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Abstract

Known as decoherence, the unavoidable interaction of a quantum system with its
surrounding environment is usually considered to be detrimental for quantum in-
formation processing. In this thesis the coherent, open loop control of such open
systems is studied. Concepts from quantum control theory and the theory of open
quantum system are adopted in order to fight decoherence and implement quantum
gates in a noiseless manner. In particular, Lie algebraic methods and numerical
optimization tools are used to investigate the control properties of a single spin in-
teracting with a spin environment. We show that, independent of the size of the
environment, every unitary transformation can be implemented on the system spin
through a single control field. We proceed by investigating dynamical decoupling,
a method to suppress the interactions with the environment, for finite- and for in-
finite dimensional systems. We prove that every finite dimensional system can be
protected from decoherence, even if the environment is infinite dimensional, whereas
for noise described by a Lindblad master equation dynamical decoupling will never
succeed. This will lead to a new method to distinguish decoherence from intrinsic
noise terms. We further prove that not every infinite dimensional system can be
protected from decoherence through dynamical decoupling. Afterwards we investi-
gate dynamical decoupling of systems that are described by quadratic Hamiltonians,
showing that such interactions can always be suppressed with two simple operations.
In the last part we investigate the coherent control of a Lindblad master equation.
We show that a strong noise process exhibiting a decoherence free subspace can
substantially increase the number of unitary operations that can be implemented,
allowing us to fully control parts of the system. Afterwards we develop a scheme to
make Hamiltonians and Lindbladians commutative by adding an auxiliary system.
The old, possibly non-commutative dynamics, is recovered through a non-selective
measurement.
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1 Introduction

The last decades have witnessed spectacular technological progress, to the extent

that now the implementation of high-fidelity quantum technologies can be thought

of as a goal belonging to the not-so-distant future. However, the loss of quantum co-

herence due to the unavoidable interaction of a quantum system with its surrounding

environment [1], i.e. decoherence, represents one of the major obstacles. Quantum

features one wants to use for quantum information tasks are quickly washed out by

the unavoidable coupling with the environment. Analogous to the wind driving a

sailing boat in an undesirable direction, the process of decoherence drives a quan-

tum system towards a classical ensemble of states. On the one hand the quest for a

fundamental understanding of the sources and mechanisms of decoherence attracts

substantial research effort, while on the other the development of strategies to mini-

mize its detrimental effect, in view of practical applications, is also a major research

focus. Although distinct, these two research lines are deeply intertwined, since the

deeper the understanding of such open systems, the more effective the strategies to

fight decoherence can be.

In this respect quantum control theory offers a valuable potential. The general

idea behind quantum control is to use the interaction of a quantum system with

properly tailored classical control fields to steer its dynamics towards the desired

outcome. It has been successfully used for various purposes, for instance in order to

drive chemical reactions, atomic and molecular transitions, to control spins for nu-

clear magnetic resonance and to implement unitary gates for quantum information

tasks [2]. In the presence of an environment, control pulses have been calculated
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CHAPTER 1. INTRODUCTION

to decrease the induced noise and to study fidelity limits for the implementation of

unitary gates that are subject to decoherence [2]. A natural first step is to charac-

terize the operations that can be implemented in the presence of the environment

with the help of control pulses. Although substantial progress has recently been

made [2], the characterization of the operations that can be implemented in an open

system setting remains a challenging task. Additionally not much is known about

the relevant timescales needed to achieve a target operation. Therefore the following

questions deserve further investigations regarding open systems:

I Which operations can be achieved by applying control fields to the system?

II What are the relevant time scales, and in particular how long does it take to

reach a desired target?

Sometimes one is mainly interested in protecting the system from decoherence with-

out additionally implementing a specific operation. Moreover, we might not be able

to identify all relevant interactions leading to decoherence. We are thus aiming

here for a strategy to protect the system from decoherence, regardless of how the

interactions with the environment appear. Such a strategy is dynamical decoupling

[3]. The application of frequent, instantaneous control pulses makes it possible to

average the system-environment interactions to zero. In this respect it is a specific

instance of quantum control. Its particular strength is that it is applicable even if

the details of the system-environment coupling are unknown. However, it is not clear

how efficient dynamical decoupling can be in the presence of other noise sources.

Furthermore, for continuous variable systems, such as quantum harmonic oscillators,

no general framework is known to protect an infinite dimensional quantum system

from decoherence. We then may ask:

III Can we always suppress the interactions with the environment through dy-

namical decoupling in order to protect a quantum system from decoherence,

even if the system is described by an infinite dimensional system?

12



CHAPTER 1. INTRODUCTION

IV Can we learn something about the environment, and in particular other noise

sources, by observing how the system reacts if we apply decoupling?

Having posed these questions, one may ask as well whether it is it always neces-

sary to suppress the detrimental effect of the environment? One of the milestones

in the last decades, regarding the control of decoherence, is the observation that

sometimes noise can be beneficial. Rather than fighting against the environment,

dissipative state preparation and dissipative quantum computing turned out to be

valuable alternatives to unitary gate designs [4]. Inspired by these ideas, can we gain

something from a noisy dynamics that is accompanied by some controls? Changing

the paradigm:

V Instead of fighting against decoherence can quantum control make use of the

environment as a resource?

In order to address these question we first need to think about how we formulate

the control of an open quantum system. In this thesis we focus on open loop control

schemes, that is we compute the control fields only based on the target we want to

achieve and the underlying model describing the system dynamics. Regarding the

control of an open quantum system there are two approaches one can follow. In the

first approach one begins with an effective description of the reduced dynamics in

terms of a Lindblad-type master equation, usually relying on approximations based

on time scale arguments. Then the controls are added coherently, such that after-

wards one can investigate the control properties of the Lindblad master equation. In

the second approach one starts with a full system-environment description through a

Hamiltonian and studies the control properties of the total system using well known

concepts from closed quantum systems. Following from this, one can conclude the

control properties of the reduced dynamics. Unfortunately, when it comes to infinite

dimensional environments, the adoption of methods from closed systems is difficult

since not much is known about the control of an infinite dimensional system. On the

other hand, regarding the first approach, the characterization of the control prop-

erties of the Lindblad master equation is equally challenging. Moreover, as we will
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CHAPTER 1. INTRODUCTION

explain later, these two approaches lead to different predictions for the controlled

system dynamics.

The thesis can be read as going from one approach for describing the control of an

open quantum system to another, whereas the middle Chap. 4, about dynamical

decoupling, shows in a dramatic way the differences between the two approaches.

In the preliminary chapter we start by introducing concepts from open quantum

systems and quantum control theory that are used throughout the thesis and are

relevant for understanding the presented work. Afterwards we briefly characterize

the difficulties in combining the two fields by reviewing the two afore mentioned

approaches for formulating the control of an open quantum system. In this section

we give a summary of the state of the field. The following chapters focus on the

questions I-V. At the beginning of each chapter we give a detailed literature overview

of the aspects that are addressed.

Because it is not clear whether the approximations yielding a Lindblad-type master

are valid in the presence of control fields, in order to address questions I and II, we

begin in Chap. 3 with the examination of the control properties of a specific system-

environment Hamiltonian. To avoid the difficulties arising for infinite dimensional

environments, we investigate a model that is finite but scalable, that is we character-

ize the control properties of a single spin interacting with a spin environment. Using

Lie algebraic and group theoretical methods, we determine the unitary operations

that can be implemented on the system spin. Additionally we numerically study the

minimum time needed in order to implement these operations with high precision

dependent on the size of the environment. Instead of implementing specific gates

through the controls, in Chap. 4 we proceed by investigating the suppression of de-

coherence through dynamical decoupling. In order to address questions III and IV

we begin by studying dynamical decoupling for finite dimensional quantum systems

that are subject to noise, either described by a system-environment Hamiltonian or

by a Lindblad-type master equation for the reduced dynamics. These investigations

will lead to a method which allows us to distinguish between decoherence and in-

trinsic non-unitary dynamics. Afterwards we establish a framework for dynamical
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CHAPTER 1. INTRODUCTION

decoupling of infinite dimensional quantum systems, and we analyze its performance

for a quantum harmonic oscillator interacting with a bosonic environment. It will

turn out that we cannot suppress all types of noise sources using dynamical decou-

pling. In particular, not every infinite dimensional system can be decoupled from

the environment, moreover, dynamical decoupling will never succeed for non-unitary

dynamics described by a Lindblad-type master equation. Since it is hopeless to fight

against such noise sources with unitary operations we try to use them, tackling ques-

tion V. Switching the approach, in Chap. 5 we proceed by studying the coherent

control of the Lindblad master equation. In the presence of a strong noise process

we analyze the implementation of unitary gates on a subset of states that are free

from decoherence. We will see that such a noise process can turn two commuting

Hamiltonians into non-commuting ones, allowing us to implement universal unitary

operations. We will build upon this idea in Chap. 6 by presenting a framework

that allows us to make Lindblad operators and Hamiltonians commutative, before

discussing several applications of this scheme.
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2 Preliminaries

We begin by introducing the theory of open quantum systems, methods and concepts

from quantum control theory, a characterization, and an overview of the difficulties

arising in combining the two fields. These introductory sections have the aim of

providing an overview to the non-expert reader of the concepts and the terminology

used throughout the thesis. They focus on specific aspects relevant for the under-

standing of the rest of the manuscript. Clearly they are far from complete and there

are many good textbooks that cover the different subjects in detail. Regarding the

theory of open quantum system the Sec. 2.1.1, 2.1.4, 2.1.4 are along the lines of

[1, 5, 6], whereas Sec. 2.1.2 is orientated on [7, 8]. The last Sec. 2.1.5 about collapse

models is a relatively new field and we point to review articles within the section. We

proceed with an introduction into quantum control theory, where the main concepts

can be found in [9] and for a deeper mathematical understanding of control theory

in general we refer to [10, 11]. At the end of this chapter we then finally come to the

subject of this thesis. We introduce two approaches for controlling an open quantum

system and give an overview of the state of the art of the field. Throughout the

preliminary chapter we highlight key results by referring to original research papers

within each section.

2.1 Open quantum systems

Any realistic quantum system interacts with its surrounding environment, which

usually consists of many degrees of freedom. This has the effect that quantum
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features one wants to use, for example for quantum information tasks, are quickly

washed out so that the implementation of quantum gates becomes noisy. The un-

derstanding and the control of this process is therefore of great importance for the

development of new quantum technologies, as well as for a fundamental understand-

ing of the quantum-to-classical transition. Unfortunately, in most of the cases, a

complete microscopic description of system and environment is not feasible because

of the many degrees of freedom involved in the dynamics. However, we are in fact

interested in the dynamics of the quantum system itself and thus in a description of

the system dynamics that includes the effect of the environment. Such a description

can be given in terms of quantum dynamical maps and under certain approxima-

tions it is possible to describe the system dynamics with a differential equation that

includes the effect of the environment. In the following three sections we review how

such dynamical maps arise, which properties they have, and how a description in

terms of a differential equation for the system state can be obtained. By introducing

the concept of decoherence afterwards, we quantify a bit the lack of “quantumness”

due to the interaction with the environment. This brings us to the question whether

the quantum-to-classical transition can be explained with this concept. We briefly

discuss the problems of this approach and how the introduction of collapse models

try to resolve them.

2.1.1 From closed to open quantum systems

According to quantum mechanics the evolution of a state vector | (t)i 2 H, with

H being the Hilbert space of the quantum system, is governed by the Schrödinger

equation

d

dt
| (t)i = �iH(t)| (t)i, (2.1.1)

where H(t) is the (possibly time dependent) Hamiltonian of the system. We denote

by S(H) the state space of H and by B(H) the space of all bounded operators acting
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CHAPTER 2. PRELIMINARIES

on H. Here and throughout the thesis we set ~ = 1. Since the Schrödinger equation

is a linear first order differential equation its solution is given by

| (t)i = U(t, t0)| (t0)i, (2.1.2)

where the time evolution operator

U(t, t0) = T̂ exp

✓

�i

Z t

t0

dt0 H(t0)

◆

, (2.1.3)

can be obtained by integrating (2.1.1). The Hamiltonian does not necessarily com-

mute with itself at different times, which is the reason why the time ordering

operator T̂ , that orders products of time dependent operators from right to left,

was introduced. Because the Hamiltonian is a self-adjoint operator we have that

U(t, t0)U
†(t, t0) = U(t, t0)

†U(t, t0) = 1, i.e U is a unitary operator. In fact it can

be shown that the only transformations mapping state vectors into state vectors

are unitary transformations. We call systems which are described by a unitary

time evolution closed quantum systems. They are characterized by the fact that

their dynamics can always be reversed by applying a unitary transformation U�1.

Substituting the solution (2.1.2) into the Schrödinger equation (2.1.1) we obtain a

differential equation for the time evolution operator

U̇(t, t0) = �iH(t)U(t, t0), U(t0, t0) = 1, (2.1.4)

to which we refer as the Schrödinger equation of the time evolution operator. Here it

can already be mentioned that one aim of quantum control theory is to characterize

the possible solutions to this equation. If the system is described by a density

operator ⇢(t) 2 S(H), rather than a state vector, the dynamics is described by the

Liouville-von Neumann equation

⇢̇(t) = �i[H(t), ⇢(t)]. (2.1.5)

It can easily be checked that its solution reads

⇢(t) = U(t, t0)⇢(t0)U
†(t, t0) = Ut,t0(⇢(t0)), (2.1.6)
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where we call the map

Ut,t0(·) = T̂ exp

✓Z t

t0

dt0Kt0(·)

◆

, (2.1.7)

which is generated by Kt(·) = �i[H(t), ·], a unitary map.

In order to introduce the notion of an open quantum system we decompose the total

system into the system of interest (S) and the environment (B), sometimes called

a bath. The total Hilbert space is then decomposed as

H = HS ⌦HB, (2.1.8)

with dS and dB being the dimension of HS and HB respectively, where we consider

finite dimensional quantum systems unless otherwise stated. In general the environ-

ment consists of many degrees of freedom so that the solution of the Schrödinger- or

the Liouville-von Neumann equation often becomes unfeasible. On the other hand,

we are mainly interested in the evolution of observables of the quantum system S.

Consider for example an observable M̃ = M⌦1B that acts only non-trivially on the

system. Its mean value as a function of time is given by hM̃i(t) = tr{(M ⌦ 1B)⇢(t)}

with ⇢(t) being the state at time t of the composite system. Fixing a basis, we obtain

hM̃i(t) =
PdS

i=1h S
i |M

⇣

PdB
j=1h B

j |⇢(t)| 
B
j i
⌘

| S
i i. If we introduce the partial trace

trB{·} =
PdB

j=1h B
j | · | 

B
j i over B, and assume that the state of the total system is

initially uncorrelated ⇢(t0) = ⇢S(t0)⌦ ⇢B(t0) with ⇢S 2 S(HS) and ⇢B(t0) 2 S(HB),

we find hMi(t) = tr{M⇢S(t)}. Thus the dynamical properties of the mean value are

determined by a dynamical map

Et,t0 : ⇢S(t0) ! ⇢S(t), (2.1.9)

which is of the form

Et,t0(·) = trB{U(t, t0)( · ⌦ ⇢B(t0))U
†(t, t0)}. (2.1.10)

Note that in general the map (2.1.10) is not a unitary map because U(t, t0) correlates

the system with the environment, unless U(t, t0) = US(t, t0)⌦UB(t, t0). System and

environment exchange information, henceforth we call a system whose evolution is
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not unitary an open quantum system. One might wonder if the dynamics of an open

quantum system can be reversed by applying the inverse of the map E . It can be

shown that the inverse of a map E , mapping quantum states into quantum states,

exists if and only if the map is a unitary map. In this sense an open quantum system

is irreversible. The crucial point is here that the inverted map has to preserve the

properties of a quantum state. In the following we review some important properties

of these maps, which are used throughout this thesis.

2.1.2 Completely positive trace preserving maps

It was already mentioned that the only transformations which map state vectors into

state vectors are unitary transformations. The question arises what characterizes a

map E that maps density operators into density operators? To begin let us recall that

the density operator ⇢ is hermitian, positive, and has trace one. Additionally we have

as an inherent quantum mechanical requirement that the map has to preserve convex

combinations of density operators. Note that any convexity and positivity preserving

map on the set of density operators must necessarily be linear when extended to the

full linear space of matrices. Interestingly, if we relax this condition, it can be shown

that the non-signaling condition can be violated [7]. Clearly E has to preserve the

properties of the density operator. Therefore we need tr{E(⇢)} = 1 and E(⇢) � 0

for all quantum states, whereas positivity implies that hermiticity is preserved1.

However, positivity alone is not sufficient. If we introduce an auxiliary system with

finite dimensional Hilbert space HB, every quantum state ⇢ 2 S(H ⌦ HB) should

be mapped into another quantum state, even if a map Ẽ = E ⌦ id acts only non-

trivially on parts of the system. Thus positivity on the extended Hilbert space is

required. Maps that satisfy these requirements are called completely positive and

trace preserving (CPTP).

1Note that here and throughout the thesis we work in the Schrödinger picture. Including the
Heisenberg picture, i.e maps acting on effects rather than states, we generally need that positive
operator are mapped into positive operators. Furthermore for maps that do not provide a
complete description of the process we have the weaker condition 0  tr{E(ρ)}  1. These
maps are called CP maps.
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To summarize, a CPTP map

• preserves the trace:

tr{E(⇢)} = 1, 8⇢ 2 S(H). (2.1.11)

• preserves convex combinations (linearity):

E(
X

i

pi⇢i) =
X

i

piE(⇢i) with 0  pi  1,
X

i

pi = 1. (2.1.12)

• is completely positive:

(E ⌦ id)(⇢) � 0, 8⇢ 2 S(H⌦HB), (2.1.13)

for every finite-dimensional extension of the Hilbert space.

We conclude that maps that map quantum states into quantum states are those

that are completely positive and trace preserving, and in the language of quantum

information theory they are called quantum channels.

We already saw in the last section that a CPTP map arises from a unitary evolution

acting on the Hilbert space of system and environment, followed by the partial trace

over the degrees of freedom of the environment. There are several ways to represent

a CPTP map, which we are going to discuss briefly in the following.

Let E : S(H) ! S(H) be a CPTP map with dS being the dimension of the Hilbert

space, then:

Stinespring dilation: there exists an auxiliary Hilbert spaceHB, a pure state |�ih�| 2
S(HE) and a unitary operator U acting on H⌦HE such that

E(⇢) = trB{U(⇢⌦ |�ih�|)U †}, 8⇢ 2 S(H), (2.1.14)

where the dimension of the auxiliary Hilbert space does not need to exceed

d2S. In words, every CPTP map can be represented as a unitary evolution on

a larger Hilbert space followed by a reduction through the partial trace. The

Stinespring dilation is unique up to unitary rotations of the ancilla system.
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Kraus form: every E can be written in the form

E(⇢) =
r
X

j=1

Mj⇢M
†
j , (2.1.15)

where the so called Kraus operators Mj = h B
j |U |�i can be optained from the

Stinespring dilation by taking {| B
j i}dBj=1 as basis for HB with dB being the

dimension of the auxiliary Hilbert space and r  d2S is the minimal number of

Kraus operators. The trace preserving condition (2.1.11) yields
Pr

j=1 M
†
jMj =

1.

Choi-Jamiolkowski Isomorphism for CPTP maps: there is a one-to-one correspon-

dence between E and a subset of the state space S(H ⌦ H) defined through

the mapping

J : E 7! J(E) = (E ⌦ id)(|ΩihΩ|), (2.1.16)

with |Ωi = 1p
dS

PdS
i=1 |ii ⌦ |ii being the maximally entangled state. One can

easily check that J is a density operator, which we call the Choi state, and in

which all properties of the map E are encoded. Its reduced state is the fully

mixed state, and for unitary maps E(·) = U(·)U † the Choi state is a pure state.

The Choi-Jamiolkowski isomorphism relates CPTP maps to quantum states, making

it possible to represent E as a matrix. There are also several other ways of obtaining

a matrix representation for a quantum channel by fixing an operator basis. This

procedure will be used in the next section to obtain the vector of coherence represen-

tation of the Lindblad master equation. Another straightforward way to represent

quantum channels as matrices is to vectorize the density operator according to the

rule (row vectorization)

vec(⇢) := (⇢1,1, ⇢1,2, . . . , ⇢1,ds , . . . , ⇢ds,1, . . . , ⇢ds,ds)
T ⌘ |⇢i, (2.1.17)

with ⇢n,m, n,m = 1, . . . , dS being the matrix elements of ⇢ in a certain basis. Using

the identity vec(ABC) = A⌦CT |Bi, we obtain for the Kraus representation (2.1.15)
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of a quantum channel

Ê ⌘ vec(E(⇢)) =
r
X

j=1

Mj ⌦ M̄j|⇢i, (2.1.18)

where M̄j is the complex conjugate of Mj. The CPTP map is now represented by

a d2S ⇥ d2S matrix acting on a vector of length d2S. Note that this representation is

basis dependent, and in contrast to the Choi state, it does not have the properties

of a quantum state. The matrix representation Ê of a quantum channel is related

to the Choi state J(E) through Ê = dSJ
Γ(E), where JΓ is obtained from reshuf-

fling the matrix elements of the Choi state in a certain basis according to the rule

hm,n|JΓ(E)|k, li = hm, k|J(E)|n, li [7]. Later on the Choi state, as well as the ma-

trix representation Ê , will be used to numerically calculate control fields in an open

quantum system setting. Throughout the thesis we will use both representations,

whereas from now on we explicitly say when the representation Ê is used, without

indicating it with a hat.

Now we come back to the dynamical properties of the CPTP map Et,t0 given by

(2.1.10). One of the most important problems arising in open quantum systems is

the relation between the continuity of time and the CPTP map Et,t0 . Since time is

continuous, one would expect that an evolution between t0 and t can be partitioned

in an evolution between [t1, t0] and [t, t1], such that the total CPTP map can be

written as a concatenation Et,t0 = Et,t1Et1,t0 . However, this in general is not true!

Indeed the problem arises with Et,t1(⇢S(t1)) = trB{U(t, t1)⇢(t1)U
†(t, t1)} where ⇢(t1)

is the state of the total system at time t1. Generally this state cannot be written

as a tensor product of the state of the system S and the environment B, because

the evolution U(t, t0) correlates both systems and it depends on what initial states

⇢S(t0), ⇢B(t0) we are taking. Hence Et,t1 is in general not a CPTP map.2 As a con-

sequence the dynamics of an open quantum system can in general not be described

by a differential equation. For further discussion of this problem we refer to [5].

Nevertheless, under certain approximations, the correlations that are built can be

2Even the definition of Et,t1 as a map does not really work since it cannot be applied to arbitrary
density operators. The state ρS(t1) must come from the specific total system evolution U .
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neglected on an appropriate time scale and we will see in the next section that then

a description of the dynamics in terms of a differential equation becomes possible.

2.1.3 Lindblad form

Let us suppose that we can decompose the CPTP map Et2,t0 into two CPTP maps,

so that their concatenation

Et2,t0 = Et2,t1Et1,t0 , (2.1.19)

maps a quantum state at time t0 into a quantum state at time t2. This is called the

divisibility criterion. Since the evolution does not depend on previous time steps,

divisibility is often taken to be the definition of a Markovian evolution [12]. We

concentrate on an important special case, assuming that the CPTP maps depend

only on time differences, t = t2 � t1, s = t1 � t0, which would be the case for

time independent Hamiltonians in (2.1.7). Then Et ⌘ Et2,t1 forms a one parameter

semigroup {Et : t � 0}, i.e,

Et+s = EtEs, E0 = id, 8t, s 2 R+, (2.1.20)

and we assume that Et depends continuously on time 3 implying differentiability in

a finite dimensional setting. Now we consider

⇢(t+∆t)� ⇢(t) = (Et+∆t � Et)⇢(0),

= (E∆t � id)⇢(t), (2.1.21)

and we note that the divisibility criterion was used. Dividing by ∆t and taking the

limit ∆t ! 0 we obtain the differential equation

⇢̇(t) = L⇢(t), (2.1.22)

called the master equation, where it can be shown that the generator

L = lim
∆t!0

E∆t � id

∆t
, (2.1.23)

3in a sense that when t ! t0, kEt(ρ)� Et0(ρ)k ! 0, 8ρ 2 S(H)
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always exists [13]. The solution of (2.1.22) is given by a family of CPTP maps

Et = eLt, (2.1.24)

which we denote from now on by Λt. Clearly, for a unitary evolution, Λt is just given

by the solution of the Liouville-von Neumann equation (2.1.5) with a time indepen-

dent Hamiltonian, but in general the generator L does not have this commutator

form. It can be proven that a map L is the generator of the solution (2.1.24), i.e.

of continuous dynamical semigroups of CPTP maps, if and only if it can be written

in the form

L(⇢) = �i[H, ⇢] +
X

j

�j(2Lj⇢L
†
j � (L†

jLj⇢+ ⇢L†
jLj)), (2.1.25)

with �j � 0 and H = H†. This form is called the Lindblad form, where L is called

the Lindbladian and we refer to

D(⇢) =
X

j

�j(2Lj⇢L
†
j � (L†

jLj⇢+ ⇢L†
jLj)), (2.1.26)

as the dissipative part of the dynamics. The result (2.1.25) was proven by Gorini,

Kossakowski and Sudarshan for finite dimensional systems [14], by Lindblad for

infinite dimensional system with bounded operators [15], and independently Chris-

tensen and Evans found a more compact form [16], which will be used and dis-

cussed later. Note that for the coherently controlled master equation, which will

be introduced later, the Hamiltonian and thus the Lindbladian becomes time de-

pendent L(t)(·) ⌘ Lt(·), so that the solution to the master equation reads Λt =

T̂ exp(
R t

0
dt0 Lt0).

Before we introduce two matrix representations of the Lindbladian in the next sec-

tion, we first want to introduce some terminology. We call a CPTP map unital if

it preservers the identity, i.e. E(1) = 1. In other words, the totally mixed state is

unaffected by the open system dynamics. Note that if L(1) = 0 the solution of the

Lindblad master equation (2.1.24) is unital.
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Matrix represenations of the Lindblad form

The vectorization procedure of the density operator (2.1.18) can be used to represent

the Lindbladian L as a d2 ⇥ d2 matrix with d being the dimension of the quantum

system. One finds

L = �i[H ⌦ 1� 1⌦ H̄] +
X

j

�j(Lj ⌦ L̄j � (L†
jLj ⌦ 1+ 1⌦ LT

j L̄j)), (2.1.27)

such that the time evolution of the density operator ⇢, obtained from the solution

of the Lindblad master equation (2.1.24), is described by the evolution of a vector

|⇢i 2 C
d2 in a complex vector space of dimension d2. Since ⇢ is hermitian and has

trace one, it is possible to describe the time evolution of ⇢ in terms of the time

evolution of a vector v 2 R
d2�1 in a real, d2 � 1 dimensional vector space to which

we refer as the vector of coherence representation [13]. More explicitly, if we choose

an orthonormal operator basis {Bj}
d2�1
j=1 , with

tr{Bi} = 0, Bi = B†
i , tr{BiBj} = �i,j, (2.1.28)

of traceless and hermitian d⇥ d matrices, the density operator takes the form

⇢ =
1

d
1+

d2�1
X

j=1

vjBj, (2.1.29)

where vj = tr{Bj⇢}. If we collect the coefficients vi in a vector v = (v1, . . . , vd2�1)
T ,

the master equation (2.1.22) with the Lindbladian (2.1.25) can be written as

v̇ = Av + q0, (2.1.30)

where we refer to [13] for an explicit representation of the (d2� 1)⇥ (d2� 1) matrix

A and the vector q0 2 R
d2�1. Instead of describing the time evolution of the density

operator in terms of a linear transformation given by the CPTP map Λt = eLt, the

vector of coherence representation yields an affine transformation, obtained from

solving (2.1.30). The solution v(t) undergoes a rotation and a translation in R
d2�1,

whereas shrinking or dilating of the length kv(t)k of the vector of coherence can be

traced back to the dissipative parts of the Lindblad master equation. In fact, for
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purely unitary dynamics d
dt
kv(t)k = 0, the length does not change. The purity of

a quantum state tr{⇢2} = 1
d
+ kvk2 is bounded by 1

d
 tr{⇢2}  1 with tr{⇢2} = 1

for a pure state and tr{⇢2} = 1
d
for a totally mixed state. Hence the trajectory

described by v(t) is confined to a d dimensional sphere with radius r =
p

1� 1/d,

centered at the origin. Pure states are located at the surface and the totally mixed

state lies at the origin. Clearly for a single qubit (d = 2) this sphere is just given by

the Bloch ball and the Bloch vector v = (vx, vy, vz)
T is obtained from choosing the

normalized Pauli spin operators 1p
2
�x,

1p
2
�y and 1p

2
�z as an operator basis. Note

that for d = 2 the set of states is the entire Bloch ball, but for d > 2 this is no longer

true.

Long time behavior

After having introduced two matrix representations of the Lindbladian, we briefly

want to characterize in the following the long time behavior of Λt = eLt. Additionally

we give two examples of a Lindbladian that are frequently used in the thesis.

In a finite dimensional space an evolution given by (2.1.24) has always at least one

fixed point ⇢ss, such that

eLt(⇢ss) = ⇢ss. (2.1.31)

Thus ⇢ss is an eigenoperator of L with eigenvalue 0, i.e

L(⇢ss) = 0. (2.1.32)

We call a semigroup Et relaxing if there exists one unique fixed point [17, 18], that

is

lim
t!1

eLt(⇢) = ⇢ss, 8⇢ 2 S(H). (2.1.33)

Clearly this is a special case, and in general there are other fixed points of the

dynamics. The set of fixed points satisfying (2.1.32) is called the steady state mani-

fold, and we call the steady state manifold attractive if all initial states are mapped

into this set. More precisely, the steady state manifold is attractive if all non zero
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eigenvalues of L have negative real parts [19, 20], so that we have in the long time

limit

lim
t!1

eLt = P , (2.1.34)

with P = P2 being a not necessarily self-adjoint (super) projection that maps all

states into the steady state manifold.

So far we have introduced the Lindblad form, its properties, and how it arises. Now

we want to present two common examples of a Lindbladian of single qubit that

are, for example, obtained from an interaction of a qubit with the quantized free

electromagnetic field within the Born-Markov approximation. The first one is the

pure dephasing channel generated by

L(·) =
�

4
[�z, [�z, ·]], (2.1.35)

and describing the exponential decay with a rate � of the off diagonal elements

of the density operator in the �z basis {|0i, |1i}. Note that L(1) = 0, showing

that the pure dephasing channel is unital. The fixed point set is given by the set

of convex combinations of |0ih0| and |1ih1|. In contrast, the amplitude damping

channel, generated by

L(·) = �(2��(·)�+ � (�+��(·)� (·)�+��)), (2.1.36)

with �± = 1
2
(�x ± i�y) being the Pauli lowering and raising operators, describes the

decay of a qubit to its ground state |0ih0|, which is the unique fixed point of the

dynamics. Both channels describe decoherence, which we will discuss in the next

section.

2.1.4 Decoherence

The preceding topics were very standard and a straightforward introduction of nec-

essary mathematical concepts. Decoherence involves a lot of interpretational and

conceptual aspects and in the following we focus on those most relevant for the rest
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of the thesis.

The superposition principle lies at the heart of quantum mechanics, and it follows

directly from the linear character of the Schrödinger equation. Together with entan-

glement and other non-classical phenomena, it gives rise to new technologies such

as the quantum computer. Clearly, however, it does not operate on a macroscopic

scale, although there is nothing present in the formulation of quantum mechanics

that would prevent macroscopic quantum superpositions to exist. So why do we

not observe quantum mechanical effects in our daily life? Besides the Copenhagen

interpretation, there are at least two modern approaches that try to explain the

emergence of classicality on a macroscopic level. The first one we are going to

discuss is decoherence, which attempts to give an explanation within the standard

formulation of quantum theory [21, 22].

Decoherence arises from the interaction of a quantum system with its environment.

The interaction between the system and the environment creates correlations and

we saw in the last section that the resulting system dynamics is in general not uni-

tary any more. As a consequence, the entropy of the system is not conserved, since

a leakage of information into the environment takes place. Coherent superpositions

of system states are transformed into statistical mixtures, mathematically described

by a CPTP map. This process is called decoherence - the decay of the off diagonal

elements of the density operator in a preferred basis.

We start with a Hamiltonian description of system and environment. The total

Hamiltonian reads

H = HS ⌦ 1+ 1⌦HB +HS,B, (2.1.37)

where the interaction of system and environment can always be written in the form

HS,B =
X

↵

S↵ ⌦ B↵, (2.1.38)

with S↵ and B↵ being hermitian operators.

To get an insight into the effect of decoherence we consider as a simple example a

qubit that interacts with the environment through HS,B = �z ⌦ B and we assume
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that the energy of system and bath is conserved [HS, H] = [HB, H] = 0. We take

⇢B(0) = |�ih�| as the initial state of the bath. Using (2.1.10), the qubit state in the

interaction picture at time t in the eigenbasis of �z is given by

⇢S(t) = Et(⇢S(0)) = h0|⇢S(0)|0i|0ih0|+ h1|⇢S(0)|1i|1ih1|

+ f(t)h0|⇢S(0)|1i|0ih1|+ f̄(t)h1|⇢S(0)|0i|1ih0|, (2.1.39)

with f(t) = h�| exp(�i2Bt)|�i being the overlap of the evolved bath states with

the initial one. The first observation is that the diagonal elements of ⇢S(t) stay

unaffected by the interaction with the environment, which can be traced back to the

assumption that the energy of the system is conserved. If the bath states become

orthogonal, f(tDC) = 0, for some time tDC, the system density operator becomes

diagonal in the computational basis, described by the CPTP map

EtDC
(·) = M0(·)M0 +M1(·)M1, (2.1.40)

with Kraus operators Mn = |nihn|, n = 0, 1. The state has fully decohered into

a statistical mixture, sometimes called pure dephasing. The time tDC is given by

the first time the initial state |�i of the environment has evolved under U(2t) =

exp(�i2tB) into an orthogonal state. It is known that this time can be lower

bounded [23], yielding for the simple qubit example tDC � ⇡/(2∆B), with ∆B

being the energy dispersion with respect to the initial bath state. One may also ask

if coherence is recovered as a function of time. Assuming B has a discrete energy

spectrum, due to the properties of almost periodic functions [24], it is always possible

to find a time Trec > 0 such that for each ✏ we have

kETrec � idk2HS = 2|f(0)� f(Trec)|
2 < ✏, (2.1.41)

where E was treated as a matrix obtained from (2.1.18). This is just another version

of the quantum recurrence theorem [25] in an open system setting. There exists

a time Trec for which coherence can be recovered arbitrarily well. See Fig. 2.1.4

for an illustration of this effect. The crucial assumption here was that the energy

spectrum of B is discrete. As a consequence, the off diagonal elements cannot decay
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exponentially, as it would for semigroup dynamics described by the pure dephasing

channel (2.1.35). In fact, more generally, it can be shown [6, 26] that:

if a function P (t) = |h�| exp(�iHt)|�i|2 decays exponentially in time, the

Hamiltonian H has a continuous spectrum over the whole real line.

Figure 2.1: Decoherence of a qubit de-
scribed by an exponential
decay (gray); resulting
from a qubit-environment
interaction (black) with
an environment consisting
of 4 qubits.
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In particular this mathematical subtlety will become important when we study in

Sec. 4.1 the performance of dynamical decoupling, which is a method to suppress the

interactions with the environment in order to fight decoherence. Within this context

we provide two examples, one with a time dependent two-qubit Hamiltonian, and

another based on an unbounded interaction that will lead (without approximations)

to amplitude damping (2.1.36) and pure dephasing (2.1.35).

To some extent decoherence can explain the emergence of classicality in the macro-

scopic world [27]. Due to the interaction of a macroscopic object, which is character-

ized by many degrees of freedom, with its environment, quantum coherence becomes

rapidly spread over many more degrees than an observer can have access to. This

process becomes faster and faster if more degrees of freedom couple to the envi-

ronment. Hence the density operator of the macroscopic object rapidly becomes

diagonal in a preferred basis and therefore the object is described by a classical

ensemble of states. However, decoherence is based on the framework of unitary

quantum mechanics on a larger system. For an observer outside system and envi-

ronment the dynamics remains unitary and decoherence does not appear. Over the

years it has been pointed out in the literature that the emergence of classicality is re-
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lated to the collapse of the wave function rather than the transition from a coherent

superposition into a statistical mixture. For A. Bassi et al. the reason for this lies in

the fact that the statistical operator describing a statistical mixture, describes at the

same time infinitely many inequivalent statistical mixtures [28]. A transformation of

the form (2.1.40) transforms the density operator into a statistical mixture of states,

which could still consist of coherent superpositions of macro states, instead of being

a mixture of states with definite macroscopic properties. Bassi et al. further point

out that the loss of coherence can be understood as a consequence of the interaction

with the environment, but it does not explain the measurement process causing the

collapse of the wave function to one distinct macroscopic state [29]. Moreover the

Schrödinger equation is deterministic in the sense that its solution describes the

propagation of the initial state to some final state in a deterministic way. Only

together with the Born rule, that assigns probabilities to the outcome of an exper-

iment, does quantum mechanics become probabilistic. The role of decoherence in

the emergence of classicality is still under debate and an ongoing area of research.

For a detailed overview for what decoherence can explain and what not we refer to

[21].

2.1.5 Collapse models

To overcome the issues mentioned in the previous sections collapse models have been

devised to incorporate the wave function collapse into a single equation, such that

it affects directly the wave function and not only the density operator. Most fun-

damental differential equations which describe physical phenomena are non-linear,

with linearity being a convenient approximation in some appropriate limiting cases.

Since the superposition principle was demonstrated up to a mesoscopic scale in the

laboratory [30, 31], any non linear extension that causes the wave function collapse

must be negligible on this scale, but at the same time must be amplified when mov-

ing from the micro- into the macroscopic domain. Additionally the basis in which

the collapse takes place must be chosen in such a way that macroscopic objects have

32



CHAPTER 2. PRELIMINARIES

a definite position in space. Based on these assumptions a whole zoo of non-linear

extensions of the Schrödinger equation have appeared, refer to [29, 32, 33, 34] for

an overview. Gisin [35] and Polcinski [36] proved that any non-linear deterministic

extension would allow superluminal signaling, so in fact the only collapse models

to survive are those based on stochastic differential equations. The derivation and

investigation of these equations require a bit of elaboration of stochastic calculus,

which is beyond the scope of this thesis. Along the lines of [37] we therefore only

sketch here the steps of how a non-linear stochastic modification of the Schrödinger

equation incorporates the collapse of the wave function.

In the following we assume some basic knowledge about stochastic processes. We

consider a Markov process of the state | (t)i in the Hilbert space described by the

Ito differential equation

d| i = (Cdt+A · dB)| i, (2.1.42)

with C some operator, A = {Ai} as set of operators and B = {Bi} a real Wiener

process, where the increments obey

E[dBi] = 0, E[dBidBj] = �ij�dt, (2.1.43)

with � being a real constant and the dot product in (2.1.42) has the meaning A ·

dB =
P

k AidBi. If this term would not appear and if we identify C = �iH as

the Hamiltonian, the usual Schrödinger equation is recovered. For an initial state

| (0)i the stochastic differential equation (2.1.42) generates at time t an ensemble

of state vectors | (t)i depending on the particular realization of the Wiener process.

Note that the (2.1.42) is still a linear stochastic differential equation and it is easy

to show, using the Ito rules, that the norm of the state vector is not conserved.

If we incorperate norm-conserving into (2.1.42), we obtain a non-linear stochastic

differential equation

d| i =
✓

[�iH � 1

2
�(A† �R) ·A+

1

2
�(A�R) ·R]dt+ (A�R) · dB

◆

| i,

(2.1.44)

R =
1

2
h�|(A† +A)|�i, (2.1.45)
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where the non-linearity enters due to the dependency of R on |�i. If we write

A =
P

j ajPj, with Pj being orthogonal projections that sum up to the identity,

one can show that | (t)i reduces asymptotically to one of the states Pj| (0)i times

a normalization factor. In other words, for t ! 1 the initial state has collapsed into

a state vector that lies in the common eigenspaces of A. Another way of looking at

it is to consider the density operator ⇢ = E[| ih |] that is given by the ensemble

average taken of over all realizations of | i. Using once more Ito calculus, we obtain

a master equation in Lindblad form

⇢̇(t) = �i[H, ⇢(t)] + �

✓

A⇢ ·A† � 1

2
(A† ·A⇢+ ⇢A† ·A)

◆

, (2.1.46)

where the decay rate � determines how fast the collapse takes place. Applying this

formalism to a system of identical particles with center off mass coordinate Q, one

arrives at the CSL model [37] that predicts for the off diagonal elements of the density

operator a decay according to hQ00|⇢(t)|Q0i / exp(Γt). The decay rate Γ = �D0n

consists of the density D0 of the macroscopic body and the number of particles n in

the center of mass position Q0 that do not lie in the volume occupied by the body in

the center of mass position Q00. The important observation here is that the bigger

the system, the faster the collapse. The free parameter is still �, for which Adler [29]

gave an estimate of � = 10�8 s�1, and which describes the spontaneous collapse of a

single nuclei within the CSL model. Clearly the non-linearity in (2.1.44) enters in a

very specific way and one may ask what the evolution looks like if the Schrödinger

equation is modified in a different non-linear way. Recently Bassi et al. [38] showed

that:

the only collapse models that are non-linear Markovian extensions of the

Schrödinger equation, and which do not allow faster-than- light-signaling, are

those for which the evolution of the density operator ⇢ = E[| ih |] is governed
by a master equation in Lindblad form (2.1.25).

Hence they are mathematically similar to decoherence models which describe an

exponential decay through a semigroup dynamics, as for example the amplitude
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damping channel (2.1.36) would do. This is the reason why we will later in Sec. 4.2

refer to such a dynamics as intrinsic decoherence. Then the following question arises:

imagine one observes an exponential decay in an experiment, can one distinguish be-

tween an exponential decay that is caused by some system-environment interaction

or by some collapse model? Despite decoherence, how can we verify collapse models

if they predict similar features to decoherence? Or more generally, how can we find

out whether intrinsic non-unitary dynamics, which is not caused by some interaction

with another system, does exist? Before we propose a solution to this problem in

Sec. 4.2, we are going to introduce some basic concepts of quantum control theory.

2.2 Quantum control theory

Control theory in general has a long history and it became explicit in engineering

with the demands of the industrial revolution in the 19th century. From describing

the natural evolution of a mechanical system it became important to influence the

dynamics in a systematic way in order to get desired outcomes. One has to distin-

guish between closed loop and open loop control schemes. In a closed loop control

scheme the outputs of the system are routed back to the inputs, which is also called

a feedback loop. Open loop schemes, which will be the focus of this thesis, compute

the inputs into the systems only based on the current state of the system and its

describing model. We consider control systems that can be formulated in a bilinear

way [10], i.e. they are described by a differential equation of the form

ẋ(t) =

 

A+
X

i

ui(t)Bi

!

x(t), x(t0) = x0, (2.2.1)

where x can be a vector or a matrix describing the state or the evolution of the

system, A and Bi are some d ⇥ d matrices and ui are the control functions. Given

a control system of the form (2.2.1) one may ask the following questions:

1. Which states or transformations can we reach from the initial condition x0 by

modulating the control functions?
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2. How do we have to modulate the control functions ui to steer the system from

x0 to some goal-state or transformation xG at some time T?

In a quantum mechanical setting the electromagnetic field plays the role of the

control, and the atom, nucleus or electron, or any other quantum mechanical sys-

tem, is the object of the control [9]. The bilinear control equation is given by the

Schrödinger equation for the state vector or the time evolution operator. Here we

are mainly interested in the implementation of quantum gates described by unitary

transformations, rather than in state to state transfer. Therefore the equation we

are going to study is the Schrödinger equation for the time evolution operator

U̇(t) = �iH(t)U(t), U(0) = 1, (2.2.2)

with

H(t) = H0 +
n
X

i=1

ui(t)Hi, (2.2.3)

where we refer to H0 as the drift Hamiltonian and to Hi as the control Hamiltonians

with ui(t) being the corresponding control fields. Note that one possibility to study

the control of an open quantum system is to study the control properties of the

master equation (2.1.22) where the control enters in the Hamiltonian part of (2.1.25)

and dissipation is described by D. Before we will come back to this approach

in Sec. 2.3, we first address in the following two sections the questions (1) and

(2) for a closed quantum system. Given a control system (2.2.3), which unitary

transformation can we implement and how can we implement them? The first

question is treated with Lie algebraic and group theoretical methods, whereas in

Sec. 2.2.2 a gradient based algorithm is presented that allows us to numerically

calculate the control fields for a given target transformation.

2.2.1 The reachable set and controllability

To introduce some important concepts from control theory we start again with the

bilinear control system (2.2.1). We consider the bilinear control system on a Lie
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subgroup G of Gl(d,C) with Gl(d,C) being the general linear group consisting of

all invertible d ⇥ d matrices with complex entries. The solutions to the bilinear

control system (2.2.1) are hence given by elements of Gl(d,C). Moreover, let g

be the corresponding Lie algebra in the sense that the tangent space of G at the

identity coincides with g [39]. For instance, the Lie algebra gl(d,C) corresponding

to Gl(d,C) is the algebra of all complex d⇥d matrices. Denote by RT (x0) the set of

all x 2 G that are for T > 0 solutions to (2.2.1), i.e. there exists some modulation

of the control functions such that every x 2 RT (x0) can be reached from x0 2 G for

a time T > 0. The reachable set R is then defined as

R(x0) =
[

T�0

RT (x0). (2.2.4)

We call as system accessible if for all x0 2 G the reachable set R(x0) has non-empty

interior in G and fully controllable if for all x0 2 G the closure of the reachable set

is equal to G. More details on control theoretic terminology can be found in [40].

Consider now as a control system the Schrödinger equation for the time evolution

operator (2.2.2) with the Hamiltonian (2.2.3). Clearly, in this case we haveG = U(d)

with U(d) being the unitary group, consisting of all d ⇥ d unitary matrices, and

g = u(d) being the algebra of skew-hermetian d ⇥ d matrices. The reachable set

R(1) ⌘ R consists of all unitary operations that can be reached as a solution

to (2.2.2) by varying the control functions ui(t), which we assume are piecewise

constant. It can be shown [11, 41] that for finite dimensional quantum system

R̄ = eL, (2.2.5)

with R̄ being the closure of the reachable set and eL being the Lie group that

corresponds to the dynamical Lie algebra

L = Lie(iH0, iH1, . . . , iHn), (2.2.6)

which is spanned by real linear combinations and iterated commutators of the drift

and the control Hamiltonians. The unitary control system (2.2.2) is fully controllable

if L = u(d), so that R̄ is equal to the unitary group. This is known as the as the Lie
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rank criterion [11, 41]. In others words, if the system is fully controllable, every uni-

tary matrix can be implemented with arbitrary high precision by choosing a proper

control, sometimes called universal control. For traceless matrices, such as the Pauli

matrices for spin systems, we have L = su(d) if the system is fully controllable where

su(d) is the special unitary algebra of skew-hermitian d ⇥ d matrices with trace 1.

The corresponding Lie group is the special unitary group SU(d) that consists of all

unitary d ⇥ d matrices with determinant 1, so that SU(d) ⇢ U(d) ⇢ Gl(d,C). For

future considerations we further introduce the special linear group Sl(d,R), consist-

ing of all real d ⇥ d matrices with determinant 1, the orthogonal- and the special

orthogonal group O(d) and SO(d), consisting of all orthogonal d⇥ d matrices with

determinant ±1 and 1 respectively, and the symplectic group Sp(2d,R) consisting

of all 2d⇥ 2d matrices S satisfying SΩST = Ω where

Ω =
n
M

j=1

0

@

0 1

�1 0

1

A , (2.2.7)

is the symplectic form. Their corresponding Lie algebras are given by sl(d,R), o(d),

so(d) and sp(2d,R) respectively. Note that if the Lie group G is compact and con-

nected, such as the unitary and the special unitary group, full controllability is

equivalent to accessibility [11, 41]. That means that if a finite dimensional closed

quantum system is fully controllable it is also accessible and vice versa. Thus for

closed finite dimensional quantum system we do not have to distinguish between

accessibility and controllability, whereas for open quantum systems described by a

Lindblad master equation this distinction will become important later. The dynam-

ical Lie algebra will play an important role in this thesis and the Lie rank criterion

is a powerful tool to determine whether a system is fully controllable. A full proof

of the Lie rank criterion can for example be found in [9]. Here we outline a proof

using the Trotter formulas

lim
n!1

⇣

eB
t
n eC

t
n

⌘n

= e(B+C)t, (2.2.8)

lim
n!1

⇣

e�B t
n e�C t

n eB
t
n eC

t
n

⌘n2

= e[B,C]t2 , (2.2.9)
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valid for two arbitrary matrices B,C, and writing the reachable set as

R =

(

n
Y

j=1

e�iAj↵j |Aj 2 A,↵j � 0, n 2 N

)

, (2.2.10)

with A the set of all Hamiltonians between we can switch at will. We will show in

the following that the elements that are contained in the closure of the reachable set

are given by unitaries which are generated by all possible linear combinations and

iterated commutators of the drift and the control Hamiltonians. Therefore R̄ = eL.

We begin with noting that each Aj 2 A may be written as Aj = H0+
P

i u
(j)
i Hi with

some constant control field amplitudes u
(j)
1 , . . . , u

(j)
n 2 R. Notice first of all that if

all control fields are zero, we have e�iaH0 2 R for all positive constants ↵. Due to

the quantum recurrence theorem [25],

8✏ and � > 0, 9� > � such that
�

�e�i�H0 � 1
�

� < ✏, (2.2.11)

which implies that the evolution e�i(��↵)H0 is effectively given by ei↵H0 , we have

e±i↵H0 2 R̄. By considering successively the operations ei↵/nH0e�i↵/nA1 , with A1 =

H0+u
(1)
i Hi and using (2.2.8), we can create every unitary evolution that is generated

by the drift and the control Hamiltonians alone. Any unitary operation that is

generated by some real linear combination of iH0, . . . , iHn can be created in a similar

way. It remains to show that also any unitary operation that is generated by nested

commutators and their real linear combinations can be implemented. Consider

n2 times the successive operations e�i
p
↵/nHje�i

p
↵/nHmei

p
↵/nHjei

p
↵/nHm and with

(2.2.9) and (2.2.11) we find

e�i↵[Hj ,Hm] 2 R̄, 8↵ 2 R, 8m, j = 0, . . . , n. (2.2.12)

Unitaries containing higher order commutators and their real linear combinations

can be created analogously. Hence every U = e✓ with ✓ 2 L and L being the

dynamical Lie algebra (2.2.6) can be implemented with arbitrary high precision.

The Lie rank criterion is a very powerful method to determine the unitary operations

that can be implemented with the resources one has in an experimental setting

by calculating the corresponding dynamical Lie algebra. It works well for finite
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dimensional unitary gates since they are subgroups of the compact group SU(d). A

crucial point in the outline of the above proof was the use of the recurrence theorem

(2.2.11), which allows us to reverse the sign in front of the drift Hamiltonian. In

fact the compactness of a Lie group is a sufficient criterion to go from negative to

positive times.

But what about infinite dimensional quantum systems such as quantum harmonic

oscillators? Since we are going to use the framework of symplectic transformations

in Sec. 4.3, we already give here a brief introduction into this subject and connect

it to recent results [42] in quantum control. We consider a system described and

controlled by Hamiltonians that are quadratic in the quadrature operators, x̂, p̂, i.e

H =
1

2

X

i,j

Ai,jRiRj, (2.2.13)

where the vector R is defined as

R = (x̂1, p̂1, . . . , x̂n, p̂n)
T , (2.2.14)

and A is a real and symmetric 2n⇥ 2n matrix. The canonical commutation relation

can be written as [Ri,Rj] = iΩi,j with Ω being the symplectic form introduced

in (2.2.7). Note that if the quadrature operators are collected in the way R =

(x̂1, . . . , x̂n, p̂1, . . . , p̂n)
T the symplectic form J is given by

J =

0

@

0 1n⇥n

�1n⇥n 0

1

A . (2.2.15)

In the following we work in the representation defined through (2.2.14) using Ω,

whereas in Sec. 4.3 we will also work in the other representation using J . The time

evolution operator U = exp(�iHt), that corresponds to the quadratic Hamiltonian

(2.2.13), acts on an infinite dimensional Hilbert space and it is also called a Gaussian

operation since it preserves the properties of Gaussian states. The time evolution of

the quadrature operators collected in the vector R can be written as U †RU = SR

where

S = e�tAΩ, (2.2.16)
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belongs to the symplectic group Sp(2n,R). This shows that for quadratic Hamil-

tonians there is a one-to-one correspondence between the time evolution on an in-

finite dimensional Hilbert space and a time evolution given by a finite dimensional

symplectic matrix (2.2.16). Hence for quadratic Hamiltonians we can recast the

Schrödinger equation for the time evolution operator as

Ṡ(t) = G(t)S(t), S(0) = 1, (2.2.17)

with

G(t) =

 

A0 +
n
X

j=1

uj(t)Aj

!

Ω, (2.2.18)

so that the control properties of (2.2.17) can now be studied within the symplectic

group. The symplectic group is not compact and thus from a first perspective the

Lie rank criterion does not apply. The key result of [42] was that, if the matrix A

is positive definite, the recurrence theorem can be applied and hence the Lie rank

criterion remains a necessary and sufficient condition to asses controllability. There-

fore the system (2.2.17) is fully controllable if L = sp(2n,R) with sp(2n,R) being

the symplectic algebra containing all elements s that satisfy Ωs = �sTΩ.

Clearly, in order to identify the operations that can be implemented in a quantum

system through the controls, we need to calculate the dynamical Lie algebra (2.2.6).

Especially for large quantum system this can still be a challenging task since it

involves the computation of many iterated commutators and their real linear com-

binations. However, there exists an algorithm that iteratively creates from the drift

and the control Hamiltonians a basis of the dynamical Lie algebra [10]. To do so

the drift and the control Hamiltonians are written as column vectors arranged in a

matrix M . Commutators are calculated iteratively and a linearly independent ele-

ment of the dynamical Lie algebra is obtained if the rank of M increases. If the rank

of M does not increase anymore, a basis for the dynamical Lie algebra was found.

For further details we refer to [43]. Unfortunately the algorithm works well only for

small system sizes. The vectors, which are created in that way, can involve constants

that differ many orders of magnitude from each other, so that the calculation of the
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rank becomes unstable. Intuitively it is hard to numerically decide if two vectors

are linearly independent if they are almost parallel. Nevertheless, this method will

be used for a small system size in order to visualize in Sec. 3.2.4 through a tree

structure the dynamical Lie algebra of a specific system.

So far we have discussed how to determine the unitary operations which can be

implemented in a given experimental setting. In the next section we are going to

present a gradient based algorithm that calculates the control pulses to implement

some specific target operation.

2.2.2 GRAPE algorithm

Here we describe how the gradient ascent pulse shape engineering (GRAPE) al-

gorithm works, allowing us to numerically calculate the control fields in order to

reach a specific target. It was originally developed in [44] and further improved in

[45, 46]. To be as general as possible we consider again the bilinear control system

(2.2.1) and we denote by x(t, t0) its solution from t0 up to time t. Clearly, for closed

finite dimensional quantum systems, x(t, t0) is given by the solution U(t, t0) of the

unitary control system (2.2.2), for quadratic Hamiltonian control systems (2.2.16)

by S(t, t0), and for open quantum system described by a Lindblad master equation

(2.1.22) by the CPTP map Λt,t0 = T̂ exp(
R t

t0
dt0Lt0), where Lt is the Lindbladian

that includes the controls.

We discretize the control fields ui(t) using piecewise constant functions and divid-

ing the total time T into M time slices [tp�1, tp] of duration ∆t = T/M . We set

ui(t) = uip for t 2 [tp�1, tp]. The idea of the algorithm is to minimize an error

functional "(u) with respect to the piecewise constant control field amplitudes that

are collected in the vector u. The goal is to find the vector u⇤, such that "(u⇤)

attains its global minimum. This is done iteratively by updating the control fields

according to a second order quasi Newton method

u(k+1) = u(k) � ↵k(Hk)
�1r"(u(k)), (2.2.19)
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starting with an initial guess u(0) of the control fields, which is taken to be random

throughout the thesis. The initial HessianH0 is taken to be the identity, the Hessian

Figure 2.2: GRAPE:

1. Initial guess pulse u(0).

2. Calculate the time evolu-
tion x(T ) and the corre-
sponding error functional
"(u(0)).

3. Compute the gradient
r"(u(0)) using (2.2.20).

4. Update the control fields
according to (2.2.19).

5. Start again from 2. and
iterate until " has reached
its minimum.

3.

4.

Hk is constructed from the past gradient history according to the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method and the parameter ↵k, which characterizes the

length of the search, is set to one by default. A summary of the mains steps of the

algorithm can be found in Fig. 2.2.2, which was adopted from [44]. From (2.2.19)

we see that the update of the control fields requires the calculation of derivatives

@
@uip

✏(uip), which can be done by approximating the gradient by the differential

quotient. However, this method is very slow and the step size parameter has to be

chosen carefully. Typically the functional ✏(u) is a simple function of x(t), and it

can be shown [47] that for piecewise control functions its gradient with respect to
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the control fields can be written as

x(T, t0)

@uip

= x(T, tp)

"

Z tp

tp�1

d⌧ x(tp, ⌧)Bix(⌧, tp�1)

#

x(tp�1, t0), (2.2.20)

with

x(t, tp�1) = exp((t� tp�1)G(uip)), (2.2.21)

and

G(uip) = A+
X

i

uipBi, (2.2.22)

being the time independent generator of the dynamics evaluated at the piecewise

constant values of the control field amplitudes. The integral in (2.2.20) can be

evaluated exactly using the augmented matrix exponential formula

exp

0

@

D E

0 F

1

A =

0

@

eD
R 1

0
eD(1�s)EeFsds

0 eF

1

A , (2.2.23)

and identifying D = F = G(uip)∆t and E = Bi∆t.

So far we have discussed how the control fields can be calculated in an iterative way,

without specifying the functional " that needs to be minimized. Since we are dealing

throughout the thesis with the implementation of quantum operations, which are

described by matrices, a convenient choice of " would be the minimization of

" = � kx(T )� xGk2HS , (2.2.24)

where xG is the goal operation, k·k2HS is the Hilbert-Schmidt norm and � is some

normalization constant. Taking � = 1/(2d), with d being the dimension of the

quantum system, then for unitary control systems (2.2.2) " takes the form

" = 1� 2

d
<{tr{U(T )U †

G}}, (2.2.25)

such that we need to maximize the normalized Hilbert-Schmidt scalar product g =

1
d
tr{U(T )U †

G} between the goal unitary operation UG and the actual time evolution

U(T ). Note that a maximization of g would respect the global phase of the evolution,
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which is not relevant. Hence a more common choice, that does not respect the

global phase, would be the maximization of f1 = |g|2 [45]. For open quantum

systems, which are described by a Lindblad master equation (2.1.22), the numerical

calculation of the control fields can be carried out choosing � = 1 and minimizing

" = kΛT � EGk2HS , (2.2.26)

with ΛT = T̂ exp(
R T

0
dtLt) and EG some goal CPTP map, both treated as d2 ⇥ d2

matrices obtained from row vectorization (2.1.18) of the density operator. Note that

compared to (2.2.25) the Hilbert Schmidt norm (2.2.26) is not upper bounded by

one, but it provides an upper bound for the diamond norm

kΛT � EGk⇧  d
p
", (2.2.27)

which measures how much two quantum channels can be distinguished operationally.

It takes its maximum value of 2 if the two quantum channels are perfectly distin-

guishable [48].

Clearly, we cannot be sure that the algorithm approaches the global minimum of "

since the control landscape can exhibit local minima as well [49, 50]. Depending on

the initial guess pulse u(0), the gradient based search can stop in a local minimum

with " 6= 0. This effect can be reduced by taking the minimum value of " over a

sample of randomly chosen initial pulses.
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2.3 Quantum control and open quantum systems

Having introduced the relevant concepts of open quantum systems and quantum

control theory we want to characterize now the difficulties in combining the two

fields. To study the control of an open quantum system there are two approaches

one can follow.

1st approach: study the control properties of the Lindblad master equation

⇢̇(t) = �i[H(t), ⇢(t)] +D(⇢), (2.3.1)

where the dissipator D is given by (2.1.26) and the control enters in a coherent

way in the Hamiltonian H(t) given by (2.2.3). We first note that the controlled

Lindblad master equation (2.3.1) can be written as an affine control system using

the vector of coherence representation introduced in Sec. 2.1.3. Using numerical

gate optimization within the controlled master equation formalism, fidelity limits for

implementing specific gates were studied in [46, 51, 52, 53]. Usually if the strength

of the dissipation gets stronger, the fidelity for implementing unitary gates through

the controls drops down. This behavior is related to the fact that one can relatively

easy show that [40]:

the Lindblad master equation is never fully controllable with unitary controls.

Roughly speaking the irreversible nature of the Lindblad master equation does not

allow us to go backwards by applying the controls coherently, unless we wait for

infinitely long time for the steady state to be reached [54]. The dissipative part drives

the system towards some fixed point, while changing the entropy of the system. It

is not possible to counteract this process by coherently applying control fields since

they correspond to unitary dynamics leaving the entropy invariant. One might think

that, analogous to the closed system case, the reachable set can be characterized

by calculating the corresponding dynamical Lie algebra. Unfortunately this is not

the case because the group structure is lost. Without the controls the solutions Λt

to (2.3.1) form a semigroup. The inverse element, given by the inverse of Λt, is
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in general not a physical map as mentioned in Sec. 2.1.1. Therefore the reachable

set takes the form of a Lie subsemigroup characterized in terms of Lie wedges [55],

for which currently no efficient procedure is known to compute them in general.

Although substantial progress has recently been made [56], by solving very simple

models, the efficient determination of the reachable set of the controlled Lindblad

master equation remains an open problem. However, accessibility of the Lindblad

master equation is well studied [57] using the vector of coherence formalism and we

will come back to it in Chap. 6. Regarding the control of open quantum systems

it is furthermore not clear whether (2.3.1) is a valid description of an open system

that is subject to coherent control. Unless we steer the system adiabatically [58],

the approximations that lead to the Lindblad master equation have to be checked

carefully. This brings us to the second approach.

2nd approach: one can tackle the problem already before the derivation of a

reduced dynamics. That is we study the control system before the infamous ”bath

trace” is performed and then we make conclusions on the control properties of the

open system. Within this approach one starts from a Hamiltonian description of

system and environment

H(t) = HS(t)⌦ 1+ 1⌦HB +HS,B, (2.3.2)

where the controls enter in the system Hamiltonian HS(t). One can then apply

the whole Lie algebraic framework to determine the unitary operations that can

be implemented on the system, while interacting with the environment. Previous

work focused on the numerical optimization of specific single-qubit transformations

in the presence of a non-Markovian bosonic environment [59, 60]. The problem with

a complete characterization of the control properties of such a system–environment

dynamics is that it requires the investigation of infinite-dimensional systems, which

is almost equally challenging as that of open systems described by a Lindblad master

equation. For infinite dimensional systems the mathematics that is needed in order

to characterize the reachable operations is much more intricate and the few results

that exist are confined to systems with discrete spectra [61, 62, 63]. To tackle
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this issue one can begin by studying the control properties of systems that interact

with a finite set of environmental degrees of freedom. The studies [46, 47, 64, 65]

investigated the numerical optimization of a specific control target on a spin coupled

to a finite set of environmental spins. In particular in [64, 65] it was pointed out that

decoherence induced by the environmental spins can be suppressed through control.

However, the full characterization of the control properties of such open systems

is missing and therefore still an open question. Furthermore, due to its apparent

relevance for realistic applications, the scaling of control timescales with the size of

the environment, when only the central system can be accessed by control fields,

deserves extensive studies.

Controlled  
dynamics

Control

Control

Figure 2.3.: Schematic representation of the two approaches for describing the con-
trol of an open quantum system. In the first approach (gray arrows) one
first traces over the environment in order to obtain a description for the
reduced dynamics in terms of a Lindblad master equation. Afterwards
one adds the control fields coherently and studies the control properties
of the controlled master equation. In the second approach (black arrows)
one considers the full Hamiltonian dynamics (system+environment) and
applies the time dependent control fields on the system, so that the to-
tal Hamiltonian becomes time dependent. Then one studies the control
properties of the total system using methods from closed quantum sys-
tems. Afterwards one makes conclusions on the control properties of
the system alone by considering the reduced dynamics.

In Fig. 2.3 we schematically summarized the two approaches. Either we study the

control properties of system and environment on a Hamiltonian level and make

afterwards conclusions on the control properties of the system by taking the partial
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trace, or we investigate the control properties of the coherently controlled master

equation. Since it is not clear whether the approximations that lead to a Lindblad

master equation are valid in the presence of time dependent and unconstrained

control fields, we begin in the next chapter by characterizing the control properties

of a specific system-environment Hamiltonian. We determine the dynamical Lie

algebra of the total system, so that afterwards we can conclude on the control

properties of the system alone. In order to avoid the difficulties arising for infinite

dimensional environments we consider an environment with finitely many degrees

of freedom which is scalable. Moreover we study the minimum time needed in order

to implement a target unitary gate on the system as a function of the size of the

environment.
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Following the second approach for describing the control of an open quantum system

we have similarly to [64, 65] decided to examine the central-spin model [66, 67, 68,

69, 70, 86, 87, 88], where a central spin interacts with a finite set of surrounding

environmental spins. Control is exerted through a classical field applied on the

central spin. The central-spin model represents a finite but scalable system, whose

thermodynamic limit is well defined and it is of experimental relevance even at

small environmental sizes because it can be used to describe the main sources of

decoherence in NV centers [74, 75, 76, 77] and quantum dots [78, 79, 80]. In addition

the central-spin model has been subject to a series of studies concerning its reduced

dynamics, so there is hope to bring the more theoretical and the more application-

oriented research lines together on a practically relevant system. In this spirit here

we consider a spin bath controlled through the central system. The novel aspect of

this work lies in the complete characterization of the control properties of both the

central system and the bath for two different cases of system-bath coupling. Known

Lie algebraic methods that were introduced in Sec. 2.2.1 and successfully applied

for other spin systems (see for example [81, 82, 83, 84]) are used to identify the
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unitary operations that can be implemented, by acting on the central spin alone,

both on the central spin and on the bath. In addition we employ extensive numerics,

using an open source package developed by S. Manches et al. [45], to estimate the

minimum time required to implement a unitary transformation on the central spin

as a function of the number of environmental spins. This allows us to draw some

relevant conclusions on the scaling of control timescales in a dissipative set-up.

3.1 The model

We consider a system consisting of a central spin surrounded by N spins as shown in

Fig. 3.1, hereafter denoted as the spin star 1. The spins surrounding the central spin

Figure 3.1.: The model described by Hamiltonian (3.1.1): a central spin (red) de-
scribed by σ interacts via an isotropic Heisenberg interaction with N
surrounding spins (blue) each described by σ

(k). The coupling between
the system and the kth bath spin is given by Ak. The central spin
interacts additionally with a classical control field as described by the
Hamiltonian (3.1.4).

will be hereafter referred to as the bath spins keeping in mind that, strictly speaking,

they represent a true spin bath only in the thermodynamic limit. We assume that

the central spin interacts with the bath spins via an isotropic Heisenberg interaction

1The term spin star was first used by A. Hutton and S. Bose in [67] where a similar model
involving only XY coupling was considered.
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and that it is additionally subject to a constant magnetic field. The model is thus

described by the following Hamiltonian

H0 = �y +
N
X

k=1

Akσ · σ(k), (3.1.1)

where Ak is the coupling between the central and the kth bath spin, and σ =

(�x, �y, �z) and σ
(k) = (�

(k)
x , �

(k)
y , �

(k)
z )T are the Pauli matrices acting on the central

and the kth bath spin respectively. Due to the isotropy of the Heisenberg interaction,

the specific choice of �y as the central spin Hamiltonian does not represent a loss

of generality. Under the assumption of equal system-bath couplings, i.e. Ak = A

for each k, the dynamics of the central spin and the entanglement properties of

this and similar models have been studied analytically in [67, 68, 69] by means of

a non-Markovian master equation. The exact solution for the reduced dynamics in

the different coupling case can be found in [86, 87, 88]. If all couplings are equal, in

fact, the Hamiltonian (3.1.1) can be rewritten as a two-particle Hamiltonian

H0 = i(�� � �+) + 2A(��J+ + �+J� + �zJz), (3.1.2)

where �± = (�x± i�y)/2 are the lowering and raising operators acting on the central

spin and the bath is regarded as a single effective particle with angular momentum

operator

J =
1

2

N
X

k=1

σ
(k), (3.1.3)

and corresponding raising and lowering operators given by J± = Jx±iJy. The Hamil-

tonian (3.1.2) conserves the square of the bath angular momentum, i.e. [J2, H0] = 0.

Hence, noting [Jz,J
2] = 0, simultaneous eigenstates of J2 and Jz represent a conve-

nient basis for the bath. However, since the operators J2 and Jz alone do not form a

complete set of commuting observables, the subspaces defined by their eigenvalues,

denoted by j and m respectively, are not in general one-dimensional. We therefore

introduce an additional quantum number ⌫ corresponding to the eigenvalues of cer-

tain permutation operators acting on the bath spins and commuting with H0. The
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permutation operators do not need to be specified as the controllability analysis is

independent of them. Due to the conservation of j and ⌫, the bath Hilbert space

can be written as a direct sum of the subspaces Hj,⌫ and the total Hilbert space can

be written as H = HS ⌦ (
L

j,⌫ Hj,⌫) where HS is the Hilbert space of the central

spin. This Hilbert space structure, as detailed in the following section, lies at the

heart of the spin-star controllability properties in the equal coupling scenario.

Having defined the model Hamiltonian H0, we now move on to introduce controls.

As discussed in the beginning of this chapter, we assume that only the central spin

can be accessed to and controlled. In order to obtain non-trivial dynamics, the con-

trol field acting on the central spin must not commute with H0. A convenient choice

is therefore represented by a classical magnetic field B(t) along the z direction as

described by the control Hamiltonian

Hc(t) = B(t)�z. (3.1.4)

The full Hamiltonian is thus

H(t) = H0 +Hc(t). (3.1.5)

Despite representing quite an extreme simplification, still the spin-star model de-

scribed by Eq. (3.1.1) already captures some relevant features of the spin-bath

decoherence processes occurring in solid-state systems used for the implementation

of quantum technologies such as nitrogen vacancy centers [74, 75] and quantum dots

[78, 79, 80], although the interactions are here highly anisotropic 2. The spin-star

model therefore represents an interesting and challenging playground for an inves-

tigation of controllability of open systems which can also be of practical relevance.

2For an anisotropic Heisenberg interaction the proof A.2.2 for full controllability of the central
spin still holds for almost all choices of the anisotropy parameters. The proof is based on the
non-vanishing determinant of the Vandermonde matrix which is an analytic function and hence
for most of the choices of the parameters different from zero.
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3.2 Controllability considerations

We now focus on the investigation of which unitary transformations can be imple-

mented on the spin star, in particular on the central spin, using the control field

B(t). The dynamics is governed by the Schrödinger equation for the time evolution

operator

U̇(t) = �i(H0 +Hc(t))U(t), U(0) = 1, (3.2.1)

where the drift Hamiltonian H0 and the control Hamiltonian Hc are those given in

Eqs. (3.1.1) and (3.1.4). All unitary operations which can be implemented on the

system constitute the reachable set R, which was introduced in (2.2.4). Remember

that the the closure R̄ of the reachable set consists of the unitaries which can be

achieved with arbitrary high precision. It is equal [9] to the Lie group eL, where

L = Lie(iH0, iHc) is the dynamical Lie algebra spanned by real linear combinations

and nested commutators of iH0 and iHc. We recall that the system is said to be fully

controllable if the Lie group is equal to the unitary group or, in our case of traceless

Hamiltonians, to the special unitary group [11, 41]. To analyze the controllability

of the spin star we thus need to calculate the associated dynamical Lie algebra.

Without bath spins, i.e. for N = 0, the central spin is fully controllable because

[i�y, i�z] = 2i�x and L = su(2). When N > 0 it is no longer obvious whether

the central spin is fully controllable or not: on the one hand H0 is necessary to

achieve rotations around the x axis, on the other the interaction with the bath spins

introduces noise on the central spin. We will therefore study how the bath influences

the controllability of the central spin. The controllability of similar spin star models

that consists of an anisotropic interaction of the central spin with the bath spins

was studied in [83, 84]. Two classical fields were used to control the central spin

and it was shown, by using the graph criterion [85], that then the whole system

becomes controllable. However this method is based on finding the eigenstates of

the system and therefore it is not applicable for the general Hamiltonian (3.1.1)

when all coupling constants are different from each other. Moreover, in this case
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the controllability of the central spin is trivial, and can in principle be achieved

arbitrarily quickly through strong control fields, which means that such models are

not relevant in the context of the present study.

In the following we will first consider the case when the central spin couples with

the same coupling strength to each bath spin and then the case when the couplings

are all different from each other.

3.2.1 Equal couplings

As discussed in Sec. 3.1, when the central spin couples to each bath spin with

the same strength, the bath spins behave like a collective spin described by the

angular momentum operator (3.1.3) whose square is conserved. Since the control

Hamiltonian (3.1.4) acts only on the central spin, this symmetry is conserved also in

presence of the control field, thus implying that the spin star is not fully controllable

(see also [89]). However, by performing repeated commutators of iH0 and iHc and

taking their real linear combinations, we can obtain the operators i�↵, iJ↵ and

i�↵J� with ↵, � = x, y, z (see App. A.1 for details). This implies that the full su(2)

algebra acting on the Hilbert space of the central spin is contained in the dynamical

Lie algebra regardless of the number of bath spins. The central spin is thus fully

controllable even in presence of decoherence or, in other words, the noise induced

on the central spin as a result of the interaction with the bath can be effectively

switched off. More generally, the dynamical Lie algebra for equal couplings contains

all elements of the form (see App. A.1)

i�↵(J
l
+J

k
�J

s
z + h.c.), ↵ = x, y, z l, k, s 2 N0. (3.2.2)

Equation (3.2.2) implies full controllability of the spin star within each subspace

HS ⌦ (
L

⌫ Hj,⌫) which can be achieved by properly combining the operators J l
+ and

Jk
� in such a way to act only on a given j-subspace. Even without full controllability

it is still possible to perform many interesting and practically relevant operations

on the spin star such as entangling the central spin with the bath or using the bath
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as a data bus. Such protocols were recently experimentally demonstrated in [90].

The dimension of the dynamical Lie algebra can be obtained by determining the size

of the subspaces of fixed ⌫ [67] as dim(L) =
P

j((2(2j + 1))2 � 1). For a given N , j

can only take the values j = 1/2, 3/2, . . . , N/2 when N is odd and j = 0, 1, . . . , N/2

when N is even, we obtain

dim(L) =

8

>

<

>

:

1
6
(2 +N)(9 + 4N(4 +N)), for N even,

1
6
(1 +N)(3 + 2N)(7 + 2N), for N odd,

(3.2.3)

which shows that the dimension of the dynamical Lie algebra scales polynomially,

/ N3, with the size of the bath.

3.2.2 Different couplings

In the previous section we learned that in the equal-coupling case the central spin

is fully controllable but, due to the symmetries of the system, the whole spin star

is not. The situation changes if all coupling constants Ak are different from one

another. In this case the system has no more symmetries and the bath spins do not

behave like a collective spin anymore. Full controllability of the central spin still

holds for almost all choices of the coupling constants and is independent of both the

size and the initial state of the bath, (see App. A.2.1). In addition each single bath

spin is fully controllable, (see App. A.2.2), thus allowing us to write

�(k)
↵ 2 L, 8k = 1, . . . N, ↵ = x, y, z. (3.2.4)

Hence, due to the Heisenberg interaction between the central and the bath spins,

full controllability of the spin star L = su
�

2N+1
�

is achieved [92]. As a consequence,

the dimension of the dynamical Lie algebra scales exponentially with the bath size.

By acting with a control field on the central spin alone all degrees of freedom, even

the unaccessible ones, can be used for quantum information tasks.
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3.2.3 Implementing CPTP maps

An interesting generalization of the above is to consider the ability to implement

completely positive trace preserving (CPTP) maps, which were introduced in Sec.

2.1.2, on the central system. This is especially relevant in view of the growing interest

towards open quantum system simulators [93, 94, 95, 96] and quantum reservoir

engineering [4, 97]. We find that arbitrary CPTP maps E(⇢S) can be implemented:

first, let us consider the unequal coupling case with N � 2. We initialize two

spins of the bath in a pure state �B through consecutive unitary operations and

measurements on the central spin. Using controls we then implement the unitary

U of the Stinespring representation, see Sec. 2.1.2, E(⇢S) = tr12
�

U(⇢S ⌦ �B)U
†
 

of

E , and thus E . Second, for equal couplings even though the whole system is not

fully controllable it is still possible to implement every unitary operation within the

subspaces HS ⌦ (
L

⌫ Hj,⌫). Provided they are large enough (j > 3/2, implying N >

3) and provided the bath can be initialized appropriately, we can again implement

a Stinespring dilation of E .

3.2.4 Numerical calculation of the dynamical Lie algebra

In this section we will examine more in detail the structure of the dynamical Lie

algebra, L, using a numerical algorithm similar to those discussed in [10] and [43]. In

order to obtain a complete operator basis for L it is enough to repeatedly compute

the commutators with iH0 and iHc, until the rank of L does not increase any further

[10]. Such a procedure can be visualized as a tree, the so-called Lie tree. Indeed

in Fig. 3.2 we show the Lie tree of a spin star with N = 2 bath spins for both

equal, a), and different, b), couplings. The numbers inside the circles label the

elements of L starting with iHc and iH0 which correspond to 1 and 2. The blue/red

branches indicate that the new element was obtained by commutation with iHc/iH0

respectively. The number k denotes the depth of the tree nodes starting with k =

1 for [iHc, iH0]. More generally, we define the depth of an element of L as the
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Figure 3.2.: Tree structure of the dynamical Lie algebra for N = 2 bath spins and
either equal (a)) or different (b)) couplings. The numbers in the circles
represent the elements of the dynamical Lie algebra and the branches
indicate whether the new linearly independent term was obtained by
commutation with iHc (blue) or iH0 (red). The index k indicates the
depth of the commutator. Numbers in gray denote the elements which
have non-zero overlap with i�x on the central spin.

maximal depth of nodes required to express it via linear combinations. Although

the tree structure is not unique, because it depends on the order according to which

commutators are performed, using the Jacobi identity it can be shown that the

depth of an element is independent of the specific tree structure. To achieve full

controllability of the central spin the crucial element to be obtained is i�x. In

order to determine its depth, we highlight nodes in gray corresponding to the basis

elements that have non-zero overlap with i�x .

By comparing panels a) and b) of Fig. 3.2, where the depth of �x is k = 7 and k = 9

respectively, we can conclude that the value of the couplings, i.e. the presence of

symmetries of the drift Hamiltonian, affects the depth at which full controllability

of the central spin is achieved. In both cases the tree structure is rather rich which

is reflected by the complex proof of the central-spin full controllability presented in

the appendix.

In the equal coupling case the depth of i�x is upper bounded by 24 since it can

be obtained in fashion independent of the bath size (see App. A.1). In contrast,
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for different couplings, the depth of i�x in the proof App. A.2.1 indicates a linear

scaling with the bath size. However, this only represents an upper bound on the

scaling because a different proof might exist yielding a lower depth. By considering

a perturbation expansion of the time-evolution operator, it is tempting to conjecture

that the depth of an element of the dynamical Lie algebra is related to the minimum

time required to achieve its unitary companion. Unfortunately we do not have

enough numerical data to decide this conjecture and leave it as an open problem for

future studies.

3.3 Influence of the bath on the

minimum gate time

So far we have discussed which unitary transformations can be implemented in

principle on the spin star by a generic control field B(t). By this we mean that no

explicit statement is made about the time required to achieve the desired unitary.

In practice, we not only need to reach the desired unitary but we need to do so in

a reasonable time. Therefore we now to turn to the question of how the minimum

time, T ⇤(UG), required to implement a target unitary transformation, UG, on the

central spin (hereafter minimum gate time) scales with the number of bath spins.

To do this we need to identify the control pulse allowing to implement UG in the

shortest time possible for different numbers of bath spins. To this end we need to

resort to numerical gate optimization.

We used the Grape algorithm [44] as outlined in Sec. 2.2.2 and implemented in the

open source optimal control package DYNAMO [98]. The algorithm uses a gradient

based method that maximizes the following gate fidelity

f1(⌧) =

�

�

�

�

1

2N+1
tr{U †

GU(⌧)}

�

�

�

�

2

, (3.3.1)

given by the modulus square of the normalized overlap, at a given time ⌧ , between

the target transformation, UG, and the actual evolution, U . The fidelity (3.3.1)
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involves choosing a target unitary operation acting on the whole spin star. However,

since we are interested in implementing unitary transformations on the central spin

alone (and in general we cannot access the bath degrees of freedom), such a choice

is somewhat arbitrary and limiting. In an open system set up a better and more

motivated fidelity measure is therefore given by [99]

f2(⌧) = 1� �min
V

||UG ⌦ V � U(⌧)||2, (3.3.2)

where UG is the target unitary on the central system, V a generic unitary on the

bath, U is the actual evolution at time ⌧ of the full system and � is a normalization

constant. Due to the minimization over all the unitaries acting on the bath, as

opposed to the fidelity in Eq. (3.3.1), the fidelity defined in Eq. (3.3.2), reaches its

maximum if the goal transformation has been implemented on the central system,

regardless of the bath evolution. Using the Frobenius norm and choosing � =

1/(2 ⇤ 2N+1), the minimization can be carried out explicitly yielding [46]

f2(⌧) =
1

2N+1
tr{

p

Q†Q}, (3.3.3)

with Q = trS{(UG ⌦ 1bath)
†U(⌧)}, and trS{·} the partial trace over the central spin

degrees of freedom.

After having included the gate fidelity f2 into the DYNAMO package, we have per-

formed the optimization of f1 and f2 by using the exact gradient formula developed

in [46, 47]. The time ⌧ , from now on called the driving time, has been divided into

M equidistant time intervals ∆t = 0, 05 chosen to be smaller than the inverse of

the highest eigenvalue of the Hamiltonian (3.1.1) to ensure a proper resolution of

the dynamics. For a given bath size, in order to estimate the minimum gate time

T ⇤, we have optimized both figures of merit f1(⌧) and f2(⌧) for different values of

⌧ . We additionally optimized over randomly chosen initial pulses meaning that at

each ⌧ the maximum value of the fidelity over the different realizations is taken. An

additional optimization over many initial pulses is performed to minimize the effect

of local minima in the numerical routine. Finally we have rescaled the coupling con-

stants Ak by a factor 1/
p
N . Such choice follows the considerations made in [68, 69]
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about the thermodynamical limit of the central-spin and similar models in the equal

coupling case. Different choices of renormalizations are possible depending on the

specific process being modeled 3. However, since we expect the minimum time to

be related to the Lie algebraic properties of the model, hence to be independent of

parameter details, we believe it is reasonable to assume that the different renormal-

ization choices do not affect the scaling of the minimum time in the different and

equal coupling case.

We emphasize that our numerical calculations can only provide upper bounds to the

minimum gate time, because the choice of initial control field can affect the time at

which the given fidelity reaches a predetermined threshold value.

3.3.1 Optimizing f1

We begin with the optimization of the fidelity f1(⌧) defined in Eq. (3.3.1) and choose

the identity as the target unitary on the bath. As a target transformation UG on

the central system we consider both the Hadamard gate and the ⇡/8 gate since

these one-qubit gates form a universal set [100]. We begin with equal couplings,

set A = 1, and investigate the minimum time required for the implementation of

the Hadamard gate (Fig. 3.3 panel a)) and the ⇡/8 gate (Fig. 3.3 panel b)) on

the central spin. In Fig. 3.3 we plot the maximum value of f1(⌧) as a function

of the driving time ⌧ for different number of bath spins N and maximized over

200 randomly chosen initial pulses. Points that seem to break the continuity of

the curves are statistical fluctuations and have no physical relevance as confirmed

by optimizations over a higher number of initial pulses. The computational effort

required by the optimizations is intensive which is the reason why, when optimizing

f1, we restricted ourselves to a statistical sample of 200 random initial pulses for

each time and, when optimizing f2, to 500. The black curve corresponds to N = 0

whereas the other curves to increasing values of N : in panel a) N = 1, . . . , 7 and in

3For hyperfine coupling the coupling constants Ak are rescaled by a factor 1/N because Ak is
proportional to the absolute square of the electron wave function that is normalized over a
volume containing N nuclei.
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panel b) N = 1, . . . , 5. We observe the following:

1) Short time behavior in the equal coupling case: for ⌧ = 0 we have obtained

f1(0) = 0 for the Hadamard gate and f1(0) = (2 +
p
2)/4 for the ⇡/8 gate. The

plots show the bath detrimental effect on gate optimization on short time scales.

Indeed after an initial extremely short time window where all curves exhibit the same

increasing behaviour, reflecting the fact that correlations between the central system

and the bath have not been established yet, the maximum value of the fidelities in

presence of the spin bath then drops compared to the N = 0 case. Note that for

short times the ⇡/8 gate can be reached with fidelities above 0.99 independently of

the number of bath spins. This reflects the fact that the ⇡/8 gate is up to a global

phase identical to a rotation around the z axis which can always be achieved at

short times with a sufficiently large control-field amplitude.

2) Long time behavior in the equal coupling case: after a region of decreasing slope,

all dissipative fidelities increase again until, for all N , a maximum value above 0.995

is reached. The increasing bath size results in a time shift of the maximum value.

The achieved maximum values are the same for both the Hadamard and the ⇡/8

gate.

3) Different coupling case: to study the effect of the bath spins in more detail we

will from now on focus only on the optimization of the Hadamard gate on the central

spin.

Fig. 3.4 shows the maximum value of the fidelity as a function of the driving time

in the different coupling case. The couplings are randomly chosen from a uniform

distribution between 1 and 2. The curves have been obtained for N = 1, . . . , 3 bath

spins. As before, a maximum value above 0.995 is reached for all bath sizes but the

driving time needed to reach it is much longer with respect to the equal coupling

case.

4) Estimation of T ⇤: in Fig. 3.5 we plot the estimated minimum gate time T ⇤

against the number of bath spins for different and equal couplings. Our estimate

has been obtained by setting a threshold value for the fidelity f1 = 0.995 and

extracting the corresponding T ⇤ from the data plotted in Fig. 3.3 and 3.4. The
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a)

b)

Figure 3.3.: Maximum value of the fidelity f1(⌧) as a function of the driving time ⌧
extracted from 200 random initial pulses for equal couplings and target
unitary a) Hadamard on the central spin and identity on the bath; b)
⇡/8 on the central spin and identity on the bath. Both plots have been
obtained for different numbersN of bath spins as indicated on the figure.

inset shows the minimum gate time versus the number of bath spins for different

couplings on a logarithmic scale. It should be mentioned here that the point that

belongs to N = 4 for different couplings was obtained by searching only in the

expected time window for a fidelity above the mentioned threshold. Furthermore, as

already mentioned, our results can only provide an upper bound on T ⇤. Nevertheless
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Figure 3.4.: Maximum value of the fidelity f1(⌧) as a function of the driving time
⌧ extracted from 200 random initial pulses for different couplings and
bath size N = 1, . . . , 3.

Figure 3.5.: Minimum gate time T ⇤ needed to reach a value of the fidelity of at least
f1(⌧) = 0.995 as a function of the number of bath spins N for both
different and equal couplings. The inset shows the curve for different
couplings on a logarithmic scale.

Fig. 3.5 clearly suggests a significantly different scaling behaviour of the minimum

gate time in the two different coupling regimes. In the equal coupling case, when the

whole system is not fully controllable, the gate time seems to depend weakly on the

number of bath spins (red curve) in strong contrast with the fully controllable case
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(black curve) where the dependence on the bath size is at least polynomial (black

curve). Consistently with our controllability analysis, the scaling of the minimum

gate time suggests that in the equal coupling case the decoherence affecting the

central spin can be suppressed in reasonable time regardless of the size of the bath.

On the other hand, in the fully controllable case, for higher number of bath spins

(dramatically) longer gate times can be expected. This seems consistent with the

intuition that if the dimension of the Lie Algebra grows exponentially with N , then

the implementation of a generic element of the corresponding Lie group requires an

exponentially increasing time.

3.3.2 Optimizing f2

Until now we have investigated the scaling of the minimum gate time by optimizing

f1 and choosing the identity as a target operation on the bath. We now want to

see whether the optimization of f2, Eq. (3.3.3) exhibits significant deviations from

this behaviour. Unfortunately the optimization of f2 with the GRAPE algorithm

resulted extremely sensitive to local minima, especially for increasing number of

bath spins, consistently also with the results presented in [46]. In order to minimize

this effect a much higher number of random initial pulses was required. Due to

computational restrictions, we had therefore to limit our investigation to N = 2 and

500 random initial pulses.

In Fig. 3.6 the maximum value of the fidelities f1(⌧) (dark yellow curve) and f2(⌧)

(orange curve) is plotted as a function of the driving time ⌧ for both equal (panel a))

and different couplings (panel b)). Intuitively we would expect a shorter minimum

gate time when the target transformation is specified only on the central spin because

in this case the constraint on the bath evolution is weaker. Each control pulse

maximizing f1(⌧) is a specific solution for f2(⌧) as well, hence the fidelity f2(⌧)

should at least attain the same maximum values as f1(⌧). However, from Fig. 3.6,

we see that values of the maxima reached by f2 around T ⇤ are slightly below those

reached by f1, thus witnessing an increased sensitivity of the optimization to local
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a)

b)

Figure 3.6.: Maximum values of the fidelities f1(⌧) and f2(⌧) as a function of the
driving time ⌧ extracted from 500 randomly chosen initial pulses for
N = 2: a) equal couplings, b) different couplings where the inset shows
the time window ⌧ 2 [3.7, 4.4] and the maximum was extracted from
104 random initial pulses.

minima within this time window. From Fig. 3.6 we also note that up to a certain

time the curves relative to f2(⌧) and f1(⌧) are identical, thus implying that within

this time window there is no difference between setting the target on the full system

or on the central spin only. This behavior however changes at increasing times since

higher fidelities can be achieved on shorter timescales if the target is only set on
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the central spin. Only at the end of the time window the curves seems to become

similar again. However, for equal couplings, even though f2 reaches higher values at

shorter times, it never crosses the threshold of f2 = 0.995 before T ⇤ thus leading us

to conclude that in this case, for sufficiently high threshold values, the fidelity used

does not significantly affect the estimate of the upper bound on the minimum gate

time. For different couplings, instead, values that are close to the threshold can be

reached at short times: the inset plot shows a time window in which f2(⌧) reaches

a maximal value of 0.98.

In conclusion, for equal couplings, the numerical results suggest that the minimum

gate time depends weakly on the size of the bath and perhaps reaches a saturation

value. This is consistent to the theoretical prediction that the depth of an element of

the dynamical Lie algebra is related to the minimum gate time to achieve its unitary

companion (see Sec. 3.2.4). This behavior appears to be the same for both fidelities.

For different couplings, instead, the numerical results hint at a different behaviour

of the minimum gate time according to whether the target is defined on the whole

system or on the central spin only. In the latter case in fact not only the minimum

gate time seems to be shorter but also we can not even rule out the possibility

that it scales as in the equal coupling case. More conclusive statements require

much bigger computational resources and more sophisticated analytical techniques

as for example those suggested in [101, 102]. However these methods are not easily

generalized to high dimensional systems considered here.

3.4 Conclusions

By analytical calculation of the dynamical Lie algebra, we showed that a central

spin interacting with a surrounding spin bath is fully controllable for almost all

choices of the coupling constants and any bath size. If the central spin couples

to the bath with unequal couplings, this property extends to the whole spin star,

environmental spins included. To our knowledge, this is the first explicit example

of a system that is universal for quantum computation using only a single control
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field. We can therefore conclude that quite remarkably, by controlling the central

system, the bath can be i) effectively switched off; ii) arbitrarily engineered. The

possibility of controlling the environment via the central spin can be exploited to

implement, on the central spin itself, not only arbitrary unitaries but, more generally,

arbitrary (completely positive trace preserving) dynamical maps. This result can be

of practical relevance both for quantum simulations of open system and for quantum

reservoir engineering.

Alongside these purely analytical findings we also performed an extensive numerical

investigation of control timescales and how these are affected by both the bath size

and the symmetries of the system. In the maximally symmetric scenario, when all

the bath spins can be regarded as a single collective particle, our estimate for the

minimum time required to perform a gate under dissipative dynamics shows that it

scales relatively slow, perhaps reaching a saturation value, as a function of the bath

size. On the contrary, in absence of symmetries, i.e. when each environmental spin

interacts differently with the central system, the scaling of the minimum gate time

appears to be much faster (we conjecture exponentially faster).

Our results might have interesting applications in NV centers, which are essentially

electron spins in a finite nuclear spin bath. One recently demonstrated method to

overcome the short coherence time of the electron spin is to store its state in the

nuclear spins, which have longer decoherence times. Our control results then suggest

that this might not be the best strategy, and that instead one might apply a more

complex shaped pulse to the electron spin to keep it fresh for longer.
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4 Dynamical decoupling

and decoherence

In the previous section we saw that the modulation of a classical control field allows

us to implement quantum gates in an open system setting in a noiseless manner.

Decoherence caused by the interaction with the environment can be circumvented by

shaping the control pulses according to the underlying system-environment model

and the target gate one wants to implement. The possibility to fully control the

central system through one control field in the presence of an environment relies on

the system-environment interaction that is present. To numerically calculate the

control pules, in order to implement a target operation, we need full knowledge of

the form of the open system Hamiltonian and the coupling constants that are con-

tained in it. Additionally there might be other environmental degrees of freedom

that couple to the system of interest, yielding an additional noise source for the

implementation of quantum gates through the calculated pulses. Sometimes only

the protection of a quantum system from decoherence, rather than the additional

implementation of gates, is of main interest in order to keep quantum features like

entanglement and coherent superpositions alive. In other words, one is interested

in a strategy that suppresses the interactions with environment, regardless of how

the interactions appear, so that the quantum system effectively evolves unitarily or

does not evolve at all. Such a strategy is dynamical decoupling.

Dynamical decoupling is a highly successful strategy to protect quantum systems

from decoherence [3]. Its particular strength is that it is applicable even if the de-
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tails of the system-environment coupling are unknown. The idea is to rapidly rotate

the quantum system by means of classical fields to average the system-environment

coupling to zero. In this respect dynamical decoupling can be regarded as a spe-

cific instance of quantum control. Historically dynamical decoupling dates back to

pioneering work in nuclear magnetic resonance (NMR) by U. Haeberlen and J. S.

Waugh [103]. They developed pulse sequences in order to increase the resolution

in NMR spectroscopy by coherently averaging out interactions [104]. Prominent

examples are spin-echo techniques, such as the famous Hahn-echo [105], allowing

us to measure relaxation times through applying a sequence of rotations on a spin

and measuring the echo signal. In the context of suppressing decoherence and quan-

tum information theory the theoretical framework was developed by L. Viola and

S. Lloyd [106, 107] in the late 90’s. Over the years the efficiency of different de-

coupling schemes was studied and improved for several environmental models in

[108, 109, 110, 111, 112, 113]. Many experiments, such as [114, 115, 116], demon-

strate the applicability of dynamical decoupling in an impressive way by prolonging

coherence times a few orders of magnitude. Additionally dynamical decoupling can

be combined with the implementation of quantum gates, which makes it a viable

option to error correction [117, 118].

The chapter is organized as follows. We start by introducing the concept and the

terminology of dynamical decoupling, embedding it afterwards into the framework

of control theory. This will lead to the question of how fast we have to apply dy-

namical decoupling to effectively suppress decoherence, which will be the subject of

Sec. 4.1.1. Since we want to analyze dynamical decoupling also for infinite dimen-

sional environments in the next section, we give in Sec. 4.1.2 a brief introduction into

the mathematical-terminology and the difficulties concerning unbounded operators.

Based on dynamical decoupling we present afterwards a method to distinguish de-

coherence from intrinsic noise terms, for instance arising from collapse models that

were introduced in Sec. 2.1.5. Usually dynamical decoupling is introduced and for-

mulated for finite dimensional quantum systems interacting with an environment.

We finish the chapter by developing in Sec. 4.3 a general framework for continuous
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variable systems that are described by quadratic Hamiltonians (2.2.13).

4.1 The concept

To begin with we consider again the simple one qubit decoherence model from

Sec. 2.1.4, given by the system-environment Hamiltonian

HS,B = �z ⌦ B. (4.1.1)

Imagine we are able to perform instantaneously ⇡/2 rotations of the qubit around

the x-axis described by the unitary decoupling operation �x ⌦ 1 ⌘ �x. Note that

with such a decoupling operation we can reverse the sign in front of the system-

environment Hamiltonian, i.e. �xHS,B�x = �HS,B. Then, by applying the decou-

pling operation, letting the system evolve under HS,B for a time ∆t and applying the

decoupling operation again, we can switch off the system-environment interaction

e�iHS,B∆t�xe
�iHS,B∆t�x = 1, (4.1.2)

for times 2∆t, that is, the total system does not evolve anymore. We have chosen the

decoupling operation in such a way that the sign in front of the system-environment

Hamiltonian can be reversed. This requires some knowledge about the form of

the system-environment Hamiltonian. Clearly a system-environment interaction

which is described by the central spin model (3.1.1) from the last section cannot

be suppressed in this way. Moreover the rotated Hamiltonian �xHS,B�x commutes

with the original one, so that decoherence can be suppressed for all times. For a

general system-environment Hamiltonian

H = HS ⌦ 1+ 1⌦HB +
X

↵

S↵ ⌦ B↵, (4.1.3)

this is generally not the case since higher order terms, including commutators of the

rotated Hamiltonians, enter in the dynamics. As we will see below, one particular

strength of dynamical decoupling is the fact that generic system-environment inter-

actions can always be suppressed by choosing the decoupling operations properly.
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Before we start formulating dynamical decoupling in the framework of quantum

control theory we first want to discuss the essence why dynamical decoupling works

for generic interactions. In the following we consider a system that consists of N

qubits with Hilbert space HS = C
2N and for the moment we assume that the envi-

ronment is finite dimensional. We take unitary decoupling operations v from a finite

set V of unitaries with |V | being the number of elements in the set. The dynamics

is modified by applying the decoupling operations instantaneously in time intervals

∆t = t
n
, such that within one decoupling cycle, consisting of transversing through

the elements of V , the evolution is modified according to

Ucyc =
Y

v2V
v†e�iHt/nv. (4.1.4)

Throughout this chapter we consider perfect decoupling operations, while bounds

for the non-perfect case can be found for example in [119, 120, 121]. If we repeat

this cycle many times we obtain, using a generalized Trotter formula [122],

U(t) = lim
n!1

Un
cyc = exp

"

�it
X

v2V

 

v†HSv ⌦ 1+ 1⌦HB +
X

↵

v†S↵v ⌦ B↵

!#

,

(4.1.5)

where the right hand side involves a map of the form

Π(x) :=
1

|V |

X

v2V
v†xv. (4.1.6)

We remark here that throughout this chapter we are going to study the properties

of such maps arising in different contexts. We proceed and notice that under the

assumption that V is a group, Π maps all x 2 B(HS) onto the commutant V 0 =

{A | [A, v] = 0, 8v 2 V }. Now, if we define a proper decoupling set V as an

irreducible representation of a finite group of unitary operations v, then we have,

by Schurs Lemma (see e.g [39]), that the commutant is trivial, V 0 = C1S, and

consequently

Π(x) =
tr{x}

dim(HS)
1S, 8x 2 B(HS), (4.1.7)
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so that

⇢S(t) = trB{U(t)(⇢S(0)⌦ ⇢B(0))U
†} = ⇢S(0). (4.1.8)

This shows that decoherence can always be suppressed by choosing the decoupling

set V to be a finite irreducible representation of the unitary group. Note that for

spin systems the Hamiltonian is traceless and hence the righthand side of (4.1.7)

is zero. For a single qubit such a decoupling set is given by the Pauli group V =

{1, �x, �y, �z}, whereas for N qubit systems it consists of 4N combinations of the

Pauli spin operators on the tensor factors.

Up to this point we have considered a decoupling sequence of the form Ucyc, yielding

in the limit of infinitely fast decoupling (∆t ! 0) a dynamics governed by Π(H).

Therefore, if the map Π acts irreducibly, the resulting dynamics is given by a global

phase or, in the case where the system operators are all traceless, by the identity.

This is the essence of dynamical decoupling. In the following we will see that a

decoupling sequence of a different form, v1 exp(�iH∆t)v2 exp(�iH∆t)v3, can always

be brought into the form Ucyc. This can be achieved by transforming the dynamics

into a frame in which the action of the decoupling operations alone is separated from

the modified dynamics.

Usually dynamical decoupling is introduced within the framework of control theory.

In order to link it to quantum control we will outline the connections below, following

the presentation in [3]. In spirit of the second approach for controlling open quantum

systems (see Sec. 2.3) we consider a total Hamiltonian of the form

H(t) = H0 +Hc(t)⌦ 1, (4.1.9)

where H0 is the Hamiltonian of the open quantum system (4.1.3), the controller

Hc(t) =
P

i ui(t)Hi contains the control Hamiltonians only acting on the system,

and the control propagator is defined as

Uc(t) = T̂ exp

✓Z t

0

dt0 Hc(t
0)

◆

. (4.1.10)

It is now natural to seek for a representation in which the intended control action is

isolated from the rest. This can be done by transforming the total system into the
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toggling frame. In this frame the total system rotates with the control propagator,

so that the evolution in this frame is given by

Ũ(t) = T̂ exp

✓Z t

0

dt0H̃(t0)

◆

, (4.1.11)

with H̃(t) = U †
c (t)H0Uc(t) being the Hamiltonian modified through the controller.

The evolution in the Schrödinger picture is thus obtained by U(t) = Uc(t)Ũ(t). If

we assume that the controller is periodic, i.e.

Uc(t+NTc) = Uc(t), N 2 N, (4.1.12)

both frames coincide for times t = NTc. For periodic controllers the framework of

average Hamiltonian theory [103] can be applied, yielding

U(NTc) = Ũ(NTc) = e�iNTcH̄ , (4.1.13)

with H̄ being an averaged Hamiltonian given by the Magnus expansion H̄ =
P1

l=0 H̄
(l)

for which the lowest order is given by

H̄(0) =
1

Tc

Z Tc

0

dt0U †
c (t

0)H0Uc(t
0). (4.1.14)

Higher orders contain nested commutators and they scale as

�

�H̄(l)
�

� = O(kH0k (kH0kTc)
l), (4.1.15)

with k·k any unitarily invariant norm. Here we already note that for unbounded op-

erators B↵, as they would appear for infinite dimensional environments, special care

has to be taken by invoking such an expansion. In particular the error estimation

(4.1.15) becomes meaningless since the norm of H0 becomes infinite.

It is now easy to introduce bang-bang dynamical decoupling. We assume that each

periodic decoupling cycle consists of a sequence v1, . . . , vM of M unitary decoupling

operations that are separated by ∆t, such that M∆t = Tc. The lowest order (4.1.14)

of the averaged Hamiltonian then becomes

H̄(0) =
1

Tc

M
X

k=1

∆tU †
kH0Uk, (4.1.16)
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with Uk = vk�1, . . . , v0 and v0 = 1. Clearly, if the decoupling operations are taken

from a set V that forms a group, every Uk is an element of the group, and conse-

quently the sum over k in (4.1.16) can be taken over all group elements. We thus

get the expression (4.1.5) that was obtained with a generalized Trotter formula. To

summarize, we saw that for periodic decoupling schemes the toggling frame coin-

cides with the physical frame at times NTc, i.e. Uc(NTc) = 1. This shows that

periodic, group-based decoupling schemes formulated in the framework of control

theory (4.1.9) are equivalent to the scheme (4.1.4) in which the decoupling oper-

ations are applied in the order v, free evolution, v†. In other words, it is always

possible by transforming into the toggling frame to obtain a decoupling procedure

that is described by (4.1.4). We can conclude that decoupling is possible if the

decoupling condition

Π(S) =
1

|V |

X

v2V
v†Sv = 0, 8S 2 B(HS), (4.1.17)

is satisfied, which ensures that the first order term in ∆t vanishes. This is always

possible by choosing V to be a finite group of irreducible unitary representations,

where we used that the system operators are all traceless.

So far we have restricted the discussion to deterministic decoupling schemes, which

has in the bang-bang case the disadvantage that we have to steer the controller in

each decoupling cycle through all elements of V . Since the length of each cycle is

proportional to the size |V | of the decoupling set, dynamical decoupling becomes

inefficient for large quantum systems. To overcome these limitations the framework

of random dynamical decoupling was introduced [107]. Instead of steering the con-

troller deterministically through V , the decoupling operations are taken uniformly

random from the decoupling set, so that a random walk on the unitary group is

induced. The dynamics is then governed by the expectation [107],

E[U †
c (t)H0Uc(t)] =

Z

V

d⌫V v†H0v, t 2 (0,∆t), (4.1.18)

with ⌫V being the Haar measure on V , normalized to ⌫V (V ) = 1. Clearly, if V is a

irreducible representation of the unitary group, (4.1.18) is just given by a multiple of
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the identity. Moreover, if we take the decoupling operations uniformly random from

a finite discrete decoupling set, the random walk of Uc(t) may be enforced through a

sequence of equally spaced bang-bang operations, such that the integral in (4.1.18)

is replaced by a finite sum over all elements in V . Note that within a deterministic

decoupling scheme a similar average is obtained through the time average over a

decoupling cycle (4.1.16) by invoking the Magnus expansion. By contrast, this

definition of random decoupling is intrinsically acyclic, and the control path almost

never returns the system to the physical frame. However, the available information

about the past control trajectory may be exploited to bring the state of the system

back to the physical frame if desired [107].

4.1.1 Bounds

Up to now we have discussed how in principle decoherence can be suppressed through

dynamical decoupling. The instantaneous application of unitary operations satisfy-

ing the decoupling condition (4.1.17) makes it possible to suppress the interactions

with the environment up to first order in ∆t, so that in the limit ∆t ! 0 decoher-

ence can be fully suppressed. Obviously in an experimental situation this limit is

not attainable since it corresponds to an infinite amount of energy. Hence we want

to investigate now how fast the decoupling operations have to be applied to effec-

tively suppress the interactions with environment. Typically, error estimates are

given in terms of the higher orders of the Magnus expansion (4.1.15) or the Dyson

series [107, 123]. The obtained error bounds are proportional to the total time T

and the norm of the system-environment Hamiltonian characterizing the strength

of the interaction with the environment. Here we develop a bound for the trace

distance between the initial state of the system ⇢S(0) and the evolved system state

⇢S(T ) after some time T . We consider a decoupling sequence of the form (4.1.4)
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and develop an error estimate similar to the one obtained by Suzuki [122],
�

�

�

�

�

exp
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X

j=1

Aj

!
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p
Y

j=1

e
1
n
Aj

!n�
�

�

�

�

 1

2n

 

X

j>k

k[Aj, Ak]k
!

exp

 

p
X

j=1

kAjk
!

,

(4.1.19)

for a generalized Trotter formula, which is valid for a normed space.

In the following we first show that for unitary operations the exponential factor in

(4.1.19) disappears such that the bound becomes more tight. Let g and h be unitary

operations and k·k be any unitarily invariant norm, i.e kUAV k = kAk with U, V

unitary. Using the triangle inequality we then have

kgn � hnk =
�

�gn�1(g � h) + gn�2(g � h)h+ . . .+ (g � h)hn�1
�

� ,


�

�gn�1(g � h)
�

�+
�

�gn�2(g � h)h
�

�+ . . .+
�

�(g � h)hn�1
�

� ,

= n kg � hk . (4.1.20)

Now, if we take g = exp
⇣

T
n

Pp
j=1 Kj

⌘

, h =
Qp

j=1 e
T
n
Kj with Kj(·) = �i[v†jHvj, ·]

being the generator of a unitary map rotated by the decoupling operations vj, we

further obtain, using identity 2 in [122],

kg � hk  1

2

T 2

n2

X

j>k

k[Kj,Kk]k. (4.1.21)

With (4.1.20) we arrive at
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X
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k[Kj,Kk]k, (4.1.22)

where the temporal spacing of the decoupling operations ∆t = T
n
was introduced.

We note that (4.1.22) is up an exponential factor similar to (4.1.19). We proceed by

using the decoupling condition (4.1.17) and noticing that then the first term of the

left hand side of (4.1.22) becomes the identity. The trace distance k⇢S(0)� ⇢S(T )k1
between the initial state and the state at time T of the system is therefore given by

k⇢S(0)� ⇢S(T )k1 =
�

�

�

�

�

trB

( 

exp
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,

(4.1.23)
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with ⇢(0) being the initial state of system and environment and trB{·} denotes

the partial trace over the environmental degrees of freedom. Now we can make

use of the properties of the Schatten p-norms kAkp = (tr{(A†A)p/2})1/p under the

partial trace [124], i.e. ktrB{A}kp  d
(p�1)/p
B kAkp, where dB is the dimension of the

environmental Hilbert space. For the 1-norm this leads with (4.1.22) to

k⇢S(0)� ⇢S(T )k1 
1

2
T∆t

X

j>k

k[Kj,Kk]k1, (4.1.24)

where we used kK(⇢)k1  kKk1 k⇢k1 with k·k1 being the operator norm. Using the

matrix representation of K, obtained from row vectorization of the density operator

(2.1.27), we finally find

k⇢S(0)� ⇢S(T )k1  T∆t
X

j>k

�

�

�[v
†
jHvj, v

†
kHvk]

�

�

�

1
,

 T∆t
|V |(|V |� 1)

2
max
j 6=k

�

�

�[v
†
jHvj, v

†
kHvk]

�

�

�

1
, (4.1.25)

with |V | being the number of elements in the decoupling set. Clearly, for a spacing

∆t ! 0 between the decoupling operations, dynamical decoupling suppresses the

interactions with the environment completely. This is reflected in the bound (4.1.25)

in such a way that for ∆t ! 0 the initial state of the system does not change.

Moreover we see that the suppression of decoherence depends on the evolution time

T . The longer we want to preserve a quantum state from decoherence, the faster

we have to apply the decoupling operations. Using the triangle inequality, unitary

invariance, and submultiplicativity we further find
�

�

�[v
†
jHvj, v

†
kHvk]

�

�

�

1
 2 kHk21,

such that the bound (4.1.25) becomes

k⇢S(0)� ⇢S(T )k1  T∆t(|V |(|V |� 1)) kHk21 , (4.1.26)

noting that this bound is similar to one of the bounds in [123]. Because the opera-

tor norm of H is given by the highest eigenvalue, one concludes that the decoupling

operations have to be applied faster than the highest frequency of the open system

Hamiltonian in order to effectively suppress decoherence. We want to emphasize

here two points. The first one is that the bound (4.1.26) does not capture the fact
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that if the rotated Hamiltonians commute with each other, dynamical decoupling

works perfectly for arbitrary spacings of the decoupling operations. This is reflected

in the bound (4.1.25). Second, both bounds become meaningless for infinite dimen-

sional environments described by unbounded operators. We pointed out in Sec. 2.1.4

that a system dynamics which is Markovian, in the sense that it is described by a

semigroup dynamics yielding an exponential decay, can only be obtained if the

system-environment Hamiltonian is unbounded in both directions. The typical con-

clusion that dynamical decoupling only works for non-Markovian environments [3],

because one has to be faster than the fastest timescale of the overall dynamics [106],

which is / kHk1 = 1 for unbounded operators, is not based on rigorous mathe-

matical grounds. In particular one has to check carefully if a pertubative expansion

like the Magnus expansion, the Trotter series or the Dyson series is applicable to

find error bounds in an infinite dimensional setting. In Sec. 4.2 we give an example

of a system-environment Hamiltonian that leads to an exponential decay and that

can be decoupled perfectly. Before, we first give a short introduction into the math-

ematical terminology we have to face in order to rigorously proof that dynamical

decoupling also works for unbounded operators acting on the environment.

4.1.2 Facing unbounded operators

We begin with the definition of a bounded operator. For a bounded operator A

there always exists a constant c � 0 so that

kA k  c k k , 8 2 H. (4.1.27)

Clearly in a finite dimensional setting this is always satisfied. To introduce the

notion of an unbounded operator we start with an example, taken from [125], that

considers the position operator x̂ on the space of square integrable function L2(R),
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i.e. functions f : R ! C for which
R1
�1 dx |f(x)|2 < 1. Take � 2 L2(R) defined by

�(x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0 for x < 0,
p
3
2
x for 0  x < 1,

p
3

2x
for x � 1,

(4.1.28)

and note that
R1
1 dx |�(x)|2 = 1. The position operator is defined as x̂ (x) = x (x)

for all  2 L2(R). Setting ' ⌘ x̂� and taking the definition of � from a above one

can easily check that
R1
�1 dx |'(x)|2 = 1 so that ' /2 L2(R). The position operator

acts on a normalized state and moves it out of the Hilbert space, here the space of

square integrable functions. Obviously (4.1.27) is not satisfied for all  2 L2(R).

In other words the action of x̂ cannot be defined on the entire Hilbert space. In

fact the Hellinger-Töplitz theorem (see for example [126]) states that if a linear and

self-adjoint operator is defined on the entire Hilbert space it is necessarily bounded.

This suggest that an unbounded operator B can only be defined on a dense linear

subspace D(B) of the Hilbert space H, which is called the domain of B. To make

sense of unbounded operators we first have to specify the domain so that B is a

linear map from its domain into H. This is of particular importance if we deal with

different unbounded operators. For instance, consider A and B to be unbounded

operators with D(A) and D(B) the domains respectively. Then the sum A+B only

exists on the domain D(A) \D(B).

Regarding dynamical decoupling for infinite dimensional environments, we have to

deal with unbounded Hamiltonians that have a sum like structure

Π(H) =
1

|V |

X

v2V
v†Hv, (4.1.29)

where

H = HS ⌦ 1+ 1⌦HB +
X

↵

S↵ ⌦ B↵, (4.1.30)

is the system-environment Hamiltonian and v are the unitary decoupling operations

only acting on the system. Consider for example the single qubit case in which the
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Hamiltonian only consist of a system-environment interaction of the form

HSB = �+�� ⌦ B1 + ���+ ⌦ B2, (4.1.31)

where B1 and B2 are unbounded operators. If we take D(HSB) = (D(B1), D(B2))
T

to be the domain for HSB, written in the �z basis, and for the rotated version

�xHSB�x the domain D(�xHSB�x) = (D(B2), D(B1))
T , it is clear that they are not

necessarily the same unless we take D(B1) = D(B2). This example illustrates that

we have to choose the domain carefully in order to formulate dynamical decoupling

for unbounded environmental operators. In particular, in order to make sense of

Π(H) = (1 ⌦HB) , obtained from the decoupling condition (4.1.17) and arising

in the limit of infinitely fast decoupling, we have to make sure that  is in the

domain of HB and in the domain of the rotated Hamiltonians v†Hv. This can be

achieved by choosing for example

D(H) = C
d ⌦D(HB), (4.1.32)

to be the domain, assuming that D(HB) is contained in the domains of the envi-

ronmental operators B↵. Note that if we chose the domain in this way, the domain

stays the same when we apply the decoupling operations since they only act on C
d.

However, this choice might be too restrictive and we will see later that the most

general setting is obtained through the notion of a core. Before we introduce the

concept of a core we will first introduce the definition of a self-adjoint operator in an

infinite dimensional setting and an important theorem that establishes the connec-

tion between self-adjoint operators and one parameter unitary groups. Followed by

further definitions from functional calculus and operator theory we give afterwards

the definition of a core.

Let B be a densely defined operator on a Hilbert space H and denote by B† its

adjoint. For a definition of the adjoint of an unbounded operator and its domain

D(B†) see [126]. Then B is called hermitian if D(B) ⇢ D(B†) and B = B† for

all  2 D(B). Equivalently, B is hermitian if and only if

hB�| i = h�|B i, 8�, 2 D(B). (4.1.33)

81



CHAPTER 4. DYNAMICAL DECOUPLING
AND DECOHERENCE

A hermitian operator B is self-adjoint if and only if the domain of B coincides with

the domain of its adjoint, i.e. D(B) = D(B†) and we write B = B†. Note that one

can show, using the definition of D(H†), that if H is self-adjoint on D(H) given by

(4.1.32), also v†Hv is self-adjoint on D(H) since the decoupling operations only act

on the system part, which is assumed to be finite dimensional.

For finite dimensional quantum systems the exponential of an operator is defined

through its power series that converges in norm. For an unbounded operator the

series expansion can not be used directly and the question arises how the time evo-

lution operator can be defined. First of all note that in the framework of functional

calculus it can be shown [126] that for a self-adjoint operator H on a Hilbert space

H with domain D(H) we have for U(t) = eitH that:

i) U(t) is a strongly continuous one-parameter unitary group,

ii) for  2 D(H), (U(t)�1) 
t

! iH as t ! 0,

iii) if lim
t!0

(U(t)�1) 
t

exists, then  2 D(H).

This shows that, if we specify the domain, also for self-adjoint unbounded opera-

tors we get by exponentiation a one parameter unitary group describing the time

evolution in a quantum mechanical setting. In fact the connection is much deeper.

Stones theorem [126] states that:

if U(t) is a one parameter unitary group on a Hilbert space H, then there exist

a self-adjoint operator H on H such that U = eitH .

The crucial point here is that the operator generating the one parameter unitary

group has to be self-adjoint, which requires for unbounded operators the specifi-

cation of its domain. Stones theorem tells us that not only we can create a one

parameter unitary group by exponentiating iH, it is also the only way to obtain a

one parameter unitary group.
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To define a core of an unbounded operator we need a few further definitions [126].

Let A and B be densely defined operators on a Hilbert space H with domains D(A)

and D(B) respectively, then:

Extension of an operator: B is said to be an extension of A if D(A) ✓ D(B)

and if B = A for all  2 D(A). We write A ✓ B.

Closure of an operator: A is closed if for every sequence �n ⇢ D(A) such that

�n ! � and A�n !  as n ! 1, it follows that � 2 D(A) and A� =  . If

A has a closed extension we say it is closable. For each closable operator A

there is a unique smallest closed extension, which we denote by Ā, and which

is called the closure of A.

Essentially self-adjoint: if A is hermitian it is called essentially self-adjoint if

its closure Ā is self-adjoint.

Finally we can now come to the definition of a core. If a hermitian operator A is

closed, a subset C ⇢ D(A) is called a core for A if the closure of A over C gives us A.

We write A|C = A. The importance of a core becomes clear with the following fact.

If an operator A is essentially self-adjoint, then it has one and only one self-adjoint

extension. Conversely if A is a self-adjoint operator it is enough to give a core for A

for which A|C is self-adjoint. In words, instead of finding the domain of A precisely,

we can find the domain over which the smallest closed extension of A is self-adjoint,

i.e. over which A is essentially self-adjoint.

Now we want to come back to the relevance of the introduced terminology for dy-

namical decoupling. Instead of characterizing the domain D(H) of the self-adjoint

operator H precisely we can just give a suitable core C for it. We then assume that

C is also core of HB and each B↵, all assumed to be self-adjoint on a certain dense

domain D(HB) and D(B↵)
1, noting that D(HB) and D(B↵) might be different from

each other. Then the sum Π(H) is well defined on C
d ⌦ C.

Having established the mathematical framework for dynamical decoupling of un-

bounded environmental operators, we will prove in the following section that also

1or we assume that they are essentially self-adjoint on C
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finite dimensional quantum systems interacting with an infinite dimensional envi-

ronment can be decoupled and therefore protected from decoherence. Moreover we

will show that noise described by some Lindbladian can never be suppressed through

dynamical decoupling. This will lead to a strategy allowing us to distinguish be-

tween decoherence, induced by the interaction with environment, from intrinsic noise

terms that are described by Lindblad operators, arising for instance from collapse

models.
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4.2 Distinguishing decoherence from

collapse models by dynamical decoupling

Based on the published work:

C. Arenz, R. Hillier, M. Fraas and D. Burgarth, Phys. Rev. A 92, 022102

(2015)

R. Hillier, C. Arenz and D. Burgarth, J. Phys. A: Math. Theor. 48, 155301

(2015)

Despite of its puzzling nature and persistent foundational problems, such as the in-

famous measurement problem, quantum mechanics remains one of the most precise

and successful physical theories to date. This makes it hard to develop alternative

theories [29, 32, 127], which are either bound to agree with quantum mechanics on

all measurable aspects – and therefore being indistinguishable from it – or must

disagree with it only at the most subtle level, which means that such theories are

hard to falsify experimentally. While in our daily life quantum effects do not appear

to play a role, this does not imply that it is an incomplete theory, as the onset of

classicality can – at least up to a certain degree [21, 22] – be explained from within

quantum theory, using the concept of decoherence, which was introduced and dis-

cussed in Sec. 2.1.4 regarding the emergence of classicality.

Decoherence arises from the coupling of a quantum object with other degrees of

freedom, which washes out quantum mechanical features. Besides being a major

obstacle to quantum computing, decoherence is also an obstacle to the tests of

theories alternative to quantum mechanics, since it tends to obscure the – already

minimal – deviations they predict from the usual Schrödinger dynamics. Even worse,

since most alternative theories aim to explain the onset of classicality, they predict

features identical in their mathematical nature to decoherence [38]. For instance we

saw in Sec. 2.1.5 that collapse models (CM) lead to an exponential decay that would
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similarly occur from an unbounded interaction with an environment. The main aim

of this article is to demonstrate that while these models might be mathematically

identical, they are physically distinguishable, irrespectively of decoherence. At first,

this seems impossible. Especially in quantum information theory, the Church of the

Larger Hilbert Space – the idea that any noisy dynamics or state might equally well

be represented by a noiseless one on a dilated space – is so deeply rooted that such

a distinction seems heretic.

A method to distinguish decoherence from CM which is obvious but impractical is

to derive ab initio predictions of decoherence and compare these with experiments.

Unfortunately, the predictive power of decoherence models till date is low, as they

contain many free parameters to fit. We therefore aim to develop methods which

are independent of the details of the decoherence involved, as well as of the specific

CM considered.

Our work is based on a very simple idea, namely that dynamical decoupling only

works for systems which are truly coupled to environments, but not for systems

which have intrinsic noise terms, as arriving from axiomatic modifications of

Schrödinger’s equation, such as the CM that were introduced in Sec. 2.1.5. This

seems to leave us with an amazingly simple strategy to distinguish decoherence

from CM: apply decoupling, and if it works, then the noise was due to standard

quantum theory; if it does not work, it can provide evidence for CM. Is this there-

fore the most successful “failed” experiment ever? Of course not: we need to be

convinced that the experiment did not work despite good effort, in other words, we

need to know quantitatively how much the experiment can fail while still being in

the realms of standard decoherence; and how much it can succeed despite being in

the realms of CM. This poses an additional problem. As already pointed out in

the previous section, it is a common view that dynamical decoupling only works

for environments inducing non-exponential decay (sometimes referred to as ‘non-

Markovian’, although this term is used ambiguously in the literature). This means

that if the observed quantum dynamics shows exponential behaviour, we would not

be able to distinguish it from CM. On the other hand, most CMs predict exponential
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decay [38].

The reason for this common view is that exponential decay can only be obtained

from an unbounded interaction with the environment [6] (see additionally Sec. 2.1.4

for further details), for which standard error analysis of dynamical decoupling fails

[107]. Perhaps surprisingly, we will prove in Sec. 4.2.3 that in general even un-

bounded Hamiltonians can be decoupled and hence distinguished from intrinsic de-

coherence. This general proof is illustrated by an analytically solvable example

4.2.3. We can conclude that non-exponential dynamics is in general not the under-

lying mechanism of dynamical decoupling. This result extends the applicability of

decoupling to a vast class of system-environment interactions and has applications

in quantum engineering beyond the scope of this work.

Finally, dynamical decoupling arises in the limit of infinitely fast quantum gates, so

in practice it is never perfect. How fast should these operations be so that decoher-

ence and CM can be distinguished? Below, we provide numerical simulations of two

common models and asymptotical bounds. As we will see below, the convergence

speed can depend strongly on the initial bath state, which implies thatMissing think,

e.g., depending only on the observed decay rates of the system, cannot be provided.

Nevertheless, experimental evidence can be provided if a saturation of fidelity is

observed under increasingly fast operations. For the parameter range explorable by

our scheme, we can do the following rough estimate. The strongest intrinsinc decay

rates for qubits predicted by CM are of the order of 10�8 s�1 corresponding to a

half-life time of several years [29]. Precision measurements of qubits on the other

hand are very well developed meaning that coherence decay of the order of percent

can be detected. This means that if one aims to keep a qubit from detectable decay

for several days, the first CM models could be detected or excluded. At present

qubit coherence times can be prolonged by dynamical decoupling up to six hours

[128]. This is still a few orders of magnitude off the theoretical predictions, which

is comparable to the usual CM tests in the macroscopic superposition regime.

Our results pave the way to test CM in low-dimensional systems, including qubits,

where CM predicts very weak effects [29], but where dynamical decoupling is very
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efficient, and where accurate tomography can be performed [129]. This is a differ-

ent parameter regime compared to tests using macroscopic superpositions [130, 131,

132, 133], where CM predict stronger effects but dynamical decoupling is challenging

(see, however, [134]).

4.2.1 Dynamical decoupling of bounded Hamiltonians

and Lindbladians

We recall that the idea of dynamical decoupling is to rapidly rotate the quantum sys-

tem by means of classical fields to average the system-environment coupling to zero.

First we want to review the key aspects of dynamical decoupling that were intro-

duced in the beginning of this chapter. We consider unitary decoupling operations v

taken from the set V of |V | unitary d⇥dmatrices satisfying 1
|V |

P

v2V v†xv = 1
d
tr(x)1

for any matrix x. We remember that for a single qubit such set are the Pauli matrices

V = {1, �x, �y, �z}. While we saw that usually dynamical decoupling is discussed

in the realm of a unitary time evolution, we already allow here a noisy dynamics

generated by a Lindbladian L because we later want to see what happens for CM.

This dynamics is now modified by decoupling operations vi 2 V with i = 1, . . . , n

applied instantaneously in time steps ∆t. After time t = n∆t the system has evolved

according to

Et(·) =
n
Y

i=1

Ad(v†i ) exp(∆tL)Ad(vi)(·), (4.2.1)

where Ad(vi)(·) = vi(·)v
†
i and the product is time-ordered. The generalization to

time-dependent generators is straight forward and will be used later in the exam-

ples. The decoupling operations are chosen uniformly random from V , which has

some advantage over deterministic schemes [107, 110]. Notice that our definition of

random dynamical decoupling differs slightly from [107]. The time evolution (4.2.1)

becomes a stochastic process with expected dynamics determined by

L̄ :=
1

|V |

X

v2V
Ad(v†)LAd(v). (4.2.2)
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This leads to the decoupling condition L̄ = 0, which one requires in order to suc-

cessfully suppress decoherence. Remember that this condition is independent of

whether we use a deterministic or random decoupling scheme [106]. The idea be-

hind this condition is that it ensures the cancellation of L in first order in ∆t||L||.

For ∆t ! 0, keeping the total time t fixed, the time evolution (4.2.1) becomes there-

fore effectively the identity.

We saw in the beginning of this chapter that for finite dimensional systems a Hamil-

tonian dynamics L(·) = i[H, ·] can always be suppressed through dynamical decou-

pling using a proper decoupling set V . In Sec. 4.2.3 we prove that this is even true

for finite dimensional system that interact with an environment through unbounded

Hamiltonians. But what happens for CM? Note first of all that we mentioned in

Sec. 2.1.5 that for CM models that modify the Schrödinger equation in a nonlinear

way, it was argued in [38] that under the assumption of the no-signalling principle

the resulting dynamics is described by a time independent Lindblad operator

L(·) =
d2�1
X

j=1

�j(2Lj(·)L
†
j � (L†

jLj(·) + (·)L†
jLj)), (4.2.3)

yielding the averaged Lindbladian

L̄(·) =
d2�1
X

j=1

2�j

 

1

|V |

X

v2V
v†Ljv(·)v

†L†
jv �

1

d
tr(L†

jLj)(·)

!

. (4.2.4)

We will henceforth refer such AQT dynamics as intrinsic decoherence. In order to

avoid confusion, we will write extrinsic decoherence for decoherence arising in stan-

dard quantum theory. Surprisingly if the dynamics includes intrinsic decoherence,

the decoupling condition can never be fulfilled. We prove in the following that L̄

is always different from zero for intrinsic decoherence. We note that this allows us

to mathematically define intrinsic decoherence as a dynamics that is generated by

some L for which the decoupling condition can never be satisfied.

Theorem 4.1 A decoupling set V satisfies the decoupling condition L̄ = 0 if and

only if the dynamics is purely unitary.
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Proof. We write the generator L of the dynamics in Christensen-Evans form [16],

L(⇢) = Φ(⇢) + a⇢+ ⇢a†, (4.2.5)

with a certain a 2 B(H) and Φ a completely positive map, which is not a multiple

of id. Note that adding 2�id to Φ has the same effect on L as adding �1 to a.

Suppose first that the dynamics Λt = exp(Lt) is purely unitary, i.e. Φ = 0 and

a† = �a. We thus obtain

1

|V |

X

v2V
Ad(v†)LAd(v)(⇢) =

1

d
tr{a+ a†} = 0, 8⇢ 2 S(H), (4.2.6)

so V satisfies the decoupling condition. If instead Λt is not purely unitary we have

Φ̄ :=
1

|V |

X

v2V
Ad(v†)ΦAd(v), (4.2.7)

is completely positive and non-zero. Therefore to satisfy the decoupling condition

we need that Φ̄(⇢) = �1/d tr{a+ a†}⇢, 8⇢ 2 S(H). Suppose this is true. Then for

every pure state |�ih�| 2 S(H) we have

Φ̄(|�ih�|) = �1

d
tr{a+ a†}|�ih�| (4.2.8)

But for every |⇠i 2 H with h⇠|�i = 0 we need

0 = h⇠|Φ̄(|�ih�|)|⇠i (4.2.9)

=
1

|V |

X

v2V
h⇠|Ad(v†)ΦAd(v)(|�ih�|)|⇠i, (4.2.10)

with each single term equal to zero, due to the positivity of Φ. Since V includes the

identity we hence have

h⇠|Φ(|�ih�|)|⇠i = 0, (4.2.11)

for all orthogonal vectors |⇠i and |�i. Let us write the CP map Φ in Kraus form

with Kraus operators Mj, then

X

j

|h⇠|Mj|�i|2 = 0. (4.2.12)
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For every j we see that |�i must be an eigenvector of Mj. This hold for every

|�i 2 H, so Mj 2 C1 and thus Φ is a multiple of id, which contradicts our initial

assumption. Therefore

Φ(⇢) 6= �1

d
tr{a+ a†}⇢, (4.2.13)

and 1
|V |

P

v2V Ad(v†)LAd(v) 6= 0.

Intuitively the irreversible nature of the non-unitary dynamics, i.e. the increase of

entropy, makes it impossible to counteract the loss of coherence with unitary decou-

pling pulses. Although intuitively clear, this is a remarkable result since it enables

us to distinguish two different seemingly equal decoherence mechanisms. We remark

that the generalization to time-dependent Lindbladians is straightforward allowing

our technique also to discriminate non-exponential collapse models from extrinsic

decoherence.

In the limit of arbitrarily fast decoupling operations (∆t ! 0) dynamical decoupling

works perfectly for extrinsic decoherence. However, in practice even dynamical de-

coupling of extrinsic decoherence can never be perfect meaning that higher orders

in ∆t||L|| enter the resulting dynamics. To detect the presence of intrinsic deco-

herence we therefore need to develop an extrapolation for ∆t ! 0. Furthermore

to distinguish extrinsic and intrinsic decoherence we need bounds. Using a central

limit theorem, such bounds are developed in [135] for the expectation of the decou-

pling error ✏̄, while here we will focus on specific examples. The decoupling error

✏ = tr{(1 � Et)
†(1 � Et)}/d

2 compares the free evolution under random dynamical

decoupling with the identity operation. In the limit ∆t ! 0, keeping the total time

t fixed, the decoupling error becomes [135],

✏ =
1

d2
tr
�

(1� exp(L̄t))†(1� exp(L̄t))
�

, (4.2.14)

where for extrinsic decoherence the time evolution of the total system is followed

by the partial trace over the environment yielding ✏ = 0 for ∆t ! 0. Note that the

decoupling error can be estimated in an experiment by performing process tomog-

raphy [136]. Simpler ”fingerprints” to distinguish CM which do not require process
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tomography can easily be derived for specific systems. In the following we emphasize

the physics calculating bounds for two common models.

4.2.2 Models and bounds

To demonstrate our method we consider two different types of decoherence of a single

qubit, namely amplitude damping and pure dephasing introduced in Sec. 2.1.3.

Two qubit model

To begin with suppose that one observes a dynamics described by an amplitude

damping (AD) channel, given by the Lindblad operator

LAD(·) = ��(�+��(·) + (·)�+�� � 2��(·)�+), (4.2.15)

with �± the raising and lowering Pauli operators. Within the extrinsic decoherence

model such amplitude damping dynamics can be obtained by a time dependent inter-

action with an ancilla qubit (A) initialized in its ground state. The total Hamiltonian

reads

H(t) = g(t)(�+ ⌦ �
(A)
� + �� ⌦ �

(A)
+ ), (4.2.16)

with the time dependent coupling constant g(t) = �/
p

exp(2�t)� 1. The Hamil-

tonian H(t) commutes with itself at all times such that the time evolution of the

composite system can easily be integrated. After tracing over the ancilla qubit one

obtains precisely the two Kraus operators which describe the amplitude damping

channel generated by (4.2.15). Note that at t = 0 the interaction strength g(t)

diverges while the time evolution operator remains well defined. Clearly there are

other possible choices of the system-bath Hamiltonian that lead to the same dy-

namics. For example within the Born-Markov approximation the same Lindblad

operator (4.2.15) is obtained by a time independent interaction of the qubit with a

bath of harmonic oscillators at zero temperature. However as a toy model, (4.2.16)

has the advantage of being simpler. Such time-dependent dilations may also find
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applications in other context.

Now we turn to the question how well dynamical decoupling can distinguish between

extrinsic decoherence, given by the Hamiltonian (4.2.16), and pure intrinsic decoher-

ence given by the Lindbladian (4.2.15). Using (4.2.4) one finds for the intrinsic deco-

herence case the averaged Lindblad operator L̄AD(·) = ��(1(·)���(·)�+��+(·)��),
which determines the dynamics in the limit of infinitely fast decoupling operations.

The first observation is that L̄AD does not vanish. With (4.2.14) we can furthermore

derive the following asymptotic behaviour for the decoupling error in the intrinsic

decoherence case

✏intAD ! 1

4

�

3� e��t
�

4� e�3�t
��

, ∆t ! 0, (4.2.17)

and for �t � 1 it approaches a value of 3/4. In Fig. 4.1 we evaluated the averaged
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Figure 4.1.: Averaged decoupling error under random dynamical decoupling as a
function of ∆t on an inverse logarithmic scale for the total time
t = ��1. The circles correspond to pure intrinsic decoherence described
by (4.2.15), the triangles to extrinsic decoherence given by (4.2.16) and
the dashed line shows the asymptotic behavior (4.2.17) for the intrinsic
decoherence case for ∆t ! 0. The average was taken over 100 trajecto-
ries.

decoupling error for intrinsic and extrinsic decoherence as a function of ∆t for a fixed

total time t = ��1. We see that for the Hamiltonian model (4.2.16) the decoupling

error tends to zero. The asymptotic behaviour of the averaged trajectories allows us
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to distinguish intrinsic from extrinsic decoherence: for purely intrinsic decoherence

we have (4.2.17), while for purely extrinsic it is 0, and everything in-between must

correspond to a mixture of the two. The actual speed of convergence to the limit in

the extrinsic case depends on the chosen dilation [107], so that we cannot say how

small ∆t has to be chosen in order to distinguish with certainty.

Spin-boson model

Next, we consider a more realistic and experimentally relevant model describing

pure dephasing (PD) in the �z basis of the qubit. The Lindbladian reads

LPD(t)(·) = ��(t)
4

[�z, [�z, · ]], (4.2.18)

where the time dependent damping rate �(t) will be specified later. As extrinsic

decoherence such PD would arise from an interaction with a bosonic heat bath

given by

H =
X

k

!ka
†
kak + �z

X

k

(gka
†
k + g⇤kak), (4.2.19)

where a†k, ak are the bosonic creation and annihilation operators of the kth field

mode and gk are coupling constants quantifying the interaction strength to each har-

monic oscillator. After tracing over the bath degrees of freedom [1, 137, 138] one finds

for the time dependent damping rate �(t) = 4
R t

0
ds
R1
0

d!I(!) coth
�

!
2T

�

cos(!s)

where the continuum limit was performed and the spectral density I(!), which con-

tains the statistical properties of the bath, and the temperature T of the bath were

introduced.

For an intrinsic dephasing mechanism given by (4.2.18) the decoupling operations

V do not affect the dynamics v†�zv = ±�z for all v 2 V such that LPD = L̄PD.

Therefore the decoupling error in the intrinsic decoherence case is governed by the

dynamics generated by LPD and one finds independently of ∆t,

✏intPD =
1

2



1� exp

✓

�
Z t

0

�(t0)dt0
◆�2

, (4.2.20)
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Figure 4.2.: Averaged decoupling error under random dynamical decoupling as a
function of ∆t on an inverse logarithmic scale evaluated for t = 50!�1

c .
The triangles correspond to extrinsic decoherence given by the spin
boson model (4.2.19) where the dashed line corresponds to intrinsic
decoherence (4.2.18) which is independent of ∆t here (4.2.20). The
average was taken over 100 trajectories.

showing that the asymptotic decoupling error is given by 1/2. Based on the spin-

boson Hamiltonian (4.2.19) it was shown in [110] that under random dynamical de-

coupling the spectral density gets renormalized by a factor that ensures for ∆t ! 0

the suppression of decoherence.

Because the decoupling operations V give the same spectral density as in [110]

we can easily evaluate the averaged decoupling error for extrinsic and intrinsic de-

coherence (Fig. 4.2). We chose an ohmic spectral density with a sharp cut off

I(!) = 1/4!✓(! � !c) with  = 0.25 a measure of the coupling strength to the

environment and !c = 100 the cut off frequency. We calculated the averaged decou-

pling error in the low temperature limit !c/T = 102.

Note that for ∆t & 0.5!�1
c decoherence gets accelerated as reported in [110] in the

extrinsic case since the decoupling error is higher than the decoupling error that is

obtained for the dynamics generated by LPD.
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4.2.3 Dynamical decoupling for unbounded Hamiltonians

Many physical environments are modeled as infinite dimensional system, often with

unbounded interactions. In order to discuss dynamical decoupling of such systems,

we find it enlightening to start with a specific, analytically solvable model, before

providing a general proof that generally even unbounded time-independent Hamil-

tonians can be decoupled.

Shallow pocket model

We now provide an analytically solvable model of an unbounded, time-independent

Hamiltonian which, without approximations, leads to a time-independent dephasing

Lindbladian, but can be decoupled arbitrarily well. It is an example of an exact

time-independent dilation describing a small system coupled to a fictitious particle

on a line. After tracing over the decrees of freedom of the particle we obtain a

time independent Lindblad generator for the reduced dynamics of the system. The

particle cannot store energy internally – hence the name – and the dynamics is

governed by an interaction Hamiltonian

H =
g

2
�z ⌦ x̂ =

g

2

0

@

x̂ 0

0 �x̂

1

A , (4.2.21)

where x̂ is the position operator, the small system is a qubit for simplicity and g a

coupling constant. The Hamiltonian is diagonal and the evolution of a joint density

matrix in the �z basis is

⇢(t, x) =

0

@

⇢11(0, x) ⇢10(0, x)e
igxt

c.c. ⇢00(0, x)

1

A . (4.2.22)

A reduced dynamic displaying exponential decay is achieved by choosing an initial

state ⇢⌦ | ih | where

hx| i =
r

�

⇡

1

x+ i�
. (4.2.23)
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Figure 4.3.: Schematic representation of the fidelity for exponential dephasing (dot-
ted green line) to stay in a coherent superposition of ground and excited
state. The solid blue line shows the dynamics of the qubit under dynam-
ical decoupling. Note that after the time ∆t, when the sign in front of H
was reversed, the fidelity changes according to F(t) = 1

2

�

e�g�|t�∆t| + 1
�

with 0  t  ∆t.

After integrating out the particle degree of freedom we obtain, through the Fourier

transform of a Lorentzian, a purely exponential decay of the off diagonal terms,

⇢(t) =

0

@

⇢11(0) ⇢10(0)e
�g�t

c.c. ⇢00(0)

1

A , (4.2.24)

which corresponds to a time-independent dephasing Lindbladian

L(·) = �g
�

4
[�z, [�z, ·]]. (4.2.25)

Note that for an initial bath state with a Gaussian shape a decay / e�t2 is obtained.

The model can be perfectly decoupled using Z2 controls v0 = 1, v1 = �x. In fact

v†1Hv1 = �H and hence

v0 exp(�i∆tH)v†0v1 exp(�i∆tH)v†1 = 1. (4.2.26)

This model displays similar effects as the above ones, which means that the explicit

time-dependence of the Hamiltonian/Lindbladian of the first two examples is not

relevant to the discussion. In Fig. 4.3 we show the fidelity F(t) = 1
2
(e�g�t + 1)
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(dotted green line) of being in a coherent superposition of ground and excited state

obtained from the dynamics generated by the Lindbladian (4.2.25). The solid blue

line shows the reduced dynamics of the shallow pocket model under dynamical de-

coupling (4.2.26).

The shallow pocket model is a counterexample to dynamical decoupling working for

non-exponential decay only. For a fixed decoupling time ⌧ the fidelity never drops

below F(⌧). The model also highlights some of the unpleasant mathematical prop-

erties required for modeling strict exponential decay: the initial state of the system

is not in the domain of the interaction2, which in turn is unbounded below and above

[6]. Such properties indicate that the general proof below requires a certain degree

of mathematical precision. In order to proof that unbounded interactions can be

decoupled we need the mathematical terminology provided in the previous section

(Sec. 4.1.2).

General proof

It is a fact of nature and an ubiquitous challenge in the mathematical treatment

of quantum mechanics that unbounded Hamiltonians cannot be defined everywhere

[126, Chapter VIII]. We saw in Sec. 4.1.2 that a domain D(H) has to be specified

in order to make a clear sense of an unbounded Hamiltonian H. Remember that

for example the notion of self-adjointness, properties of a sum H1 +H2, etc has to

take the domain into account. Starting with a pioneering work of von Neumann a

machinery has been developed with a purpose to circumvent these problems when

dealing with a derived quantum mechanical phenomena. This is precisely our case,

we show that whenever a Hamiltonian which couples a finite-dimensional system

of size d to an infinite-dimensional bath can be reasonably defined then it can be

decoupled perfectly.

All Hamiltonians under our consideration have a sum-like structure consisting of

the system\bath free Hamiltonians and the interactions. As we pointed out a core

2Nevertheless, its time evolution is well defined due to the interaction being self-adjoint
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C of an operator [126] is then a natural notion to make sense of this sum in the

most general setting. We postpone this technical discussion by few paragraphs and

start with a natural – albeit less general – setting where this notion is not needed. It

includes for example the case when the interaction Hamiltonian is relatively bounded

with respect to the free Hamiltonian.

We assume that a Hamiltonian describing the system is a densely defined self-adjoint

operator of the form H = HS ⌦ 1 + 1 ⌦ HB +
P

↵ S↵ ⌦ R↵ on the tensor product

Hilbert space HSB = HS ⌦ HB, with HB itself self-adjoint on a dense domain

D(HB) and D(H) = C
d ⌦ D(HB). For simplicity we only consider deterministic

decoupling schemes here, while the random case can be proved using [139, Th.2.2]

(c.f. forthcoming work for details). The announced perfect decoupling of such

a Hamiltonian might be surprising given that the usual derivation of dynamical

decoupling hinges on a perturbative expansion exp(�i∆tA) ⇠ 1+�i∆tA+O(∆t2)

and a limit formula

✓

1 +
A

n
+O(n�2)

◆n

! exp(A). (4.2.27)

In particular all standard error bounds [107] become infinite for unbounded Hamil-

tonians. These apparent problems can be circumvented by means of a deep general-

ization of the above limit formula due to Chernoff [140], c.f. also [141, Chapter 8.]:

Let F (t), ||F (t)||  1 be a family of operators on a Hilbert space H with F (0) = 1

and suppose that (F (t)� 1)( )/t ! A as t ! 0, for every  2 H in a core of A.

Then we have

lim
n!1

F

✓

t

n

◆n

( ) = exp(tA) ,  2 H. (4.2.28)

We apply Chernoffs theorem with F (t) = Πv2V v† exp(�iHt/|V |)v and H as above.

Then for  2 D(H),

(F (t)� 1)( )

t
! �i

 

1

|V |

X

v2V
v†Hv

!

 = �i(1⌦HB) , (4.2.29)

due to the decoupling property of V , as t ! 0 and for every  in the domain of all

v†Hv’s. Note that the convergence in (4.2.29) is not obvious since the use of the
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Taylor series is not well defined for unbounded operators. Along the lines of [142]

it can be proven instead on the group level, by rearranging the exponentials in such

a way that Stone’s theorem (cf. Sec. 4.1.2) can be used. Consider for example as a

system a qubit with V the Pauli group. We can evaluate the limit (4.2.29) using

(F (t)� 1)( )

t
=

1

t

�

e�i�zH�zt � 1
�

 +
1

t
e�i�zH�zt

�

e�i�yH�yt � 1
�

 

+
1

t
e�i�zH�zte�i�yH�yt

�

e�i�xH�xt � 1
�

 ,

+
1

t
e�i�zH�zte�i�yH�yte�i�xH�xt

�

e�iHt � 1
�

 , (4.2.30)

with  2 C
2 ⌦ D(HB). By assumption all v†Hv are self-adjoint on this domain,

so we can apply Stone’s theorem for each summand of (4.2.30) yielding the desired

result (4.2.29) as t goes to zero. We conclude that perfect dynamical decoupling

lim
n!1

trB{Et(⇢)} = trB
�

e�it1⌦HB⇢eit1⌦HB
 

= trB{⇢}, (4.2.31)

is possible where ⇢ is the density operator of the system and the bath.

Notice that many examples including the shallow pocket model verify the above

assumptions of self-adjointness. Nevertheless, we aim for even bigger generality and

to achieve this we introduce the notion of a core into our discussion. We review

that a core of an operator is a subspace of its domain such that restriction of the

operator to the core and subsequent closure gives back the original operator. Clearly

the domain itself is a core, but it might be too big in certain applications like the

present one.

We may assume that H is formally given as above with some unknown dense do-

main D(H), with HB and each R↵ self-adjoint on certain dense domains D(HB) and

D(R↵), which might be different, but with all HB and R↵ having a common core C.

This is the minimal assumption to make in order to have the sum definition ofH well-

defined at all. Under this assumption the sum
P

v2V v†Hv is then also well-defined

on C
d⌦C and its closure is exactly (an extension of) 1⌦HB. For any  2 C

d⌦C the

conditions of Chernoff’s theorem, and in particular (F (t)�1)( )/t ! �i(1⌦HB) ,

are then satisfied, so (4.2.29) follows again.
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Clearly if H is self-adjoint with domain C
d ⌦ D(HB) then all v†Hv are also self-

adjoint on that domain, but there are cases of H with different domains, and that

is when the above criterion with cores is needed.

We now discuss the question of how small ∆t needs to be to efficiently decouple.

For bounded operators, the motion induced by the decoupling field needs to be faster

than the fastest time-scale characterizing the unwanted interactions [106]. In the

unbounded case, such a simple time-scale defined only by the interaction cannot

be provided, as the convergence speed also crucially depends on the state, given

by the speed of convergence of Chernoffs Theorem (4.2.28). Clearly there exist a

⌧( , ✏) = t
n
larger than zero for which F (⌧)n is up to an error ✏ given by exp(tA) .

Assuming that system and bath are initially uncorrelated, we may (through purifi-

cation) without loss of generality assume that the initial bath state  B is pure. We

can then define ⌧(✏) = inf S
⌧( S ⌦  B) > 0 as the critical time-scale for dynam-

ical decoupling, where we used that the system space is finite-dimensional. This

time-scale is harder to calculate than the finite-dimensional one, but we see a priori

reasons why it should be much smaller than the latter.

4.2.4 Conclusion

So far we have considered the two extreme cases in which either extrinsic or intrin-

sic decoherence is present assuming the two mechanisms take place with the same

decay rate. Clearly in an experimental situation both, a mixture L = Lint + Lext

of extrinsic and intrinsic decoherence could be present. In this case, the asymptotic

behavior of the gate error would be between those two extremal cases. It seems dif-

ficult to determine a general precise value, but estimates for the amount of intrinsic

decoherence can be obtained based on the bounds kLintk  kLintk. The effective

Lindbladian Lint can be determined using process tomography. For intrinsic deco-

herence decay rates predicted by collapse models we are at present a few orders of

magnitude away from the regime in which this becomes feasible. But with current

advances in qubit design and a world-wide effort to increase the number of clean
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qubits this could come within reach soon.

Our results pave the way towards the experimental verification of collapse models

(CM) – despite the presence of (extrinsic) decoherence. Even if the quantum noise is

due to some unbounded coupling to an infinite dimensional environment we proved

that the system evolution can be decoupled and hence distinguished from CM. Fur-

thermore, this decoupling of unbounded Hamiltonians has applications in quantum

engineering beyond the scope of this paper. It is fascinating to contemplate that

in the vast experimental evidence for dynamical decoupling such CMs have already

been discovered.

4.2.5 Review and implications

Here we want to review the results from the last section and discuss briefly some of

its implications. So what have we shown? We have proven that any non-unitary time

evolution, described by some Lindblad operator, cannot be decoupled with unitary

decoupling operations. Hence, if there exists intrinsic non-unitary dynamics, we can

verify it by applying dynamical decoupling infinitely fast. Such non-unitary dynam-

ics can for example arise from non-linear stochastic extensions of the Schrödinger

equation, such as collapse models introduced in Sec. 2.1.5. Clearly we have not stud-

ied dynamical decoupling on the level of non-linear stochastic Schrödinger equations

and hence we did not prove that such modifications of the Schrödinger equation can-

not be decoupled. Intuitively we expect that this is not possible since any non-linear

extension changes the unitary character of the Schrödinger equation. Nevertheless,

our results suggest that if we apply dynamical decoupling, and if we observe a sat-

uration of the decoupling error above zero, we can conclude that this behavior is a

strong hint for the presence of some intrinsic non-unitary noise terms.

Regarding the control of open quantum systems our results also show the difference

between the two approaches introduced in Sec. 2.3. Consider dephasing in �z direc-

tion and unitary control in �x direction within the first approach. The Lindbladian
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of the controlled master equation then reads

Lt(⇢) = �iu(t)[�x, ⇢] + L(⇢), (4.2.32)

with u(t) being the control field and L(·) is given by (4.2.25). If we now consider a

bang-bang dynamical decoupling sequence we cannot stop the system from dephas-

ing since �xL(�x⇢�x)�x = L(⇢). On the other hand, regarding the second approach,

such a dephasing process can be obtained from the shallow pocket model for which

the controlled total Hamiltonian is given by

H(t) = u(t)�x ⌦ 1+ �z ⌦ x̂. (4.2.33)

We have shown that the shallow pocket model can be decoupled perfectly, meaning

that here a bang-bang decoupling sequence can stop the system from dephasing. In

Controlled  
dynamics

Decoupling

Decoupling

Figure 4.4.: Schematic illustration of the two approaches for describing the control
of an open quantum from Sec. 2.3 for dynamical decoupling. The re-
sulting controlled dynamics depends on which approach was taken. Fol-
lowing the black arrows, decoherence can always be suppressed through
dynamical decoupling, i.e. the controlled dynamics is given by the iden-
tity map. For the grey arrows dynamical decoupling will never succeed.
Here the controlled dynamics is given by exp(L̄t).

other words, within the system-environment Hamiltonian approach we can suppress

decoherence completely, whereas in the controlled master equation description for

controlling an open quantum system this is not possible. The example shows that

the two descriptions lead to extremely different predictions for the controlled sys-

tem dynamics. See Fig. 4.4 for an illustration of the two different approaches for
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describing the control of an open quantum system regarding dynamical decoupling.

Another interesting consequence of our results is related to the definition of Marko-

vian dynamics. In the literature an open quantum system is typically referred to

be Markovian if the system dynamics is generated by a time-independent Lindblad

operator, that is, if it is described by a one parameter semigroup, in particular if

the resulting CPTP map is divisible [143]. This definition is usually considered to

be related to the properties of the system-environment interaction and the memory

timescales of the environment alone, rather than being dependent on what we do

with the quantum system [144]. The shallow pocket model shows that, if we define

Markovian dynamics in the above sense, the characterization of an open quantum

system in terms of Markovian and non-Markovian is questionable if only proper-

ties of the environment and its interactions with the system are taken into account.

Without acting on the system, the shallow pocket model leads, without approxi-

mations, to an exponential decay and therefore we can refer to it as a Markovian

open system. On the other hand, if we apply dynamical decoupling, the resulting

dynamics is given by the identity map and thus “highly” non-Markovian since we

reverse the flow of information through the decoupling operations. We conclude

that if we take a semigroup dynamics to be the definition of a Markovian evolution,

Markovianity not only depends on the properties of the environment, but also on

how we interact with the system. Looking at it from a different angle, the deriva-

tion of a Markovian master equation, in the case where the system is subject to

some time dependent control fields, is not always possible if we do not constrain

the control fields. The relevant timescales of the system depend on the controls.

A comparison with the timescales of the environment in order to apply the Born-

Markov approximation becomes problematic. To conclude, the statement that a

non-Markovian environment is needed in order to make dynamical decoupling work

[3] becomes meaningless since the notion of Markovianity depends on what we do

with the system. Quite the opposite, it was recently shown that non-Markovianity

is sometimes detrimental for the efficiency of dynamical decoupling [145].
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4.3 Dynamical decoupling of quadratic

Hamiltonians

In preparation:

C. Arenz, R. Hillier, and D. Burgarth (2016).

In the last sections we saw that any finite dimensional quantum system can always

be decoupled from the environment using unitary operations acting only on the

system. This is true even if the environment is modeled as an infinite dimensional

system described by some unbounded operators. Hence, for every finite dimensional

quantum system, decoherence that is induced by interactions with the environment

can be perfectly suppressed by applying the decoupling operations infinitely fast.

Mathematically speaking, the decoupling condition (4.1.17) can always be satisfied,

independently of the system-environment interaction that is present. This can be

achieved by using an irreducible representation of a finite subgroup of the unitary

group as a decoupling set. The question arises if the results for finite dimensional

quantum systems can be one-to-one translated into an infinite dimensional setting?

Is it possible to suppress decoherence for systems that are, for example, described

by quantum harmonic oscillators even if the details of the interaction with the en-

vironment are unknown? Before we treat this problem we begin with an example

from [134] which is, up to best of our knowledge, the only study that can be found

in the literature where dynamical decoupling is investigated for a specific infinite

dimensional system. Afterwards we prove that not every infinite dimensional sys-

tem can be decoupled from the environment and thus protected from decoherence

using dynamical decoupling. Then we focus on an important class of Hamiltoni-

ans, i.e Hamiltonians which are quadratic in the quadrature operators x̂, p̂ so that

the dynamics can be represented by a symplectic transformation. Considering such

Hamiltonians, which were already introduced in Sec. 2.2.1, we start by formulating
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dynamical decoupling within the framework of control theory, in order to adopt the

tools that were described in Sec. 4.1. This will lead to the definition of a decoupling

condition, the characterization of a decoupling set and the formulation of random

dynamical decoupling in a symplectic setting. Afterwards we investigate dynamical

decoupling in order to suppress decoherence that is induced by an interaction de-

scribed through a quadratic Hamiltonian.

We start by considering a quantum harmonic oscillator described by the bosonic an-

nihilation and creation operators a and a†. The harmonic oscillator interacts with

a bosonic environment through

HS,E =
X

k

gk(ab
†
k + a†bk), (4.3.1)

where bk, b
†
k are the bosonic annihilation and creation operators of the environmental

modes and gk are real coupling constants describing the strength of the interaction

with each mode. The total Hamiltonian then reads

H = !a†a+
X

k

!kb
†
kbk +HS,E, (4.3.2)

where !,!k are the frequencies of the system and the environmental oscillators

respectively. This model has been investigated a lot in the literature (see e.g. [194]

for an overview) and it describes, for example, decoherence and photon losses of a

quantized cavity mode which interacts with the free electromagnetic field outside

the cavity. Now suppose we are able to instantaneously perform the decoupling

operation

v = e�i⇡a†a, (4.3.3)

which corresponds to a ⇡-rotation of the system oscillator in phase space. Note that

v†HS,Ev = �HS,E such that, analogous to the simple qubit example from Sec. 4.1

(see equation (4.1.1) and (4.1.2)), the system-environment interaction can be sup-

pressed in the limit of infinitely fast decoupling. In other words, decoherence that

is caused by an interaction (4.3.1) can always be suppressed if we are able to rotate

the system oscillator quickly around ⇡. In [134] the efficiency of this scheme was
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studied in detail in terms of spectral properties of the environment. For our pur-

poses what is important is that a system-environment interaction of the form (4.3.1)

can always be suppressed by applying the decoupling operation (4.3.3). For generic

system-environment interactions we cannot always expect this to be possible with

the decoupling operation v, since the scheme relies on reversing the sign in front of

the interaction Hamiltonian. Hence the question arises if, analogous to the finite

dimensional case, a decoupling condition can be formulated and a set of unitary

operations can be found satisfying this condition. First we show that such a set

cannot exist for generic interactions in an infinite dimensional setting by consider-

ing a specific class of system operators H.

Theorem 4.2 Let H be a self-adjoint operator with a positive unbounded spectrum.

Under the usual domain assumptions there does not exist a decoupling set V with

|V | < 1 satisfying

1

|V |

X

v2V
v†Hv = �1, � 2 R. (4.3.4)

Proof. We first notice that the left-hand side of (4.3.4) is given by a positive map.

Hence we need � � 0. In the next step we want to show that � must be strictly

positive. We show this by contradiction. Assume there exist a non-empty decoupling

set V of unitary operations such that

X

v2V
v†Hv = 0, (4.3.5)

is satisfied. Then equivalently

X

v2V

�

�H1/2v�
�

�

2
= 0 (4.3.6)

,
�

�H1/2v�
�

�

2
= 0, 8v 2 V (4.3.7)

, kv�k2 = 0, 8v 2 V (4.3.8)

has to hold for all states � in a common core C of all v†Hv. Since kv�k = k�k = 1,

we need v = 0 for all v 2 V which contradicts our initial assumption. Hence � must
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be strictly positive. Next we show that there cannot exist a decoupling set satisfying

(4.3.4) with � > 0. Again we show this by contradiction. We assume that (4.3.4)

with � > 0 holds. Then we can multiply (4.3.4) from the left with some v 2 V and

from the right with its adjoint such that

H +
X

ṽ2Ṽ

v†Hv = �̃1, (4.3.9)

has to hold where �̃ = |V |�. Now, multiplying both sides by a density operator ⇢

and taking the trace we find equivalently

hHi⇢ +
X

ṽ2Ṽ

tr{v†Hv⇢} = �̃1. (4.3.10)

Since H has a positive unbounded spectrum we can always pick a state ⇢ such that

hHi⇢ = �̃. Thus we need

X

ṽ2Ṽ

tr{ṽ†Hṽ⇢} = 0, (4.3.11)

,
X

ṽ2Ṽ

�

�H1/2ṽ�j

�

�

2
= 0, (4.3.12)

which cannot be satisfied as shown before in steps (4.3.5)-(4.3.8). Therefore there

does not exist a decoupling set V satisfying the condition (4.3.4).

Theorem 4.2 implies that interactions described by system operators with a positive

unbounded spectrum can never be suppressed with a finite number of unitary decou-

pling operations. Thus it is not possible to protect such systems from decoherence

using dynamical decoupling. The theorem also shows that, for example, a harmonic

oscillator can never be stopped oscillating by applying unitary decoupling operations

infinitely fast. An alternative proof that the condition (4.3.4) cannot hold for all

operators acting on an infinite dimensional space can easily be obtained using an

argument based on the commutant. In an infinite dimensional space the commu-

tant of a finite dimensional decoupling set always contains infinitely many elements.

Therefore not all operator acting on an infinite dimensional space can be mapped

onto the identity and a scalar factor using finitely many unitary operations. In fact
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there are infinitely many operators that commute with the decoupling operations

and thus they are unaffected by dynamical decoupling. However, the statement of

theorem 4.2 is stronger, since it characterizes a class of self-adjoint operators that

cannot be decoupled.

We saw that we cannot decouple every infinite dimensional system from the envi-

ronment. In the following we study in more detail an important class of infinite

dimensional system, i.e. those that can be described by quadratic Hamiltonians.

This has the advantage that we can avoid the mathematical difficulties arising in

infinite dimensional systems by representing the dynamics through a symplectic

transformation on a finite dimensional space. We start by formulating dynamical

decoupling of quadratic Hamiltonians in the context of control theory using the

framework of symplectic transformations that was established in Sec. 2.2.1.

4.3.1 Quantum control theory framework

Following the control theory framework introduced in Sec. 4.1 we divide the total

Hamiltonian H(t) = H0 + Hc(t) ⌦ 1 into the system-environment Hamiltonian H0

and the controller Hc(t), both assumed to be quadratic in the quadrature operators

x̂, p̂ such that they are given in the form (2.2.13). Along the lines of the presentation

of control theory of quadratic Hamiltonians in Sec. 2.2.1 the total evolution is then

given by a symplectic transformation S(t) 2 Sp(2n,R), which obeys the differential

equation

d

dt
S(t) = (G0 + Gc(t))S(t), (4.3.13)

where G0 = �A0Ω encompasses the system-environment interaction and Gc(t) =

�Ac(t)Ω is the description of the controller in the symplectic picture. Remember

that A 2 R
2n⇥2n, A = AT is a real and symmetric matrix with n being the number

of oscillators of the total system and Ω is the symplectic form given by (2.2.7).

Analogous to the unitary case the first step is to separate the action of the controller

from the rest of the dynamics. This can easily be done by noting that
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S(t) = Sc(t)S̃(t) solves (4.3.13) with

Sc(t) = T̂ exp

✓Z t

0

dt0 Gc(t
0)

◆

, (4.3.14)

being the action of the controller alone and

S̃(t) = T̂ exp

✓Z t

0

dt0 S�1
c (t0)G0Sc(t

0)

◆

. (4.3.15)

We assume that the controller is periodic and cyclic, i.e. Gc(t + NTc) = Gc(t) with

N 2 N and Sc(NTc) = 1 , such that

S(NTc) = S̃(NTc) = (S̃(Tc))
N . (4.3.16)

Using the Magnus expansion Ḡ =
P1

l=0 Ḡ
(l) (cf. Sec. 4.1) we find

S(NTc) = eNTcḠ, (4.3.17)

where the first order of the Magnus expansion is given by

Ḡ(0) =
1

Tc

Z Tc

0

dt S�1
c G0Sc(t). (4.3.18)

If we assume that each cycle consists of a bang-bang decoupling sequence, enforced

by symplectic decoupling operations g1, . . . , gM 2 G ⇢ Sp(2n,R) separated by ∆t

such that Tc = M∆t, the first order of the Magnus expansion becomes

Ḡ(0) =
1

Tc

M
X

k=1

∆tS�1
k G0Sk, (4.3.19)

with Sk = g�1
k�1 . . . g

�1
0 and g0 = 1. If the decoupling operations are taken from

a decoupling set G which forms a group, steering each cycle through the group

elements, M = |G|, leads to

Ḡ(0) =
1

|G|

X

g2G
gG0g

�1 = � 1

|G|

X

g2G
gA0Ωg

�1. (4.3.20)

We thus obtain an averaged dynamics that is similar to the one obtained in the

unitary framework. One might wonder if, analogous to the unitary case, there

does exist a decoupling set G, such that for all A0 the first order of the Magnus

expansion is just given by the identity and a scalar factor. In the limit of infinitely

fast decoupling (∆t ! 0), keeping the total time fixed, this would allow us to

“freeze” the evolution.
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4.3.2 Decoupling condition, decoupling set and random de-

coupling

To begin with we want to analyze if there exists a finite decoupling setG ⇢ Sp(2n,R)

satisfying the condition

1

|G|

X

g2G
gAΩg�1 = �12n⇥2n, 8A 2 R

2n⇥2n, A = AT , (4.3.21)

for some � 2 R. We define

Π(A) :=
1

|G|

X

g2G
gAgT , (4.3.22)

and we use gTΩ = Ωg�1 yielding with Ω
�1 = �Ω that equivalently

Π(A) = ��Ω, (4.3.23)

has to hold for all real and symmetric matrices A. Since Π(A) is symmetric and

Ω
T = �Ω we first notice that � = 0, such that condition (4.3.21) becomes

Π(A) = 0, 8A 2 R
2n⇥2n, A = AT . (4.3.24)

Note that if there would exist a set of symplectic decoupling operations G that

satisfies the above condition for all real and symmetric matrices A, infinitely fast

decoupling would lead to a modified evolution given by the identity. Like in the

unitary case the whole system does not evolve anymore. We already saw that this

is in general not possible for infinite dimensional systems, which is reflected in the

fact that for non-interacting harmonic oscillators (A = 1) the condition (4.3.24)

can never be satisfied. However maybe we are demanding too much. Therefore we

will now study in more detail the properties of the map Π for specific decoupling

sets G. In particular we will modify condition (4.3.24) and identify decoupling sets

satisfying the new conditions.
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Modified decoupling condition, homogenization and decoupling sets

The first case we consider is a modification of condition (4.3.21) of the kind

1

|G|

X

g2G
gAΩg�1 =

 

n
M

j=1

�j12⇥2

!

Ω, 8A 2 R
2n⇥2n, A = AT . (4.3.25)

Such a modification has the physical meaning that, for instance, a network of inter-

acting harmonic oscillators become decoupled from each other. Instead of requiring

that the total dynamics is given by the identity, we now require that the harmonic

oscillators do not interact and rotate with frequency �j. Equivalently we find a

modified decoupling condition

Π(A) =
n
M

j=1

�j12⇥2, (4.3.26)

which has to hold for all real and symmetric matrices A. If we can find a decoupling

set G, satisfying the modified decoupling condition (4.3.26), we are able to map

a network of interacting harmonic oscillators to a set of non-interacting harmonic

oscillators, each rotating with a frequency �j.

Theorem 4.3 The modified decoupling condition (4.3.26) can always be satisfied

by taking a decoupling set

G = {R(�1, . . . ,�n) |�1, . . . ,�n 2 {⇡/2, ⇡, 3⇡/2, 2⇡}}, (4.3.27)

that consists of local rotations R 2 Sp(2n,R) \
Ln

j=1 SO(2) given by

R(�1, . . . ,�n) =
n
M

j=1

R(�j) =
n
M

j=1

0

@

cos(�j) � sin(�j)

sin(�j) cos(�j)

1

A . (4.3.28)

Proof. We partition the symmetric matrix A 2 R
2n⇥2n into 2 ⇥ 2 blocks A(i,j) 2

R
2⇥2, i, j = 1, . . . , n according to

A =

0

B

B

B

B

B

B

@

A(1,1) A(1,2) · · · A(1,n)

A(2,1) A(2,2) · · · A(2,n)

...
...

. . .
...

A(n,1) A(n,2) · · · A(n,n)

1

C

C

C

C

C

C

A

, (4.3.29)
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so that a summand F (�1, . . . ,�n)(A) of Π(A), given by (4.3.22), becomes

F (�1, . . . ,�n)

=

0

B

B

B

B

B

B

@

R(�1)A
(1,1)RT (�1) R(�1)A

(1,2)RT (�2) · · · R(�1)A
(1,n)RT (�n)

R(�2)A
(2,1)RT (�1) R(�2)A

(2,2)RT (�2) · · · R(�2)A
(2,n)RT (�n)

...
...

. . .
...

R(�n)A
(n,1)RT (�1) R(�n)A

(n,2)RT (�n) · · · R(�n)A
(n,n)RT (�n)

1

C

C

C

C

C

C

A

. (4.3.30)

Since the blocks on the diagonal are symmetric we have that

X

�i2{⇡/2,⇡,3⇡/2,2⇡}
R(�i)A

(i,i)RT (�i) = 2tr{A(i,i)}, (4.3.31)

X

�i,�j2{⇡/2,⇡,3⇡/2,2⇡}
R(�i)A

(i,j)RT (�j) = 0 for i 6= j, (4.3.32)

and thus we arrive at

Π(A) =
1

|G|

X

�1,...,�n2{⇡/2,⇡,3⇡/2,2⇡}
F (�1. . . . ,�n)(A),

=
1

2

n
M

j=1

(A2j�1,2j�1 + A2j,2j)12⇥2, (4.3.33)

which is the desired result. We identify �j =
1
2
(A2j�1,2j�1 + A2j,2j).

In other words, we can always map a network of interacting harmonic oscillators to a

system of non-interacting harmonic oscillators if we are able to rotate each oscillator

rapidly around ⇡/2, ⇡, 3⇡/2, 2⇡. Note that the decoupling set (4.3.27) forms a group

(mod 2⇡) with |G| = 4n, and that the cyclic condition Sc(Tc) =
Q

g2G g = 12n⇥2n

is fulfilled. Hence the toggling frame, which is obtained through a transformation

with Sc(Tc), coincides with the physical frame at times t = NTc with N 2 N. At

this stage one might wonder why we haven chosen the framework of control theory

in order to formulate dynamical decoupling for quadratic Hamiltonians. We could

have simply looked at a decoupling sequence of the form (4.1.5), yielding with the

help of the generalized Trotter formula (4.1.19), the same results. The reason lies in

the observation that if we separate the controller from the system dynamics in such
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a way that we are able to control the frequencies �j of the harmonic oscillators,

Ac(t) =
n
M

j=1

�j(t)12⇥2, (4.3.34)

and

(A0)j,j = 0, 8j = 1, . . . , 2n, (4.3.35)

we can achieve Ḡ(0) = 0 by taking the decoupling operations from the decoupling

set (4.3.27). If we separate the controller and the system dynamics in this way the

original decoupling condition (4.3.24) can be satisfied. This is not really surprising,

because roughly speaking we use the operations that cannot be decoupled to decou-

ple the rest.

In the preceding considerations we required that the harmonic oscillators do not

interact, and that they rotate with frequencies �j if we apply the decoupling op-

erations infinitely fast. We found a set of operations (4.3.27) which allows us to

obtain the desired dynamics. Instead of demanding that the harmonic oscillators

rotate with different frequencies, we can ask whether there exists a set of symplectic

operations so that, in the limit of infinitely fast decoupling, the harmonic oscilla-

tors are decoupled from each other and rotate with the same frequency �. We call

this process homogenization. Mathematically speaking we need a set of symplectic

operations G satisfying the homogenization condition

Π(A) = �12n⇥2n, (4.3.36)

for all real and symmetric matrices A. In order to find such a decoupling set we will

now work under the assumption that the symplectic form J is given by

J =

0

@

0 1n⇥n

�1n⇥n 0

1

A , (4.3.37)

referring to the preliminary section for further details.
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Theorem 4.4 The homogenization condition (4.3.36) can always be satisfied with a

decoupling set

G = hO(n,Z)�O(n,Z), Ji , (4.3.38)

forming a group generated by O(n,Z) � O(n,Z) with O(n,Z) being the orthogonal

group over Z and J is the symplectic form (4.3.37).

Proof. We first partition A into four n⇥n blocks A(i,j), i, j = 1, 2 where (A(1,2))T =

A(2,1) and (A(i,i))T = A(i,i). We further note that we can write

Π(A) =
1

|G|

X

g2O(n,Z)

2

4

0

@

gA(1,1)gT gA(1,2)gT

gA(1,2)gT gA(2,2)gT

1

A+ J

0

@

gA(1,1)gT gA(1,2)gT

gA(2,1)gT gA(2,2)gT

1

A JT

3

5 .

(4.3.39)

Next we show that there exists a finite subset D ⇢ O(n,Z) acting irreducibly

1

|D|

X

g2D
gBgT =

tr{B}

n
1n⇥n, 8B 2 R

n⇥n, (4.3.40)

i.e the commutant D0 is given by multiples of the identity. We can construct such

a subset by noticing that a n ⇥ n permutation matrix P⇡ with entries ±1, 0 is an

orthogonal matrix and hence the set of permutation matrices is a subset of O(n,Z).

Such a permutation matrix permutes the elements of a vector and changes the signs

of its entries according to

P⇡(v1, ..., vn)
T = (±v⇡(1), . . . ,±v⇡(n))

T . (4.3.41)

Note that through linear combinations we can for instance create the vector

(v⇡(1), 0, . . . , 0)
T . Hence the vectors that are obtained in this way span the whole

space. Since there is no invariant subspace we have found a finite irreducible rep-

resentation of O(n,Z) given by the permutation matrices with entries ±1, 0. Then

(4.3.39) becomes

Π(A) =
1

2

0

@

tr{A(1,1)}
n

1n⇥n
tr{A(1,2)}

n
1n⇥n

tr{A(2,1)}
n

1n⇥n
tr{A(2,2)}

n
1n⇥n

1

A+
1

2
J

0

@

tr{A(1,1)}
n

1n⇥n
tr{A(1,2)}

n
1n⇥n

tr{A(2,1)}
n

1n⇥n
tr{A(2,2)}

n
1n⇥n

1

A JT ,

(4.3.42)
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and with

J

0

@

a11n⇥n a21n⇥n

a31n⇥n a41n⇥n

1

A JT =

0

@

a41n⇥n �a31n⇥n

�a21n⇥n a11n⇥n

1

A , (4.3.43)

we arrive at

Π(A) =
1

2n

0

@

(tr{A(1,1)}+ tr{A(2,2)})1n⇥n (tr{A(1,2)}� tr{A(2,1)})1n⇥n

(tr{A(2,1)}� tr{A(1,2)})1n⇥n (tr{A(2,2)}+ tr{A(2,2)}1n⇥n

1

A ,

(4.3.44)

=
tr{A}

2n
12n⇥2n, (4.3.45)

which completes the proof with � = tr{A}
2n

being an averaged frequency.

We note that O(n,Z) � O(n,Z)JOT (n,Z) � OT (n,Z) = J and hence O(n,Z) �
O(n,Z) are symplectic operations with determinant 1, and therefore (global) rota-

tions. An irreducible representation is given by the permutation matrices (4.3.41)

swapping the coordinates of the oscillators. We conclude that through quickly ap-

plied rotations, i.e quickly swapping the coordinates of the oscillators, we can map a

network of n harmonic oscillators into one “big” oscillator rotating with an averaged

frequency � = tr{A}
2n

.

Random dynamical decoupling

Instead of taking the decoupling operations deterministically from a decoupling set

G, we now consider the case in which the decoupling operations gj 2 G with j =

1, . . . , N are taken uniformly random from G. Moving away from the control theory

based approach we study a dynamics that is modified according to

S(∆tN) =
N
Y

j=1

gje
�AΩ∆tg�1

j , (4.3.46)

describing a random walk on the symplectic group. Keeping the total time T = N∆t

fixed, in the limit of infinitely fast decoupling operations the expected dynamics is

governed by [135]

Ḡ := � 1

|G|

X

g2G
gAΩg�1. (4.3.47)
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We saw in the last section that if the decoupling set is given by local rotations R,

then the modified decoupling condition (4.3.26) is satisfied, such that the expected

dynamics is, in first order of ∆t, described by the evolution of uncoupled harmonic

oscillators, i.e. Ḡ = �1
2

⇣

Ln
j=1(A2j�1,2j�1 + A2j,2j)12⇥2

⌘

Ω ⌘ �AGΩ. Instead of

sampling from a decoupling set (4.3.27) with finitely many elements we can also

sample from a set containing infinitely many rotations

G1 = {R(�1, . . . ,�n) |�1, . . . ,�n 2 [0, 2⇡]}. (4.3.48)

The lowest order in ∆t is then given by the Haar average

Ḡ = � 1

(2⇡)n

Z 2⇡

0

d�1 . . .

Z 2⇡

0

d�n R(�1, . . . ,�n)AΩR
�1(�1, . . . ,�n),

= �AGΩ, (4.3.49)

yielding the same result. In the limit of infinitely fast decoupling operations it does

not matter whether we sample from a finite decoupling set (4.3.27) or an infinite

decoupling set (4.3.48). In Fig. 4.5 we numerically studied the performance of the

two different random decoupling schemes by investigating the gate error

✏ = kSG � S(T )k2HS , (4.3.50)

for different values of the temporal spacing ∆t of the decoupling operations and a

goal evolution SG = exp(�AGΩ). As a system we took two interacting harmonic

oscillators (n = 2), described by some randomly chosen real and symmetric matrix

A, T = 1 and the gate error in Fig. 4.5 was evaluated by taking the average over 20

trajectories. The numerical analysis suggests that even for a finite temporal spacing

∆t the performance of random dynamical decoupling is independent of whether we

sample from a finite or an infinite set of local rotations. We can conclude that using a

random decoupling scheme we can turn a system of interacting harmonic oscillators

into non-interacting ones by either rapidly rotating the oscillators uniformly random

around ⇡/2, ⇡, 3⇡/2, 2⇡, or uniformly random around angles between 0 and 2⇡.

This might have the advantage that the controller does not need to implement

the rotations around fixed angles precisely. Comparing the two random decoupling

schemes the performance as a function of ∆t is the same.
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Figure 4.5.: Evaluation of the gate error (4.3.50), on a double logarithmic scale, for
different values of∆t for a system of two interacting harmonic oscillators
described by a randomly chosen real symmetric matrix A and a total
time T = 1. The decoupling operations were taken uniformly random
from a finite decoupling set (blue dots), given by (4.3.27), and from an
infinite decoupling set (green triangles), given by (4.3.48). The gate
error was evaluated by taking the average over 20 trajectories.

4.3.3 Suppression of decoherence for quadratic Hamiltonians

Now we want to come back to our initial motivation, the suppression of decoherence

induced by generic quadratic system-environment interactions. First of all remember

that within the framework of unitary dynamics, in order to suppress decoherence,

we need to suppress terms of the form S↵⌦B↵ by acting on the system alone. This

led to the decoupling condition
P

v2V v†S↵v = �1, which needs to be satisfied for

all S↵. We already proved in theorem 4.2 that for infinite dimensional systems this

condition can never be satisfied for all S↵’s, whereas for finite dimensional systems

this is always possible by choosing the decoupling set V to be an irreducible repre-

sentation of a finite subgroup of the unitary group. In the previous section, using

the formalism of symplectic transformations, we constructed two modified “decou-

pling conditions” for systems that are described by quadratic Hamiltonians. These

conditions describe the mapping of a network of harmonic oscillators to oscillators

that do not interact, and either rotate with different frequencies or with the same
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frequency (homogenization). But note that in this case the desired dynamics is

achieved by frequently applying the decoupling operations on the total system. In

general we have no access to the environment, and therefore we now want to formu-

late a condition that allows us to suppress the system-environment interactions if

we can only act on the system. We first partition the total system into the system of

interest (S) and the environment (E), noting that for symplectic dynamics we have

a direct sum structure of the underlying space. We thus write

A =

0

B

B

B

B

B

B

@

AS I

AEIT

1

C

C

C

C

C

C

A

, (4.3.51)

where AS 2 R
2nS⇥2nS , AE 2 R

2nE⇥2nE are symmetric matrices describing the un-

coupled dynamics of S and E, and I 2 R
2nS⇥2nE describes the interactions between

system and environment. Now, if we apply the decoupling operations only on the

system, g̃ = g � 12nE⇥2nE
, we obtain in the limit of infinitely fast decoupling a

dynamics governed by

Π̃(A) =

0

B

B

B

B

B

B

@

Π(AS)
1
|G|

P

g2G gI

AE
1
|G|

⇣

P

g2G gI
⌘T

1

C

C

C

C

C

C

A

, (4.3.52)

with Π̃(A) = 1
|G̃|

P

g̃2G̃ g̃Ag̃T and Π(·) given by (4.3.22). Obviously, in order to

suppress the interactions with the environment, we can see that we need a decoupling

set G satisfying

X

g2G
g = 0. (4.3.53)

Clearly, both decoupling sets (4.3.27) and (4.3.38) from the previous section satisfy

the above condition, while leading to a different system dynamics which is uncou-

pled from the environment. The simplest decoupling set one can imagine satisfying
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(4.3.53) is just given by G = {12nS⇥2nS
, �12nS⇥2nS

}, noting that it leaves the system

invariant, i.e.

Π̃(A) =

0

B

B

B

B

B

B

@

AS 0

AE0

1

C

C

C

C

C

C

A

. (4.3.54)

The two operations correspond to “no-rotation” and a global rotation around ⇡ of

the system oscillators. It shows that the operation from [134], introduced in the be-

ginning, allows us to decouple arbitrary quadratic system-environment interactions

too. This is not really surprising, since in the unitary picture we can always reverse

the sign in front of interaction parts of the form x̂ ⌦ B1 and p̂ ⌦ B2 by applying

exp(i⇡a†a). Here however we want to emphasize two things. First of all, in contrast

to finite dimensional systems, the system can always be decoupled from the environ-

ment using two operations, independent of how big the system or the environment

is. For qubit systems we saw that the size of the decoupling set scales exponen-

tially with the number of qubits. Hence the bigger the system, the more operations

we need in order to protect the system from decoherence. There is another inter-

esting difference to the finite dimensional case. For finite dimensional systems, on

the one hand the irreducible action of the decoupling set suppresses all interactions

with the environment, while on the other it destroys the system dynamics in the

sense that it is given by the identity. For quadratic Hamiltonians we can suppress

the interactions with the environment without disturbing the system dynamics at

the same time. To push it a bit further, suppose we can build a network of har-

monic oscillators whose interactions and frequencies can be engineered arbitrarily,

so that we can create every A we like. Since we are able to decouple every block

from the rest without disturbing it, using two frequently applied operations, the

considered block undergoes a dynamics determined by some AS, which we assumed

can be engineered arbitrarily. Hence by applying this procedure to different blocks

we can implement every Gaussian operation we encoded before in A. In this way

a sequence of Gaussian operations can be implemented by consecutively decouple
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different blocks. Alternatively, if we use the decoupling set (4.3.38) we can force a

chosen part of the network to behave like one big oscillator that is decoupled from

the rest of the network.

Before we get too lost in speculations we should come back to the suppression of

decoherence. A rough estimate of how fast the decoupling operations �12nS⇥2nS

and 12nS⇥2nS
have to be applied in steps ∆t, in order to decouple the system from

the environment for a fixed total time T , can be given using the Trotter formula

(4.1.19). If we assume that the entries of A are bounded from above by K we find

for the gate error (4.3.50) between the full and the uncoupled dynamics

✏  8∆tT (nS + nE)
2K2e2T (nS+nE)K . (4.3.55)

Clearly, because of the exponential factor the bound becomes useless for big system

and environmental sizes. Hence we will now study numerically how efficient dy-

namical decoupling, as a function of the number N of environmental oscillators, is.

We study the system that was introduced in the beginning of this chapter (4.3.2),

noting that we could have taken any other system-environment interaction that is

described by a quadratic Hamiltonian. In terms of the quadrature operators the

total Hamiltonian reads

H =
!

2
(x̂2 + p̂2) +

N
X

k=1

!k

2
(x̂2

k + p̂2k) +
N
X

k=1

gk(x̂x̂k + p̂p̂k). (4.3.56)

We investigate a random dynamical decoupling scheme by randomly rotating the

system oscillator through

R(�) =

0

@

cos(�) � sin(�)

sin(�) cos(�)

1

A� 12N⇥2N , (4.3.57)

noting that the decoupling condition (4.3.53) is satisfied since
R 2⇡

0
d�R(�) = 0. In

Fig. 4.6 we evaluated the gate error (4.3.50) for different values of ∆t and different

numbers N of environmental modes for a total time T = 1. As a goal operation

we took SG = exp(�AGΩ) with AG = diag(!,!,!1,!1, . . . ,!N ,!N), while the sym-

plectic dynamics is modified by applying instantaneously and uniformly random
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rotations (4.3.57) so that the dynamics is given by (4.3.46). The frequency of the

system oscillator ! was set to 1 and the coupling constants gk and the frequencies

!k of the environmental oscillators were chosen uniformly random between 0 and 1.

The gate error was evaluated by taking the average over 20 trajectories. The inset

plot shows the gate error as a function of N for a fixed spacing ∆t = 10�3 between

the decoupling operations.

Figure 4.6.: Evaluation of the gate error (4.3.50), on a double logarithmic scale, for
different values of ∆t between random rotations (4.3.57) of the system
oscillator and different numbers N of environmental oscillators for the
decoherence model given by (4.3.56). The total time was chosen to be
T = 1, the frequency of the system oscillator ! was set to 1, the coupling
constants gk and the frequencies !k of the environmental oscillators
were chosen uniformly random between 0 and 1. The goal operation
was SG = exp(�AGΩ), while the gate error was evaluated by taking
the average over 20 trajectories. The inset plot shows the gate error
as a function of the number N of environmental oscillators for fixed
∆t = 10�3.

The numerical analysis indicates that, in order to suppress decoherence through

random dynamical decoupling for this particular model (4.3.2), the size of the en-

vironment and the strength of the system-environment interactions are important

for the efficiency of the scheme. Instead of increasing exponentially, the inset plot

suggest that the gate error increases linearly when the number of environmental

oscillators increases. This behavior indicates that there is room for improvement of
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the bound (4.3.55). Based on a central limit theorem from [135], the development of

more accurate bounds for random dynamical decoupling of quadratic Hamiltonians

will be the subject of future work.

So far we have only discussed the suppression of decoherence through random dy-

namical decoupling for continuous variable systems that are described by quadratic

Hamiltonians. What about other types of interactions that contain powers of the

quadrature operators of the system? Consider an interaction of the form xn ⌦ B,

where n is any natural number and B some hermitian environmental operator de-

scribing the interaction with a finite or an infinite dimensional environment. For

n = 1 and B given by x̂ or p̂ we have seen that such interaction terms can be sup-

pressed by rotating the system. For n odd we expect that this is still true since in

the limit of infinitely fast rotations we have that the dynamics is governed by the

average

1

2⇡

Z 2⇡

0

d� ei
�

2
(x̂2+p̂2) (x̂n ⌦ B) e�i�

2
(x̂2+p̂2) =

8

>

<

>

:

0 for n odd,

/ (x̂2 + p̂2)n/2 ⌦ B for n even.

(4.3.58)

Through randomly rotating the system we cannot suppress interaction terms that

contain even powers of the position operator of the system. The same holds for the

momentum operator p̂. In fact for n even x̂ has an unbounded spectrum over the

positive part of the real line and we showed in the beginning that there does not

exist a finite set of unitaries allowing us to suppress such interactions.

4.3.4 Conclusions

We showed that not every infinite dimensional quantum system can be decoupled

from the environment and therefore protected from decoherence using dynamical de-

coupling. Afterwards we studied, in more detail, a particular class of such systems,

namely dynamical decoupling of Hamiltonians that are quadratic in the quadrature

operators. We first showed that through dynamical decoupling a network of inter-

acting harmonic oscillators can be mapped to non-interacting ones, either rotating
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with different frequencies or with the same frequency. Because, in the second case,

the whole system behaves like one “big” oscillator, we called this process homoge-

nization. In both cases the effective dynamics can be obtained by applying rapid

rotations to the total system. A random dynamical decoupling scheme has the same

effect. Afterwards we focussed on the suppression of decoherence for interactions

that are described by quadratic Hamiltonians. Remarkably, we showed that, in con-

trast to finite dimensional systems, we can always suppress the interactions with the

environment without averaging the system Hamiltonian to zero. This can always be

achieved with two simple operations, independent of the system or the environmen-

tal size. We demonstrated random dynamical decoupling on a common decoherence

model and we found that the performance of dynamical decoupling depends linearly

on the number of environmental oscillators that couple to the system. The determi-

nation of bounds in terms of the strength of the system-environment interaction and

the total time we want to protect the system from decoherence will be the subject

of future work.

Our results pave the way for protecting an infinite dimensional quantum system

from decoherence towards the reduction of noise in systems that are described by

continuous variables. For instance, dynamical decoupling has the potential to de-

crease the environmentally induced errors in optical quantum computing [146] and

quantum metrology [147]. Moreover, dynamical decoupling for continuous variables

might assist in verifying collapse models in the macroscopic superposition regime

[130, 131, 132, 133] by reducing extrinsic decoherence so that the small derivations

from the usual Schrödinger dynamics become more visible.

In the last chapter we were concerned with the suppression of decoherence through

dynamical decoupling. We learned that decoherence described by a Lindblad-type

evolution cannot be suppressed. Instead of fighting against such noise processes we

will see in the next chapter that sometimes they can have a beneficial effect on the

dynamics that is accompanied by some controls. In the realm of the second approach

for controlling open quantum systems we study how a Lindblad-type evolution can
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increase the set of unitary operations that can be implemented with classical con-

trol fields. It will turn out that such noise process can turn parts of a quantum

system into a system capable of universal quantum computations, whereas without

the noise process this would not be possible.
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5 Universal control induced

by noise

Based on the submitted work:

C. Arenz, D. Burgarth, P. Facchi, V. Giovannetti, H. Nakazato, S. Pascazio and

K. Yuasa, submitted to Phys. Rev. A (2016), arXiv: quant-ph/:1601.01212.

The interaction of a quantum system with its environment is usually considered to

be detrimental for quantum information processing. Quantum features one wants

to use for quantum information tasks are washed out quickly so that the imple-

mentation of quantum gates becomes noisy. In the last decades, however, it has

been observed that sometimes noise can be beneficial. Rather than fighting against

the environment, dissipative state preparation [97, 148, 149, 150] and dissipative

quantum computing [4, 151, 152] turned out to be valuable alternatives to unitary

gate designs. In the context of quantum control theory state preparation and the

implementation of unitary gates through the modulation of classical control fields

in the presence of a dissipative environment has been studied [46, 51, 52, 153] and

the set of reachable operations has been analyzed [56, 154]. The environment can

be used as a resource to increase the set of operations that can be implemented

through the controls [155, 156]. If the dissipative process admits some set of states

robust against the environmental perturbations, the fidelity for the implementa-

tion of a gate within the subspaces spanned is not influenced by the noise and

the dynamics there is free from decoherence. The existence of the decoherence-

free subspaces (DFS’s) [157, 158, 159, 160, 161, 162, 163, 164, 165, 166] and the
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interplay between weak coherent processes and fast relaxation processes make it

possible to implement unitary gates over the steady state manifold in a noiseless

manner [167, 168, 169, 170]. Here we show that such a noise process can even raise

the fidelity for implementing a desired gate. The action of the strong dissipation

allows the implementation of gate operations which cannot be realized without the

help of the dissipation. The complexity of the dynamics is enhanced by the noise.

To show this we build upon the recent results obtained in Ref. [155]. On the basis of

the quantum Zeno effect [171] it was shown that frequent projective measurements

can enrich the dynamics steered by a set of control Hamiltonians. Consider two

control Hamiltonians H1 and H2 which are commutative with each other,

[H1, H2] = 0. (5.0.1)

One is allowed to switch them on and off at will, but can induce only trivial dynam-

ics on the system due to the commutativity. If one additionally performs frequent

projective measurements described by a hermitian projection P during the control,

the system is confined to the subspace specified by the projection P due to the

quantum Zeno effect (quantum Zeno subspace [171, 172]), where the system evolves

unitarily (quantum Zeno dynamics [171, 173]) according to the projected counter-

parts of the control Hamiltonians, PH1P and PH2P . These projected Hamiltonians

do not necessarily commute any more,

[PH1P, PH2P ] 6= 0. (5.0.2)

The measurement forces the system to evolve within the Zeno subspace, in which

more complex operations can be realized thanks to the noncommutativity. The same

effect can be induced by an infinitely strong dissipative process [168, 169]. It was

shown in Ref. [155] that a strong amplitude damping channel acting only locally on

one out of many qubits in a chain typically turns a pair of commuting Hamiltonians

into a pair of projected Hamiltonians that allow us to perform universal quantum

computation over the whole chain of qubits apart from the projected one. The

amplitude damping acting locally on one qubit out of many, however, is a very
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special type of noise, and the assumption that it acts only locally seems unrealistic.

On the other hand, this effect, noise-induced universal quantum computation, should

arise in more general settings.

Here we show that the universal controllability over the system can be achieved

with the help of more general noise models, including the ones widely studied in

the context of DFS’s [157, 158, 159, 160, 161, 162, 164, 165, 166, 168, 169]. DFS’s

will be identified as the equivalent to the quantum Zeno subspaces. Even if we are

originally able to perform only trivial controls by commuting control Hamiltonians,

a strong amplitude damping process projects the system onto DFS’s, where we

achieve universal controllability over the system. We characterize the set of reachable

operations within DFS’s and provide examples for which universal sets of gates

can be implemented. Moreover, we perform numerical gate optimization to study

how strong the dissipative process needs to be to implement such gates with high

precision. As a byproduct a new fidelity function which can be applied in other

optimization problems for open quantum systems is developed.

5.1 Basic Concepts

5.1.1 DFS’s

DFS’s can be exploited as a passive strategy for protecting quantum informa-

tion against noise [3]. The theory has been developed in terms of interaction

Hamiltonians [157, 158, 159, 162, 163] as well as of quantum dynamical semi-

groups [160, 161, 166, 165]. Many experiments, such as [174, 175, 176, 177], demon-

strate the importance of DFS’s for noiseless quantum computation. An experimental

setup in waveguide QED has also been discussed recently [178]. Moreover the combi-

nations with error correcting schemes [161] and dynamical strategies for decoherence

control [106, 108, 179, 180, 181, 182] are promising possibilities for robust quantum

information processing [183].

A DFS can be seen as a degenerate pointer basis, which is invariant against the dissi-
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pative process. Consider a purely dissipative dynamics described by the Lindbladian

generator

D(⇢) =
d2�1
X

j=1

�j(2Lj⇢L
†
j � (L†

jLj⇢+ ⇢L†
jLj)), (5.1.1)

with ⇢ the density operator of the system, Lj the Lindblad operators acting on

the system, and �j non-negative constants. Here we restrict ourselves to finite-

dimensional quantum system with Hilbert space H of dimension d and write S(H)

for the state space of H. A DFS H
(i)
DFS ⇢ H is spanned by {| 

(i)
1 i, . . . , | (i)

di
i} char-

acterized by

Lj| 
(i)
k i = �

(i)
j | 

(i)
k i, G| 

(i)
k i = b(i)| 

(i)
k i,

j = 1, . . . , d2 � 1; k = 1, . . . , di, (5.1.2)

with G =
Pd2�1

j=1 �jL
†
jLj, �

(i)
j complex, and b(i) =

Pd2�1
j=1 �j|�

(i)
j |2 [184]. Clearly if we

prepare the system in an initial state ⇢0 2 S(H
(i)
DFS), this state is protected from dis-

sipation driven by the dissipator D in (5.1.1). We denote by P the (super)projection

(which is not necessarily self-dual) onto the steady state manifold which consists of

all quantum states ⇢ satisfying D(⇢) = 0. We assume that the steady states are

attractive, i.e.,

lim
t!1

eDt = P , (5.1.3)

to which we refer as the long-time/strong-damping limit. In practice, the strong

dissipative process quickly destroys the quantum coherence along a given set of

directions.

5.1.2 Quantum Control

Having introduced the concept of DFS’s we briefly review some results from quan-

tum control theory introduced in the preliminary section (see Sec. 2.2.1). Consider

a quantum system described by a Hamiltonian H0, which suffers from dissipation
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described by the dissipator D in (5.1.1). We try to steer the system by modu-

lating external fields {u1(t), . . . , um(t)} to switch on and off control Hamiltonians

{H1, . . . , Hm}. The evolution of the system is generated by

Lt(⇢) = �i[H(t), ⇢] +D(⇢), (5.1.4)

with

H(t) = H0 +
m
X

`=1

u`(t)H`. (5.1.5)

H0 is a drift Hamiltonian, and we do not have access to it. As discussed in Sec. 2.2.1

it is known [9] that in the absence of the dissipator D, every unitary operation in

the closure of the dynamical Lie group eL can be implemented with arbitrarily high

precision, with

L = Lie(iH0, iH1, . . . , iHm), (5.1.6)

being the real dynamical Lie algebra formed by real linear combinations of the

operators iH0, iH1, . . . , iHm and of their iterated commutators. If L ◆ su(d) (for

traceless operators), where su(d) is the special unitary algebra, the system is said

to be fully controllable, that is, every unitary can be implemented up to a global

phase.

5.2 Noise-Induced Universal Quantum

Computation

Our question is the following. Suppose that the dynamical Lie algebra L generated

by our Hamiltonians {H0, H1, . . . , Hm} is strictly smaller than su(d) and only lim-

ited unitaries are realizable by our control in the absence of the dissipation D. How

is the set of reachable operations enlarged by the action of a strong dissipation D

on the system?

To this end we need to know how the system evolves under the influence of the

strong dissipation D [168, 169]. To begin with we consider the situation in which no

130



CHAPTER 5. UNIVERSAL CONTROL INDUCED
BY NOISE

drift term H0 is present and the dissipator D can be switched on and off arbitrarily

as well as the control Hamiltonians {H1, . . . , Hm}. Afterwards we discuss the case in

which we have no control over the dissipative part D and the drift Hamiltonian H0,

assuming that the control fields are all constant. Finally this leads to the general

case (5.1.4).

If we are allowed to control D arbitrarily, we can switch rapidly between P and a uni-

tary evolution that is generated byKc(·) = �i[Hc, ·] with someHc 2 {H0, H1, . . . , Hm}

and in the limit of infinitely frequent switching

lim
n!1

(PeKct/nP)n = ePKcPtP . (5.2.1)

It can be shown [168, 185] that

(PKcP)(⇢) = �i[PiHcPi, ⇢], 8⇢ 2 S(H
(i)
DFS), (5.2.2)

where Pi =
Pdi

k=1 | 
(i)
k ih (i)

k | is the hermitian projection onto the ith DFS. Clearly

this implies that if we prepare the system in a DFS, say in the ith DFS, it remains

there evolving unitarily with the projected Hamiltonian PiHcPi. Furthermore if

the evolution generated by D is unital, i.e., D(1) = 0, the system evolves over

the steady state manifold according to PKcP(·) = �i[P(Hc), ·], and for an abelian

interaction algebra [186], generated by the Lj’s in (5.1.1) and their conjugates, we

have P(Hc) =
P

i PiHcPi [168]. The mechanism is similar to that of the quantum

Zeno subspaces induced by other means, such as frequent measurements, strong

continuous couplings, and frequent unitary kicks [171, 172, 182]. The projective

measurement is effectively performed by the dissipative process. The measurement

is nonselective [187]: the transitions among different subspaces are hindered and the

dynamics within each subspace is governed by the projected Hamiltonian PiHcPi.

So far we have discussed the case in which the dissipator D as well as the control

Hamiltonians {H1, . . . , Hm} can be controlled arbitrarily, in the absence of the drift

Hamiltonian H0. Typically one has no access to the dissipative part D in (5.1.4) that

arises for example from an interaction with the environment. If we assume that the

control fields are all constant, the generator (5.1.4) including the drift Hamiltonian
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H0 reads

L = gK +D, (5.2.3)

where we have introduced the constant g that measures the strength of the coher-

ent part K(·) = �i[H, ·] in comparison with the dissipative part D. Based on a

pertubative expansion it has been shown [168, 169] that

k(etL � egtPKP)Pk  O(g⌧R), (5.2.4)

where ⌧�1
R = minh>0 |<{�h}|, with �h the nonvanishing eigenvalues of D, defines

the longest relaxation timescale ⌧R. The norm is the usual operator norm and

gt = O(1). Thanks to this, we notice that on a timescale on which the dissipative

dynamics is much faster than the coherent dynamics, the dynamics is effectively

governed by (5.2.1). Similarly to (5.2.2), if the system is initially prepared in a

DFS, say in the ith DFS, the system evolves unitarily within the same DFS in the

limit g⌧R ! 0 with gt = O(1), driven by the projected Hamiltonian PiHPi. Again,

this is intuitively clear: if the dynamics is dominated by the fast dissipative process,

the latter defines the subspaces within which the system can evolve. The presence

of the coherent component K only modifies the motion within each subspace.

It is now easy to treat the general case (5.1.4). In spirit of the Trotter formula

(cf. Sec. 2.2.1), by switching among the control Hamiltonians under g⌧R ! 0 and

gt = O(1), we can implement with arbitrarily high precision every Ui = eL
(i)
DFS in the

relevant DFS, with

L
(i)
DFS = Lie(iPiH0Pi, iPiH1Pi, . . . , iPiHmPi), (5.2.5)

being the real Lie algebra generated by the drift Hamiltonian H0 and the control

Hamiltonians {H1, . . . , Hm} projected by the projection Pi. Note that for a unital

evolution eDt the Lie algebra over the DFS’s reads

LDFS = Lie(iP(H0), iP(H1), . . . , iP(Hm)). (5.2.6)

The projection Pi can now be identified as the equivalent of the frequent projective

measurement that projects the system onto the quantum Zeno subspace specified
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by Pi: the strong dissipation does the same job as the Zeno measurement. In the

strong-damping limit the system is confined in the DFS’s, evolving unitarily and

steered by the projected Hamiltonians.

Although the dimensions of the DFS’s are smaller than the dimension of the original

Hilbert space, the dynamics induced by the projected control Hamiltonians within

the DFS’s can be much more complex than the one induced by the original control

Hamiltonians in the absence of the dissipation, since dim(LDFS) is in general larger

than dim(L) [155]. One can even achieve the universal controllability over the DFS’s,

with the help of the strong dissipation.

5.3 Universal control in DFS’s: Examples

On the basis of the observation that the projected drift and control Hamiltonians

do not necessarily commute any more, we saw in the last section that the Lie alge-

bra over the DFS’s might be larger than the Lie algebra over the original Hilbert

space. In the following we present three different examples, for which the universal

controllability over the DFS’s is achieved, even though only “simple” operations can

be implemented over the original Hilbert space in the absence of dissipation.

5.3.1 Two Qubits

We first provide a simplest example with only two qubits, which is essentially the

same as that presented in Ref. [155]: one of the two qubits, say qubit 2, is subject

to a strong amplitude-damping process. We also discuss the same model but with

a pure dephasing process on qubit 2, instead of the amplitude-damping process.

The drift Hamiltonian reads

H0 = �x ⌦ (�x + �z), (5.3.1a)

while we have a control Hamiltonian

H1 = �y ⌦ (�x � �z), (5.3.1b)
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where �↵ with ↵ = x, y, z are the Pauli operators. Note that these Hamiltonians

commute with each other, [H0, H1] = 0. Therefore in the absence of noise the Lie

algebra L = Lie(iH0, iH1) is spanned just by {iH0, iH1} and hence is only two-

dimensional, dim(L) = 2. We now add amplitude-damping on qubit 2, generated

by

D(⇢) = �(2�
(2)
� ⇢�

(2)
+ � (�

(2)
+ �

(2)
� ⇢+ ⇢�

(2)
+ �

(2)
� )), (5.3.2)

with �
(2)
± = 1 ⌦ (�x ± i�y)/2 the raising and lowering operators acting nontrivially

only on qubit 2. It projects the system as [188]

eDt⇢ = (P +Qe��t)⇢(P +Qe��t) + (1� e�2�t)L⇢L†

�t!1���! P(⇢) = P⇢P + L⇢L†, (5.3.3)

where P = 1 ⌦ |0ih0|, Q = 1 ⌦ |1ih1|, and L = �
(2)
� = 1 ⌦ |0ih1| with |0i and |1i

being the eigenstates of �z belonging to the eigenvalues �1 and +1, respectively.

The dissipator (5.3.2) admits a single DFS identified by the hermitian projection P

onto

HDFS = span{|0i ⌦ |0i, |1i ⌦ |0i}. (5.3.4)

In the strong-damping limit our Hamiltonians are projected to

PH0P = ��x ⌦ |0ih0|, (5.3.5a)

PH1P = �y ⌦ |0ih0|, (5.3.5b)

and the Lie algebra over the DFS is given by

LDFS = Lie(iPH0P, iPH1P ) = su(2)⌦ |0ih0|. (5.3.6)

That is, in the strong-damping limit qubit 1 becomes fully controllable, i.e., every

U 2 SU(2) can be implemented on qubit 1.

Now let us replace the amplitude-damping process on qubit 2 by a pure dephasing

process generated by

D(⇢) = ��[�(2)
z , [�(2)

z , ⇢]], (5.3.7)
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where �
(2)
z = 1⌦ �z. In this case the system is projected as [188]

eDt⇢ = P0⇢P0 + P1⇢P1 + P0⇢P1e
�4�t + P1⇢P0e

�4�t,

�t!1���! P(⇢) = P0⇢P0 + P1⇢P1, (5.3.8)

where Pi = 1 ⌦ |iihi| with i = 0, 1. This dephasing process admits two orthogonal

DFS’s identified by the hermitian projections P0 and P1,

H
(0)
DSF = span{|0i ⌦ |0i, |1i ⌦ |0i}, (5.3.9a)

H
(1)
DFS = span{|0i ⌦ |1i, |1i ⌦ |1i}. (5.3.9b)

Since the evolution generated by (5.3.7) is unital, in the strong-dephasing limit our

Hamiltonians are projected to

P(H0) = �x ⌦ �z, (5.3.10a)

P(H1) = ��y ⌦ �z, (5.3.10b)

and the Lie algebra over the DFS’s LDFS = Lie(iP(H0), iP(H1)) is spanned by

{�x ⌦ �z, �y ⌦ �z, �z ⌦ 1}: its dimension is dim(LDFS) = 3 and is increased from

dim(L) = 2 by the action of the strong pure dephasing on qubit 2. In particular, if

qubit 2 starts from the state |ii with i = 0 or 1 the Lie algebra over the ith DFS

reads

L
(i)
DFS = Lie(iPiH0Pi, iPiH1Pi) = su(2)⌦ |iihi|, (5.3.11)

and qubit 1 is fully controllable. Although in this case we do not have the full

controllability over all DFS’s, universal quantum computation is possible on qubit 1

within one of the two DFS’s. We see that using the framework of DFS’s the previous

results on amplitude damping channels extend naturally to other types of noise.

5.3.2 N -Level Atom with an Unstable Level

The next example involves an atom with energy eigenstates |1i, . . . , |Ni plus a higher
lying unstable state |ei that decays to the lower lying states with rates �1, . . . , �N ,
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|1i
|2i

|3i

|Ni

|ei

γNγ3γ2γ1

Figure 5.1.: Schematic representation of an N -level atom with a higher lying unsta-
ble level |ei that decays with rates �1, . . . , �N to the lower lying levels
|1i, . . . , |Ni spanning a DFS.

as schematically represented in Fig. 5.1. We assume that N � 2. A similar level

structure manifests for example in a Rydberg atom, for which the quantum Zeno

dynamics has recently been demonstrated in an impressive way [189].

We will consider a decay process described by

D(⇢) =
N
X

j=1

�j(2Lj⇢L
†
j � (L†

jLj⇢+ ⇢L†
jLj)) (5.3.12)

with Lj = |jihe| where j = 1, . . . , N . The system is projected as [188]

eDt⇢ = (P +Qe�Γt)⇢(P +Qe�Γt) +
1

Γ
(1� e�2Γt)

N
X

j=1

�jLj⇢L
†
j

Γt!1���! P(⇢) = P⇢P +
1

Γ

N
X

j=1

�jLj⇢L
†
j, (5.3.13)

where P = 1� |eihe|, Q = |eihe|, and Γ =
PN

j=1 �j. The dissipator (5.3.12) admits

a DFS identified by the hermitian projection P , namely, spanned by the lower lying

levels

HDFS = span{|1i, . . . , |Ni}. (5.3.14)

Now we are going to introduce a drift Hamiltonian and a control Hamiltonian. We

take an example from Ref. [190], for which the universal control is achieved through
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frequent projective measurements described by a hermitian projection P . Note

that here P is realized through the strong-damping limit of the CPTP map that is

generated by the dissipator (5.3.12). The drift Hamiltonian

H0 = |eih2|+ |2ihe|+
N�1
X

j=1

(|jihj + 1|+ |j + 1ihj|), (5.3.15a)

consists of the interactions among the lower lying levels {|1i, . . . , |Ni} and addi-

tional driving terms stimulating the transitions between |ei and |2i. The control

Hamiltonian, on the other hand, reads

H1 = |eihe|+ |1ih1|� (|eih1|+ |1ihe|). (5.3.15b)

Again, these Hamiltonians commute with each other, [H0, H1] = 0. Therefore in

the absence of the noise D the Lie algebra L = Lie(iH0, iH1) is spanned just by

{iH0, iH1} and hence is only two-dimensional, dim(L) = 2, as in the previous ex-

ample. These Hamiltonians are projected by the strong dissipation (5.3.13) to

PH0P =
N�1
X

j=1

(|jihj + 1|+ |j + 1ihj|), (5.3.16a)

PH1P = |1ih1|. (5.3.16b)

This pair of Hamiltonians is known to generate the full unitary algebra u(N) (see

e.g. [191]). We get

LDFS = Lie(iPH0P, iPH1P ) = u(N)P. (5.3.17)

Its dimension is dim(LDFS) = N2, while dim(L) = 2 in the absence of the dissipation.

Compared to the previous two-qubit example we observe here a more dramatic

increase of the complexity in the dynamics over the DFS through projection.

5.3.3 Ising Chain of N Qubits under Collective Decoherence

The third example is a chain of N qubits interacting with each other via nearest-

neighbor Ising-type couplings,

H0 =
N�1
X

n=1

�(n)
z �(n+1)

z , (5.3.18a)
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where �
(n)
↵ = 1⌦ · · ·⌦ 1⌦ �↵ ⌦ 1⌦ · · ·⌦ 1 with ↵ = x, y, z are the Pauli operators

acting on the nth qubit. We assume that N � 3. In addition we are allowed to

switch on and off the coupling between the first two qubits,

H1 = �(1)
z �(2)

z . (5.3.18b)

These Hamiltonians trivially commute with each other, [H0, H1] = 0, and our control

over the chain of qubits is very poor. Suppose then that this system undergoes a

strong collective decoherence described by the Lindbladian generator

D(⇢) =
X

↵=x,y,z

�↵(2S↵⇢S↵ � (S2
↵⇢+ ⇢S2

↵)), (5.3.19)

that preserves the identity, where

S↵ =
1

2

N
X

n=1

�(n)
↵ ,↵ = x, y, z, (5.3.20)

are the collective spin operators. This noise model is well studied in the context

of DFS’s, and is known to admit multiple DFS’s labeled by the total spin J of

the whole chain (i.e., J gives the total spin angular momentum of the chain by

S2 =
P

↵=x,y,z S
2
↵ = J(J + 1) [163, 165, 168]). The dimensions of the DFS’s are

given by [192],

dJ,N =
(2J + 1)N !

(N/2 + J + 1)!(N/2� J)!
, (5.3.21)

and are listed in Table 5.1 for small numbers of qubits N .

To see how our Hamiltonians H0 and H1 are projected by the collective decoherence

Λt = eDt in the strong-damping limit, let us look at its dual channel Λ?t = eD
?t

defined by

tr{AΛt(⇢)} = tr{Λ?t (A)⇢}, (5.3.22)

for an arbitrary observable A and state ⇢, and note that D? = D in this case, since

S↵ in the generator D in (5.3.19) are hermitian. By this channel, each component
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of our Hamiltonians �
(n)
z �

(n+1)
z evolves according to

D

0

B

B

B

@

�
(n)
x �

(n+1)
x

�
(n)
y �

(n+1)
y

�
(n)
z �

(n+1)
z

1

C

C

C

A

= �2

0

B

B

B

@

�y + �z ��z ��y
��z �z + �x ��x
��y ��x �x + �y

1

C

C

C

A

0

B

B

B

@

�
(n)
x �

(n+1)
x

�
(n)
y �

(n+1)
y

�
(n)
z �

(n+1)
z

1

C

C

C

A

, (5.3.23)

and in the strong-damping limit the operators �
(n)
↵ �

(n+1)
↵ , ↵ = x, y, z are projected

to

Λt

0

B

B

B

@

�
(n)
x �

(n+1)
x

�
(n)
y �

(n+1)
y

�
(n)
z �

(n+1)
z

1

C

C

C

A

�̄t!1���! P

0

B

B

B

@

�
(n)
x �

(n+1)
x

�
(n)
y �

(n+1)
y

�
(n)
z �

(n+1)
z

1

C

C

C

A

=
1

3

0

B

B

B

@

σ
(n) · σ(n+1)

σ
(n) · σ(n+1)

σ
(n) · σ(n+1)

1

C

C

C

A

, (5.3.24)

where �̄ is a characteristic timescale of the decoherence, e.g., the smaller nonva-

nishing eigenvalue of the matrix in (5.3.23). The operators become rotationally

symmetric by the projection. In particular, our Hamiltonians H0 and H1 are pro-

jected to

P(H0) =
1

3

N�1
X

n=1

σ
(n) · σ(n+1), (5.3.25a)

P(H1) =
1

3
σ

(1) · σ(2). (5.3.25b)

The Ising chain (5.3.18) thus becomes the Heisenberg chain (5.3.25) by the projection

P . The projected Hamiltonians are not commutative anymore with each other.

Now we look at the Lie algebra

LDFS = Lie(iP(H0), iP(H1)), (5.3.26)

generated by the projected Hamiltonians P(H0) and P(H1). Recall that the pro-

jected Hamiltonians in (5.3.25) are rotationally symmetric, reflecting the character

of the decoherence model (5.3.19). Commutators preserve this rotational symmetry,
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as we will see below. Then, all the elements of the Lie algebra LDFS are rotation-

ally symmetric, and are given in terms of the two- and three-body operators (see

App. B.1 for details)

Hmn = σ
(m) · σ(n), Hijk = σ

(i) · (σ(j) ⇥ σ
(k)),

m < n; i < j < k; m,n, i, j, k = 1, . . . , N. (5.3.27)

In Ref. [165], it is proved that any SU transformations on the DFS’s induced by the

strong collective decoherence (5.3.19) can be realized if we are able to apply swap

interactions between any pair of qubits. Note that the swap Hamiltonians can be

constructed from the rotationally symmetric two-body operators Hmn = σ
(m) ·σ(n):

the swap operator Smn swapping the states of qubits m and n is given by Smn =

(1 + σ
(m) · σ(n))/2. Since we have proven in App. B.1 that all the rotationally

symmetric two-body operators Hmn = σ
(m) ·σ(n) can be generated by the projected

Hamiltonians P(H0) and P(H1), the swap Hamiltonians Smn between any pair of

qubits can be applied, and by the theorem proved in Ref. [165] all the generators of
L

J su(dJ,N) can be constructed. Namely,

LDFS = Lie(iP(H0), iP(H1)) �
M

J

su(dJ,N). (5.3.28)

This means that we are able to perform universal quantum computation over all

DFS’s by the projected Hamiltonians P(H0) and P(H1). Notice, however, that the

full unitary algebra
L

J u(dJ,N) over the DFS’s is not attainable. For instance, not all

the rotationally symmetric four-body operators (σ(i) ·σ(j))(σ(k) ·σ(`)) = HijHk` can

be generated. Combinations of them can be generated by the rotationally symmetric

two- and three-body operators through

i[Hij, Hjk`] = 2(HikHj` �Hi`Hjk), (5.3.29)

but we realize that we can generate only differences of four-body operators. The

other commutators such as

i[Hijk, HijHk`] = 4(Hj` �Hi`) + 2(Hi`Hjk �HikHj`), (5.3.30)
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N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

J = 0 1 2 5

J = 1
2

1 2 5

J = 1 1 3 9

J = 3
2

1 4

J = 2 1 5

J = 5
2

1

J = 3 1

dimLDFS 0 1 4 12 40 129
P

J dim(su(dJ,N)) 0 0 3 11 39 128
P

J dim(u(dJ,N)) 1 2 5 14 42 132

Table 5.1.: The dimensions dJ,N of the DFS’s, and the dimension of the Lie algebra
LDFS = Lie(iP(H0), iP(H1)) compared with the dimensions of the u and
su algebras over the DFS’s, for small numbers of qubits N .

do not help to break the differences to get a single piece of four-body operator.

This is because commutators yield something antisymmetric with respect to some

of the qubits involved in the operators. In order to single out each piece of four-

body operator from the differences, we need a sum of four-body operators, but it is

not available or provided through commutators. We thus cannot generate the full

algebra over the DFS’s.

See Table 5.1, where the dimension of the Lie algebra dim(LDFS) is compared with

the dimension of the su algebra
P

J dim(su(dJ,N)) and that of the full unitary alge-

bra
P

J dim(u(dJ,N)) over the DFS’s. The dimension of the Lie algebra dim(LDFS)

is indeed larger than
P

J dim(su(dJ,N)), but is smaller than
P

J dim(u(dJ,N)). Any-

way, the dimension of the Lie algebra is greatly enhanced from dim(L) = 2, as

dim(LDFS) ' 4NN�3/2/
p
⇡ for large N , as estimated in App. B.2.

In summary, we started with two commuting Hamiltonians H0 and H1 in (5.3.18),

which are projected to P(H0) and P(H1) in (5.3.25), respectively, by the strong col-

lective decoherence (5.3.19). As a consequence, the Ising chain (5.3.18) is changed
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into the Heisenberg chain (5.3.25), and our projected Hamiltonians P(H0) and

P(H1) are not commutative anymore with each other. They generate the full algebra

of
L

J su(dJ,N) on the DFS’s. Remarkably the noise is turning the Ising chain (clas-

sical) into the Heisenberg chain (quantum), and we are able to perform a universal

quantum computation over the DFS’s.

5.4 Gate optimization and subsystem fidelity

In this section we analyze how the process fidelity scales with the noise strength.

To this end we resort to the numerical gate optimization using the quantum control

package implemented in QuTip [193]. We study the two-qubit example discussed

in Sec. 5.3.1, with the amplitude damping (5.3.2) for different values of �. For the

sake of simplicity the drift Hamiltonian (5.3.1a) is treated as a control Hamiltonian

as well.

We wish to optimize the control fields u`(t) (recall (5.1.5)) to implement some goal

operation EG. Denote by ΛT = T̂ exp(
R T

0
dtLt) the CPTP map at time T , where

Lt is the Lindbladian given in (5.1.4) and T̂ indicates time-ordered product. The

optimization is performed to minimize the gate error

"1 = kΛT � EGk2HS, (5.4.1)

where k·kHS is the Hilbert-Schmidt norm with EG and ΛT being treated as d2 ⇥ d2

matrices obtained by the row-vectorization of the density operator of a d-dimensional

system (see Eq. (2.1.18) from Sec. 2.1.2). In general, for two CPTP maps Φ1 and

Φ2, the Hilbert-Schmidt norm of the difference between their corresponding matrices

provides an upper bound kΦ1�Φ2k⇧  dkΦ1�Φ2kHS on the diamond norm k·k⇧. The
diamond norm [48] takes its maximal value 2 when the two quantum channels Φ1 and

Φ2 are perfectly distinguishable. The minimization of (5.4.1) is done by a gradient-

based algorithm [44] dividing the total time T into equidistant time intervals, on

which the control fields are piecewise constant. For further details of the algorithm

we refer to Sec. 2.2.2.
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We are actually interested in the reduced dynamics of system 1, i.e., in the map

E
(1)
T (⇢1) = tr2{ΛT (⇢1 ⌦ ⇢2)} with ⇢1 and ⇢2 the initial states of systems 1 and 2,

respectively, and tr2{·} the partial trace over system 2. We wish to optimize ΛT

such that E
(1)
T becomes some goal unitary map E

(1)
G = UG with UG(⇢) = UG⇢U

†
G

and UG 2 SU(d). Our measure of error "1 in (5.4.1), however, depends also on

how the channels ΛT and EG act on system 2: even if E
(1)
T coincides with the goal

unitary E
(1)
G = UG, the total maps ΛT and EG can be different and our measure of

error "1 can be nonvanishing. In addition, the reduced map E
(1)
T depends on the

initial state of system 2. We notice, on the other hand, that since the goal operation

on system 1 is unitary UG the total goal operation must factorize EG = UG ⌦ Ẽ

with Ẽ an arbitrary CPTP map acting on system 2. What is more relevant is how

close the reduced channel E
(1)
T is to the goal unitary UG. Therefore it would be

more appropriate to perform an additional minimization of "1 in (5.4.1) over Ẽ . To

obtain the subsystem fidelity for purely unitary channels this minimization can be

carried out analytically [64, 99] (see also Eq. (3.3.2) and Eq. (3.3.3) from Sec. 3.3)

but unfortunately for arbitrary CPTP channels this is a challenging task. Instead

we use the normalized Choi representation J(E) of a quantum channel E [7] (see

Sec. 2.1.2) to derive a lower bound of "1,

"1/d
2 = kJ(ΛT )� S(J(UG)⌦ J(Ẽ))Sk2HS

� tr{J2(ΛT )(1� S(J(UG)⌦ 12)S)} ⌘ "2, (5.4.2)

where the swap operator S between systems 1 and 2 is introduced because in general

for two CPTP maps Φ1 and Φ2, J(Φ1 ⌦ Φ2) = S(J(Φ1) ⌦ J(Φ2))S. For details

of the derivation of the lower bound (5.4.2) we refer to App. B.3. Clearly the

minimization over Ẽ on the left-hand side of (5.4.2) is now lower bounded by "2,

which is independent of Ẽ and is zero if and only if the goal unitary operation on

system 1 is reached. Thus the lower bound becomes tighter and tighter when ΛT

factorizes into the goal unitary UG on system 1 and some arbitrary Ẽ on system 2.

The strategy to study the convergence of the map to the goal operation as � is

increased can now be summarized as follows. We implement "2 and its gradient with
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Figure 5.2.: Numerical gate optimization for the two-qubit model in Sec. 5.3.1 with
the amplitude damping (5.3.2) for different values of �. The gate error

between the reduced dynamics E
(1)
T and the Hadamard gate on qubit 1

obtained from the numerical minimizations of "1 (green triangles) and
"2 (blue points) for different values of � with gate time T = 1. Qubit 2
is initially prepared in the totally mixed state, and for "1, Ẽ is chosen
to be the superprojection P that brings qubit 2 into the ground state
|0i. To reduce the effect of local minima in the minimum value 100
randomly chosen initial pulses are taken.

respect to the control fields on QuTip, and minimize "1 and "2 for different values of

�. For "1, Ẽ is chosen to be the superprojection P in (5.3.3) that brings qubit 2 into

the ground state |0i. On the basis of the minimizations of "1 and "2 we evaluated

in Fig. 5.2 the gate error kE (1)
T � UGk2HS by specifying the initial state of qubit 2 in

the totally mixed state and tracing out the auxiliary degrees of freedom. The target

unitary operation UG on qubit 1 was chosen to be the Hadamard gate. We observe

that despite the enhanced freedom in "2 the curves based on the minimizations of "1

and "2 are similar to each other. For noise strengths above � ⇡ 10T�1 gate errors

below 10�1 can be reached, corresponding to the upper bound 0.2 for the diamond

norm. It demonstrates that with intermediate noise strengths reasonable fidelity

can be reached.
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5.5 Conclusions

We showed that every dissipative process exhibiting a DFS can enlarge the set of

unitary operations that can be implemented by means of classical control fields. We

provided three examples for which a universal set of gates can be implemented over

a DFS whereas over the original Hilbert space only “simple” operations are possible.

In particular we showed that a realistic noise model can map a commutative classical

system into a universal quantum one. Numerical gate optimization was performed to

study how strong the dissipative process needs to be to implement some unitary gate

over the DFS with high precision. As a result a subsystem fidelity for open quantum

systems was developed. Our results pave the way to experimental feasibility studies

in noisy systems.
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6 Hamiltonian and Lindbladian

purification

In preparation:

C. Arenz, D. Burgarth, P. Facchi, V. Giovannetti, H. Nakazato, S. Pascazio

and K. Yuasa (2016).

The results of the last chapter were based on the observation that the projected

counterparts PH1P and PH1P of two commuting Hamiltonians H1 and H2 do not

necessarily commute anymore. The hermitian projection P can either be enforced

by a frequent projective measurement or by a strong dissipative process exhibiting

a decoherence free subspace. Both processes can increase the dimension of the dy-

namical Lie algebra such that we are able to implement new unitary operations. The

crucial point here is that we started with two commuting Hamiltonians and thus

the dynamical Lie algebra is two dimensional, allowing us only to implement simple

operations through controlling H1 and H2. We could also consider the other way

around. Given two Hamiltonians, can we make them commutative? Or in general,

given a set of density operators, a set of Hamiltonians and a set of Lindblad opera-

tors, can we make these objects commutative through a general framework? From

now on we call this procedure purification, because similarly to the purification of

mixed quantum states [100] we will add an auxiliary system to make the considered

object commutative on an extended space. We note here that the term purification

regarding Lindbladians was already used by Lindblad [15] to indicate that a Lind-

bladian consists only of one Lindblad operator L. Here we use the term in a slightly
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different way, though it has the same meaning when only the evolution of observables

acting only on the original system is considered, since then, within our purification

scheme, the Lindbladian can be rewritten with a single L. The second question that

goes hand in hand with the purification scheme is the question of how we can come

back? How do we get back the old dynamics of the original system on which, for

instance, the two Hamiltonians do not commute anymore? We have already seen

in the last chapter that, based on the Zeno effect, the old Hamiltonian dynamics

on the original system is recovered if we frequently observe the auxiliary system.

Before we establish a similar framework for Lindblad operators we will review the

main results from [190], in which Hamiltonian purification was discussed in detail.

This motivated us to develop another scheme for Lindbladians, which is presented

afterwards and which is also applicable for Hamiltonians and density operators. At

the end of this chapter we discuss some applications regarding accessibility of an

open quantum system that is described by a Lindblad master equation.

To begin with we will first properly define Hamiltonian purification [190]. Let

S = {H1, . . . , Hn} be a set of Hamiltonians acting on a Hilbert space Hd of di-

mension d and S̃ = {H̃1, . . . , H̃n} be a set Hamiltonians acting on an extended

Hilbert space HdE , which includes Hd as a proper subspace. We call S̃ a purifying

set of S if all elements of S̃ commute with each other, i.e.

[H̃i, H̃j] = 0, 8 i, j = 1, . . . , n. (6.0.1)

They are related to those from S through

Hj = PH̃jP, 8 j = 1, . . . , n, (6.0.2)

with P being the orthogonal projection onto Hd. For the sake of simplicity we

consider now two Hamiltonians H1 and H2. Then proposition 1 in [190] states that

a purifying set can be constructed on HdE = Hd ⌦ HdA with an auxiliary Hilbert

space HdA given by the space of a single qubit. The purification reads

H̃1 = H1 ⌦ 12 +H2 ⌦ �x,

H̃2 = H2 ⌦ 12 +H1 ⌦ �x (6.0.3)
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where the orthogonal projection that leads to the old Hamiltonians is given by

P = 1d ⌦
12 + �z

2
. (6.0.4)

For a generic set S that consist of n linearly independent Hamiltonians it can be

shown [190] that there exist always a purifying set S̃, where the minimal dimension

d
(min)
E of the extended Hilbert space is bounded above by d

(min)
E  nd.

The question arises if a purifying set can be constructed for Lindblad operators in

a similar way. In the following we provide a very easy purification scheme that

allows us to explicitly construct a purifying set for an arbitrary number of Lindblad

operators.

6.1 Lindbladian purification

We consider a set of n Lindbladians S = {D1, . . . ,Dn} of the form

Di(·) = 2Li(·)L
†
i � (L†

iLi(·) + (·)L†
iLi), (6.1.1)

that is we consider only the dissipative part where we refer to Li as the Lindblad

operator acting on a Hilbert space Hd. First of all note that two Lindbladians D1

and D2 are commutative if their corresponding Lindblad operators commute, i.e.

[L1, L2] = 0. If we denote by D̃j the elements of the purifying set S̃, then we have

the following:

a purifying set can always be constructed using an auxiliary Hilbert space HdA of

dimension dA = n through the construction

L̃i = Li ⌦ |iihi|, i = 1, . . . , n, (6.1.2)

with {|ii}ni=1 being an orthonormal basis of HdA . Obviously through such a con-

struction all purified Lindblad operators L̃i commute with each other, and as such

we have found a general way to construct a purifying set of Lindbladians. Note that

any coherent term Ki(·) = �i[Hi, ·] can be purified in the same way by purifying

the Hamiltonian according to H̃i = Hi ⌦ |iihi|.
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For the Hamiltonian purification scheme (6.0.3) the old dynamics can be obtained

through frequently measuring the auxiliary system in a projective way. We find in

the Zeno limit

lim
n!1

⇣

Pe�i(H̃1+H̃2)t/n)P
⌘n

= e�i(H1+H2)tP, (6.1.3)

that the dynamics is governed by the old Hamiltonians H1 and H2, where P is the

hermitian projection given by (6.0.4). For semigroup dynamics generated by D we

can alternate the action of Λt/n = exp(Dt/n) and the action of a CPTP map P ,

which is assumed to be a super projection P2 = P . Analogously we find

Φt ⌘ lim
n!1

(PΛt/nP)n = eJ tP , (6.1.4)

where J = PDP , remembering from the previous chapter that such a dynamics can

be obtained through a strong dissipative process, with P being the super projection

onto the steady state manifold. If we define P(⇢0) ⌘ ⇢(0) we see that (6.1.4) solves

the master equation

⇢̇(t) = J (⇢(t)), (6.1.5)

where it is worth mentioning that J is in general not in Lindblad form. However,

the solution to the above master equation defines a proper semigroup as long as we

consider initial states that belong to the image of P . Having established the Zeno

limit for semigroup dynamics (6.1.4) we now want to come back to the question of

how we get from the purified version of the Lindbladians D̃i back the old dynamics

generated by Di. Instead of measuring the auxiliary system in a projective way we

consider a non-selective measurement [187], described by the CPTP map

P(·) =
X

n

Pn(·)Pn, (6.1.6)

where {Pn}n is a set of complete and orthogonal hermitian projectors acting only

non-trivially on the auxiliary system. A non-selective measurement has the physical

meaning that we do not select the outcomes of the measurement. If we frequently
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measure the auxiliary system in a non-selective way described by P from above, the

purified version of the Lindbladian in the Zeno limit (6.1.4) becomes

Ji(·) =
X

n,m

(2L̂i,m,n(·)L̂
†
i,m,n � (L̂†

i,m,nL̂i,m,n(·)Pn + Pn(·)L̂
†
i,m,nL̂i,m,n)), (6.1.7)

where L̂i,m,n = PmL̃iPn with L̃i being the purified Lindblad operator given by (6.1.2).

Now we take Pn = 1 ⌦ |�nih�n| with {|�ni}dAn=1 as an orthonormal basis for the

auxiliary Hilbert space. Then it can be shown (for further details see App. C.1)

that, if we trace over the auxiliary Hilbert space the solution to the reduced master

equation ⇢̇S(t) = trA{Ji(⇢(t))} is given by

⇢S(t) =

dA
X

n=1

eLi,n(h�n|⇢(0)|�ni), (6.1.8)

with ⇢(0) being the initial state of the composite system and

Li,n(·) = |h�n|ii|2(2Li(·)L
†
i � (L†

iLi(·) + (·)L†
iLi)). (6.1.9)

Note that h�n|⇢(0)|�ni =
P

k,n;k0,n ⇢k,n;k0 ,n|kihk0|, where {|ki}dk=1 is an orthonormal

basis of the original Hilbert space, is not necessarily a density operator. Now, if we

assume that the basis in which the non-selective measurement is performed and the

basis that appears in the purification scheme (6.1.2) are two mutually unbiased bases

[195], we have that |h�n|ii|2 = 1
dA

for all n, i 2 {1, . . . , dA} such that the solution

(6.1.8) becomes

⇢S(t) = e
Di

t
dA ⇢S(0). (6.1.10)

Therefore, up to a modified decay rate, we obtain the original dynamics that is

generated by the unpurified Lindbladian Di. Note that if we consider a purification

of two Lindbladians with L̃1 = L1 ⌦ |1ih1| and L̃2 = L2 ⌦ |2ih2|, the basis in which

the non-selective measurement is done is just given by the symmetric and anti-

symmetric superpositions |±i = 1p
2
(|1i± |2i). To summarize, we saw that by using

a frequent non-selective measurement of the auxiliary system we can turn a set of

commuting Lindbladians into a set of non-commuting Lindbladians acting on the
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original system.

Before we discuss some application of this observation in the next section, we first

want to analyze the long time behavior of the reduced dynamics that is obtained from

an overall dynamics generated by a purified Lindbladian D̃. We consider L̃ = L⌦A

with some hermitian A 2 C
dA⇥dA . If we denote by {|�ii}dAi=1 the eigenbasis of A with

eigenvalues �i respectively and if assume that the original system and the auxiliary

system are initially uncorrelated, the density operator of the system ⇢S(t) evolves

according to

⇢S(t) =

dA
X

j=1

pje
Ljt⇢S(0) ⌘ Et(⇢S(0)), (6.1.11)

where pj = h�j|⇢A(0)|�ji, ⇢A(0) is the initial state of the auxiliary system and

Lj(·) = �2j(2L(·)L� (L†L(·) + (·)L†L)). (6.1.12)

We are interested in the long time behavior of the map Et where we assume that the

original Lindbladian D has a unique fixed point, i.e. limt!1 eDt⇢S(0) = ⇢ss for all

⇢S(0) 2 S(Hd). If A has full support in the auxiliary Hilbert space, supp(A) = dA,

we find

lim
t!1

Et(⇢S(0)) =

dA
X

j=1

pj lim
t!1

eLjt⇢S(0),

= ⇢ss, (6.1.13)

that the asymptotic behavior of the reduced dynamics does not change. On the

contrary, if A does not have full support, supp(A) = k < dA, the asymptotic behavior

reads

lim
t!1

Et(⇢S(0)) =

 

k
X

j=1

pj

!

⇢ss +

 

1�
k
X

j=1

pj

!

⇢S(0). (6.1.14)

The asymptotic state is given by a convex combination of the initial state of the

original system and the fixed point of the unpurified Lindbladian. If we now fre-

quently measure the auxiliary system in a non-selective way, we change the long
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time behavior of the original system in such a way that it always converges through

⇢S(t) = e�Dt⇢S(0), (6.1.15)

to the unique fixed point ⇢ss, where the modified decay rate is given by � =

1
dA

Pk
j=1 �

2
j . In other words, if the unique fixed point of the original system is given

by the ground state, we can “cool” the original system by frequently measuring the

auxiliary system in a non-selective way. In terms of quantum computing, if the

original Lindbladian D is given by the Lindbladian that can be used for universal

quantum computation [4], we can turn the original system into a system that is

capable of universal quantum computational tasks.

6.2 Turning a non-accessible open system

into an accessible one

Now we want to come back to the question of what we can gain by measuring the

auxiliary system in a non-selective way in order to make the Lindbladians acting on

the reduced system non-commutative. We consider the controlled master equation

⇢̇(t) = �iadH(t)(⇢(t)) +D(⇢(t)), (6.2.1)

where we use the notation adH(t)(·) = [H(t), ·] withH(t), given by (2.2.3), containing

the drift and m control Hamiltonians. For the sake of simplicity we assume that

the dissipative part generates unital dynamics, such that in the vector of coherence

representation of the master equation (cf. Sec. 2.1.3) the system (6.2.1) is equivalent

to the bilinear control system

v̇ =

 

A0 +
m
X

k=1

uk(t)Ak

!

v, (6.2.2)

for the vector of coherence v = (v1, . . . , vd)
T where d = N2 � 1, with N being the

dimension of the quantum system. The drift term A0
⇠= �iadH0 +D and the control

part Ak
⇠= �iadHk

are isomorphic to the old representation (6.2.1), where Ak 2 so(d)
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and A0 2 gl(d,R) such that the solutions to (6.2.1) are given by transformation

x(t) 2 Gl(d,R).

Instead of studying the control system (6.2.2) we study the control system

ẋ(t) =

 

A0 +
m
X

k=1

uk(t)Ak

!

x(t), x(0) = 1, (6.2.3)

on the Lie group Gl(d,R). Remember from Sec. 2.2.1 that the reachable set R(1)

consists of all transformations that can be reached from the identity with the given

controls. Note that the Lie Group Gl(d,R) is not connected nor compact such that

we can not apply the Lie rank criterion to analyze which transformations can be im-

plemented with the controls. Moreover we pointed out in Sec. 2.3 that the Lindblad

master equation is never fully controllable with unitary controls. Hence we decided

to study in the following the accessibility of the control system (6.2.3), that is we in-

vestigate the case in which the reachable set has a non-empty interior in Gl(d,R). It

is known [11, 196] that the system (6.2.3) is accessible if its corresponding dynamical

Lie algebra

L = Lie(A0, . . . , Am), (6.2.4)

is given by L = gl(d,R). In particular we want to show in the following, on a specific

example, that a frequent non-selective measurement can turn a non-accessible open

system into an accessible one. We consider two qubits with a drift part L̃(·) =

�iadH̃0
(·) + D̃(·) where

H̃0 = �z ⌦ |1ih1|, L̃ =
�

2
�z ⌦ |1ih1|, (6.2.5)

and a control Hamiltonian H̃1 = �y ⌦ |2ih2| such that [L̃, adH̃1
] = 0. Hence the

Lie algebra (6.2.4) is two dimensional and the system is not accessible. Now, if

we frequently measure the second qubit in the basis |±i = 1p
2
(|1i ± |2i) in a non-

selective way, we find with (6.1.8) and (6.1.10) that the reduced dynamics of qubit

one is governed by

H0 = �z, L =
�

2
�z, H1 = �y, (6.2.6)
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which leads in the vector of coherence representation to

A0 =

0

B

B

B

@

�� �1 0

1 �� 0

0 0 0

1

C

C

C

A

, A1 =

0

B

B

B

@

0 0 1

0 0 0

�1 0 0

1

C

C

C

A

. (6.2.7)

One can easily check that A0 and A1 generate the full algebra, i.e Lie(A0, A1) =

gl(3,R), such that the reduced system is accessible. A frequent non-selective mea-

surement has turned a non-accessible system into an accessible one, noting that the

dimension of the Lie algebra (6.2.4) has increased from 2 to 9.

From Kuranishi (see e.g. [11]) we know that if g is a semi simple Lie algebra, there

exists two elements A,B 2 g generating the full algebra Lie(A,B) = g. Moreover,

the set of all (A,B) 2 sl(d,R) ⇥ sl(d,R) such that A,B generates the full algebra

is open and dense in sl(d,R) ⇥ sl(d,R). Hence almost all bilinear control systems

with a single control are accessible, which we refer to as generically accessible. Mo-

tivated by this result the question arises whether the controlled master equation

is generically accessible. The main difficulty in answering this question is the fact

that, due to the constrains of the Lindblad generator, the set of all possible drift

terms is a restricted subset Lind of gl(d,R), while the controls are restricted to

be in l ✓ so(d). However, one of the key results in [57] states that the set of all

pairs (A0, A1) 2 Lind ⇥ l, such that Lie(A0, A1) = gl(d,R), is open and dense in

Lind ⇥ l. Therefore the controlled master equation is generically accessible with a

single unitary control [57]. Clearly, finding a pair that generates the full algebra for

arbitrary system sizes is not trivial and still a work in progress. Furthermore note

that the results for the unital case can be generalized to arbitrary Lindbladians by

introducing the semi direct product [57].

6.3 Summary and conclusion

We extended the work that considers Hamiltonian purification [190] by establishing

a new purification scheme for Lindbladians which is also applicable for Hamiltonian
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dynamics. Every set of m Lindblad generators can be made commutative on an m

dimensional auxiliary space by extending the Lindblad operators through hermetian

projectors that form an orthonormal basis in the auxiliary space. Using the quantum

Zeno effect the old, non-commutative dynamics on the original system can be ob-

tained by frequently measuring the auxiliary system in a non-selective way. We saw

that, without measuring the auxiliary system, the asymptotic state of the reduced

dynamics of the original system is given by a convex combination of the asymptotic

state of the unpurified Lindbladian and the initial state of the original system. If

the original Lindbladian exhibits a unique fixed point, the reduced dynamics al-

ways converges to it when we perform a frequent non-selective measurement on the

auxiliary system. The ability to select a unique fixed point through non-selective

measurements might find some applications in reservoir engineering schemes and

dissipative quantum computing. Moreover we saw that we can turn a non-accessible

open quantum system into an accessible one by performing frequent non-selective

measurements. We considered two qubits which are subject to a dynamics generated

by a Lindbladian and a control Hamiltonian that commute with each other. The

corresponding Lie algebra is two dimensional and hence the system is not accessible.

If we now frequently measure the second qubit, qubit one becomes accessible.

Clearly, the presented purification scheme also works for observables and density

operators, although, except for the partial trace, an operational way that allows us

to obtain the original observable or state is not known to us. Nevertheless, we can

conclude that every quantum object can be made commutative on a larger space.

Since non-commutativity is a unique feature of quantum mechanics, and in fact it

was argued in [197] that the only difference between quantum and classical is com-

mutativity, it is tempting to say that every quantum system can be made classical

on a larger space.
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7 Summary and outlook

Our investigations into control of an open quantum system brought us from a Hamil-

tonian approach of formulating the control of an open system to the study of the

coherently controlled Lindblad master equation. Unsurprisingly, the overall message

of the thesis is that the two approaches can lead to extremely different predictions of

the open system dynamics which is subject to coherent control. Clearly, we cannot

change the non-unitary character of the Lindblad master equation by applying uni-

tary controls. Dynamical decoupling demonstrates the difference between the two

approaches in a dramatic way. For finite dimensional quantum systems decoherence

can always be suppressed through dynamical decoupling within the Hamiltonian ap-

proach, whereas in the description of decoherence through a Linbdladian dynamical

decoupling will never succeed.

Based on a system-environment Hamiltonian, we began in Chap. 3 with character-

izing the unitary operations that can be implemented on a single spin interacting

through a Heisenberg interaction with a spin environment. We showed that in-

dependent of the number of environmental spins the system spin is always fully

controllable by acting with a single control field on the system spin. Hence decoher-

ence that is induced by the spin environment can be circumvented by the possibility

of implementing any unitary transformation on the system spin in a noiseless man-

ner. Remarkably, if the couplings to each environmental spin are different from each

other, the whole system becomes fully controllable by acting on the system spin

alone. In this respect we can even control the environment through the system such

that the total system becomes universal for quantum information tasks. Based on
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the GRAPE algorithm we did extensive numerical studies in order to find the mini-

mum time needed to implement a target gate on the system spin with high fidelity.

Unfortunately, we found that in the case where the total system is fully controllable,

the minimum time increases exponentially with the number of environmental spins.

Instead of implementing a specific gate through the controls, we studied in Chap. 4

the suppression of decoherence for a generic system-environment interaction through

frequently applying instantaneous control pulses, known as dynamical decoupling.

We first developed bounds, characterizing how fast we have to apply dynamical de-

coupling, in order to effectively suppress decoherence. Afterwards we proved that

non-unitary dynamics described by a Lindblad operator can never be suppressed

through unitary decoupling operations, whereas every system-environment interac-

tion, even if it is described by some unbounded bath operator, can. This observation

led to a new method to distinguish intrinsic non-unitary dynamics, arising for ex-

ample from collapse models, from decoherence. Taking dynamical decoupling as

an example of controlling an open quantum system, the obtained results imply a

dramatic difference in describing the coherent control of an open quantum system

through the two afore mentioned approaches. Within the master equation approach

decoherence can never be suppressed, whereas on the Hamiltonian level this is always

possible. Up to this point dynamical decoupling was studied for finite dimensional

quantum system because a general framework for infinite dimensional systems is

missing in the literature. We first showed that not every infinite dimensional system

can be decoupled from the environment and hence protected from decoherence using

dynamical decoupling. Afterwards we developed a general framework for Hamilto-

nians that are quadratic in the quadrature operators, allowing us to represent the

dynamics by a symplectic transformation. We showed that, independent of envi-

ronment, or the system size, decoherence that is induced by a quadratic interaction

can always be suppressed using two operations applied on the system. Moreover, in

contrast to the finite dimensional case, these operations do not disturb the system by

leaving the system Hamiltonian invariant. Afterwards we studied the performance

of random dynamical decoupling for a harmonic oscillator that is subject to decoher-
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ence described through a common system-environment model. We found that the

efficiency to suppress decoherence scales linearly with the number of environmental

oscillators coupled to the system.

In Chap. 5 we moved on to investigate the control properties of the coherently con-

trolled Lindblad master equation. Though the Lindblad master equation is never

fully controllable with unitary controls, we saw that if the Lindbladian exhibits a de-

coherence free subspace, a strong noise process can turn parts of a quantum system

into a system universal for quantum information tasks. Based on the Zeno effect

the strong noise process forces the dynamics, accompanied by controls, to evolve in

a protected subspace in which more complex operations can be implemented. Per-

forming numerical gate optimization we investigated how strong the noise process

has to be in order to implement high fidelity quantum operations that could not

be implemented without the noise process. As a byproduct a new fidelity function

was developed that might find applications in other open system optimization prob-

lems. Finally in Chap. 6 we developed and discussed a scheme that allows us to

make Hamiltonians and Lindbladians commutative on an extended Hilbert space.

Through a frequent non-selective measurement on the auxiliary system we can re-

cover the old, possibly non-commutative, dynamics of the original system. This

effect has two implications. Using a non-selective measurement we can engineer the

fixed points of the reduced dynamics and we can turn a non-accessible open quan-

tum system into an accessible one.

So what have we learned? To summarize we follow the sailing boat analogy from the

introduction. The sail serves here as our control and currents underneath the boat

represent non-unitary dynamics. In the presence of the wind it is possible to fully

control the boat, but it is hopeless to fight against (intrinsic) currents that carry

the boat away. Even if we rotate the sail rapidly, we will never stop the boat, since

we can only suppress the wind through such a procedure. Nevertheless, sometimes

such currents are beneficial, driving the boat into some direction so that together

with controlling the sail new directions are explored. However, in order to steer the

boat in the presence of noise, we first aim for an appropriate description of its tra-
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jectory subject to the controls. In this respect the description of controlling an open

quantum system needs further investigations. Besides the points already raised at

the end or within each chapter, the results of the thesis suggest several directions

for future research.

For example, a detailed analyzes of where the master equation description fails,

how a controlled system-environment Hamiltonian is related to the reduced dynam-

ics, and in particular a characterization of the CPTP maps arising from controlled

Hamiltonians is needed. The derivation of a master equation based on a controlled

system-environment Hamiltonian using Floquet theory [198] and recently obtained

error estimates for truncating the environmental Hilbert space [199] could provide

deeper insights. Regarding dynamical decoupling, are the mathematical subtleties,

for instance concerning domain questions of unbounded operators, technical issues

or are they relevant for the physics, possibly yielding new effects that can be ob-

served? What are the relevant timescales to effectively decouple a quantum system

from an infinite dimensional environment? Here the development of bounds that

capture the dependence on the initial state of the environment would be highly de-

sirable. Furthermore, the combination of open loop control with closed loop control

schemes, such as feedback, is less investigated in the literature. Can we gain some-

thing from a noisy dynamics using feedback and open loop control? For example,

can a feedback loop help to project onto a decoherence free subspace, even if the

noise is not sufficiently strong, so that together with properly shaping the control

fields universal control can be achieved?

To summarize further, the development of effective descriptions for the control of

complex, possibly noisy, quantum systems with many degrees of freedom, in order to

steer its dynamic towards desired outcomes, should be the subject of future studies.

Especially the use of noise through control and the control of systems for which not

all parameters are known, or no complete model exist, should be explored more.

Estimation [200, 201], and adaptive control schemes [202], may prove to be valuable

tools for developing a deeper understanding of such systems, and allowing us to move

towards real life applications that make use of quantum mechanical phenomena.
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A Supplements chapter 3

A.1 Lie algebra for equal couplings

First we want to show that i�x 2 L where we define A1 ⌘ iH0 and A2 ⌘ iHc.

Building the double commutator [A2, [A1, A2]] we get up to a constant the element

A3 = i(�y + �+J� + ��J+), (A.1.1)

which leads with A1 � A3 to

A4 = i�zJz. (A.1.2)

After calculating [[A1, A2], A3] and using the properties of J� and , J+ we find up to

a constant the element

A5 = �z(J� � J+)� 2i�z( ~J
2 � J2

z � Jz) + i���+Jz. (A.1.3)

The last two terms of A5 commute with A4 and therefore [A4, A5] yields, up to a

constant

A6 = iJx. (A.1.4)

By commuting A6 with [A1, A2] we find i�xJz and by commuting with A2, A4, A6

we obtain the following elements

i�z, i�xJz, i�yJz, i�zJz,

iJx, i�xJy, i�yJy, i�zJy, (A.1.5)
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which can be used to isolate

A7 = i(�y + �xJx), (A.1.6)

from A1. By commuting A7 with i�xJz we obtain iJy and the commutator [i�xJz, iJy]

yields up to a constant i�xJx which can be used, together with A7, to reach i�y. We

then also have i�x by using A2. In fact we showed that

i�↵, iJ�, i�↵J� 2 L, 8↵, � = x, y, z. (A.1.7)

Due to the fact that the ladder operators �± and J± define another representation

it is easy to verify that i(�↵J� + h.c.) 2 L holds also for ↵, � = ±, z.

With the elements we found so far we can find other elements by building their

commutators and creating real linear combinations. Next we show that

i�↵(J
l
+J

k
�J

s
z + h.c.) 2 L, 8l, k, s 2 N, ↵ = x, y, z. (A.1.8)

Essentially, this characterizes the dynamical Lie algebra up to normal ordering of

operators. We will proceed by induction and define

A(K) = span{i�↵(J
l
+J

k
�J

s
z + h.c.) | l + k + s  K, ↵ = x, y, z}, (A.1.9)

where hereafter Greek indices describe some x, y, z for the Pauli spin operators and

some ±, z for the angular momentum operators.

The initial step is to prove that A(1) ⇢ L. This is trivial because we already have

proven with (A.1.7) that {i�↵(J� + h.c.)} is a subset of L. We can therefore go to

the inductive step and show that if A(K) ⇢ L then A(K + 1) ⇢ L.

Take any a = i�↵(J
l
+J

k
�J

s
z + h.c.) 2 A(K + 1) with l + k + s = K + 1 and calculate

for s > 0 the commutator

[i�↵(J
l
+J

k
�J

s�1
z + h.c.), i��Jz] =

���↵(JzJ
l
+J

k
�J

s�1
z + Js

zJ
k
+J

l
�)� �↵��(J

l
+J

k
�J

s
z + Js�1

z Jk
+J

l
�Jz), (A.1.10)

keeping in mind that if i�↵(J
l
+J

k
�J

s�1
z + h.c.) 2 A(K) then the above commutator

is by construction an element of L. Due to the anticommutation rules of the Pauli
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spin operators, we can always choose a �� so to obtain from Eq. (A.1.10) up to a

constant the following

[i�↵(J
l
+J

k
�J

s�1
z + h.c.), i��Jz] = a+O, (A.1.11)

with O 2 A(K). The cases l > 0 and k > 0 can be treated analogously and therefore

we showed that a 2 L, 8l, k, s 2 N.

A.2 Controllability proofs

A.2.1 Controllability of the central spin

In this section we will prove controllability of the central spin by using the deter-

minant of a Vandermonde matrix along the lines of [91]. We want to prove that

su(2) ⇢ L, 8N 2 N for almost all values of the couplings constants Ak. By su(2)

we denote the special unitary algebra acting on the central spin. To be as general

as possible we rewrite the system Hamiltonian (3.1.1) as

H0 = �y +
Ñ
X

n=1

hn(�xJ
(n)
x + �yJ

(n)
y + �zJ

(n)
z ), (A.2.1)

where each set n of bath spins with identical Ak’s are combined as collective particles,

coupled to the central system with strength hn and with corresponding angular

momentum operators J
(n)
↵ with ↵ = x, y, z. We assume that |hn| 6= |hm| and |hn �

hm| 6= |hi � hj| with (n,m) 6= (i, j) 6= (j, i). In general these assumptions are

only instrumental to the analytical proof and have neither physical meaning nor

are necessary in practice as witnessed by numerical calculations of the dimension

of the dynamical Lie algebra. An exception occurs for the full controllability of the

whole spin star. In this instance, which will be discussed later in A.2.2, both the

analytical proof and the numerical calculations show that the assumption |hn| 6= |hm|

is necessary.

In order to prove full controllability of the central spin, we need to prove that the

operator i�x acting on the central spin belongs to the dynamical Lie algebra L. To
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this end we begin by commuting iH0 with the control Hamiltonian (3.1.4) and get

by real linear combinations the elements

B1 = i(�y +
Ñ
X

n=1

hn(�xJ
(n)
x + �yJ

(n)
y )), (A.2.2)

B2 = i�z

Ñ
X

n=1

hnJ
(n)
z , (A.2.3)

B3 = i(�x +
Ñ
X

n=1

hn(�xJ
(n)
y � �yJ

(n)
x )). (A.2.4)

We can now observe that proving i�x 2 L amounts to prove that iJ
(i)
x 2 L. Indeed

i�x is obtained by performing commutators of iJ
(i)
x and B1, B2, B3 and real linear

combinations of the resulting elements. The double commutator [[B1, B3], B2] yields

up to a constant the element

B4 = i(
Ñ
X

n=1

h2
nJ

(n)
x

+
Ñ
X

n>m=1

(hn � hm)hnhm(J
(n)
x J (m)

y � J (m)
x J (n)

y )). (A.2.5)

At this point the key observation is that up to a constant

Ñ
X

n>m=1

cn,m[[(J
(n)
x J (m)

y � J (m)
x J (n)

y ), B2], B2]

=
Ñ
X

n>m=1

(hn � hm)
2cn,m(J

(n)
x J (m)

y � J (m)
x J (n)

y ), (A.2.6)

and

Ñ
X

n=1

dn[[J
(n)
x , B2], B2] =

Ñ
X

n=1

h2
ndnJ

(n)
x , (A.2.7)

with cn,m and dn some coefficients. Using the operator B4 and Eqs. (A.2.6) and

(A.2.7), we can create operators of the form

B(s) = i(
Ñ
X

n=1

h2(s+1)
n J (n)

x

+
Ñ
X

n>m=1

(hn � hm)
2s+1hnhm(J

(n)
x J (m)

y � J (m)
x J (n)

y )), (A.2.8)
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with B(0) = B4, [[B
(s), B2], B2] = B(s+1) and s = 0, . . . , Ñ � 1.

We now need to show that the operators of the kind X(s) ⌘
Ñ
P

n=1

h
2(s+1)
n J

(n)
x contained

in each B(s), Eq. (A.2.8), are all linearly independent. In fact, if all X(s) are linearly

independent then the determinant of the matrix corresponding to the linear set of

equations
0

B

B

B

B

B

B

@

h2
1 h2

2 · · · h2
Ñ

h4
1 h4

2 · · · h4
Ñ

...
...

. . .
...

h2Ñ
1 h2Ñ

2 · · · h2Ñ
Ñ

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

J
(1)
x

J
(2)
x

...

J
(Ñ)
x

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

X(0)

X(1)

...

X(Ñ�1)

1

C

C

C

C

C

C

A

(A.2.9)

is non-vanishing. We now define h̃n = h2
n, divide the columns of the matrix (A.2.9)

by h̃n and then transpose. In this way we obtain a Vandermonde matrix whose

determinant
Q

1i<jÑ

(h̃j � h̃i) is non-vanishing if |hj| 6= |hi|, 8i 6= j as assumed in

the beginning.

By real linear combination of the operators B(s) the operator

B̃i = i(J (i)
x +

Ñ
X

n>m=1

⇠(i)n,m(J
(n)
x J (m)

y � J (m)
x J (n)

y )), (A.2.10)

can be selected. If all ⇠
(i)
n,m in Eq. (A.2.10) are zero then we immediately obtain the

operator iJ
(i)
x as an element of L. If this is not the case, using Eqs. (A.2.6) and

(A.2.7) we can again construct s operators of the form

�(s) = i(h2s
i J (i)

x

+
Ñ
X

n>m=1

(hn � hm)
2s⇠(i)n,m(J

(n)
x J (m)

y � J (m)
x J (n)

y )) (A.2.11)

with s = 1, . . . , (Ñ2 � Ñ)/2 assuming that all coefficients ⇠
(i)
n,m are different from

zero. As before we can associate them to a Vandermonde matrix with non-vanishing

determinant provided that |hn � hm| 6= |hi � hj|, 8(n,m) 6= (i, j) 6= (j, i). By real

linear combinations of the �(s)’s we can then select the operator

�̃n,m = i(�J (i)
x + !n,m(J

(n)
x J (m)

y � J (m)
x J (n)

y )). (A.2.12)
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If the coefficient � is zero we can obtain iJ
(i)
x by real linear combinations of

!n,m(J
(n)
x J

(m)
y �J

(m)
x J

(n)
y ) and the Bi’s (A.2.10). Instead, if � 6= 0, using Eqs. (A.2.6)

and (A.2.7), we can obtain from �̃n,m a second linearly independent operator with

the same structure and then, by real linear combination of the two operators, the

operator iJ
(i)
x . Since iJ

(i)
x 2 L we have i�x ⌦ 1bath 2 L and hence the central spin is

fully controllable.

A.2.2 Full controllability

By commuting iJ
(i)
x with B1 and B2 and using the full controllability of the central

spins we obtain by real linear combinations iJ
(i)
y 2 L and hence iJ

(i)
z 2 L. This

implies that each collective particle contained in Eq. (A.2.1) is fully controllable.

If all system-bath coupling constants are different from each other this implies full

controllability of each bath spin and due to the Heisenberg interaction with the

central spin the Lie algebra is given by su(2N+1) [92] meaning that the whole system

is fully controllable. We emphasize that controllability of the whole spin star can only

be achieved if all coupling constants are different from each other, because in this

case the existence of symmetric manifolds is prevented. The numerical calculation

of the dimension of the dynamical Lie algebra shows that even the absolute value of

the coupling constants has to be different from each other.
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B.1 Characterization of LDFS for the qubit chain

model

We prove the following lemma: the Lie algebra LDFS generated by the two projected

Hamiltonians P(H0) and P(H1) in (5.3.25) includes all the rotationally symmetric

two- and three-body operators, Hmn = σ
(m) ·σ(n) and Hijk = σ

(i) ·(σ(j)⇥σ
(k)), m <

n; i < j < k; m,n, i, j, k = 1, . . . , N defined in (5.3.27), for any number of qubits

N � 3.

Proof. Let us introduce

H̃0 = P(H0), H̃1 = P(H1). (B.1.1)

The first commutator reads

i[H̃0, H̃1] = 2H123. (B.1.2)

Then, by commuting H̃1 = H12 with the newly generated H123 twice, we have

i[H12, H123] = 4(H13 �H23), (B.1.3a)

i[i[H12, H123], H123] = 16(H13 +H23 � 2H12), (B.1.3b)

from which we gain H13 and H23. All the rotationally symmetric operators up to

the third qubit (three two-body operators H12, H23, H13 and a three-body operator

H123) are in our hands.
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For N � 4, we proceed by induction. Suppose that all the rotationally symmetric

two- and three-body operators for the first n qubits are at our disposal. It is actually

the case for n = 3, as we saw above. Then, we are able to extend one qubit further,

generating all the two- and three-body operators involving the (n + 1)th qubit by

the following procedure.

1. Commute H(n�1)n with H̃0 to extend to the (n+ 1)th qubit,

i[H(n�1)n, H̃0] = �2(H(n�2)(n�1)n �H(n�1)n(n+1)). (B.1.4)

We acquire H(n�1)n(n+1).

2. By commuting H(n�1)n with the newly generated H(n�1)n(n+1) twice, we have

i[H(n�1)n, H(n�1)n(n+1)] = 4(H(n�1)(n+1) �Hn(n+1)), (B.1.5)

i[i[H(n�1)n, H(n�1)n(n+1)], H(n�1)n(n+1)] = 16(H(n�1)(n+1) +Hn(n+1) � 2H(n�1)n),

(B.1.6)

from which we gain H(n�1)(n+1) and Hn(n+1).

3. Then, iterate the following steps for m = n� 2, n� 3, . . . , 1,

i[Hm(m+1), H(m+1)(n+1)] = 2Hm(m+1)(n+1), (B.1.7a)

i[Hm(m+1), Hm(m+1)(n+1)] = 4(Hm(n+1) �H(m+1)(n+1)), (B.1.7b)

to get Hm(n+1), m = 1, . . . , n�2. All the two-body operators involving the (n+1)th

qubit are thus in our hands.

4. Combining the two-body operators, we can generate any three-body operators

involving the (n+ 1)th qubit,

i[Hm1m2 , Hm2(n+1)] = 2Hm1m2(n+1)

m1,m2 = 1, . . . , n; m1 < m2  n. (B.1.8)

In this way, all the rotationally symmetric two- and three-body operators for the first

n+1 qubits are generated. Then, by induction, we can generate all the rotationally

symmetric two- and three-body operators for any number of qubits N .
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B.2 Asymptotic dimension of the Lie algebra LDFS

for the qubit chain model

Let us estimate the asymptotic dimension for a large N of the Lie algebra LDFS

in (5.3.28) generated by the projected Hamiltonians P(H0) and P(H1) for the chain

of N qubits discussed in Sec. 5.3.3. As commented in Sec. 5.3.3, the dimension of

LDFS is bounded by the dimension of
L

J su(dJ,N) and the dimension of
L

J u(dJ,N),

i.e.,

X

J

(d2J,N � 1) < dimLDFS <
X

J

d2J,N . (B.2.1)

As we will see, the lower bound is dominated by the first contribution
P

J d
2
J,N for

large N , and the difference between the lower and upper bounds becomes relatively

negligible in the asymptotic regime. Observe also that the dimensions dJ,N of the

DFS’s given in (5.3.21) can be cast as

dJ,N =

✓

1� 2K

N + 1

◆

0

@

N + 1

K

1

A , K = N/2� J = 0, 1, . . . , bN
2
c, (B.2.2)

where bxc denotes the largest integer not greater than x. Approximating the bino-

mial coefficient by
0

@

n

k

1

A =
2n

p

⇡n/2
e�2n(k/n�1/2)2 [1 +O(1/

p
n)], (B.2.3)

the dimension of the Lie algebra is estimated as

dimLDFS ⇠
X

J

d2J,N

=

bN
2
c

X

K=0

✓

1� 2K

N + 1

◆2
0

@

N + 1

K

1

A

2

⇠ N + 1

2

Z 1

0

dx x2 4N+1

⇡(N + 1)/2
e�(N+1)x2

⇠ 4Np
⇡N3/2

, (B.2.4)

where the continuum limit is taken through x = 1� 2K/(N + 1).
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B.3 Derivation of the lower bound "2

Here we derive the lower bound (5.4.2). Using the definition of the Hilbert-Schmidt

norm kAk2HS = tr{A†A} for a matrix A we can rewrite the left-hand side of (5.4.2),

�

�

�J(ΛT )� S(J(UG)⌦ J(Ẽ))S
�

�

�

2

HS

= tr{J2(ΛT )}+ tr2{J
2(Ẽ)}� 2tr{SJ(ΛT )S(J(UG)⌦ J(Ẽ))}, (B.3.1)

where tr2{·} denotes the partial trace over the second system and the properties of

the normalized Choi state J were used, i.e., J† = J , tr{J} = 1 and J2 = J for a

unitary map. The third term of the right-hand side of (B.3.1) can be rewritten as

tr{SJ(ΛT )S(J(UG)⌦ J(Ẽ))}

= tr{SJ(ΛT )S(J(UG)⌦ 12)(J(UG)⌦ J(Ẽ))}

 tr{SJ2(ΛT )S(J(UG ⌦ 12))}
1/2tr2{J

2(Ẽ)}1/2

 1

2

⇣

tr{J2(ΛT )S(J(UG)⌦ 12)S}+ tr2{J
2(Ẽ)}

⌘

, (B.3.2)

where from the second line to the third the Cauchy-Schwarz inequality and from

the third line to the forth the inequality between the arithmetic and the geometric

means have been used. Combining (B.3.1) and (B.3.2) we arrive at

�

�

�J(ΛT )� S(J(UG)⌦ J(Ẽ))S
�

�

�

2

HS

� tr{J2(ΛT )}+ tr2{J
2(Ẽ)}� tr{J2(ΛT )S(J(UG)⌦ 12)S}� tr2{J

2(Ẽ)}

= tr{J2(ΛT )(1� S(J(UG)⌦ 12)S)}, (B.3.3)

which is the desired result. Note that for pure unitary maps ΛT = UT the lower

bound simplifies further

"2 = 1� tr{J(UT )S(J(UG)⌦ 12)S}. (B.3.4)
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C.1 Derivation of the reduced dynamics

We consider a purification L̃ = L⌦A with A 2 C
dA⇥dA , A = A†, and a non-selective

measurement P with Pn = 1 ⌦ |�nih�n| where B = {|�ni}dAn=1 is an orthonormal

basis for the auxiliary Hilbert space. Here we want to show that if we take B to

be mutually orthogonal to the eigenbasis of A, the reduced dynamics of the original

system is given by

⇢S(t) = e
�

dA
Dt
⇢S(0), (C.1.1)

where � =
PdA

k=1 �
2
k with �k being the eigenvalues of A and

D(·) = 2L(·)L† � (L†L(·) + (·)L†L), (C.1.2)

the Lindbladian of the original system. Clearly, for a purification of the form A =

|iihi|, i 2 {1, . . . , dA} and {|ii} an orthonormal basis for HdA we obtain (6.1.10)

from Sec. 6.1.

Using (6.1.7) we find that in the Zeno limit (6.1.4) the overall dynamics is governed

by Φt = eJ tP where

J (·) = PD̃P(·)

=
X

n,m

h�m|A|�nih�n|A|�mi(2L⌦ |�mih�n|(·)L
† ⌦ |�nih�m|

� (L†L⌦ |�nih�n|(·)1⌦ |�nih�n|+ 1⌦ |�nih�n|(·)L
†L⌦ |�nih�n|)). (C.1.3)
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With J (P(⇢)) = J (⇢) and trA{P(⇢)} = trA{⇢} = ⇢A we find

⇢S(t) = trA
�

eJ tP(⇢(0))
 

= trA
�

eJ t⇢(0)
 

, (C.1.4)

such that ⇢S(t) obeys the differential equation

⇢̇S(t) = trA{J (⇢(t))},

=

dA
X

n=1

Ln(h�n|⇢(t)|�ni), (C.1.5)

where

Ln(·) = h�n|A
2|�ni(2L(·)L† � (L†L(·) + (·)L†L)). (C.1.6)

The formal solution to (C.1.5) reads

⇢S(t) =

dA
X

n=1

eLnt(h�n|⇢(0)|�ni), (C.1.7)

and if we take {|�ni}dAn=1 to be a basis that is mutually orthogonal to the eigenbasis

{| ki}dAk=1 of A with eigenvalues �k we have that h�n|A
2|�ni = 1

dA

PdA
k=1 �k =

�

dA
for

all n 2 {1, . . . , dA}. Hence the solution becomes

⇢S(t) = e
�

dA
Dt

dA
X

n=1

(h�n|⇢(0)|�ni) = e
�

dA
Dt
trA{⇢(0)} = e

�

dE
Dt
⇢S(0), (C.1.8)

which is the desired result.
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