigated individually for a restricted q-range in order

to compare the methods. The results obtained by fitting only one structural level,

i.e., using the procedure of subset (I), in the range 0.1 nm−1 ≤ q ≤ 0.3 nm−1, is

145



Chapter 6. Discussions

Figure 6.8: The unified model (subset II) fitted to the SAXS pattern
measured when the zirconia coated mica was heated to 750 ◦C.

Structural level 1 Structural level 2
q-range Rg,1 P1 Rg,2 P2

[nm−1]
Subset (II) 0.1-1 value 22.7 nm 3.40 4.15 nm 3.82

uncertainty (abs.) 0.2 nm 0.23 0.38 nm 1.45
uncertainty (rel.) 1 % 7 % 9 % 38 %

0.1-0.3 value 22.3 nm 3.36
uncertainty (abs.) 0.3 nm 0.07

Subset (I) uncertainty (rel.) 1 % 2 %
0.4-1.19 value 4.13 nm 4.31

uncertainty (abs.) 0.02 nm 0.07
uncertainty (rel.) 0.4 % 2 %

Table 6.6: Table listing the resulting values from fitting the unified model
to the measurement taken at 750 ◦C.

listed in the middle row of table 6.6; for the the range 0.4 nm−1 ≤ q ≤ 1.19 nm−1

the resulting values are listed in the bottom row of this table.

The values obtained for P1, Rg,1, P2 and Rg,2 were found to be similar for both

methods. However, the uncertainty for the fitting values are larger by using sub-
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Figure 6.9: The unified model (subset III-a) fitted to the first measurement
of the SAXS pattern after the zirconia coated mica was heated to 950 ◦C.
The shoulder at the high-q end originates from the background subtraction
(see figure 6.6).

set (II). Subset (II) is anyway used for this temperature range because the entire

q-range may be fitted, instead of splitting up the fitting ranges. In the case of this

experiment, the extra intensity at low q-values was not included in the fit - using

the same arguments as for subset (I), i.e., the entire q-range was not fitted, but

most of it, excluding the extra intensity at low q-values.

Subset (III) (see table 6.5) is used for fitting to the measurements where in-

formation from only one particle type can be obtained. In order to get the model

fit to the data, a structure factor was included (Eq. (2.36)). An example of this

subset used on the data is shown in figure 6.9 for the first measurement taken at

950 ◦C (cf. figure 6.5). Also in this measurement, extra intensity is observed at
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low q-values. This was again excluded, for reasons already discussed.

All of the different temperature measurements were fitted to the unified equa-

tion using one of the three subsets defined in table 6.5. The results obtained for

the radii of gyration is plotted in figure 6.10, and the results for the Porod slope

is plotted in figure 6.11.

At low temperatures one structural level is observed, and the radius of gyra-

tion for this type of particle remains relatively constant at around 25 nm, and it

disappears at ∼ 800 ◦C. At 750 ◦C, another smaller type of particle appears. This

particle type grows as the sample is heated further, and it continues to grow as the

temperature is kept constant at 950 ◦C (measurement No. 15 and onwards), al-

though for the last few measurements the particle growth appears to have stopped.

For the temperatures up to and including 700 ◦C, P1 . 4. This means that

the surface structure of the scattering objects remain relatively smooth. For the

measurement taken at 750 ◦C, the Porod slope of the small emerging particle type

was very difficult to fit, since the shoulder corresponding to this particle type

is positioned at the high-q end of the pattern, and not enough of the straight

slope necessary to determine the Porod slope appeared on the pattern. For the

measurements taken at temperatures above 750 ◦C, the Porod slope first appear

to be rather steep, but these may also be explained by that not enough data are

obtained at the high-q end of the pattern.
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Figure 6.10: Radius of gyration obtained from the SAXS measurements
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As this particle type continue to grow, more and more of the Porod slope is

revealed, and for the temperature 950 ◦C and above, a Porod slope very close

to -4 is found. This means that the surface structure of the particles in this

temperature range is smooth.

6.5.2 SAXS: in situ dip-coating experiment

For some industrial purposes it is important that coatings either do not contain

pores, or contains a well-defined fraction of pores. Unless special chemical precur-

sors have been used in addition to alcohol during the gelation stage, the gel itself

will often crack and crumble as the network shrinks [18]. This cracking will lead

to pores, which remains when the heat treatment of the sample is started. After

cycles of dipping and heating has been performed, the samples look as they are

porous. The evolution of the pores during calcination is not clear, and investigat-

ing these is one of the aims for this experiment.

We are suggesting that the formation and evolution of pores as dipping-and-

heating cycles are performed can be studied by SAXS in an in situ dipping ex-

periment. In addition to study the pore evolution, the more general aim of this

experiment is to obtain a better understanding the nano-scale structural changes

during dipping and heating cycles.
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6.5.2.1 Different annealing temperatures

Coating B: 700 ◦C The SAXS patterns were corrected as explained in Chapter

4, and the unified model was fitted to the resulting curves. The q-range was

restricted such that the pattern showed a linear slope at low-q and one feature

corresponding to the small-angle scattering from one structural level. This feature

is very distinct in these measurements, which means that the scattered beams from

the scattering objects within the sample interferes, and therefore a structure factor

is needed to correct for this. The discussion in section 6.5.1.1 is valid here, and

thus the unified model is given by Eq. (6.18), where the subscripts indicate which

structural level it applies to:

I(q) = B0q
−P0

+S1(q) ×
(

G1 exp(−q2R2
g,1/3) + B1{[erf(qRg,1/

√
6)]3/q}P1

)

.

(6.18)

The unified model (Eq. (6.18), with S(q) from Eq. (2.36)) was fitted to the

measured data, and an example is shown in figure 6.12. The values for G1, B1,

Rg,1, P1 etc. obtained from these fits are shown in figure 6.13.

The figures in the top panel of figure 6.13, are showing the values obtained

for G1 and B1 as function of No. of dips. In both cases these values increase

significantly with increased number of dips. The relationship between these results
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Figure 6.12: Illustration on how the unified model is used on the SAXS
measurement taken on coating B at 700 ◦C (13 dips).

and the number of dips is therefore of interest; we wish to determine the functions

G1(x) and B1(x) where x denotes No. of dips.

For G1(x), the power law

G(x) = A · xb + C (6.19)

was found to give the best fit to the experimental data, and this is shown in

figure 6.13, top left panel. Recall Eq. (2.38),

G = NpV
2
p ρ2

e = Npn
2
e, (Eq. (2.38))

where Np is the number of scattering particles in the measured volume, Vp is

the volume of a scattering particle, and ρe = ne/Vp is the electron density. ne is
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the number of electrons in the scattering particle.

The question is now which parameters G depends on. From the SAXS mea-

surements (see figure 5.2 (right panel) and figure 6.13 (middle right)), a nearly

constant value of Rg,1 is obtained. Since

Rg,1 ≈ const. ⇒ Vp ≈ const.

and G is thus practically independent of Vp. The electron density within the

particles ρe can also be approximated to be constant;

ρe ≈ const.

By implementing this into Eq. (2.38), the behaviour of G(x) is found to be

G(x) ∝ Np. (6.20)

Consequently, the observed value G1 will follow the behaviour of Np, the num-

ber of scattering particles. Np as a function of dip-coated layers, can be calculated

as shown below. The first line originates by using that G(x) ∝ Np (Eq. (6.20))

and G(x) = A · xb + C (Eq. (6.19)).
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Np(x) ∝ A · xb + C (6.21)

= k · (A · xb + C) (6.22)

= k · A · xb + C ′ (6.23)

where k is a constant of proportionality, and C ′ = k ·C. By moving C ′ to the

left hand side of the equal sign,

Np(x) − C ′ = k · A · xb (6.24)

Np(x) − C ′ ∝ xb. (6.25)

And by moving C ′ back to the right hand side of the equal sign, the following

result is obtained;

Np(x) ∝ xb + C ′. (6.26)

Consequently, the number of scattering particles increases with a power of b

for the number of dips. This can be explained by each dip taking up more of the

sol than the previous one.

Next, the discussion above is repeated for B1. For B1(x), the exponential

function,
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B(x) = A · exp(b · x), (6.27)

was found to give the best fit to the experimental data, and this is shown in

figure 6.13, top right panel. The value of B1 consequently increase exponentially

with the number of dips.

Recall Eq. (2.39),

B = 2πNpρ
2
eSp, (Eq. (2.39))

where Sp is the surface area for the particle. Since an exponential fitted the

B1-values best, whilst a power law fitted the G1-values best, it was concluded that

there is something else that varies with the number of layers for B1 than just Np

(as was found for G1). Combining Eqs. (2.38) and (2.39), it is found that B and

G are related by

B = 2π
Sp

V 2
p

G. (6.28)

A changing surface-to-volume ratio for these scattering pattern will cause G1

and B1 to vary with different rates. Since G1 and B1 were found to follow slightly

different trends; power law and exponential increase, respectively, the surface-to-

volume ratio does indeed change with the number of dips.

By investigating the surface-to-volume ratio, additional information can be
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obtained about the particles within the sample, for example the roughness of the

particle surface (see [27]). But first, a discussion on how the surface-to-volume

ratio can be found from SAXS patterns is needed.

In order to investigate the behaviour of the surface-to-volume ratio, Eq. (6.28)

is rearranged to

Sp

V 2
p

=
Bi(x)

2πGi(x)
≡ u(x). (6.29)

This means that u(x) is the value found for Bi/(2πGi) as a function of dipping

layers, where i indicates the structural level (i = 1 was used in the discussion

above). For example, if the scattering objects are assumed to be smooth spheres

with radius R, surface area Sp = 4πR2 and volume Vp = (4/3)πR3 [27],

usphere =
9

4πR4
=

1

2π

81

50R4
g

=
1.62

2πR4
g

(6.30)

The measured value of u, can be found by using that

umeas =
B

2πG
(6.31)

(from Eq. (6.29)). These values can be normalised to usphere,

unorm =
umeas

usphere
=

R4
gB

1.62G
, (6.32)

and the result is plotted in figure 6.13 (middle left hand panel). The meaning

of the values of unorm is discussed in [27], and a table of calculated values are
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Distribution unorm

Monodisperse spheres 1.00
Block distribution 1.41
Intercept Porod/Guinier 3
Log-normal self-preserving continuum regime 4.93
Log-normal self-preserving free-molecular regime 5.56
Log-normal (spheres) exp(12σ2)
Most probable 8.70
Debye-Bucche function 9.88

Table 6.7: The value of unorm calculated for different particle distributions.
Note that all numbers are less than 10. The values in this table is from [27]
and for further details see this paper and references therein.

shown in table 6.7.

The values found for unorm in our experiment (figure 6.13, middle left hand

panel), are noticeably larger than the values in table 6.7. From Eqs. (6.29), (6.31)

and (6.32), we see that a large values of unorm means that the scattering particles

are having a large surface area compared to the volume.

The radius of gyration obtained from the fits are shown in figure 6.13 (middle

right hand panel). These values for Rg seems to roughly follow trend of the unorm-

values. This makes sense, since large values of unorm correspond to particles that

are having large surface area. It is therefore not surprising that the values for Rg

follows unorm in this case.

Figure 6.13 (bottom left hand panel) shows the Porod slopes obtained in the

fits. Most of the measured Porod slopes are having values between -2 and -3,

and these values are to be expected if the particles are mass fractals (see Sec-

tion 2.2.2.2). Since the fitted value of P is increasing for the increasing numbers

of layers, this tells us that the surface structure of the scattering particles are

158



Chapter 6. Discussions

becoming smoother with increasing number of layers.

Figure 6.13 (bottom right hand panel) shows the average separation distance

between scattering particles, ā, as it was obtained from fitting the unified equation

(Eq. (6.13)) with structure factor from Eq. (2.36) to the data. The plotted error-

bars are the value obtained for w from the curve-fits (see Eq. (2.36)).

Coating B: 500 ◦C The result of this experiment was shown in figure 5.2 (left

panel). A straight slope is observed at low q-values, which corresponds to a particle

type that is too large for extracting information about the particle size. At the

high q-end, however, a very distinct feature is observed. This peak is too sharp be

a small-angle scattering peak; it has more similarities with a broad Bragg peak.

None of the models for small-angle scattering fits these data, and another model

is needed.

The hypothesis for this system, is a gradual transition of these coatings from a

polymer structure based on a hydrocarbon backbone to one with a Zr-O-Zr back-

bone. At 500 ◦C many of the organic chain molecules will probably have evapo-

rated, but some of these are left in the porous low-density zirconia-“polymer”.

The strongest scatterers in this system are still yttrium- and zirconium atoms,

and the hydrocarbon backbone can probably be ignored at first. The large peak

at high q-values could be the correlation from the distribution of the yttrium- and

zirconium atoms, spaced out by polymer chain molecules and pores.

The correlation length of the yttrium- and zirconium atoms can be found by

considering Eq. (2.88) for n = 1 (i.e. the first order peak):
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dcorr =
2π

q
. (6.33)

The peak is for example positioned at q = 4 nm−1 for the measurement on a

thick coating and the corresponding correlation length is thus dcorr = 1.6 nm.

The next step is to estimate the size of the precursor molecules and the sub-

sequent packing density, and test if the result is in accordance with the result

for the correlation length obtained above. The discussion below is only carried

out for zirconium, for the Zr-Y-{A,B} solutions, as the yttrium atoms cannot be

distinguished from zirconium atoms, and since there are so few yttrium atoms in

the solution compared to zirconium atoms.

A rough estimate of the size of the precursor molecule (Zr(OCH2CH2CH3)4)

was made using the bond lengths, C-H: 0.11, C-C: 0.15, C-O: 0.14 [85] and Zr-O:

0.21 nm [5]. The bond angles were estimated to be 105◦ at the O-atom (because of

the lone electron pairs on the oxygen atom), and 110◦ at the C-atom because this

angle will be close to the tetrahedral angle. This gives a resulting molecule size of

1.24 nm. The network is thus less dense than densely packed precursor molecules,

and consequently, additional spacers are caused by porosity and/or organic chain

molecules.

Figure 6.14 (left panel) shows the position of the peak as function of number

of dips. Apart from the first point, which was not possible to determine with

any accuracy, the peak is positioned at increasing q-value as the number of dips

increase. The correlation length for each of these points was calculated using
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Figure 6.14: In situ dip-coating experiment for coating B, at furnace tem-
perature 500 ◦C. Left panel: peak position plotted as function of dips. Right
panel: Correlation length calculated using Eq. (6.33) plotted as function of
dips.

Eq. (6.33), and the result is shown in figure 6.14 (right panel).

An initial hypothesis may be that the decreasing correlation length could be

interpreted as decreasing porosity as the number of dips increases. However, the

fact that more sol stuck to the substrate/sample than for the previous dip (see

Eq. (6.26)) also needs to be taken into account. Another consideration is that

different amounts of precursor molecules have probably undergone the gelation

reactions as the number of dips increases, and then a different averaged correlation

length would be measured. This means that the porosity is not directly correlated

with the correlation length, and the initial hypothesis is not correct. Consequently,

the chemical reactions for the dipping-and-heating cycle need to be investigated.

The sol was produced as described in section 3.2.2, and it is liquid, i.e., not

gelled, when the dip-coating is performed. The gelation process takes place when

the sol is deposited on the substrate, and the solvents evaporate as the substrate
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is withdrawn from the sol.

Recall the sol-gel theory in Section 1.2, and especially Eqs. (1.1) and (1.2),

which indicate how the network is formed from the precursors. The important

number here is the distance between Zr-atoms. In the reaction in Eq. (1.2) it is seen

that the Zr-atoms are bound by an intermediate oxygen atom: Zr - O - Zr. The

angle at the oxygen atom is ≈ 105◦, and the Zr - O bond length is 0.21 nm. Using

these values in the law of cosines, the distance between two Zr-atoms becomes

0.33 nm, and for a dense ZrO2 ceramic this would be the case.

For the polymer case considered here, the system has gelled and formed a net-

work, but it has still not condensed into the ZrO2 ceramic. The organic residue, or

the pores remaining after these molecules have evaporated, prevents the Zr-atoms

from stacking as closely as they otherwise would, and this supports the hypothesis

about the porous low-density zirconia-“polymer” proposed in the beginning of this

section.

From figure 6.14 (right panel) it was found that the correlation length decreases

slightly with number of dipping-and-heating cycles. This may either be because

more of the precursor molecules have undergone these reactions, or because the

coating has become less porous. Since the porosity is not directly correlated with

the correlation length, a quantitative result for the porosity can therefore not be

obtained.

In summary, for the coatings heated to 500 ◦C, the broad Bragg peak indicates

a semi-regular network of the Zr- or Y-atoms. The correlation distance found from
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Figure 6.15: SAXS pattern after 11 dips for the sols containing different
amount of yttrium. Left: linear scaling. Right: logarithmic scaling.

the measurements is around 1.6 nm which is clearly longer than the theoretical

Zr - O - Zr distance (for a dense ZrO2 ceramic). The Zr- or Y-atoms are there-

fore positioned further apart by all the remaining organic chain molecules and/or

porosity in the coating.

6.5.2.2 Different coatings on mica

The results for the experiments for the coatings containing different yttria con-

centration and heated to ≈ 500 ◦C, was shown in figure 5.3. In order to compare

these results, the measurement for 11 dips for each of the samples are plotted to-

gether in figure 6.15. This figure shows the zirconia-sol coating have a wide Bragg

peak, which correspond to a semi-regular ordering of the Zr-atoms in the polymer

network. As yttrium is added, the maximum of this peak moves towards larger

q-values, and gets more pronounced.

The peak in figure 6.15 is interesting because it is not clear why the metal ions
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would have a well-defined spacing. The shift of the peak position towards larger

q-values and the increased intensity for increased yttria content indicates that the

distribution of Zr- and Y-atoms becomes more ordered and that the correlation

length decreases. For the coating that consists entirely of yttria-sol, no structure

or small-angle scattering features are observed, which means that no ordering or

any scattering particles in the observable range are present.

From the discussion in Section 6.5.2.1, it may follow that for the yttrium-

doped coatings, more of the gelation process has taken place. The higher yttrium

doping level (except for the pure Y2O3-coating), the smaller correlation length,

and therefore more of the gelation process have taken place.

6.5.3 GISAXS: Coating B on silicon, in situ heating

The GISAXS patterns were corrected as explained in Chapter 4, and the unified

model was fitted to the resulting curves. In this case the q-range is restricted such

that the pattern shows a linear slope at low-q and one shoulder corresponding

to the small-angle scattering from one structural level. The discussion in Sec-

tion 6.5.1.1 is valid here, and thus the unified model is given by Eq. (6.34), where

the subscripts indicate which structural level it applies to:
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I(q) = B0q
−P0

+S1(q) ×
(

G1 exp(−q2R2
g,1/3) + B1{[erf(qRg,1/

√
6)]3/q}P1

)

+ C.

(6.34)

The first term describes the low-q behaviour (level 0), with prefactor B0, and

where P0 is the slope of this line when plotted on a log (I) vs. log (q) plot. The

second term describes the next structural level (level 1): the first term within

the parentheses is the Guinier term and the last term is the Porod term, with

prefactors G1 and B1, respectively. Rg,1 is the median radius of gyration; it gives

information about the size of the scattering particles at level 1. P1 is the Porod

slope for the same level, giving information about the roughness of the particle

surfaces. C is a constant background contribution. The reason for introducing C

here as a fit parameter, is that for the GISAXS experiments the background could

not be measured accurately, but it is known that there is a constant background

contribution present in the measured GISAXS patterns [61].

For sample B, the background parameter C could not be resolved properly for

the lowest temperatures. For sample A, however, the value of C was successfully

obtained from the fits for most of the temperature range. The value obtained for

C was plotted as a function of T (in figure 6.16), and it was found to follow a

linear trend with a low slope. This fitted line was used for estimating C(T ) for
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Figure 6.16: Fitted value for the constant background, C, for sample A.
The straight line is described by C(T ) = 0.00519 · T + 7.33. [61]

sample B, where it has been assumed that the slope of C(T ) is the same for both

samples.

Eq. (6.34) was fitted to all measurements for the different temperatures on

sample B. Since the changes of the system are significant, the same model does

not apply adequately to the whole experiment. Therefore, appropriate subsets for

different (and overlapping) regimes are used (see Table 6.8) instead of one unique

model that would be overdetermined for part of the series of data sets. The overlap

in regimes is to ensure continuity between the subsets. The reason for different fit

ranges is that the beamstop covered a wider region of q for the second and third

temperature regime. Moreover, including S(q) as Eq. (2.36) for the first regime

produced overdetermined fits. The constant background parameter C could be

fitted for the third temperature regime because there is a sufficiently long flat

region at high-q, and therefore C has been included as a fit parameter in this

regime. [61]
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Regime Temperature Fit range (q) S(q) Background (C)
[◦C] [nm−1]

1st 400-550 0.027-1.38 1 C(T ) = 0.00519 · T + 3.77
2nd 550-750 0.12-1.38 Eq. (2.36) C(T ) = 0.00519 · T + 3.77
3rd 750-1000 0.12-1.38 Eq. (2.36) Fitted

Table 6.8: Table summing up how the unified model (Eq. (6.34)) was used
for the Zr-Y-B coating for the different temperature ranges.

Figure 6.17: Illustration on how the unified model (Eq. (6.34)) was fitted to
the GISAXS data taken at 800 ◦C, using the subset for the third temperature
regime. All the parameters were fitted simultaneously.
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Figure 6.18: The normalised residuals, r, calculated for the first and second
fit regime procedures, for the measurement performed at 550 ◦C. [61]

An example on the application of the unified model is shown in Figure 6.17.

These data were measured at 800 ◦C, and the subset for the third temperature

regime was used. This means that the unified model takes the form

I(q) = B0q
−P0

+ S1(q) ×
(

G1 exp(−q2R2
g,1/3) + B1{[erf(qRg,1/

√
6)]3/q}P1

)

+ C

(Eq. (6.34))

where

S(q) =
1 − exp(−2w2q2)

1 − 2 exp(−w2q2) cos(qā) + exp(−2w2q2)
, (Eq. (2.36))

and it was fitted to the q-range from 0.12 and 1.38 nm−1 whilst all the param-

eters, B0, P0, w, ā, G1, Rg,1, B1, P1 and C, were allowed to float.
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As previously mentioned, different subsets of the unified model had to be

used for different temperatures. In the example above, the subset for the third

temperature regime was found to give the best fit. Indeed, for all the temperatures

between 750 and 1000 ◦C, this subset was found to give the best fit result. For the

measurement taken at 750 ◦C, it was found that both the subsets for the second

and the third temperature regime could be used. The subset of the second regime

was then used for temperatures between 550 and 750 ◦C.

If in doubt on which subset that will be the most appropriate, the different

subsets can be tested by plotting the normalised residuals. For example, for the

measurement performed at 550 ◦C, the appropriate subset could not easily be

determined by looking at the fits, and consequently, the normalised residuals of

the the first and second subset from the measured data were plotted in figure 6.18.

From this figure it is clear that the second subset fits the data better, and this

fit is shown in figure 6.19. For the temperatures below 550 ◦C, however, the first

subset was found to give the best results.

Figure 6.20 shows the resulting radii of gyration, Rg,1 (a), Porod slopes, −P1

(b), and average distances between scattering objects, ā (c), for sample B. The

increase in radius of gyration tells us that the size of the scattering particles

increases as the sample is heated. As already mentioned, the Porod slope gives

information about the surface structure of the particles; see Section 2.2.2.2 for a

reminder. For the temperatures up to and including 550 ◦C, the Porod slope is

between -1 and -3, which corresponds to the particles being mass fractals. The
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Figure 6.19: Illustration on how the unified model (Eq. (6.34)) was fit-
ted to the GISAXS data taken at 550 ◦C. Here the subset for the second
temperature regime was used. [61]

discrepancy at 550 ◦C is explained by the fact that the first fitting regime did not

fit especially well (as was shown in figure 6.18). Then the Porod slope continue to

change as the sample is heated; for example, P1 = 3.38 at 600 ◦C and P1 = 3.89 at

800 ◦C, which is the maximum value of P1. Thereafter, the value of P1 decrease,

and at 900 ◦C, P1 = 3.62. This means that in the interval 600 ◦C ≤ T ≤ 900 ◦C,

3 ≤ P1 ≤ 4, which corresponds to the particles being surface fractals. The value of

P1 continues to decrease with further heating, to P1 = 2.35 (at 1000 ◦C), indicating

a rougher surface structure once more (mass fractals).

The increase in the value for ā means that the scattering particles are positioned

further apart for higher temperatures, and since the particle size is also increasing,

this suggests that the particles are undergoing Ostwald ripening.
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Figure 6.20: The unified model applied to the measurements at different
temperatures for the Zr-Y-B coating. The different symbols represent the
different fitting regimes. (Top panel) Radius of gyration (Rg,1). (Middle
panel) Porod slope (−P1). (Bottom panel) Average separation distance ā
between scattering objects (see Eq. (2.36)). Note that the bars are the value
obtained for w (see Eq. (2.36)). [61]
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Figure 6.21: Left: The theoretically calculated penetration depth Λ for
coating B, and the film thickness t of a similarly prepared film measured
by ex situ ellipsometry. For the region 490 ◦C ≤ T ≤ 650 ◦C (vertical
lines in both panels), the penetration depth is larger than the film thickness.
Right: Estimated number of illuminated layers of particles for the different
temperatures: Λ/(2Rg). The different symbols refer to the different fitting
regimes. [61]

The penetration depth, Λ, and also the film thickness decrease as the film is

heated. In order to show how large the illuminated fraction of the film is, the

film thickness, measured from ellipsometry, and Λ, estimated from Eq. (2.73), are

plotted in figure 6.21(a). Figure 6.21(b) is an estimate of the number of layers of

particles within the penetration depth: Λ/(2Rg).

In figure 4.7, the appearance of small “wings” in the panel corresponding to

the 550 ◦C measurement, is characteristic of a 2D component in the scattering

pattern. However, figure 6.21 illustrates that the measured signal extends from

a sufficient depth such that it should appear to be 3 dimensional. Therefore, we

conclude that a layer of this 3D film has predominantly 2D character.

As the sample is heated, the pattern changes, and for the 750 ◦C measurement,
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a typical powderlike scattering pattern is obtained, which is an indication of a

three-dimensional distribution of scattering centres. For this temperature, Λ is

about 2/3 of the film thickness (Λ/(2Rg) = 6). However, we cannot rule out that

the pattern may also be a wing-type pattern where the particles have grown so

large that the wings have shifted so far towards low-q that the full wings cannot

be observed any longer, just the outer end of the wings.

As the sample is heated further, the scattering intensity showed a broadening

in the y- and z direction. This is especially distinct for the 950 ◦C measurement,

and this is most likely due to a wing-pattern where the wings are disappearing

at the low-q end. As already mentioned, this is typical for a two-dimensional

distribution, which is to be expected considering that only 1 to 1.5 particle layers

are within Λ at these high temperatures. Combining this finding with the result

of the Porod analysis for the highest temperatures, where the particles were found

to have rougher surfaces, it is a distinct possibility that only the particles in the

topmost layer become rougher, whilst the particles further below in the film surface

remain smooth.

These considerations lead to a model of the calcination mechanism as follows

(see figure 6.22): At 450 ◦C, in the nucleation regime, the scattering particles

are small and having rough surfaces, and they are randomly positioned in the

sample. As the sample is heated, the particles are undergoing Ostwald ripening,

and the particle surfaces become smoother, until the highest temperatures where

the particle surface, at least in the topmost layer, again becomes rougher. The
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reason for this may be related to growth instabilities:

If the sample is heated slowly, the particle surfaces is expected to remain

smooth as the particles grow. This is because of the minimisation of energy

principle - the molecules in the bulk is having lower energy than the molecules on

the surface of the particles, as mentioned in the paragraph about Ostwald ripening

(in Section 6.2.2). However, if the sample is heated too fast for the particles to

equilibriate; more and more molecules are “thrown in on top”, the surface of

these particles will become rough. Consequently, the roughening observed for the

particles at the highest temperatures, may be due to such a growth instability.

6.5.4 GISAXS: Zirconia on silicon, in situ heating

Some of the resulting plots from this sample were shown in figure 5.6, and the

unified model in form of Eq. (6.34) were fitted to the data. Again, different subsets

of the unified model needed to be used, and these are listed in table 6.9. The reason

for slightly different values in the end of the fitted q-range is because different cuts

are taken at different detector heights; the maximum q-value measured depends

on the detector height for which the cut was taken, and this is what is plotted.

However, at 600 ◦C, it was not possible to fit to the last q-values, and the reason

for this will be explained in Section 6.5.4.2.
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450 ◦C 550 ◦C 650 ◦C

750 ◦C 850 ◦C 950 ◦C

Figure 6.22: Illustration of our interpretation of the available data from
the GISAXS experiment (ZrO2-Y2O3 coatings), seen from above. This illus-
tration is considerably simplified; at the lowest temperatures the particles
are probably more like polymers, and for all temperatures the particle sizes
are more likely to follow a log-normal distribution. The suggested model for
particle development during heating program is as follows: First, in the nu-
cleation regime, the particles are small, irregular and randomly positioned.
As the sample is heated, particles form larger, and fewer, particles where the
average separation distance increases (Ostwald ripening). Since SAXS mea-
sures differences in electron density, the medium between the particles could
either be material of a different electron density (for example hydrocarbons
- which are likely at the lowest temperatures), or simply air (which is most
likely at the highest temperatures). [61]
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Subset Temperature Levels S(q) Background (C) Beamstop Fit range (q)
[◦C] [nm−1]

I 400 1 Fixed Wide 0.314-1.22
450 1 Fixed Wide 0.26-1.22
500 1 Fixed Wide 0.26-1.35
550 1 Fixed Wide 0.26-1.35

II 600 1 X Fixed Wide 0.26-1
650 1 X Fixed Wide 0.26-1.3
700 1 X Fixed Wide 0.26-1.32

III 700 1 Fixed Wide 0.26-1.32
750 1 Fixed Wide 0.26-1.35
800 1 Floating Medium 0.26-1.22

IV 850 1 X Floating Narrow 0.05-1.22
900 1 X Floating Narrow 0.05-1.22
950 1 X Floating Narrow 0.05-1.35
1000 1 X Floating Narrow 0.05-1.35

Table 6.9: Table showing how the unified model (Eq. (6.34)) was used for
the data measured at different temperatures.

6.5.4.1 Subset (I):

For the measurement at 500 ◦C, two different methods was found that could be

used for fitting the data. These two methods were found to give different results,

and in the following section the reason for the chosen method will be discussed.

The method that was not used is discussed first.

Method A: The Guinier plot of the measurements taken at 500 ◦C is shown in

figure 6.23 (left hand panel). The fitted line has a slope of 0.419, and the corre-

sponding radius of gyration is then RGuinier
g = 1.70 nm. The same measurement,

but plotted using logarithmic values on the axes is shown in figure 6.23 (right hand

panel), together with the Guinier term where RGuinier
g = 1.70 nm. The fact that

the measured intensity at q < qshoulder is lower than the predicted intensity from

the Guinier term, suggests that a structure factor needs to be used. However, in
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Figure 6.23: 1D-cuts at the Yoneda angle for the GISAXS measurements
on the zirconia coated silicon wafer, when the temperature was set to 500 ◦C.
These plots show the results of the Guinier analysis. Left: The Guinier plot
(log(I) vs. q2) shows a long straight slope. Right: the log(I) vs. log(q) plot
of the same data, and the Guinier term using the result for Rq that was
found from the Guinier analysis.

order to use the unified model, the Porod term is introduced. The Porod exponent

is first fitted to the short linear region at the highest q-values, and then this result

for P is used in the rest of the plots without letting it float in these fits. The

reason for this is that the straight line at high-q is not long enough to be able to

let P float at the same time as all the other parameters.

The constant background contribution was found by first fitting a constant

value to the region at very low q-values (behind the beamstop), and then fix the

parameter to the value obtained. The plot after the constant C and the structure

factor (Eq. (2.36)) was introduced is shown in figure 6.24 (left hand panel). The

extra intensity at low q-values (h(q) = B0q
−P0) is probably due to very large

particles. This contribution was attempted to be included in the model, but then

the fitting procedure did not converge on any realistic solution. Instead h(q) was

177



Chapter 6. Discussions

 1

 10

 100

 1000

 0.1  1

In
te

ns
ity

 [a
rb

. u
ni

ts
]

q [nm-1]

I(q) measured
Constant background

Guinier term
Porod term

Structure factor
I(q) fitted

 1

 10

 100

 1000

 0.1  1

In
te

ns
ity

 [a
rb

. u
ni

ts
]

q [nm-1]

I(q) measured
Constant background

Porod term
Guinier term

I(q) fitted

Figure 6.24: Comparison of two different methods of applying the unified
model to the data from the measurement on the zirconia coated silicon wafer
taken at 500 ◦C; both models seem to fit well the data measured in the range
around the shoulder, and it is therefore difficult to determine which model is
the most suitable. Left: Method (A) (not used). Right: Method (B), used
as “Subset (I)”. Notice the difference in amplitude for the Porod term in the
two methods.

set to zero, and the unified model was used in the form

I(q) = S(q) × G exp(−q2R2
g/3) + B{[erf(qRg/

√
6)]3/q}P + C. (6.35)

This model was then fitted from larger q (= 0.5 nm−1) than the smallest

measured q-value. The most interesting results are obtained from the parameters

describing the particle size, the average separation distance between the particles

and the surface structure of the particles, namely Rg, ā and P , respectively. For

example, the results from this fit are: Rg = (2.07±0.05) nm, ā = (4.01±0.03) nm

and P = 2.57 ± 0.03.

Method B: Rather than fitting the Guinier term first, and then add everything
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Figure 6.25: In order show how method B fits the data for different ranges
on the axes, the same data that was shown in figure 6.24 is now plotted
using different axes ranges. Left: same as figure 6.24 (right panel). Right:
zoom-in of the ranges such that more details can be seen in the fit and in
the data.

else as it fits, the Porod term was fitted first. In this case the structure factor was

not needed, and the unified model was used in the form

I(q) = G exp(−q2R2
g/3) + B{[erf(qRg/

√
6)]3/q}P + C. (6.36)

C was determined from the measured I(q)-plot at low q-values, since the beam-

stop shadowed the scattered intensity here. All the parameters (except C) were

set to float for the entire range, and the result is shown in figure 6.24 (right hand

panel).

In order to show the difference between method A and B, figure 6.24 shows

each method in a separate panel. Figure 6.25 also shows the plot for method B in

more detail.
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In method B, fewer fitting parameters were needed, and the entire q-range

could be fitted with all the parameters floating. By fitting this model to the other

measurements in the same temperature interval, it was noted that only method B

was giving converging fits. In the end method B was used for Subset (I), however,

we cannot exclude that method A may be more suitable.

The most interesting results are obtained from the parameters describing the

size- and the surface structure of the particles, and using this method these values

were found to be: Rg = (4.17 ± 0.01) nm and P = 2.86 ± 0.02, respectively. It is

noticed that the radius of gyration found using method B is approximately twice

the radius of gyration found by using method A, and approximately the same as

the average separation distance found using method A.

6.5.4.2 Subset (II)

This subset was used for the range 600 ◦C ≤ T ≤ 700 ◦C, and an example is

shown in figure 6.26 for the measurements at 600 (top panels) and 650 ◦C (bottom

panels). In the measurement at 600 ◦C, we observe that the slope of the measured

intensity suddenly becomes steeper at q ≈ 1 nm−1 (see the top right panel). The

reason for this is not known and this behaviour has not been observed in any of

the other measurements. Models were attempted to be fitted to the intensity for

the entire q-range, including q > 1 nm−1, but this was without success. This is

why the model is only fitted for q < 1 nm−1 in this case.
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Figure 6.26: The application of Subset (II) to data. Top row: 600 ◦C.
Bottom row: 650 ◦C. The left hand panels show the extended ranges of the
axes, whilst the right hand panels show the zoom-in of the measured pattern.
For the measurements at 600 ◦C, it was noticed that the slope at the high-q
end becomes steeper at q > 1 nm−1.
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Figure 6.27: The measurement taken at 700 ◦C. Left: Subset (II). Right:
Subset (III). Closer investigations show that Subset (II) fits slightly better
to the data at the high-q end.

6.5.4.3 Subset (III)

This subset was used for the range 700 ◦C ≤ T ≤ 800 ◦C, and an example is

given in figure 6.27 (right hand panel). The measurement at 700 ◦C, could be

approached using the method used in either Subset (II) or Subset (III), and both

results are plotted in figure 6.27. Closer investigation reveals that Subset (II) (left

hand panel) gives a slightly better fit at the high-q end than Subset (III) (right

hand panel). A structure factor was used in Subset (II), but the intensity of this

is too low to be included on the figure.

6.5.4.4 Subset (IV)

This subset was used for the temperatures above 800 ◦C, and an example is shown

in figure 6.28.
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Figure 6.28: The method used in Subset (IV) applied to the data measured
at 950 ◦C.

The results for the radius of gyration, the Porod slope and the average sepa-

ration distance are plotted in figure 6.29. As can be observed from the results for

the radius of gyration, the behaviour can be divided into three regimes, and it is

most likely different types of particles that are observed in each of the regimes;

1) 400 ◦C ≤ T ≤ 550 ◦C: Here the particles are small and remain nearly

constant in size. The Porod slope is between -2 and -3, which corresponds

to pretty rough surface structure, possibly corresponding to mass fractals.

2) 600 ◦C ≤ T ≤ 750 ◦C: The particle size increases significantly within this

temperature range. The average separation distance increase significantly as

well. The Porod slope could not be determined for the 600 ◦C measurement,

and for higher temperature it changes from around -2 to around -4 which

means that the surface structure of this type of particle becomes smoother.

3) 800 ◦C ≤ T ≤ 1000 ◦C: At 800 ◦C, the value for the radius of gyration is
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noticeably smaller than the value obtained at 750 ◦C. Probably a different

kind of particle is measured in this temperature regime. This kind of particle

keeps growing slowly as the temperature is increased. Here, as well as in

the second regime, the average separation distance increase significantly.

The Porod slope varies between -3 and -4, possibly corresponding to surface

fractals. At the highest temperature the surface structure of the particles

were found to be rougher; at 1000 ◦C, P ≤ 3 which corresponds to mass

fractals.

From the values obtained from G, B and Rg in the fits, unorm was calculated,

and the result is listed in table 6.10. For the first temperature regime, large values

of unorm was found, which corresponds a to very large surface area of the particle

compared to its volume. Comparing this result to the values for the Porod slope

for this regime, P = [2, 3], it is suspected that these particles are mass fractals.

For the second temperature regime, especially for the measurements taken

at 650 and 700 ◦C, the value found for unorm is rather small. It is therefore

likely that the scattering particles are having relatively compact shapes at these

temperatures.

Within the third regime, a steady increase in the value for unorm is observed,

and therefore it is likely that the particles are becoming fractals at these tempera-

tures. By comparing to the values for the Porod slopes, the particles are probably

surface fractals, but transforms towards mass fractals when the temperature get

high enough, i.e. at ∼ 1000 ◦C.
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Figure 6.29: The fit parameters obtained after applying the unified model
to the 1D-plots from the data measured for the zirconia coated silicon wafer.
Top left: radius of gyration. Top right: Porod slope (−P ). Bottom left:
Average separation distance, where the bars are the value of w obtained
from the fits.

185



Chapter 6. Discussions

Regime Temperature [◦C] unorm = (R4
gB)/(1.62G)

1 400 86.3
450 86.8
500 51.1
550 65.8

2 600 18.3
650 1.46

700 (Subset II) 4.56
700 (Subset III) 4.35

750 13.1
3 800 26.1

850 43.7
900 45.2
950 67.6
1000 100

Table 6.10: The values obtained for unorm for the zirconia coating on a sili-
con wafer. The different regimes are the regimes found from the investigation
of Rg.

Studies of zirconia has also been performed by other research groups. For

example, Lenormand et al., found that, by using XRR, XRD and GISAXS, that

during the thermal treatment, the removal of the organic residues is concomitant to

the crystallisation of the amorphous film which is transformed in a polycrystalline

layer with a random orientation of tetragonal zirconia nanocrystals [70].

Recall the discussion that it is difficult to separate cubic and tetragonal phase

(section 6.3). Consider figure 2 in the paper by Lenormand et al. [70]; this figure

is showing the XRD results, and the measurement taken for when the sample was

heated to 600 ◦C, which according to Lenormand et al. is tetragonal. In this

pattern, Bragg peaks with a certain width, positioned at around 2θ = 30, 35, 50

and 60 degrees are observed. This means that, from Lenormand’s figure alone,

it is difficult to know whether the sample they measured is tetragonal or cubic
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zirconia.

Lenormand et al. also found that the densification of the layer, up to 86 %

of the theoretical tetragonal zirconia mass density at 1000 ◦C, occurs by a one-

dimensional shrinkage, i.e., by a strong reduction of their thickness. Due to their

narrow size distribution, the tetragonal zirconia nanocrystals are self-organised in

a dense close-packed microstructure which is conserved and evolves by a normal

grain growth mechanism up to 1000 ◦C [70].

This grain growth that Lenormand et al. mentioned, is not very clear from

these GISAXS measurements, see figure 6.29, top left panel. However, the SAXS

measurements (figure 6.10) did show a significant increase in particle size as the

temperature was increased. Possible reasons for this discrepancy will be discussed

in Section 7.1.1.

6.6 Significance of different yttria concentrations

In order to study the influence of yttria doping, samples containing different con-

centrations of yttria were investigated, and some of the horizontal cuts for the

measurements performed at 850 ◦C are shown in figure 5.5. The radii of gyration

found using the unified model for the measurements performed at the tempera-

tures 800 ◦C ≤ T ≤ 1000 ◦C are shown in figure 6.30 (left panel), and the values

obtained for the Porod slope are shown in figure 6.30 (right panel).

The radii of gyration found for the Zr-Y-A and Zr-Y-B coatings are practically

the same (except at 1000 ◦C) whilst for the zirconia coated sample and sample D
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used. The error bars are the fitting uncertainties.

it is noticeably smaller. For all of the samples containing yttria, the radius of

gyration increases with temperature, and thus the size of the scattering objects

increases for these three samples. The radius of gyration obtained for the zirconia

coated sample was found to stay approximately constant, or slightly increasing,

for this temperature range.

The fitted Porod slope is between -3.5 and -4 (see figure 6.30 (right panel))

for sample A and B between 800 and 900 ◦C, i.e., the surface structure of the

scattering objects is smooth or nearly smooth for this temperature range. For

sample A, the Porod slope changes to be around -3 (at 950 to 1000 ◦C), whilst

for sample B it changes even more, to around -2.3 (at 1000 ◦C), indicating a

rougher surface structure. For the zirconia coated sample, the Porod slope remains

between -3 and -4 for the entire temperature range, except at 1000 ◦C where it is

-2.85. For sample D the Porod slope changes from -3.8 (800 ◦C) to -2.6 (900 ◦C),
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and therefore the surface structure of the particles changes from being smooth

to becoming rougher at lower temperature than for the other samples. There

seems to be a correlation between yttria concentration, and at which temperature

the surface structure of the particles become rougher, and this correlation will be

explored further in towards the end of this section.

The results obtained for Rg were compared with XRD measurements on ex situ

samples which were annealed at 900 ◦C (see figure 5.11). The Bragg peaks were

found to be wider for the samples containing more yttria, and the resulting size

parameter t from Scherrer analysis of the diffractograms is given in table 6.3. In

order to compare the results from the Scherrer analysis with the results obtained

from GISAXS, the values are plotted as a function of yttria content in figure 6.31.

Figure 6.31 shows that the measured values for t and Rg differ significantly for

low yttria concentrations and for pure zirconia, whilst for high yttria concentra-

tions the values are more similar. Recall that t is the thickness of the “platelet”

(see Section 6.3.2), and that t thus gives information about the size in the ver-

tical direction. Since Rg was obtained from the horizontal cuts of the GISAXS

patterns, the measured value of Rg here only gives information about the particle

size in the direction along the sample surface. If the particles are spherical, t and

Rg should show relatively similar values. It is therefore likely that for the low

yttria content or pure zirconia, the scattering particles are having a more cylin-

drical shape. In the pure zirconia coating, the diameter of the cylinders remains

approximately constant within this temperature range (see figure 6.30), whilst
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GISAXS pattern which was measured when the sample was heated to 900 ◦C.

the height of the cylinders increase with increased temperatures (see table 6.3).

For higher yttria contents, however, the relative values of t and Rg were showing

similar behaviour for increasing yttria content, and the shape of the scattering

particles would therefore be more spherical.

On the other hand, whilst Rg of the zirconia sample remained approximately

constant as the sample was heated from 800 to 1000 ◦C, Rg of the Zr-Y-A coating

increased significantly. The hypothesis for this particle system at this temperature

range is therefore that the pure zirconia coating consists of ZrO2 crystalline pillars

that increase in height but not in diameter as the sample is heated and that the

yttria rich coatings consist of spherical crystallites of YSZ that increase in size

with increased temperature. The Zr-Y-A coating is likely to consist of a mixture
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of the ZrO2 pillars and spherical YSZ particles, where the pillar height and the

size of the spherical particles increase with increased temperature.

For the yttria-containing samples, the size of the crystallites decreases with

increased yttria content (see figure 6.31). Recall from the discussion of the Porod

slopes, that the onset of surface roughening of the particles happens at lower tem-

perature as the yttria concentration increases. The reason for these observations

may be that there is more chemical disorder in the crystalline lattice within the

particles of the samples with the higher yttria concentration, which is due to the

onset of phase separation into yttria-richer and yttria-poorer regions.

In the XRD discussion earlier in this chapter we found that the lattice param-

eter increased with increased yttria concentration, see Section 6.3.3. Our results

were found to agree with the results of Hayashi et al. (see Section 6.2.1). This in-

crease of the lattice parameter was explained by the increase of Y-O bond lengths;

since the Y-O distance (0.23 nm) is longer than the Zr-O distance (0.21 nm)

[5]. These longer bond-lengths will result in a more disordered crystalline lattices

within the samples containing more yttria.

6.7 Different incident angles

Eqs. (2.73) and (2.41) show that the penetration depth of the X-rays depends

on the angle of incidence. In order to investigate the behaviour of the GISAXS

pattern as the incident angle is varied, GISAXS patterns were measured using

several different incident angles.
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Figure 6.32: The unified model applied to the data measured using
GISAXS on the zirconia coated silicon wafer heated to 500 ◦C, ex situ.

The sample used here was a Si(100)-wafer which was dip-coated into the

zirconia-sol 4 times, and dried inbetween each layer. It was then annealed at

500 ◦C ex situ, brought to the beamline and the measurements were performed

under ambient temperatures.

Some of the resulting GISAXS patterns were shown in figure 5.8, and no ob-

vious differences can be observed by eye from these patterns. 1D cuts were taken

at the Yoneda feature (figure 5.9), and the only obvious difference in these plots

are the overall intensity, and some extra intensity at low q-values for the shallow-

est angle measurement, which comes from the diffuse part of the reflected beam

which is not relevant for the SAXS pattern. The difference in overall intensity is

explained by Fresnel reflectivity theory; recall figure 2.5.

Note the similarities in the plots of these 1D-SAXS patterns with the SAXS
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patterns measured during the in situ dipping experiment, figure 5.3 (upper left

panel). For these SAXS data, the unified model could not be used. On the

other hand, for the GISAXS measurements taken at 500 ◦C, the unified model

was successfully applied to the 1D-cuts as shown in figure 6.32, and the results

are plotted in figure 6.33. The reason for why the unified model could be used

for the GISAXS measurements and not for the SAXS measurements, is probably

mostly because of the high-q slope: The GISAXS measurements have a well enough

defined Porod slope for the unified model to be applicable, whilst the SAXS data

does not; recall that the peak in the SAXS data behaves more like to a broad

Bragg peak.

For the different angles the measured sizes remained approximately constant

(Rg and ā). On the other hand, the Porod slope appears to change for larger

incident angles such that the particles within the illuminated scattering volume

become smoother. This agrees with the values measured for unorm; these values

seem to decrease for larger incident angle. Since the depth penetrated by the X-

rays is dependent on the angle of incidence, this may mean that particles further

down in the coating are smoother than the particles at or near the surface.
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Summary

X-ray techniques have been used to study zirconia- and yttria doped zirconia

coatings. The experimental techniques used are laboratory-based X-ray diffraction

(XRD) and synchrotron radiation based small-angle X-ray scattering techniques

in both transmission mode; small-angle X-ray scattering (SAXS), and reflection

mode; grazing-incidence small-angle X-ray scattering (GISAXS).

By using XRD measurements information has been gained about the crystal

structure of the coatings, and using (GI)SAXS information has been gained about

size- and surface structure of the scattering particles (Rg and P , respectively), and

also about the average separation distance between the particles (ā). The kind

of materials studied in this work only allows for the use of restricted models, and

spherically symmetric particles have been assumed (except for the pure zirconia

coating, as discussed in Section 6.6). This is because when a sample is produced

by sol-gel processing, the shape of the resulting nanoparticles is not well-defined,
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and spherical symmetric particles are used as an approximation of the particle

shape.

For extracting the relevant parameters, such as Rg, P and ā, Beaucage’s unified

model has been applied. This is because the traditional Guinier and Porod plot

methods are only valid for restricted parts of the q-range; the Guinier method is

generally only valid for qRg . 1.3, and the Porod method is only valid for the

high-q slope. These limitations are corrected for in the unified model. Also, the

traditional methods only account for one level of structural features, whilst the

unified model can be extended to account for multiple levels of structural features,

and it is therefore valid for the entire q-range. In these (GI)SAXS experiments,

the unified model has been applied successfully to most of, or the entire measured

q-range.

Our XRD-data for the coatings did not reveal any structure altering phase

transitions, not even for pure zirconia; which stayed in the mainly cubic structure

for all the temperatures measured at: 500, 700 and 900 ◦C (see figures 5.10 and

5.12), instead of the monoclinic structure typical for bulk ZrO2 previously found for

these temperatures. This can, however, be explained: Previously, phase transitions

have been measured for bulk ZrO2 crystals. Since the experimental results are

often controlled by the small quantities of unintentional impurities, the intrinsic

behaviour of ZrO2 is difficult to observe. We measured the diffraction patterns of

sol-gel derived ZrO2 coatings; it is therefore not surprising that we did not observe

any phase transitions. The crystal structure was found to be mainly cubic, but
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maybe containing a small amount of tetragonal domains, for all of the different

coatings measured at 500, 700 and 900 ◦C. However, within our group, we have

also measured the diffraction pattern from sol-gel derived ZrO2 powder, when it

was incrementally heated in 50 ◦C steps ex situ, and in this experiment we found

a phase transition from mainly cubic to monoclinic around 500 ◦C [14]. Possible

reasons for this discrepancy may be that perhaps it makes a difference whether

the zirconia is in the form of a coating or a powder. Also the recipe used for

producing the zirconia as a coating (see section 3.2.2) and as a powder (see [14])

was slightly different (less isopropanol and less acetic acid was used in the recipe

for the powder experiment). Another difference is that in the powder experiment,

the same sample was incrementally heated, whilst in the experiment where the

zirconia was in the form of a coating, three different samples were heated to three

different temperatures, and these samples were produced eight days before the

actual XRD measurements were performed.

Even though XRD results did not show any obvious phase changes, the in situ

heating scattering measurements did reveal that the scattering patterns from the

zirconia coating changed significantly for each temperature in the range

700 ◦C ≤ T ≤ 900 ◦C (SAXS) and 550 ◦C ≤ T ≤ 850 ◦C (GISAXS). On the other

hand, the scattering patterns measured from the yttria-doped zirconia coatings

during in situ heating, showed a slow and gradual transition between the lowest

and the highest temperature measurement.
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7.1 In situ heating

Generally, for the in situ heating experiments, it was found that the size of

the particles and the separation distance between particles both increase with

increased temperature. This is interpreted as Ostwald ripening of the particle

system. Ostwald ripening is the process where many small particles goes together

to form fewer and larger particles; this means that the observed size as well as

average separation distance will increase, and this is indeed what is observed.

7.1.1 Zirconia

The zirconia coating was measured using both SAXS and GISAXS; each method

giving slightly different results:

The SAXS results reveal first one type of particle that remains at approx-

imately constant size,∼ 25 nm, as the sample is heated, until it disappears at

T > 800 ◦C. Another particle type appears at 700 ◦C; this particle type keeps

increasing in size as the temperature is increased - even after stabilising the tem-

perature on 950 ◦C, this particle size keeps increasing for about 10 more measure-

ments when the temperature is kept at 950 ◦C (see figure 6.10). The Porod slope

remains nearly constant; P . 4 for the entire experiment, except for a region

between 750 ◦C ≤ T ≤ 850◦C, where it is difficult to determine an accurate value

of the Porod slope.

The GISAXS results, however, show first one small particle type that do not

change significantly in size, between 4 and 5 nm, for the range 400 ◦C ≤ T ≤ 550 ◦C,
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and the results from the Porod slope shows that these particles are likely to be

mass fractals. At 600 ◦C, this particle type disappears, and another smaller par-

ticle type appears. The latter particle keeps increasing significantly in size when

the temperature is increased, until at 750 ◦C where this particle type disappears.

Within this range the Porod slope changes significantly, from -2 to -4 (approxi-

mately), which indicates that the surface of the particles change from being very

rough (mass fractals) to be smooth. At 800 ◦C another particle type appears,

which increase slowly in size for the rest of the heating programme (≤ 1000 ◦C).

From the Porod slopes, these particles are found to be surface fractals. It is there-

fore concluded that the nano-structure of the zirconia coating changes significantly

in the range 550 ◦C ≤ T ≤ 850 ◦C (see figure 6.29).

The reason for the discrepancy in the results from the SAXS- and from the

GISAXS experiment is probably due to the GISAXS experiment only measuring

the surface layers of the zirconia coating, whilst the SAXS experiment is measuring

the entire thickness of the sample, including the mica substrate, in transmission

set-up. The coating procedure was also different; for the SAXS experiment, the

mica was left to soak in a zirconia-sol for a week, whilst for the GISAXS experi-

ment, dip-coating was performed.

In principle, these differences between the SAXS and GISAXS results could

be used for obtaining depth-sensitive information, such as particle size at different

depths. However, in this case, this is not trivial because we did not succeed in sub-

tracting the signal from the mica from the total signal of the SAXS measurement.
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A better way of getting depth sensitive information would be to vary the incident

angle in the GISAXS experiment. This has already been done for the zirconia

sample heated to 500 ◦C, and for this sample we found that the radius of gyra-

tion and the average separation distance remained similar for the measurements

performed using different incident angles, and that the Porod slope changed only

slightly. But similar measurements should also have been performed for samples

heated to higher temperatures, such as 1000 ◦C, in order to investigate whether

the parameters, such as the radius of gyration, still remain approximately con-

stant, or whether there indeed is a difference between the surface layer and the

interior of the film. This is something that would be interesting to measure and

investigate in the future.

7.1.2 Yttria-doped zirconia

At low temperatures the particles were found to be having small size and rough

surface structure. As the temperature is increased, the size of, as well as the

average distance between, the scattering particles were found to increase. The

surface structure was found to become smoother with increased temperature, and

then become rougher again at the highest temperatures (see figures 6.20 and 6.30).

7.2 In situ dipping

The SAXS pattern did not change significantly for the different number of dipping

cycles; especially the sizes (radius of gyration, correlation distance and average
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separation distance) remained at a nearly constant value. The most noticeable

difference is the significant increase of scattering particles in each layer which was

found to follow a power law for the measurements at 700 ◦C (see figure 6.13).

The SAXS patterns from the sample containing 4.17 mol% yttria measured

at 500 and 700 ◦C were found to be significantly different (see figure 5.2): The

hypothesis for this system is a gradual transition of these coatings from a polymer

structure based on a hydrocarbon backbone to one with a Zr-O-Zr backbone. At

500 ◦C many of the organic chain molecules will have evaporated leaving behind

pores and some organic residue; the coating is left in the state of a porous low-

density zirconia-“polymer”. At 700 ◦C, however, the sample is almost entirely

ceramic.

The XRD measurement from the zirconia sample which was heated to 500 ◦C

was having quite broad Bragg peaks, and was found to show mainly cubic struc-

ture. This is not contradictory to the hypothesis about the sample coating being

a low-density zirconia-“polymer” because the SAXS result refers to the nanos-

tructure, which is polymeric and porous. The XRD result shows that the Zr and

O atoms are arranged locally in the same way as in cubic ZrO2, but with more

disorder (broadening). Locally, the structure is cubic (perhaps containing small

amount of tetragonal domains), but the porosity disrupts the alignment of lat-

tice planes and broad Bragg peaks are therefore observed in the measured XRD

pattern (see figure 5.10).
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7.3 The effect of different yttria concentration

From the results of the in situ dipping experiment when the furnace was set to

500 ◦C, it seems that for the yttrium-doped coatings, the more yttria, the more

of the gelation process has taken place.

For all of the samples having different concentrations, the GISAXS experiment

showed that the particle size is increasing as the temperature is increased. The

particle size was found to be almost the same for the samples with the lowest

yttria content (2.04 and 4.17 mol%). The particle size within the sample with

the higher yttria content (19.1 mol%) was found to be significantly smaller (see

figure 6.30).

The Porod slopes extracted from the GISAXS experiments showed that for low

and medium temperatures, the surface structure of the particles go from being

rough (probably mass fractals), becoming smoother (surface fractals), to being

smooth at temperatures around 800 ◦C. Then the surface structure was found to

become rougher again at the highest temperatures, and a correlation was observed

between the yttria content and the temperature for this transition; the more yttria,

the earlier (i.e. at lower temperature) this transition started (see figure 6.30).

The suggested hypothesis for why rougher particles are observed at lower tem-

peratures for higher yttria content is as follows: Growth instabilities occur when

different configurations compete. If there is more yttrium in the structure than

zirconia can accommodate comfortably, there are two competing processes: one

will try to minimise the surface area and the other will try and segregate yttria.
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As a result, yttria-rich pockets form, but they do not fit in with the low-yttria YSZ

structure, resulting in a rougher particle. The more yttria there is, the stronger

is this second process, and the lower is the temperature at which this roughening

occurs. Consequently, we suggest that particles segregate into regions of higher

and lower yttria content at high temperatures. Further investigations are required

which have not been possible in the scope of this project, and they will be discussed

in the Outlook section (Section 8.2).
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Conclusion and Outlook

8.1 Conclusion

Zirconia and yttria-doped zirconia (ZrO2-Y2O3) films, containing different concen-

trations of yttria, have been produced by sol-gel routes and dip-coating, and inves-

tigated using the X-ray techniques SAXS (small-angle X-ray scattering), GISAXS

(grazing-incidence -SAXS) and XRD (X-ray diffraction). The latter has been used

ex situ for structural determination of the films, whilst the small-angle scattering

techniques, SAXS and GISAXS, have been used for studying the development of

the nano-structure of the films under in situ conditions. The main aim of this

work was to investigate how the results obtained from the in situ measurements

could be quantitatively compared, and to figure out the nano-structural behaviour

of the films as they underwent processes such as incremental heating and heating-

and-dip-coating cycles.
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It is not difficult to obtain quantitative SAXS data under in situ heating, since

the sample geometry does not change with increased temperature. For GISAXS

however, this is not quite so simple, and in this thesis I have demonstrated a

procedure which allows data sets measured at different temperatures to be quan-

titatively compared.

The in situ heating GISAXS experiments showed that particles undergo Ost-

wald ripening as the temperature is increased, and that the surface structure of the

particles vary between being rough and being smooth for different temperatures.

The high temperature transition towards rougher particles was found to start at

lower temperatures the higher the yttria content is in the coatings. This suggests

that yttria-rich particles segregate into regions of higher and lower yttria content

at higher temperatures.

These films have also been prepared during an in situ dipping-and-heating

SAXS experiment, and it was found that when the sample was heated to 500 ◦C

between each dip and measurement the coating behaved as a porous low-density

polymer where the local structure is mainly cubic, but could also have domains of

tetragonal structure. When the sample was heated to 700 ◦C, however, the sample

coating was found to form a ceramic.

8.2 Outlook

The nanostructure of zirconia and yttria-doped zirconia coatings was investigated

in this work, and so far only using the techniques XRD, (GI)SAXS and ellipsom-
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etry. In order to obtain more depth-sensitive information about the samples, it

would be interesting to perform an additional GISAXS experiment on the sam-

ples which are heated to higher temperatures (for example 1000 ◦C) using different

incident angles.

These X-ray techniques just mentioned give a good overview of the distribution

of particles, but less information about parameters such as individual particle

shapes. For example, it would be necessary to employ other techniques in order

to validate the hypothesis about the particles segregating into regions of higher

and lower yttria content. As an outlook for future studies, it is suggested that the

coatings should be investigated further, for example using an imaging technique

such as SEM (scanning electron microscopy) or a chemically sensitive imaging

technique, such as PEEM (photoemission electron microscopy).

SAXS and GISAXS was found to be well suited techniques for studying films

and coatings during in situ treatment. The in situ heating measurements are

important for obtaining information about the structure of protective coatings as

the sample is heated to very high working temperature. Moreover, this technique

has a wide range of uses for in situ experiments where dynamic structures of films

need to be studied.
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List of commonly used symbols

Below is a list of symbols used in this thesis, along with a description and the

page number where each symbol is first explained.

−P Porod slope , page 27

2θf Scattering angle parallel to sample plane , page 44

2θ scattering angle , page 17

α(T ) Thermal expansion coefficient , page 73

αc Critical angle of total external reflection , page 34

αf Exit angle of scattered beam , page 44

αi Incident angle , page 32

αt Refracted angle , page 32

ā Average separation distance , page 28

β Broadening of diffraction line (FWHM) , page 131

β Correction to the refractive index, imaginary part , page 39
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δ Correction to the refractive index, real part , page 39

Λ Penetration depth , page 41

λ Wavelength , page 14

êi Unit vector (i = {x, y, z}) , page 16

E Electric field , page 16

k Wave-vector , page 17

kf Wave-vector of the scattered wave , page 17

ki Wave-vector of the incident wave , page 17

kr Wave-vector of specularly reflected wave , page 35

q wave-vector transfer vector , page 17

r′ Distance vector between scattering centre and origin , page 18

r Real space distance vector , page 16

R Intensity reflectivity , page 47

T Intensity transmittivity , page 47

µ Linear absorption coefficient , page 32

µ Mean value , page 22

ω Angular frequency of X-rays , page 17
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List of commonly used symbols

φ Phase , page 18

ρ Mass density , page 34

ρe Electron density , page 19

σ Standard deviation , page 22

θB Bragg angle , page 15

A Amplitude , page 16

A Atomic mass [u] , page 34

A′ Group of physical constants: (NAre)/(2π) , page 38

B Prefactor for Porod term , page 29

C Constant

c Velocity of light in vacuum , page 15

D Sample-Detector distance , page 67

d Distance between lattice planes , page 15

E Energy , page 14

e Magnitude of electronic charge , page 33

f ′ Anomalous correction factor, real part , page 38

f ′′ Anomalous correction factor, imaginary part , page 38
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List of commonly used symbols

F (q, r′) Form factor amplitude , page 20

fa Atomic scattering factor (fa = fa0 + f ′ + if ′′) , page 34

Fhkl Structure factor for a Bragg reflection , page 54

G Prefactor for Guinier term , page 29

h Planck’s constant , page 15

I Intensity , page 18

K Constant used for Scherrer analysis , page 132

me Mass of electron , page 33

N Number of pixels or channels , page 78

n Effective refractive index between two media , page 32

NA Avogadro’s number , page 33

ne Number of electrons , page 29

nf Refractive index for medium f , page 32

ni Relative molar content , page 39

Np Number of irradiated particles , page 22

P (q, r′) Form factor , page 21

R Radius of spherical particle , page 22

210



List of commonly used symbols

r Reflected amplitude coefficient , page 46

re Classical electron radius , page 37

Rg Radius of gyration , page 25

s Pixel size , page 78

S(q) Structure factor , page 28

Sp Surface area of particle , page 30

T Temperature

t Grain size obtained by Scherrer analysis , page 132

t Transmitted amplitude coefficient , page 47

unorm = (R4
gB)/(1.62G) , page 157

Vp Particle volume , page 20

w = σ/
√

2 , page 29

y0 Horizontal position (pixel number) of the beam centre , page 91

z0 Vertical position (pixel number) of sample plane , page 92
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Appendix A

Derivation of the form factor amplitude for a sphere.

The particle form factor amplitude F (q, r′) is related to the Fourier transform

of the shape of the particle, and the derivation is described below. Consider first

the expression for the scattering amplitude from Eq. (2.13). For one single particle,

it takes the form

Ap(q, r′) =

∫

Vp

ρe(r
′)e−iq·r′dr′. (1)

where ρe is the electron density within this particle. By using that the electron

density is constant within the scattering particle,

Ap(q, r′) = ρe

∫

p(r′)e−iq·r′dr′, (2)

where p(r′) is the distribution function. The following derivation is based on

the webpage in [86], but is here simplified and adapted for the relevant situation.

The distribution function for a homogeneous sphere is given by

p(r′) =















1 if |r′| ≤ R

0 elsewhere

(3)

Next, let

W (q, r′) ≡
∫

p(r′)e−iq·r′dr′ (4)
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be the n-dimensional q-space representation of a sphere, and thus the scattering

amplitude becomes

Ap(q, r′) = ρeW (q, r′). (5)

In the case of a sphere of radius R, W (q, r′) is replaced by W (q, R). The sym-

metry of p(r′) simplifies the solution: For any direction of q, it is possible to rotate

the coordinate system to make q coincide with the first axis, q = {q, 0, . . . , 0}.

W (q, R) depend only on the magnitude q, and not its direction, so we only

need to determine the radial profile W (q, R). Using that q = {q, 0, . . . , 0} and

r′ = {r1, r2, . . . , rn}, such that q · r′ = qr1, then

W (q, r′) = W (q, R) = W (q, R) =

∫

VR

e−iqr1dr′ (6)

where the integral is taken over the volume VR. The next step is to scale the

integral in Eq. (6) so that the integration extends over the unit volume V1 of a

sphere of unit radius r̂. Then, r′ = Rr̂, r1 = Rr̂1, dr′ = R3dr̂ and by setting

x = −qR:

W (q, R) = R3

∫

V1

eixr̂1dr̂. (7)

From this, it can be seen that W (0, R) is the volume of an n-dimensional sphere

of radius R, and therefore, due to scaling properties, the ratio (W (q, R))/(W (0, R))

depends only on x. For any value of R, a function of x can be defined such that

220



APPENDICES

sinc(n, x) =
W ((−x/R), R)

W (0, R)
. (8)

Eq. (8) can be described as the normalised radial profile of the Fourier trans-

form of a uniform n-dimensional sphere with unit volume. By rearranging, we see

that

W ((−x/R), R) = W (0, R) · sinc(n, x) (9)

and for three dimensions (n = 3) this becomes

W (q, R) = W (0, R) · sinc(3, x). (10)

The general solution for the first factor is given by

W (0, R) = Rn 2πn/2

3Γ(n/2)
, (11)

and for n=3, Γ(3/2) = (1/2)
√

π and thus

W (0, R) =
4π

3
R3 (12)

for a three-dimensional sphere. The general solution of the second factor in

Eq. (10) is

sinc(3, x) = 3
sin x − x cos x

x3
. (13)
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By putting Eq. (12) and Eq. (13) into Eq. (10), and setting in for x = −qR,

the following expression is obtained

W (q, R) = 3Vp
sin(qR) − qR cos(qR)

(qR)3
(14)

where Vp = (4πR3)/3 is the volume of the spherical particle with radius R. By

comparing Eq. (2.14) and Eq. (5), the form factor amplitude is found to be given

by F (q, R) = W (q, R)/Vp, such that

F (q, R) = 3
sin(qR) − qR cos(qR)

(qR)3
. (15)
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Appendix B

Derivation of the Hosemann model and the structure factor.

Several papers have published equations for the structure factor based on the

Hosemann model, but different versions of this equation were found. Therefore, a

summary mostly based on Vainshtein’s book [87] is given here.

Densely packed particles cause interference in the scattered intensity, and it

is therefore necessary to derive this interference pattern from the distribution

function of particles.

When the probability function of the nearest neighbour is known, we know

that there is another probability function of nearest neighbours to this one, and

so it repeats itself. Say, for example, that the intermolecular distances are not

completely fixed, but vary about an average value ā. The probability function for

for this molecule is given with a certain width. Next, go to the second neighbour.

If starting from the first neighbour, the probability function for the first neighbour,

but displaced a distance ā will be obtained. But now, if instead starting in origin,

the probability of the second neighbour can be found from the first neighbour,

but since the intermolecular distance have a small uncertainty, this uncertainty

will follow through, and cause the probability function of the second neighbour to

have the same shape as the first neighbour, but broader; the standard deviation

increase. It therefore seems logical that the probability function of the second

neighbour is the self-convolution of the first neighbour.

The disposition function A(r) can be used to specify an array of identical
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scattering units in space, such as positions of the centres of gravity. Here we use

the disposition function to describe a set of N points lying at the ends of vectors

rj ,

A(r) ≡
N

∑

j=1

δ(r− rj). (16)

Now, the distribution function is defined as the self-convolution of A(r):

W (r) ≡ A(r) ∗ A(r) =

∫

A(r′)A(r′ − r)dr′ (17)

The structure factor can be found from the Fourier transform of the normalised

distribution function, P (x) = W (x)/N , where P (x) is obtained as follows: First we

find the distribution function for the second neighbour based on the information we

have about the first neighbour. This model uses the convolution of H1 with itself:

H1 is displaced from the origin and has a certain width; convolution produces

once more the same displacement and same broadening. The result is a broader

function of lower peak height,

H2(x) =

∫ ∞

0

H1(x
′)H1(x − x′)dx′ = H1 ∗ H1 = H̃1

2
. (18)

The normalised distribution function is given as

P (x) = H0 +

∞
∑

m=1

[H̃1
m

+ H̃−1
m

], (19)

where
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Figure 1: The normalised distribution function, P (x). The peak at x = 0
is H0(x), whilst the peak to the left and right of it is H−1(x) and H1(x),
respectively. The total normalised distribution function is the sum of each
of these terms. In the figure, a Gaussian distribution function is used for
describing the peaks, each tic on the x-axis is at intervals of x = 10, and the
average separation distance between particles was in this case set to ā = 10x,
such that each tic corresponds to ā. For the first order peaks, H−1(x) and
H1(x), the standard deviation was set to σ = 2

√
2, and for each consecutive

peak the standard deviation increase with
√

2 compared to the previous peak
(because of the self-convolution of the Gaussian function).

H0(x) = δ(x) (20)

is simply the delta function, and it is plotted in figure 1.

The structure factor can now be found by Fourier transform of P (x):
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S(q) = F [P (x)] = F [H0 +
∞

∑

m=1

[H̃1
m

+ H̃−1
m

]] (21)

= F [H0] + F [

∞
∑

m=1

[H̃1
m

+ H̃−1
m

]] (22)

= F [δ(x)] + F [

∞
∑

m=1

H̃1
m

] + F [

∞
∑

m=1

H̃−1
m

] (23)

= 1 +
∞

∑

m=1

Bm(q) +
∞

∑

m=1

B∗m(q) (24)

where we have used that the transform of the delta function is 1, F [H1(x)] ≡

B(q), F [Hm(x)] ≡ Bm(q) and F [H−m(x)] = B∗m(q).

By using the geometric series

∞
∑

m=1

Bm(q) =
B(q)

1 − B(q)
, (25)

we get that

S(q) = 1 +
B

1 − B
+

B∗

1 − B∗
. (26)

The modulus and phase can be used to represent the complex B(q):

B = |B| exp(iφ) and B∗ = |B| exp(−iφ) (27)

This gives the result
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S(q) =
1 − |B|2

1 − 2|B| cos φ + |B|2 , (28)

where it has been used that eiφ +e−iφ = 2 cosφ. The operation of the displace-

ment on a distance ā in object space corresponds to the appearance of a phase

factor in reciprocal space:

exp(iφ) = exp(2πiqā) (29)

such that

φ = 2πqā. (30)

B(q) and P (x) is governed by the format of H1(x). H1(x) is normally not sym-

metric, but we neglect this in the first approximation. The Gaussian distribution

around origin is given by

f(x) =
1√
2πσ

e−
1
2
(x2/σ2). (31)

Next the substitution w ≡ (σ/
√

2) is used:

f(x) =
1

2w
√

π
e−x2/4w2

. (32)

H1 is here a Gaussian curve that is displaced with the distance ā:

227



APPENDICES

H1(x − ā) =
1

2w
√

π
e−(x−ā)2/4w2

(33)

The Fourier transform of f(x) can be solved by

g(q) =

∫ ∞

−∞

f(x)eiqxdx =
1

2w
√

π

∫ ∞

−∞

e−x2/4w2

eiqxdx =
1

2w
√

π
I (34)

where

I =

∫ ∞

−∞

e−x2/4w2

eiqxdx

=

∫ ∞

−∞

e−( x
2w )

2
+iqxdx · eA2q2

e−A2q2

= eA2q2

∫ ∞

−∞

e−
x2

4w2 +iqx−A2q2

dx (35)

where we have used the trick of completing the square. Now we use that

−
( x

2w
− Aq

)2

= − x2

4w2
+

A

w
qx − A2q2 (36)

where we match the cross terms in Eqs. (35) and (36) in order to determine

A. The result is A = iw, and consequently;

A2 = −w2. (37)

From Eqs. (35) and (36), we see that
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I = eA2q2

∫ ∞

−∞

e−( x
2w

−Aq)
2

dx, (38)

and by setting in for A2,

I = e−w2q2

∫ ∞

−∞

e
−

(x−2wqA)2

(2w)2 . (39)

This is a Gaussian integral, and it can be solved by using that

∫ ∞

−∞

e−
(x+b)2

c2 dx = c
√

π. (40)

The result is

I = e−w2q2

2w
√

π (41)

and putting this result back into Eq. (34) shows that the Fourier transform of

the Gaussian probability function f(x) (Eq. (32)) is given by

g(q) = e−w2q2

. (42)

Displacement of a function (x → x− ā) causes the result of the Fourier trans-

form to be multiplied with another phase factor

F [H1(x − ā)] = g(q)e−iqā, (43)

such that
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Figure 2: The structure factor from Eq. (46) plotted using ā = 8 nm and
w = 1.3 nm (σ = 1.84 nm).

F [H1(x − ā)] = e−w2q2

e−iqā. (44)

However, only the amplitude and not the phase are needed for Eq. (28):

|B| = exp(−w2q2). (45)

Putting this into Eq. (28), the following expression for the structure factor is

obtained:

S(q) =
1 − exp(−2w2q2)

1 − 2 exp(−w2q2) cos(qā) + exp(−2w2q2)
(46)

where we have used that cos φ = cos(2πqā) = cos(qā). This expression is

plotted in figure 2.
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Appendix C

Octave script for performing the reflectivity calculations.

clear all; close all;

format short

% Author: Kristin Hoydalsvik, khoydalsvik@gmail.com

% Date: 8th Feb. 2010

%%%%%%%%%%%%%%%%%%%%%%%% Input %%%%%%%%%%%%%%%%%%%%%

% experimental parameters

E=10008; % X-ray energy [eV]

alpha_in=0.257 % incident angle [degrees]

% material parameters

rho=5150; % Mass density [kg/m3]

rho_s=2330; % Mass density of substate [kg/m3]

t=113; % Film thickness [nm]

% material

n(1) = 0; % Element 1: Si

n(2) = 22.31; % Element 2: Zr

n(3) = 1.94; % Element 3: Y

n(4) = 47.53; % Element 4: O

%%%%%%%%%%%%%%%%%%%%%%%% Constants %%%%%%%%%%%%%%%%%%

h=4.135667*10^(-15); % Planck’s constant [eV*s]

c=299792458; % Speed of light [m/s]

Aprime=2.7009*10^(11); % constant in delta [m/kg]

E1=10000;

E2=15000;

% Molar mass:

A(1) = 28.086; % Si

A(2) = 91.224; % Zr

A(3) = 88.906; % Y

A(4) = 15.999; % O

% proton number:

Z(1) = 14; % Si

Z(2) = 40; % Zr
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Z(3) = 39; % Y

Z(4) = 8; % O

% Anomalous scattering factor (from e.g.

% http://lipro.msl.titech.ac.jp/scatfac/scatfac.html)

% (for l=1.24 ):

fprime(1) = 0.1841; % Si

fprime(2) = -0.6301; % Zr

fprime(3) = -0.7198; % Y

fprime(4) = 0.0311; % O

fdprime(1) = 0.2164; % Si

fdprime(2) = 1.5318; % Zr

fdprime(3) = 1.3790; % Y

fdprime(4) = 0.0204; % O

% X-Ray Mass Attenuation Coefficients divided by density:

% From http://physics.nist.gov/PhysRefData/

% XrayMassCoef/tab3.html:

% Silicon:

mrE1(1)=33.89; % mu/rho [cm2/g] for E = 10000 eV

mrE2(1)=10.34; % mu/rho [cm2/g] for E = 15000 eV

% Zirconium:

mrE1(2)=74.17; % mu/rho [cm2/g] for E = 10000 eV

mrE2(2)=24.63; % mu/rho [cm2/g] for E = 15000 eV

% Yttrium:

mrE1(3)=68.71; % mu/rho [cm2/g] for E = 10000 eV

mrE2(3)=22.79; % mu/rho [cm2/g] for E = 15000 eV

% Oxygen:

mrE1(4)=5.952; % mu/rho [cm2/g] for E = 10000 eV

mrE2(4)=1.836; % mu/rho [cm2/g] for E = 15000 eV

%%%%%%%%%%%%%%%%%%%%%%%% Calculations %%%%%%%%%%%%%%%%%%

nd=size(n)(2);

%%%% X-ray attenuation %%%%%

% Find weight ratio for the components in the molecule:

for i=1:nd

M(i)=n(i)*A(i);

endfor

mass=sum(M);
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for i=1:nd

w(i)=M(i)./mass;

endfor

% Extrapolating to find the mr value for used X-ray energy

fr=(E-E1)/(E2-E1);

for i=1:nd

mrE(i)=mrE1(i)-(mrE1(i)-mrE2(i))*fr; % mr for given X-ray energy E

endfor

% Adding up the contributions from the different components:

for i=1:nd

mr(i)=w(i)*mrE(i);

endfor

mr_tot=sum(mr); % mu/rho [cm2/g] for compound molecule

% Linear attenuation coefficient:

rho_g=rho/1000; % density in [g]

mu=mr_tot*rho_g % [cm-1]

%%%%% delta and beta %%%%%%%

lambda=(h*c)/E; % wavelength [m]

d=Aprime * rho * (lambda)^2 ; % prefactor

d_s=Aprime * rho_s * (lambda)^2; % prefactor for the substrate

% evaluate the sums in delta and beta:

for i=1:nd

T1(i)=(n(i).*(Z(i)+fprime(i)));

endfor

T1n=sum(T1);

for i=1:nd

T2(i)=(n(i).*fdprime(i));

endfor

T2n=sum(T2);

for i=1:nd

N(i)=(n(i).*A(i));

endfor

Nn=sum(N);

delta=d*(T1n./Nn)

beta=d*(T2n./Nn)
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%substrate

delta_s=d_s*(Z(1)+fprime(1))./(A(1));

beta_s=d_s*(fdprime(1))./(A(1));

% critical angle

alpha_c_rad=sqrt(2*delta);

alpha_c=(alpha_c_rad*180)/pi() %critical angle [degrees]

%%%%% refractive index %%%%%%%

% Find ni

clear i

n0=1;

n1=1-delta-i*beta; % film

n2=1-delta_s-i*beta_s; % substrate

% effective refractive index

neff01=n1/n0;

neff12=n2/n1;

%format short

% effective angle inside film/substrate

alpha_in_rad=(alpha_in*pi()/180);

alpha1_rad=acos(cos(alpha_in_rad)/neff01);

alpha1=(alpha1_rad*180)/pi()

alpha2_rad=acos(cos(alpha1_rad)/neff12);

alpha2=(alpha2_rad*180)/pi()

%%%% Wavevector %%%%%

% Find k_(z,i) From Gibaud1999, eq. 3.67

clear i;

k0 = (2*pi()) / lambda; % [m]

kz0 = -k0*sin(alpha_in_rad);

kz1 = -k0*sqrt(alpha_in_rad^2-2*delta-2*i*beta);

kz2 = -k0*sqrt(alpha_in_rad^2-2*delta_s-2*i*beta_s);

%%%% Transmission/absorption %%%%%

% travel distance in film:

tcm=t*10^(-7); % film thickness in [cm]

d=tcm/sin(real(alpha1_rad)); % 1/2 travel distance [cm]

tau=exp(-2*mu*d)
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%%%% Penetration depth %%%%%

L=((lambda)/(4*pi()*imag(alpha1_rad)))*10^9 % [nm]

%%%% Fresnel coefficients %%%%%

clear i

r01=(kz0-kz1)/(kz0+kz1);

R1=r01*conj(r01)

t01=(2*kz0)/(kz0+kz1);

T1=t01*conj(t01)

r12=(kz1-kz2)/(kz1+kz2);

R2=r12*conj(r12)

t10=(2*kz1)/(kz1+kz0);

T3=t10*conj(t10)
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Appendix D

cif -files used for cubic and tetragonal zirconia.

The coordinates and positions are taken from International Tables

for Crystallography, Volume A: Space-group Symmetry.

Cubic zirconia: Space group: Fm3̄m (No. 225)

#############################################################

loop_

_symmetry_equiv_pos_site_id

_symmetry_equiv_pos_as_xyz

1 x,y,z

2 x,y+1/2,z+1/2

3 x+1/2,y,z+1/2

4 x+1/2,y+1/2,z

_cell_length_a 5.135

_cell_length_b 5.135

_cell_length_c 5.135

_cell_angle_alpha 90

_cell_angle_beta 90

_cell_angle_gamma 90

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

Zr1 Zr 0.0000 0.0000 0.0000

O1 O 0.2500 0.2500 0.2500

O2 O 0.2500 0.2500 0.7500
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Tetragonal zirconia: Space group: P42/nmc (No. 137)

#############################################################

loop_

_symmetry_equiv_pos_site_id

_symmetry_equiv_pos_as_xyz

1 x,y,z

2 -x+1/2,-y+1/2,z

3 -y+1/2,x,z+1/2

4 y,-x+1/2,z+1/2

5 -x,y+1/2,-z

6 x+1/2,-y,-z

7 y+1/2,x+1/2,-z+1/2

8 -y,-x,-z+1/2

9 -x,-y,-z

10 x+1/2,y+1/2,-z

11 y+1/2,-x,-z+1/2

12 -y,x+1/2,-z+1/2

13 x,-y+1/2,z

14 -x+1/2,y,z

15 -y+1/2,-x+1/2,z+1/2

16 y,x,z+1/2

_cell_length_a 3.596

_cell_length_b 3.596

_cell_length_c 5.177

_cell_angle_alpha 90

_cell_angle_beta 90

_cell_angle_gamma 90

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

Zr1 Zr 0.75000 0.25000 0.25000

O1 O 0.25000 0.25000 0.05000
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