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Lewis Pryce, Piotr Kusmierczyk and Jen Wheatley have all been a great sup-

port both in and out of the office and have played a huge role in making my

PhD years highly enjoyable.

None of this would have been possible without the love and encourage-

ment of those closest to me. Mum, Arthur, Dad and Dan have always been

ii



there for me and have been an unstintingly supportive family. Finally, the

belief shown in me by Trish has driven me on and her support and affection

has been especially appreciated. Thank you.

iii



Abstract

The main aim of this thesis is to generalise weight function techniques to

tackle crack problems in bi-material linearly elastic and isotropic solids with

imperfect interfaces.

Our approach makes extensive use of weight functions which are special

solutions to homogeneous boundary value problems that aid in the evaluation

of constants in asymptotic expressions describing the behaviour of physical

fields near crack tips.

We use newly derived weight functions and respective techniques to tackle

various aspects of a number of problems. The first major application is

the use of the new weight functions to aid in the analysis of Bloch–Floquet

waves; results include the derivation of a low dimensional model including

junction conditions and the evaluation of a fracture criterion in the form

of a constant in the asymptotic expansion of physical fields near crack tips.

The second major application uses the new weight functions to assist in

perturbation analysis. In particular, Betti’s formula is applied in an imperfect

interface setting, which introduces new conditions and asymptotic behaviour

in comparison to previously studied perfect interface cases.

We first derive a weight function by employing the Wiener-Hopf tech-

nique in a bi-material strip containing a semi-infinite crack and an imperfect

interface. We then present an asymptotic algorithm that uses the new weight

function to evaluate coefficients in the asymptotics of solutions to problems

of wave propagation in a thin bi-material strip containing a periodic array of



finite-length cracks situated along an imperfect interface between two mate-

rials. We introduce and solve a low dimensional model and give relationships

between its solution’s behaviour at junction points and the behaviour of

physical fields near the crack tip in the full original model problem.

The low dimensional model is then used to estimate eigenfrequencies of

the periodic structure. We will find via comparisons against finite element

simulations that the model gives excellent estimates in most cases for the

frequencies of waves propagating through the strip; however, a small dis-

crepancy is found for standing wave eigenfrequencies.

We address this discrepancy by suggesting an improvement to the asymp-

totic model and perform computations which demonstrate a greatly improved

accuracy for standing wave eigenfrequencies in both the imperfect and ideal

interface problems.

We then move on to consider our second major problem which concerns

out-of-plane shear in an infinite domain containing a semi-infinite crack situ-

ated on an imperfect interface. We derive a weight function for this geometry

and use Betti’s identity to relate the behaviour of physical fields near the

crack tip to that of the weight function and prescribed loadings on the crack

faces. In particular, the method presented allows for the prescribed tractions

to be point forces, as well as continuous loadings.

Having obtained the weight function, we then conduct perturbation anal-

ysis to determine how small linear defects such as elliptic inclusions influence

the forces near the crack tip. Computations are performed which demon-

strate how the unperturbed solution depends upon the parameter of inter-

face imperfection, and how the location of defects may shield or amplify the

stresses near the crack tip.
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Chapter 1

Bibliographical review and

structure of the thesis

In this thesis, we will analyse a number of problems whose common theme

is the interaction of cracks with imperfect interfaces in linearly elastic and

isotropic solids. A main element of our analysis will be the derivation and ap-

plication of new weight functions – special solutions to homogeonous bound-

ary value problems which aid in the evaluation of asymptotic constants de-

scribing the behaviour of physical fields near crack tips.

We begin this opening chapter by outlining where the work comprising

this thesis has been published and disseminated, before presenting a review

of the literature, making mention of important concepts and advances in elas-

ticity theory and fracture mechanics. The remainder of this present chapter

will then outline the structure of the remainder of the thesis.
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1.1 Publications and dissemination

Chapters 3, 4 and 5 of this thesis correspond to three papers, two of which at

the time of writing are published in academic journals with the third having

been submitted for publication. The details of these papers appear in the

bibliography on page 162 as references [62, 63, 64].

I have presented the work at the following conferences and workshops:

• WIMCS Wales Mathematics Colloquium 2010, Gregynog, May 2010.

• First LMS-WIMCS Workshop on the Wiener-Hopf Method and Appli-

cations, Aberystwyth, May 2010.

• WIMCS Wales Mathematics Colloquium 2011, Gregynog, May 2011.

• Metamaterial Structures and Dynamic Localisation of Defects Work-

shop, Liverpool, December 2011.

• British Applied Mathematics Colloquium, Leeds, April 2013.

• CERMODEL2013, Trento, July 2013.

1.2 Bibliographical review

The roots of elasticity theory can be traced back through many centuries.

Hooke’s Law for instance finds its genesis in the second half of the 17th cen-

tury. In the intervening centuries, many of the great names of mathematics

have considered problems of elasticity. Euler [17] considered stationary con-

figurations of an elastic rod in 1744, and Daniel Bernoulli derived in 1751 the

differential equation governing the vibration of beams and found the solution

in the case of small deformations.

Despite advances in the field of elasticity between these early discoveries

and the start of the 20th century, the pioneering work in the field of fracture
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mechanics did not begin until 1913, when British civil engineer Charles Inglis

[25] studied an elliptical hole in glass under tensile load applied in a perpen-

dicular direction to the ellipse. He found that the stress concentration was

greatest at the ellipse’s vertices. In 1920, Griffith [22] (who was motivated by

a discrepancy between theoretical estimates and experimental data for the

stress required to fracture glass) extended the work of Inglis by stretching

the ellipse out into a crack, and realised that Inglis’ result implied that a

body containing a crack could not sustain an applied load. He discovered

that the macroscopic potential energy of the system depended on the size of

the crack, and since extending the crack creates some new crack surface, a

certain amount of work per unit area of crack surface must be released at

a microscopic level. Griffith described this work as a surface energy ΩS in

addition to the potential energy Ω, and applied the equilibrium principle of

minimum potential energy

∂

∂l
(Ω + ΩS) = 0. (1.1)

Irwin [26] added the elastic stress-intensity factor, K, as an important pa-

rameter by which a crack tip field can be characterised. This quantity (which

depends upon the geometry of the domain, the size and location of the crack

and the magnitude and distribution of loading on the material) gives a cri-

terion for the crack to propagate; if K exceeds a quantity called the fracture

toughness of the cracked body’s material, then the crack will begin to grow.

Irwin also demonstrated that for Mode I loading (see Section 2.3.1 for the

definitions of fracture modes) under plane stress conditions, the energy re-

lease rate G, which quantifies the energy ‘leaving’ the material through the

crack tip, is related to the stress intensity factor via the formula

G = −∂Ω
∂l

=
K2

E
, (1.2)
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where E is the Young’s modulus of the material.

The first crack tip contour integral expression to compute the elastody-

namic energy release rate was proposed by Atkinson and Eshelby [3]. They

argued that the form for dynamic growth should be the same as for quasi-

static growth with the elastic energy density replaced by the total mehanical

energy density (the sum of the elastic and kinetic energy). These ideas were

extended by Rice [57] and Cherepanov [13], independently, through the intro-

duction of the path-independent J-integral. In the case of quasistatic linear

elastic conditions, J and G coincide.

The calculation of the stress-intensity factor K is not always straightfor-

ward. In irregular-shaped domains, it is often not possible to find analytic

expressions for K, and so finite element and boundary element approaches

may be resorted to; many such treatments can be found in the literature, for

example the approach of Gifford and Hilton [19]. The paper of Maz’ya et

al. [37] gave a very general method to find asymptotic forms of solutions to

Dirichlet or Neumann problems close to the vertices of cones, and in doing so

established the theoretical foundation required for so-called weight functions.

For more regular domains, weight functions are an especially powerful

tool in aiding the evaluation of stress intensity factors. The concept of

weight functions was introduced into electrostatics by Bueckner [11]. These

provide weights for the loads applied to the crack surfaces, such that their

weighted integrals over the crack surfaces provide the stress intensity factors

at a chosen point. Weight functions have been found for a variety of different

geometries; Bueckner [12] found weight functions for several types of crack

including penny-shaped and half-plane cracks in homogeneous elastic media

in both two-dimensional and three-dimensional settings. Rice [56] derived

4



the weight functions corresponding to a crack of finite length. Zheng, Glinka

and Dubey [72] obtained weight functions for a corner crack in a finite thick-

ness plate and Kassir and Sih [30] found the elastostatic weight functions for

a 3D semi-infinite crack in an infinite body. A number of handbooks were

published in the 1970s and 80s (for instance [47]) which collected together

stress intensity factors for many types of specific configurations; while these

were useful resources, any minor change in loading or geometry to those listed

in the handbook would cause difficulties.

Rice further developed the theory for three dimensional crack problems

in the work [60]. Willis and Movchan [71] used the Wiener-Hopf method to

construct dynamic weight functions for arbitrary time-dependent loading of

a plane semi-infinite crack extending at constant speed in an infinite isotropic

elastic body. Lazarus and Leblond [33] used Bueckner’s method to find the

expression for the variation of the stress intensity factors for a wavy crack

and Piccolroaz et al. [51] later employed the Wiener-Hopf technique to find

analytic expressions for the so-called ‘Lazarus-Leblond’ constants which were

not found in the original paper [33]. More recently and of particular rele-

vance to this thesis, weight functions for a thin bi-material strip containing a

periodic array of interfacial cracks have been derived using the Wiener-Hopf

method by Mishuris et al. [44]; we review this paper in detail in Chapter 2.

We also give mention to the book of Noble citeNoble as a rich resource on

Wiener-Hopf analysis.

An important development in fracture mechanics was the study of cracks

which sit along the interface between different materials. A pioneering work

was that of Williams [66]. Inspired by geophysical problems, he considered

two separate isotropic homogeneous regions separated by a crack and found

5



that the singularity near the crack tip has the sharp oscillatory character of

the type r−1/2 sin(b log r), r → 0. While this oscillatory behaviour appears

to be unphysical, Rice and Sih [55] showed that the obtained stress intensity

factors can be used together with G and J integrals to obtain useful infor-

mation from the fracture mechanics point of view. Willis examined three

dimensional interfacial crack problems in a series of papers [68], [69] and

[70]; the first of these considers the stress field around a crack on the plane

interface between two bonded dissimilar anisotropic elastic half-spaces. Rice

[59] considered the validity of the two dimensional complex stress intensity

factor K for an interfacial crack between dissimilar solids and found that

similar values of K for two cracked bodies imply similar states at the crack

tip.

The concept of an imperfect interface is of particular importance to this

thesis. Two major advances were made towards this concept in the 1970s:

one by Atkinson and the other by Comninou. Atkinson [4] recognised that

the interface between two different materials is almost never sharp. He sug-

gested two models, both of which replace the interface by a thin strip of finite

thickness. In one model, the thin strip (which contains a crack) is homoge-

neous with elastic modulus different to those of the two main materials. The

other provides a gradual transition with the crack placed along the interface

between the first main solid and the thin interface layer; this avoids the os-

cillatory behaviour and retains the usual square root singularity at the crack

tip. Comninou [14] approached the interface crack problem from a contact

mechanics viewpoint by accepting the presence of inequalities and allowing

for partial closure at the tips.

Klarbring and Movchan [31] presented an asymptotic model of adhesive
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joints in a layered structure. Mishuris [40] found the asymptotic behaviour of

displacements and stresses in a vicinity of the interface crack tip situated on

a non-ideal1 interface between two different elastic materials, where the non-

ideal interface is replaced by non-ideal transmission conditions. Mishuris and

Kuhn [41] then reduced the corresponding modelling boundary value problem

to a system of singular integral equations with moving and fixed point singu-

larities. The existence and uniqueness of the system’s solution were proved

and asymptotic expansions of displacements and stresses near the crack tip

found. Benveniste and Miloh [9] considered a thin curved isotropic layer of

constant thickness between two elastic isotropic media in a two dimensional

plane-strain setting and derived seven distinct types of interface conditions

depending on the softness or stiffness of the layer. Benveniste [8] later pre-

sented a general interface model for a three-dimensional arbitrarily curved

thin anistoropic interphase between two anisotropic solids.

For imperfect interfaces, there is no square-root singularity at the crack

tip and so the stress intensity factor concept is not applicable. Instead there

exist a number of analogues to the stress intensity factor which act as fracture

criteria. The crack tip opening displacement (CTOD) was proposed indepen-

dently by Wells [65] and Cottrell [15] as a fracture criterion where significant

plastic deformation precedes fracture. Later works by Rice and Sorensen [58],

Shih et al. [61] and Kanninen et al. [27] for Mode I crack extension justified

the use of CTOD as a plausible fracture parameter to capture local yield-

ing. Neuber [48] and Novozhilov [49] considered a fracture criterion based

1When we refer to a ‘non-ideal interface’, unless otherwise stated we mean a soft im-

perfect interface. Similarly, we use the terms ‘perfect interface’ and ‘ideal interface’ in-

terchangably. Different types of imperfect interface exist (stiff and soft for instance); we

discuss these in Section 2.3.2 on page 24.
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on average stress over a characteristic length. Barenblatt [7] and Dugdale

[16] independently proposed cohesive zone models for studying plasticity at

the crack tip. These models take non-linear material behaviour at the crack

tip into account and introduce cohesive forces directly to the crack surfaces.

Willis [67] discussed the relationship between these Barenblatt-Dugdale mod-

els and found a relationship between Griffith’s suface energy and Barenblatt’s

modulus of cohesion, provided the forces act over a short range, which is true

in practice. In classical geometries these criteria can all be used; they give

similar values for critical load and so can all be considered useful indicators

for crack growth. In more complex situations, different criteria may give

slightly different quantitative results (e.g. critical load, direction of crack

propagation) but usually provide good qualitative results from a fracture

mechanics point of view.

1.2.1 Conclusions and motivation

While the literature contains well-established models of interfacial cracks in

bi-materials for a range of geometries, the weight function technique has not

been applied previously in cases where cracks lie on an imperfect interface.

As discussed above, the presence of an imperfect interface fundamentally

changes the behaviour of displacement and stress distributions in the vicin-

ity of the crack tip. This creates new challenges in adapting the ideas behind

the weight function approach to find expressions for important asymptotic

constants which can act as fracture criteria. For instance, the weight func-

tion will possess different behaviour near the tip and identities that relate

the weight function to the physical solution will be different to those pre-

viously used in perfect interface settings. By considering differently config-
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ured problems concerned with stresses near crack tips, spectral properties of

thin waveguides and perturbation analysis, this thesis aims to demonstrate

that the weight function technique can be extended to imperfect interface

problems and in such cases gives an efficient method by which important

asymptotic information can be computed.

1.3 Thesis structure

In Chapter 2, we will give a summary of background material that serves

to introduce a number of key concepts and techniques that will be used

extensively throughout the remainder of the thesis. The chapter begins by

summarising important results from the theory of analytic functions and then

shows how they are elegantly and powerfully combined to form the Wiener-

Hopf technique. We will also make a précis of the derivation of transmisson

conditions for soft and stiff imperfect interfaces.

We begin the new work in Chapter 3, which considers a problem inspired

by Mishuris et al. (2007) [44]. We consider a similar geometry of a thin bi-

material strip containing an array of finite-length interfacial cracks, but with

the crucial new feature of an imperfect interface between the cracks which

is characterised by an imperfection parameter κ. This change in formulation

fundamentally changes many aspects of the problem. The problem is sin-

gularly perturbed, and so taking even very small values of κ (corresponding

to an ‘almost-perfect’ interface) gives a qualitatively significantly different

weight function than that derived by Mishuris et al. [44] for the perfect in-

terface case. Further, the well-known square root singularity phenomenon at

the crack tip which is found in crack problems incorporating perfect inter-

faces is no longer present, and so the new weight function is used to derive

9



constants which take the place of stress intensity factors.

The plan of work in Chapter 3 can be summarised as follows:

1. We first formulate the weight function problem and use Fourier trans-

form and Wiener-Hopf techniques to obtain its solution. While prob-

lems regarding cracks in domains including imperfect interfaces have

been previously studied (for example in [1]), no corresponding weight

functions have been hitherto constructed.2

2. Asymptotic analysis enables us to find analytic expressions for all im-

portant constants which describe the weight function’s behaviour near

to, and far from, the crack tip.

3. We then present an application of the newly derived weight function

to the analysis of Bloch-Floquet waves in a thin structure containing a

periodic array of cracks and imperfect interfaces. We follow a similar

asymptotic algorithm to that of Mishuris et al. [44] but the presence

of the imperfect interface requires different analysis to be conducted.

4. Computations are conducted which show how various aspects of the

solution are influenced by the extent of imperfection of the interface κ.

Chapter 4 will focus heavily on the low dimensional model which forms

part of the asymptotic algorithm detailed in Chapter 3. Mishuris et al. [44]

found for the perfect interface that the low dimensional model is very ac-

curate when predicting eigenfrequencies of waves that propagate through

the thin strip, but a small discrepancy exists in the prediction of standing

wave eigenfrequencies. We will discover that the same is true of our model

2Some factorisation has been conducted; however it is not convenient for the purpose

of performing numerical computations and so we present a different factorisation.
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for the imperfect interface case, so will devote this chapter to addressing

this discrepancy. Our approach is to amend the existing model by also ex-

panding the square of the frequency ω2 as an asymptotic series of the form

ω2 = ω2
0+εω

2
1+O(ε

2). While it is not immediately apparent a priori that this

amendment will lead to a significant and useful correction in standing wave

eigenfrequencies while leaving the accuracy of propagating eigenfrequency

estimates intact, computations (which are performed for both perfect and

imperfect interface cases) demonstrate that typically an improvement in ac-

curacy of around an order of magnitude is obtained through this amended

approach. We will adopt the following outline structure for the chapter:

1. We formulate the problem and summarise our proposed approach.

2. The improved low dimensional model is derived and we discuss the

impact of the extra assumption on the junction conditions.

3. We solve the corrected zero order and first order low dimensional mod-

els, including the computation of the correction term ω1.

4. Numerical computations are performed for both perfect and imper-

fect interface cases, with various mechanical and geometric parameters.

We present dispersion diagrams and investigate the effectiveness of the

eigenfrequency correction. This includes discussions of limitations of

the asymptotic model.

We will then progress to consider a different problem, which is formulated

in the whole plane rather than the strip heretofore considered. In Chapter

5, we will formulate and solve a weight function problem in a bi-material

plane containing a semi-infinite crack on an imperfect interface. Mode III

problems in similar domains containing an imperfect interface have been
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studied by Antipov et al. [1], but no corresponding weight function has

been previously derived. The analogous perfect interface weight functions

have been found by Piccolroaz et al. [52], but the addition of the imperfect

interface to the problem fundamentally and significantly alters many aspects

of the sought weight function. We will then present an application of this new

weight function. Inspired by the work of Piccolroaz et al. [54] and Mishuris

et al. [45], using Betti’s identity we will derive constants which describe the

behaviour of the physical solution near the crack tip and will then investigate

via the dipole matrix method how the presence of small linear defects shield

or amplify the propagation of the main crack. An outline of the plan of work

is as follows:

1. We formulate the physical and weight function problems. The Wiener-

Hopf technique allows us to solve the weight function problem and find

asymptotic expansions for important quantities.

2. We apply the Betti identity in the imperfect interface case and draw

comparisons against the equivalent procedure for the perfect interface

case.

3. The unperturbed solution u0 is derived by employing Wiener-Hopf anal-

ysis. We then conduct perturbation analysis using the dipole matrix

method and arrive at an expression for the change in an important con-

stant from an asymptotic expansion (denoted a0) describing the leading

term of the traction near the crack tip induced by the presence of the

small defect.

4. Computation methods are discussed and performed to give plots of how

the extent of interface imperfection κ affects the magnitude of tractions

12



near the crack tip a0. We also show how the location of the small defect

relative to the crack tip can increase or decrease the stresses near the

crack tip, thus shielding or amplifying the propagation of the main

crack.

We conclude the thesis in Chapter 6 by summarising the main results

and discussing their applicability to related problems, before suggesting some

areas in which future work could extend the ideas and techniques used in the

previous chapters.

13



Chapter 2

Background

2.1 Theoretical background

In this section we will outline the main mathematical tools which will be

used extensively throughout the remainder of this thesis. We begin with

results concerning properties of analytic functions of complex variables before

presenting some important properties of Fourier transforms. We conclude

this section by summarising the Wiener-Hopf technique.

2.1.1 Analytic functions of complex variables

Consider a function f : Ω ⊂ C → C of the complex variable z = x + iy

defined in a neighbourhood Ω of a particular point.

Definition 1. f is analytic at z if f is differentiable with respect to z at that

point. Similarly, f is analytic on the set Ω if f is analytic at every point in

Ω.

Definition 2. f is entire if it is defined on the whole complex plane C and

is analytic everywhere.
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The property of analyticity is a very far-reaching one. Some immediate

consequences include

• The Cauchy-Riemann Equations. If f is analytic in Ω ⊂ C, then

writing f(z) = u(x, y) + iv(x, y), it follows that

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (2.1)

• Existence of all derivatives. Analyticity of f implies that deriva-

tives of all orders exist. In particular, this allows a Taylor series to be

constructed at any point within the domain of analyticity of f .

• Harmonic nature of real and imaginary parts. If f = u + iv

is analytic in Ω, then u and v are harmonic in Ω. That is, ∇2u = 0

and ∇2v = 0 in Ω. This result is an immediate consequence of the

Cauchy-Riemann equations.

Theorem 1 (Cauchy integral theorem). If f(z) is analytic on and inside a

simple closed curve Γ in the complex plane, then
∫

Γ

f(z)dz = 0. (2.2)

Theorem 2 (Generalised Cauchy integral formula). Suppose f(z) is analytic

on and inside a simple closed curve Γ which encloses a region of the complex

plane. Then if a is a point inside Γ,

f (n)(a) =
n!

2πi

∫

Γ

f(z)

(z − a)n+1
dz, (2.3)

where f (n) denotes the n-th derivative of f .

The special case of n = 0 is often referred to as the Cauchy integral for-

mula. This can then be used to obtain Liouville’s theorem which we shall

use extensively, since it is a key part of the Wiener-Hopf technique.
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Theorem 3 (Liouville’s theorem). A bounded entire function of a complex

variable is constant.

The Wiener-Hopf technique more generally employs the generalised ver-

sion of this theorem, which is stated below.

Theorem 4 (Generalised Liouville theorem). If f is entire and if, for some

integer k ≥ 0, there exist positive constants A and B such that

|f(z)| ≤ A+B|z|k, (2.4)

then f is a polynomial of degree at most k.

Wiener-Hopf problems also make use of analytic continuation, which can

be stated as follows.

Theorem 5 (Analytic continuation). Let f1, f2 be analytic functions in re-

spective open subsets of the complex plane Ω1 and Ω2, coinciding in an open

domain Ω1 ∩ Ω2. Define f by

f(z) =











f1(z) if z ∈ Ω1,

f2(z) if z ∈ Ω2.

(2.5)

Then f is analytic in Ω1 ∪ Ω2.

2.1.2 Fourier transforms

Fourier transforms will be used extensively throughout this thesis as a tool

to solve boundary value problems. Here we define our notation for Fourier

transforms and present key analyticity properties.
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Definition 3. Let f(x) and defined for x ∈ R and integrable over any finite

interval of x. The Fourier transform of f is denoted f̄ and defined by

f̄(ξ) =

∞
∫

−∞

f(x)eiξxdx; (2.6)

with ξ ∈ C.

We will often encounter cases where f is identically zero on a half-line.

Such cases lead to Fourier transforms with useful analyticity properties. In

particular, suppose f(x) is zero for all x < 0. If f has only a finite number

of finite discontinuities on C, is bounded except at a finite number of points,

and |f(x)| = O(e−γ−x) where γ− is some real positive constant as x → +∞

then

f̄(ξ) =

∞
∫

0

f(x)eiξxdx (2.7)

is analytic in the upper half-plane Im(ξ) > −γ−. Similarly, suppose g(x) is

zero for all x > 0, has a finite number of finite discontinuities on R, is bounded

except at a finite number of points, and g(x) = O(eγ
+x) as x→ −∞ for some

real positive constant γ+. Then

ḡ(ξ) =

0
∫

−∞

g(x)eiξxdx (2.8)

defines an analytic function in the lower half-plane Im(ξ) < γ+. We say that

f̄ in (2.7) is a plus function and ḡ in (2.8) is a minus function and will often

denote functions with these properties with a minus or plus superscript in

the following chapters.

Definition 4 (Inverse Fourier transform). Let f(x) be integrable over any
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finite interval of x and

|f(x)| =











O(e−γ−x) as x → +∞

O(eγ
+x) as x → −∞.

(2.9)

where γ± > 0 are constants. The inverse Fourier transform of the function

f̄(ξ) as defined in Definition 3 is given by

f(x) =
1

2π

∞+iβ
∫

−∞+iβ

f̄(ξ)e−iξxdξ, (2.10)

where β ∈ R satisfies −γ− < β < γ+.

A particularly useful result is the following

Theorem 6. Let f : R → R be differentiable and define g(x) = df
dx
. Then

∞
∫

−∞

g(x)eiξxdx = −iξf̄(ξ). (2.11)

It is this property that makes the Fourier transform a classic method with

which to solve linear differential equations, since differentiation in the original

variable becomes algebraic multiplication after applying the transform.

Another useful result concerns Fourier transforms and convolutions.

Theorem 7 (Convolution theorem). Let f̄(ξ) be a Fourier transform which

can be factorised into a product of transforms

f̄(ξ) = f̄1(ξ)f̄2(ξ). (2.12)

Then the function f(x) is the convolution of f1(x) and f2(x), that is,

f(x) = (f1 ∗ f2)(x) =
x
∫

0

f1(x− τ)f2(τ)dτ. (2.13)
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The Fourier transform pair possesses asymptotic properties that allow cer-

tain aspects of the asymptotic behaviour of a function to be determined from

its transform and vice versa. Theorems that give an asymptotic property of

one member of the transform pair from a known asymptotic property of the

other are called Abelian-type theorems (some authors make a distinction be-

tween Tauber and Abel theorems depending on which member of the pair

yields information about the other but we shall refer to both as Abelian-type

theorems). Abelian-type theorems can be used, for example, to deduce the

behaviour of a transform for large values of its argument from the asymptotic

behaviour of the physical solution near the crack tip. We will later state and

prove a particularly useful Abelian-type theorem which is stated as Theorem

10 on page 44.

2.2 The Wiener-Hopf method

The Wiener-Hopf technique elegantly combines the powerful theorems relat-

ing to analytic functions of complex variables to solve certain types of partial

differential equations.

A Wiener-Hopf equation is a functional equation that holds in a strip of

the complex plane of the form

A(z) + Φ+(z) = Ξ(z)Φ−(z) (2.14)

for all z in a strip of the complex plane parallel to the real axis, say −γ− <

Im(z) < γ+ with γ± > 0. Here, A(z) (zero in the homogeonous case) and

Ξ(z) are analytic in the strip and are defined for all z ∈ C. The functions

Φ+(z) and Φ−(z) are unknowns to be found and are analytic in overlapping

half-planes Im(z) > −γ− and Im(z) < γ+ respectively.
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The Wiener-Hopf technique hinges upon the factorisation of the function

Ξ(z) into the product of functions

Ξ(z) = Ξ+(z)Ξ−(z), (2.15)

where Ξ+(z) and Ξ−(z) are analytic and nonzero in respective half-planes

Im(z) > −γ− and Im(z) < γ+. Assuming such a factorisation is admitted,

(2.14) can be rearranged to give

A(z)

Ξ+(z)
+

Φ+(z)

Ξ+(z)
= Ξ−(z)Φ−(z). (2.16)

The function A(z)
Ξ+(z)

is then decomposed as

A(z)

Ξ+(z)
= Q+(z) +Q−(z), (2.17)

where Q+(z) and Q−(z) are analytic in the half-planes Im(z) > −γ− and

Im(z) < γ+ respectively. This decomposition is unique up to an additive

entire function. Substitution of this additive decomposition into (2.16) yields

the fully factorised Wiener-Hopf equation

Q+(z) +
Φ+(z)

Ξ+(z)
= Ξ−(z)Φ−(z)−Q−(z), (2.18)

which is valid in the strip −γ− < Im(z) < γ+. Both sides of (2.18) rep-

resent functions analytic in their respective half-planes and coincide within

the common strip of analyticity. It follows from the identity theorem for

analytic functions that either side is the analytic continuation of the other

and so together they represent the entire function E(z).

We will often find that the left and right hand sides of (2.18) behave

algebraically at infinity, that is

∣

∣

∣

∣

Q+(z) +
Φ+(z)

Ξ+(z)

∣

∣

∣

∣

= O(|z|c+), Im(z) > −γ−, |z| → ∞, (2.19)

20



|Ξ−(z)Φ−(z)−Q−(z)| = O(|z|c−), Im(z) < γ+, |z| → ∞. (2.20)

Liouville’s theorem in such cases, providing that there are no essential singu-

larities, yields that the entire function E(z) is a polynomial of degree at most

m, where m = max{n ∈ Z : n ≤ min{c+, c−}}. Thus the functions Φ+(z)

and Φ−(z) are now known up to a finite number of constants, the polynomial

coefficients.

Of course, this technique relies upon the ability to factorise functions of

complex variables into the sum or product of functions which are analytic in

overlapping half-planes. In the scalar case, the additive decomposition used

in (2.17) makes use of the following theorem (Noble, p.13).

Theorem 8. Let f(z) be an analytic function in the strip τ− < Im(z) < τ+,

such that |f(z)| < C|Re(z)|−p, p > 0 for |Re(z)| → ∞, the inequality holding

uniformly for all z in the strip τ− + ε ≤ Im(z) ≤ τ+ − ε, ε > 0. Then for

τ− < c < Im(z) < d < τ+,

f(z) = f+(z) + f−(z), (2.21)

where

f+(z) =
1

2πi

∞+ic
∫

−∞+ic

f(ξ)

ξ − z
dξ, f−(z) = − 1

2πi

∞+id
∫

−∞+id

f(ξ)

ξ − z
dξ, (2.22)

where f+(z) is analytic for all Im(z) > τ−, and f−(z) is analytic for all

Im(z) < τ+.

The proof of this theorem follows from Cauchy’s integral theorem. The-

orem 8 is also useful for the multiplicative factorisation required in (2.15).

Taking logarithms of (2.15) gives

log Ξ(z) = log Ξ+(z) + log Ξ−(z), (2.23)
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and so

Ξ±(z) = exp







±1

2πi

∞∓iε
∫

−∞∓iε

log Ξ(ξ)

ξ − z
dξ







, (2.24)

where ε > 0 is chosen to be sufficiently small so the contours of integration

lie within the strip of analyticity of Ξ(z).

It will often be important for us to describe the asymptotic behaviour of

the functions Ξ±(z) defined in (2.24) as z → 0 and as z → ∞ for particular

functions Ξ(ξ). Commonly we will apply this procedure to functions which

have purposely been chosen to tend to a constant value (often chosen to be

1) near zero and infinity. We will state the asymptotics in this case of Ξ±(z)

as a theorem in Section 3.1.5.

2.3 Cracks and interfaces

We describe in this section some models of fracture and interfaces, which

will introduce concepts that are of importance to this thesis. We first discuss

asymptotics near crack tips before showing the derivation of transmission

conditions for important types of interface.

2.3.1 Mathematical models of cracks

Let us consider the geometry of an unbounded body with a crack occupying

the (x, y)-plane and take the crack front to be parallel to the y-axis. The

crack is defined to be the surface across which the displacement field u is

discontinuous. Irwin [26] noted that the upper and lower crack surfaces can

be moved with respect to each other in three independent ways. These three

types of deformation are called modes: Mode I, Mode II and Mode III. Mode

I describes in-plane opening (a tensile stress acting normal to the plane of
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Figure 2.1: The three fracture modes.

the crack), Mode II describes in-plane shearing (a shear stress acting parallel

to the plane of the crack and perpendicular to the crack front) and Mode III

describes out-of-plane shearing (a shear stress acting parallel to the plane of

the crack and parallel to the crack front). These are indicated on Figure 2.1.

Each of the three modes has an associated stress field near the crack tip.

Let us arrange our co-ordinate system as in Figure 2.1 so that the x direction

is normal to the crack edge, the y direction is parallel to the crack edge and

the z direction is perpendicular to crack plane. The origin 0 sits along the

crack edge. Then defining the distance from the crack as r, the three stress

components σzz, σxz and σyz have asymptotics as r → 0 near the tip of the

form

σzz =
KI

(2πr)1/2
+O(1), σxz =

KII

(2πr)1/2
+O(1), σyz =

KIII

(2πr)1/2
+O(1). (2.25)

The stress intensity factors KI , KII and KIII depend on the geometry of

the cracked body and the applied loading. They characterise the intensity of

the local stresses and as discussed in the bibliographical review in Chapter

1, act in fracture criteria. That is, given two bodies with differently sized

cracks and different loadings, if the stress intensity factors are equal, then

in the vicinity of the crack tip, the stress and displacement fields will be the
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same. Thus if crack extension begins in one body at a certain critical stress

intensity factor called the fracture toughness, then the crack in the second

body can be expected to also begin to grow as the stress intensity factor

exceeds that body’s fracture toughness.

2.3.2 Imperfect interfaces and transmission conditions

The presence of an imperfect interface in a bi-material structure is a crucial

feature of many of the problems discussed in this thesis. Throughout, when

we write ‘imperfect interface’ we shall be referring to a soft imperfect inter-

face. Such interfaces model a thin layer of a soft adhesive material between

the two main materials. If instead the two main materials have a stiff thin

layer between them, the interface is referred to as a stiff imperfect inter-

face. Typically these very thin layers are replaced in problem formulations

by transmission conditions. In this subsection we show the derivation of

transmission conditions for a Mode III crack that model two different types

of imperfect interface.

Perfect interface

Before presenting the derivation of transmission conditions for soft and stiff

imperfect interfaces, let us state the interface conditions for a perfect in-

terface. A perfect or ideal interface is characterised by continuity of both

displacement and traction across the interface. For instance, a perfect in-

terface along a line y = 0 joining two bodies of shear moduli µ1 and µ2

respectively occupying y > 0 and y < 0 is described by the conditions

u1|y=0+ = u2|y=0− , µ1
∂u1
∂y

∣

∣

∣

∣

y=0+

= µ2
∂u2
∂y

∣

∣

∣

∣

y=0−

(2.26)
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Figure 2.2: Thin layer of thickness ε occupying Ω(0).

where uj = uj(x, y) is the displacement field in the domain

{(x, y) ∈ R
2 : (−1)j+1y > 0}. (2.27)

Soft imperfect interface

We follow the approach employed for example by Antipov [1]. We consider

two bodies Ω(1) and Ω(2) connected through a thin interface layer Ω(0) of

thickness ε. Ω(1) and Ω(2) are occupied by materials with respective shear

moduli µ1 and µ2, while Ω
(0) houses a softer adhesive material of shear mod-

ulus µ0 = εµ, where µ is of the same order as µ1 and µ2.

For out-of-plane shear we consider the displacement field (0, 0, u(x, y))

with the only non-zero component being the z-component which depends

solely upon x and y. The displacements u1, u2 and u0 in domains indicated

by their subscripts satisfy the equations

∇2uj = 0 in Ω(j), j = 0, 1, 2. (2.28)

Across the interfacial boundaries, displacement and tractions are assumed
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continuous, that is

u1|y=ε/2 = u0|y=ε/2, µ1
∂u1
∂y

∣

∣

∣

∣

y=ε/2

= µ0
∂u0
∂y

∣

∣

∣

∣

y=ε/2

, (2.29)

u2|y=−ε/2 = u0|y=−ε/2, µ2
∂u2
∂y

∣

∣

∣

∣

y=−ε/2

= µ0
∂u0
∂y

∣

∣

∣

∣

y=−ε/2

. (2.30)

Let χ = y/ε, so that within the thin adhesive layer Ω(0), |χ| < 1/2. Now, in

terms of x and χ we see that

∇2u0 =
1

ε2
∂2u0
∂χ2

+
∂2u0
∂x2

= 0. (2.31)

Letting u
(0)
0 denote the leading term of u0, we see that

∂2u
(0)
0

∂χ2
= 0, in Ω(0), (2.32)

and therefore

u
(0)
0 = A

(0)
1 (x) + χA

(0)
2 (x), (2.33)

where A
(0)
1 and A

(0)
2 are functions solely of x. Continuity of displacement

(equations (2.29) and (2.30)) imply that

A
(0)
1 (x) =

1

2
(u1(x, 0) + u2(x, 0)), (2.34)

A
(0)
2 (x) = u1(x, 0)− u2(x, 0), (2.35)

and then applying the condition for continuity of tractions we obtain

µ1
∂u1
∂y

∣

∣

∣

∣

y=0+

= µ2
∂u2
∂y

∣

∣

∣

∣

y=0−

= µ0
∂u

(0)
0

∂χ
= µ0(u1(x, 0

+)− u2(x, 0
−)) (2.36)

to leading order. Thus we have shown that for an imperfect interface the

leading order term of tractions is continuous across the interface layer and is

proportional to the displacement jump across the interface.
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Stiff imperfect interface

For the stiff imperfect interface we follow the approach given by Mishuris et

al. [43]. We again consider two bodies Ω(1) and Ω(2), but with a thin layer

Ω(0) between them which is highly rigid. That is, we assume that

µ0 =
1

ε
µ, (2.37)

where µ is of the same order of magnitude as µj for j = 1, 2. As in the soft

interface case, displacement and traction are assumed continuous across the

interfacial boundaries, that is conditions (2.29) and (2.30) hold. We write

asymptotic expansions for the displacement fields uj (j = 1, 2) and u0 as

uj(x, y, ε) = u
(0)
j (x, y, ε) + εu

(1)
j (x, y, ε) + ε2u

(2)
j (x, y, ε), j = 1, 2, (2.38)

u0(x, χ, ε) = u
(0)
0 (x, χ, ε) + εu

(1)
0 (x, χ, ε) + ε2u

(2)
0 (x, χ, ε), (2.39)

where χ = y/ε. Taking the second conditions (continuity of tractions) in

each of (2.29) and (2.30), we see that

µ

ε2

(

∂u
(0)
0

∂χ
+ ε

∂u
(1)
0

∂χ
+ ε2

∂u
(2)
0

∂χ

)∣

∣

∣

∣

∣

χ=±1/2

= µj

∂u
(0)
j

∂y

∣

∣

∣

∣

∣

y=0±

+. . . = O(1), (2.40)

and so it follows that
∂u

(0)
0

∂χ

∣

∣

∣

∣

∣

χ=±1/2

= 0. (2.41)

Therefore u
(0)
0 is χ-independent, which implies continuity of leading order

displacements across the interface for u
(0)
j :

u
(0)
1 (x, 0+) = u

(0)
2 (x, 0−). (2.42)

Comparing coefficients of ε we see that inside the thin layer,

∂2u
(2)
0

∂χ2
= −∂

2u
(0)
0

∂x2
. (2.43)

27



The right hand side of (2.43) does not depend on χ and so

∂u
(2)
0

∂χ

∣

∣

∣

∣

∣

χ=1/2

− ∂u
(2)
0

∂χ

∣

∣

∣

∣

∣

χ=−1/2

= −∂
2u

(0)
0

∂x2
. (2.44)

Finally, (2.40) yields the following transmission condition:

µ1
∂u

(0)
1

∂y

∣

∣

∣

∣

∣

y=0+

− µ2
∂u

(0)
2

∂y

∣

∣

∣

∣

∣

y=0−

= − µ
∂2u

(0)
1

∂x2

∣

∣

∣

∣

∣

y=0+

. (2.45)

Thus for a stiff interface, there is no displacement jump across the interface

but there is an interfacial jump in traction proportional to the second partial

derivative of the displacement with respect to x.

Slightly curved imperfect interfaces

The derivations presented above have been generalised by Mishuris [42] for

a thin, slightly curved, nonhomogeneous and weakly anisotropic elastic in-

terface in both stiff and soft cases. For the soft slightly curved interface,

transmission conditions take the form

s
µ
∂u(0)

∂y

{
(x) = 0, Ju(0)K(x)− τ∗(x)µj

∂u
(0)
j

∂y
(x, 0) = 0. (2.46)

while for the stiff slightly curved interface,

Ju(0)K(x) = 0,

s
µ
∂u(0)

∂y

{
(x) +

∂

∂x
(τ ∗(x)

∂

∂x
)u

(0)
j (x, 0) = 0. (2.47)

Here, the notation J·K denotes the jump of the argument across the imperface

from the positive to the negative side (that is, Ju(0)K(x) = u(0)(x, 0+) −

u(0)(x, 0−)); we will use this notation extensively throughout the thesis. The

functions τ∗(x) and τ
∗(x) are defined by the equations

τ∗(x) = H(x)

1/2
∫

−1/2

ν−1
2 (x, ξ)dξ, τ ∗(x) = H(x)

1/2
∫

−1/2

ν1(x, ξ)dξ, (2.48)
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where εH(x) is the thickness of the interfacial layer (which depends on x), νj

are rescalings of µj (which varies in the interfacial layer) and ξ is a rescaling

of y.
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Chapter 3

Bloch-Floquet waves in a thin

bi-material strip containing a

periodic array of cracks and

imperfect interfaces

We begin to cover the new ground by addressing the problem of determin-

ing a weight function in a domain representing a bi-material strip containing

a semi-infinite interfacial crack. Where the crack is not present the inter-

face is considered imperfect, modelling a thin layer of adhesive between the

materials.

We consider in this chapter Mode III deformation and describe the ex-

tent of the interface’s imperfection by a positive parameter denoted κ. The

problem we study here is a singular perturbation problem; taking very small

values for κ gives a qualitatively significantly different weight function from

that derived for the perfect interface case in [44] which corresponds to the

30



formulation with κ = 0. Moreover, large values of κ can lead to interest-

ing effects where the boundary layers surrounding different crack tips decay

slowly so they can no longer be considered as having no influence on the

Bloch-Floquet conditions. This effect is discussed in [5]; for the analysis pre-

sented in the present chapter we assume that κ is not large enough for these

effects to come into play and later find a condition for this to be the case.

As mentioned in the previous chapter, problems regarding cracks in domains

including imperfect interfaces have been studied for instance in [1] and [43],

but no corresponding weight function has previously been constructed.

Aside from the presence of imperfect interfaces, another critical charac-

teristic of the problem is that the strip considered is very thin. In addition

to the strip itself being very thin, imperfect interfaces are typically replaced

with an extremely thin layer of a softer bonding material in finite element

computations (see for example [9, 23, 43]). This makes FEM modelling for

particularly thin strips extremely difficult or even impossible and motivate

the need for the asymptotic approach. In this chapter we compare the asymp-

totic model with finite element simulations only in cases when the strip is not

too thin, but stress that the finite element methods are unsuitable for the

limiting case whereas the asymptotics remain valid. The asymptotic method

also obtains crucial constants which describe the solution’s behaviour at the

crack tips which are vital for determining whether fracture may occur. These

important constants would not be attained by finite element methods.

The plan of the work is as follows. We first formulate the weight function

problem and use Fourier transform and Wiener-Hopf techniques to obtain

the solution. Asymptotic analysis enables us to find analytic expressions

for all important constants. We then present an application of the weight
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Y

Figure 3.1: Geometry for the weight function.

function to the analysis of Bloch-Floquet waves in a structure containing a

periodic array of cracks and imperfect interfaces. This application involves

the derivation of junction conditions. Asymptotic theories for structures

like rods and plates have received much attention throughout the history

of elasticity theory. For multi-structures however, conditions in engineering

practice are often formulated on the basis of intuitive physical assumptions.

For example, the zero order junction conditions for the problem addressed

fit with physical intuition. It is important to give these conditions a rigor-

ous mathematical footing; moreover, higher order junction conditions do not

follow such intuition [32].

We conclude by presenting a comparison between the perfect interface

case studied in [44] and the imperfect interface case presented here.

3.1 Weight Function

3.1.1 Formulation of the Problem

The geometry of the strip in which we construct the weight function is shown

in Figure 3.1. We define our domain ΠB to be the union of Π
(1)
B and Π

(2)
B ,
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where

Π
(j)
B = {(X, Y ) : X ∈ R, (−1)j+1Y ∈ (0, Hj)}, j = 1, 2.

Π
(1)
B corresponds to the material above the cut with shear modulus µ1, while

Π
(2)
B corresponds to the material below the cut with shear modulus µ2. The

materials have respective thicknesses H1 and H2. A semi-infinite crack with

its tip placed at the origin occupies X < 0, while the rest of the interface is

assumed to be imperfect.

The functions w1 and w2 are defined in domains Π
(1)
B and Π

(2)
B respectively

as solutions to the Laplace equation

∇2wj(X, Y ) = 0, (X, Y ) ∈ Π
(j)
B . (3.1)

We impose boundary conditions along the horizontal parts of the boundary

of ΠB and on the crack face itself and denote the components of stress in the

out-of-plane direction by

σ(j)
nz (X, Y ) := µj

∂wj

∂n
, j = 1, 2. (3.2)

We further assume a zero stress component in the out-of-plane direction along

the top and bottom of the strip, as well as along the face of the crack itself:

σ
(1)
Y Z(X,H1) = 0, σ

(2)
Y Z(X,−H2) = 0, X ∈ R, (3.3)

σ
(1)
Y Z(X, 0

+) = 0, σ
(2)
Y Z(X, 0

−) = 0, X < 0. (3.4)

Ahead of the cut we impose the imperfect transmission conditions

σ
(1)
Y Z(X, 0

+) = σ
(2)
Y Z(X, 0

−), X > 0, (3.5)

w1|Y=0+ − w2|Y=0− = κσ
(1)
Y Z(X, 0

+), X > 0, (3.6)

where κ > 0 is a parameter describing the extent of imperfection of the

interface.
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We seek solutions in the class of functions that decay exponentially as

X → +∞ and are bounded as X → −∞:

wj = O(e−γ+X), X → +∞; wj = Cj +O(eγ
−X), X → −∞, (3.7)

where γ± > 0 and Cj are constants to be sought from the analysis. At the

vertex of the crack, the solution wj is assumed to be weakly singular, with

w1, w2 = O(ln |X|), X → 0. (3.8)

Formally, conditions (3.1)-(3.7) are similar to those in [44] (which considers

the perfect interface) if we take κ = 0. However, with κ > 0 the problem

is a singular perturbation problem and the behaviour described in (3.8) is

entirely different.

3.1.2 An auxiliary problem

We now introduce an auxiliary solution Y defined as

Y(X, Y ) =











Y1(X, Y ), (X, Y ) ∈ Π
(1)
B ,

Y2(X, Y ), (X, Y ) ∈ Π
(2)
B ,

(3.9)

which satisfies the Laplace equation (3.1) along with the boundary and trans-

mission conditions (3.3)-(3.5), but the conditions at infinity and at the vertex

of the crack are modified as follows:

Yj = O(e−γ+X), X → +∞, (3.10)

Yj = CjX +Dj +O(eγ
−X), X → −∞, (3.11)

Yj = Yj(0
+, 0) +O(X ln |X|), X → 0. (3.12)

The functions w and Y are related via the formula

w(X, Y ) =
∂

∂X
Y(X, Y ), (3.13)
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where w(X, Y ) takes the value of w1(X, Y ) above the crack line and w2(X, Y )

below it, analogously to (3.9).

Bearing this relationship in mind, we often later refer to Y as a ‘weight

function’ as well as w. It is also shown in [40] that

Yj(R, θ) ∼
(−1)ja

(Y)
0

πµj

{

µ1µ2κπ

µ1 + µ2
+

[

1− ln

(

R

b
(Y)
0

)]

R cos θ

+ (−1)j+1(π + (−1)jθ)R sin θ

}

, R → 0, (3.14)

where the co-ordinates (R, θ) describe the polar co-ordinate system centred

at the origin with θ ∈ [0, π] for Y1 and θ ∈ [−π, 0] for Y2.

3.1.3 Derivation of Wiener-Hopf equation

We define the Fourier transforms with respect to X of Yj by

Ȳj(ξ, Y ) =

∞
∫

−∞

eiξXYj(X, Y )dX. (3.15)

The functions Ȳj are analytic in the strip S = {ξ ∈ C : −γ+ < Im(ξ) < 0},

and have a double pole only at the point ξ = 0 (this follows from the linear

behaviour of Yj near minus infinity), so

Ȳj(ξ, Y ) ∼
1

ξ2
Cj − i

Dj

ξ
+O(1), ξ → 0. (3.16)

Note that the functions Ȳj(ξ, Y ) can be analytically extended to the strip

S̃ = {ξ ∈ C : −γ+ < Im(ξ) < γ−}.

Let us now introduce JYK, the jump in Y , defined by

JYK = Y1|Y=0+ − Y2|Y=0− . (3.17)
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We see from (3.16) that the Fourier transform of the jump JYK(X) in general

has a double pole at the point ξ = 0.

We introduce the following notation:

Φ−(ξ) = JYK − µ1κ
∂Y1

∂Y

∣

∣

∣

∣

Y=0+

=

0
∫

−∞

(

JYK(X)− µ1κ
∂Y1

∂Y

∣

∣

∣

∣

Y=0+

)

eiξXdX,

(3.18)

where we have taken into account the imperfect transmission conditions JYK−
µ1κ

∂Y1

∂Y

∣

∣

Y=0+
= 0 for X > 0. The function Φ−(ξ) is analytic in the half-plane

Im(ξ) < 0 and has a double pole at ξ = 0. Thus it can be analytically

extended into the half-plane C− = {ξ ∈ C : Im(ξ) < γ−}. We further define

the function

Φ+(ξ) = µ1

∞
∫

0

∂Y1

∂Y

∣

∣

∣

∣

Y=0+

eiξXdX, (3.19)

and so according to the condition (3.4) of zero traction on the crack faces,

Φ+(ξ) is analytic in the half-plane C
+ = {ξ ∈ C : Im(ξ) > −γ+}.

We expect the asymptotic behaviours of the functions Φ± to be of the

form

Φ±(ξ) =
E±

1

ξ
+
E±

2 ln(∓iξ)
ξ

+O

(

1

ξ2

)

, ξ → ∞, (3.20)

in the respective domain according to (3.12); we later confirm this to be true.

Taking Fourier transforms of the Laplace equation in X gives that

∂2Ȳj

∂Y 2
− ξ2Ȳj = 0, (3.21)

whence the Fourier transforms of the functions Yj are of the form

Ȳj(ξ, Y ) = Aj(ξ) cosh(ξY ) +Bj(ξ) sinh(ξY ). (3.22)

Upon the application of boundary and interfacial conditions expressions re-
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lating Aj(ξ) and Bj(ξ) are found:

Bj(ξ) = (−1)jAj(ξ) tanh(ξHj), j = 1, 2; µ1B1(ξ)− µ2B2(ξ) = 0.

(3.23)

Moreover, Φ±(ξ) can be expressed in terms of Aj(ξ), Bj(ξ):

Φ−(ξ) = A1(ξ)− A2(ξ)− µ1κξB1(ξ), Φ+(ξ) = µ1ξB1(ξ). (3.24)

It follows that the functions Φ+(ξ) and Φ−(ξ) satisfy the functional equation

of the Wiener-Hopf type

Φ−(ξ) = −Ξ(ξ)Φ+(ξ), (3.25)

in the strip −γ+ < Im(ξ) < 0, where

Ξ(ξ) =
1

ξ

(

1

µ1

coth(ξH1) +
1

µ2

coth(ξH2) + κξ

)

, (3.26)

and −γ+ is equal to the size of the imaginary part of the first zero of Ξ(ξ)

lying below the real axis. We stress here that the form of the Wiener-Hopf

kernel Ξ(ξ) demonstrates that the weight function problem is a singular per-

turbation problem as κ→ 0; the presence of the term involving κ fundamen-

tally alters the asymptotic behaviour of Ξ(ξ) as ξ → ∞. This asymptotic

behaviour influences our choice of factorisation of Ξ(ξ) which we perform in

the following subsection.

3.1.4 Factorisation of the Wiener-Hopf kernel

Before we factorise the Wiener-Hopf kernel Ξ(ξ), we must determine its be-

haviour near ξ = 0 and also for ξ → ∞. We find that near ξ = 0, the kernel

has a double pole, in particular

Ξ(ξ) =
η

ξ2
+O(1), η =

1

µ1H1

+
1

µ2H2

. (3.27)
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It is readily seen that as ξ → ∞, the function Ξ(ξ) tends toward the constant

value κ. With this behaviour in mind, our aim is to factorise Ξ(ξ) into

the product of functions that are analytic in overlapping half-planes, with

one such function (which we shall denote Ξ∗(ξ)) being well-behaved in a

strip containing the real axis, non-zero and tending towards a constant (for

convenience and without loss of generality this constant will be 1) both as

ξ → 0 and as ξ → ±∞.

We note that the kernel function Ξ(ξ) as defined in (3.26) can be written

in the form

Ξ(ξ) = κ
(λ+ iξ)(λ− iξ)

ξ2
Ξ∗(ξ), (3.28)

where

Ξ∗(ξ) =
ξ(µ1 coth(ξH2) + µ2 coth(ξH1) + µ1µ2κξ)

µ1µ2κ(λ2 + ξ2)
, (3.29)

and

λ =

√

µ1H1 + µ2H2

µ1µ2H1H2κ
. (3.30)

Now, Ξ∗(ξ) is analytic in a strip containing the real axis, clearly positive,

even and smooth for all ξ ∈ R and has been chosen in such a way so that

Ξ∗(ξ) tends towards 1 as ξ → ±∞ and as ξ → 0. Furthermore, it can be

factorised in the form

Ξ∗(ξ) = Ξ+
∗ (ξ)Ξ

−
∗ (ξ), (3.31)

where

Ξ±
∗ (ξ) = exp







±1

2πi

∞∓iβ
∫

−∞∓iβ

ln Ξ∗(t)

t− ξ
dt







, (3.32)

and β > 0 is chosen to be sufficiently small so the contours of integration

lie within the strip of analyticity of Ξ∗(ξ). The functions Ξ±
∗ are analytic in

their respective half-planes.

38



To conclude this subsection, we have factorised Ξ(ξ) in the form given in

(3.28) and (3.31), where Ξ±
∗ are analytic in the half-planes denoted by their

superscripts. Note that in the specific case H1 = H2, a different factorisation

has been obtained in [1].

3.1.5 Asymptotic behaviour of Ξ∗ and Ξ+
∗

We now seek asymptotic estimates of Ξ+
∗ (ξ). We first note that for ξ within

the strip of analyticity,

Ξ∗(ξ) = 1 +O(|ξ|2), ξ → 0. (3.33)

Let us now consider more accurately the behaviour of Ξ∗(ξ) for ξ ∈ R as

ξ → ∞. Noting that Ξ∗(ξ) is an even function, it follows from (3.26) that

Ξ∗(ξ) = 1 +
µ1 + µ2

µ1µ2κ|ξ|
− λ2

ξ2
+O

(

1

|ξ|3
)

, ξ → ±∞. (3.34)

The same estimate is true for any ξ lying in the strip of analyticity. In order

to calculate asymptotic estimates for the function Ξ+
∗ (ξ) from the expressions

we have calculated from Ξ∗(ξ), we introduce the following theorem.

Theorem 9. Let

Ξ+
∗ (ξ) = exp







1

2πi

∞−iβ
∫

−∞−iβ

ln Ξ∗(t)

t− ξ
dt







, (3.35)

where Ξ∗(t) is analytic in a strip containing the real axis, positive, even,

smooth for all t ∈ R and satisfies the asymptotic estimates

Ξ∗(t) = 1 +O(|t|2), t→ 0, (3.36)

Ξ∗(t) = 1 +
c

|t| +O(t−2), t→ ±∞, (3.37)
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and β > 0 is sufficiently small to ensure that the contour of integration lies

within the strip of analyticity. Then Ξ+
∗ (ξ) satisfies the following asymptotic

estimates:

Ξ+
∗ (ξ) = 1 +

αξ

πi
+O(|ξ|2), ξ → 0, (3.38)

Ξ+
∗ (ξ) = 1 +

c

πi

ln(−iξ)
ξ

+O

(

1

|ξ|

)

, Im(ξ) → +∞, (3.39)

where α is defined by

α =

∞
∫

0

ln Ξ∗(t)

t2
dt. (3.40)

Proof. Introduce the auxiliary function

Θ+
∗ (ξ) =

∞−iβ
∫

−∞−iβ

ln Ξ∗(t)

t− ξ
dt, (3.41)

so that Ξ+
∗ (ξ) = exp((1/2πi)Θ+

∗ (ξ)). We first note that Θ+
∗ (0) = 0 since the

integrand is odd and estimate (3.36) demonstrates integrability of Ξ∗ at the

zero point, allowing us to take β = 0. Thus

Θ+
∗ (ξ) =

∞−iβ
∫

−∞−iβ

[

ln Ξ∗(t)

t− ξ
− ln Ξ∗(t)

t

]

dt = ξ

∞−iβ
∫

−∞−iβ

ln Ξ∗(t)

t(t− ξ)
dt→ 0, ξ → 0,

since the integral is bounded. Also, we have that

∞−iβ
∫

−∞−iβ

ln Ξ∗(t)

t2
dt =

∞
∫

−∞

ln Ξ∗(t)

t2
dt = 2

∞
∫

0

ln Ξ∗(t)

t2
dt = 2α, (3.42)

since the integrand is even and again by considering (3.36), which indicates

that we have integrability at the zero point. Here we have found that

Θ+
∗ (ξ) = 2αξ +O(|ξ|2), ξ → 0. (3.43)

From this we obtain the following estimate for Ξ+
∗ (ξ) as ξ → 0:

Ξ+
∗ (ξ) = 1 +

αξ

πi
+O(|ξ|2), ξ → 0. (3.44)
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We now seek estimates of Θ+
∗ (ξ) for ξ → ∞ within the domain. To avoid

problems caused by integrating along the real line, we consider ξ → ∞ in

such a way that Im(ξ) → +∞. Integrating (3.41) by parts, splitting the

integral in two and manipulating the resulting expression gives

Θ+
∗ (ξ) =

∞
∫

0

ln

(

1 + t/ξ

1− t/ξ

)

Ξ′
∗(t)

Ξ∗(t)
dt. (3.45)

We introduce an arbitrary R > 0 and split this integral at R to give

Θ+
∗ (ξ) =

R
∫

0

ln

(

1 + t/ξ

1− t/ξ

)

Ξ′
∗(t)

Ξ∗(t)
dt +

∞
∫

R

ln

(

1 + t/ξ

1− t/ξ

)

Ξ′
∗(t)

Ξ∗(t)
dt. (3.46)

We then see that

ln

(

1 + t/ξ

1− t/ξ

)

= 2
t

ξ
+O

(

t3

|ξ|3
)

, ξ → ∞, 0 < t < R, (3.47)

and from (3.34) we have

Ξ′
∗(t)

Ξ∗(t)
= − c

t2
+O

(

1

t3

)

, t→ ∞. (3.48)

This allows us to estimate

Θ+
∗ (ξ) =

∞
∫

R

[

− c

t2
+O

(

1

t3

)]

ln

(

ξ + t

ξ − t

)

dt+O

(

R

|ξ|

)

, ξ → ∞. (3.49)

After integrating by parts and performing a change of variables, we find that

∞
∫

R

1

t2
ln

(

ξ + t

ξ − t

)

dt = −1

ξ

(

ln

∣

∣

∣

∣

1

ξ2

∣

∣

∣

∣

+ i arg

(

− 1

ξ2

))

+O

(

1

|ξ|

)

, ξ → ∞,

(3.50)

and so from (3.49), we deduce that

Θ+
∗ (ξ) =

2c

ξ
ln(−iξ) +O

(

1

|ξ|

)

, Im(ξ) → +∞. (3.51)
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Recalling the relationship between our auxiliary function Θ+
∗ and Ξ+

∗ as we

discussed after (3.41), we see that

Ξ+
∗ (ξ) = 1 +

c

πi

ln(−iξ)
ξ

+O

(

1

|ξ|

)

, Im(ξ) → +∞. (3.52)

We now apply Theorem 9 to our function Ξ+
∗ (ξ) and find that

Ξ+
∗ (ξ) = 1 +

αξ

πi
+O(|ξ|2), ξ → 0, (3.53)

Ξ+
∗ (ξ) = 1 +

1

πi

(µ1 + µ2)

µ1µ2κ

ln(−iξ)
ξ

+O

(

1

|ξ|

)

, Im(ξ) → +∞. (3.54)

Here we have defined the asymptotic constant

α =

∞
∫

0

ln Ξ∗(t)

t2
dt. (3.55)

The important expression (3.54) describing logarithmic asymptotics at infin-

ity is needed later for equation (3.64).

3.1.6 Solution of the Wiener-Hopf equation

The factorised equation (3.25) is of the form

−κ(λ− iξ)Φ+(ξ)Ξ+
∗ (ξ) =

1

λ+ iξ
ξ2Φ−(ξ)

1

Ξ−
∗ (ξ)

. (3.56)

Both sides of (3.56) represent analytic functions in the strip −γ+ < Im(ξ) <

γ−. Moreover we now have asymptotic estimates for Ξ±
∗ (ξ) at the zero point

in equation (3.53) and for ξ → ±∞ in (3.54). We deduce that since both sides

of (3.56) exhibit the same behaviour at infinity in their respective domains

according to (3.20), both sides must be equal to a constant, which we denote

A. We can therefore obtain explicit expressions for Φ±, which are as follows:

Φ+(ξ) = − A
κ(λ− iξ)Ξ+

∗ (ξ)
, Φ−(ξ) =

A(λ+ iξ)Ξ−
∗ (ξ)

ξ2
, (3.57)
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We deduce that the Fourier transform of the weight functions Yj are given

by

Ȳj(ξ, Y ) = −AΦ+(ξ)

µjξ

{

cosh(ξ(Y + (−1)jHj))

sinh(ξ(−1)j+1Hj)

}

, j = 1, 2. (3.58)

This allows us to investigate the behaviour of Ȳj as ξ → ±∞ and at the zero

point. It also enables us to find the hitherto unknown real constants Cj and

Dj .

3.1.7 Evaluation of constants Cj, Dj, a
(Y)
0 , γ±

In this subsection we evaluate the constants γ+ (defined in (3.10)), γ−, Cj, Dj

(defined in (3.11)) and a
(Y)
0 (defined in (3.14)). We see from our expressions

for Ȳj and Φ+ (equations (3.57) and (3.58)), along with our asymptotic

estimate for Ξ+
∗ (ξ) as ξ → 0 that

Ȳj(ξ) =
(−1)j+1A
κλµjHj

(

1

ξ2
− i

ξ

(

−α
π
− 1

λ

))

+O(1), ξ → 0, (3.59)

where α is the constant defined in (3.55). It follows from our definition of Cj

and Dj in (3.16) that

Cj =
(−1)j+1A
κλµjHj

, Dj =
(−1)jA
κλµjHj

(

α

π
+

1

λ

)

. (3.60)

For normalisation we choose A = κλ, giving

Cj =
(−1)j+1

µjHj

, Dj =
(−1)j

µjHj

(

α

π
+

1

λ

)

. (3.61)

The chosen normalisation leaves (3.61)1 in the same form as in [44], but it is

clearly seen that the expression for Dj (which depends upon κ is different).

Mishuris (2001) [40] demonstrates that near the crack tip (i.e. as R → 0),

Yj(R, θ) has behaviour described by (3.14). From this we see that

JYK ∼ −κa(Y)
0 , R → 0. (3.62)
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The imperfect transmission conditions (3.6) therefore give that

µ1
∂Y1

∂Y

∣

∣

∣

∣

Y=0+

∼ −a(Y)
0 , X → 0. (3.63)

We earlier made an assumption in (3.20) regarding the behaviour of Φ+ at

infinity and now verify that this was correct. It follows from the expression

for Φ+(ξ) given in (3.57) and the asymptotic estimate for Ξ+
∗ (ξ) given in

(3.54) that

Φ+(ξ) =
λ

iξ
+

(µ1 + µ2)λ

µ1µ2πκξ2
ln(−iξ) +O

(

1

|ξ|2
)

, Im(ξ) → +∞, (3.64)

which justifies our previous claim.

In order to find the constant a
(Y)
0 , we will employ the following Abelian-

type theorem, stated and proved below as Theorem 10. A number of Abelian-

type theorems exist; a small collection can be found for instance in the paper

of Piccolroaz [52]. Of particular relevance is Theorem A.5 in that paper,

which describes the limit of a function near x = 0 provided its Fourier trans-

form Φ+(ξ) is a plus function displaying behaviour of the type

Φ+(ξ) = a1ξ
−1 + a2ξ

−2 +O(ξ−3), ξ → ∞. (3.65)

We seek to prove a similar Abelian-type theorem but with less favourable

behaviour of Φ+ of the form described in (3.64).

Theorem 10. Let f(x) be the function

f(x) =
1

2π

∞
∫

−∞

Φ+(ξ)e−ixξdξ. (3.66)

If Φ+(ξ) is analytic in C+ and

Φ+(ξ) = a1ξ
−1 +O(ξ−(1+δ)), ξ → ∞, (3.67)
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in the closed half-plane C
+
= C

+ ∪ R where δ > 0 is small, then f(x) = 0

for all x < 0 and

lim
x→0+

f(x) = −ia1. (3.68)

Proof. The fact that f(x) = 0 for all x < 0 is a direct consequence of the fact

that Φ+(ξ) is a ‘+’ function. Assume now that x > 0. From the assumptions

on the behaviour of the function Φ+(ξ), it follows that Φ+(ξ) = a1ξ
−1+R(ξ),

where ξR(ξ) → 0, as ξ → ∞, ξ ∈ C
+
(including ξ → ±∞, ξ ∈ R).

We write

f(x) =
1

2π







∞
∫

a

[Φ+(−ξ)eixξ + Φ+(ξ)e−ixξ]dξ +

a
∫

−a

Φ+(ξ)e−ixξdξ







. (3.69)

The first integral is

f1(x, a) =

∞
∫

a

[Φ+(−ξ)eixξ + Φ+(ξ)e−ixξ]dξ = f11(x, a) + f12(x, a), (3.70)

where we have defined the functions f11(x, a) and f12(x, a) by

f11(x, a) =

∞
∫

a

[

−a1
ξ
eixξ +

a1
ξ
e−ixξ

]

dξ, (3.71)

and

f12(x, a) =

∞
∫

a

[

R(−ξ)eixξ +R(ξ)e−ixξ
]

dξ. (3.72)

Evaluating f11(x, a), we obtain

f11(x, a) = −2ia1

∞
∫

ax

sin ξ

ξ
dξ, (3.73)

and so in particular we note that

f11(x, x
−1/2) = −2ia1

∞
∫

x1/2

sin ξ

ξ
dξ → −iπa1 as x→ 0 + . (3.74)
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We evaluate f12(x, a) by parts. Let us first consider

∞
∫

a

R(ξ)e−ixξdξ = e−ixξF (ξ)
∣

∣

∞

a
−

∞
∫

a

F (ξ)(−ix)e−ixξdξ, (3.75)

where

F (ξ) = −
∞
∫

ξ

R(t)dt. (3.76)

Now, note that

F (ξ) = −
∞
∫

ξ

R(t)dt =
A

ξδ
+O

(

1

ξδ+β

)

, ξ → +∞, (3.77)

for some small β > 0. We deduce that as a→ ∞, the first term in the right

hand side of (3.75) tends to zero. Now consider the second term in the right

hand side of (3.75). We again split the integral, writing that F (ξ) = A
ξδ
+N(ξ),

to obtain

∞
∫

a

ixF (ξ)e−ixξdξ = ix





∞
∫

a

A

ξδ
e−ixξdξ +

∞
∫

a

N(ξ)e−ixξdξ



 . (3.78)

We make the substitution s = xξ in the first integral, giving

∞
∫

a

ixF (ξ)e−ixξdξ = iAxδ
∞
∫

ax

e−is

sδ
ds+ ix

∞
∫

a

N(ξ)e−ixξdξ. (3.79)

Now let x → 0+ and a = x−1/2; the first integral on the right hand side of

(3.79) is bounded and so the first term tends to zero. Similarly the second

integrand consists of higher order terms than the first, so also decays. It

follows that
∞
∫

a

R(ξ)e−ixξdξ → 0 as a→ ∞. (3.80)

The same arguments give that
∞
∫

a

R(−ξ)eixξdξ also vanishes, and so

f12(x, x
−1/2) → 0 as x→ 0+. (3.81)
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Combining these results we see that

f1(x, x
1/2) → −iπa1 (3.82)

as x→ 0+.

Let us now consider the second integral in the right hand side of (3.69),

that is

f2(x, a) =

a
∫

−a

Φ+(ξ)e−ixξdξ. (3.83)

Similarly to how we manipulated f1, we split the integral f2 into the sum of

f21 and f22, where

f21(x, a) =

a
∫

−a

a1
ξ
e−ixξdξ, (3.84)

and

f22(x, a) =

a
∫

−a

R(ξ)e−ixξdξ. (3.85)

Let us now parameterise, writing ξ = aeiθ by manipulating the analyticity of

Φ+ in the upper complex half-plane. Then

f21(x, a) = −a1i
π
∫

0

e−ixaeiθdθ; (3.86)

and so as ax → 0, f21(x, a) → −iπa1. Again parameterising as ξ = aeiθ, we

obtain to leading order

a
∫

−a

R(ξ)e−ixξdξ =
i

aδ

π
∫

0

Aeiθ

eiθ(1+δ)
e−iaxeiθdθ. (3.87)

The final integral in (3.87) is bounded as a→ ∞ while x→ 0+ in such a way

that ax → 0. Thus f22(x, x
−1/2) → 0 as x → 0+. Combining these results

for f21 and f22, we see that

f2(x, x
−1/2) → iπa1, x→ 0 + . (3.88)
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Finally, recall from (3.69) that

f(x) =
1

2π
lim

a→+∞
{f1(x, a) + f2(x, a)} . (3.89)

Thus we can conclude that

f(x) → 1

2π
(−iπa1 − iπa1) = −ia1, (3.90)

as x→ 0+, which completes the proof.

Returning to the task of evaluating important constants, Theorem 10

(using µ1
∂Y
∂Y

in place of ‘f ’ in the statement of the theorem) yields that

lim
X→0+

µ1
∂Y
∂Y

= −λ, (3.91)

where λ has been defined in (3.30) and so it follows that

a
(Y)
0 = λ. (3.92)

The constant −γ+ is the imaginary part of the zero of the function Ξ(ξ)

in C+ that is closest to the real axis (see (3.26)). Manipulation of (3.26)

indicates that zeros of Ξ(ξ) satisfy

1

µ1

cot(γ+H1) +
1

µ2

cot(γ+H2)− κγ+ = 0, (3.93)

For the first zero below the axis, for large κ, γ+ should be small, and so it

can be shown that

γ+(κ) = λ(κ)(1 +O(κ−1)), κ→ ∞, (3.94)

indicating that γ+(κ) = O(κ−1/2), κ→ ∞. We also see that

γ+(0) ∈
(

π

2max{H1, H2}
,

π

2min{H1, H2}

)

. (3.95)
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The constant γ− is given by

γ− = πmin

{

1

H1
,
1

H2

}

. (3.96)

In conjunction with (3.61) we have now found all constants describing the

asymptotic behaviour of the weight function Y .

3.2 Application to Analysis of Bloch-Floquet

Waves

In this section, we present an application of the weight function derived in

the previous section by addressing the problem of out-of plane shear Bloch-

Floquet waves within a thin bi-material strip containing a periodic array of

longitudinal cracks and imperfect interfaces. The problem addressed is an

imperfect interface analogue to that studied in [44].

3.2.1 Geometry

The geometry of an elementary cell of the thin periodic structure considered

is shown in Figure 3.2. The elementary cell is of length a and contains two

materials of thicknesses εH1 and εH2, where ε > 0 is a small dimensionless

parameter. These materials occupy respective domains Π(j), j = 1, 2, and

the elementary cell is further split into smaller domains Ω
(m)
ε , m = 1, 2, 3, 4,

as shown in Figure 3.2. Along the join of the two materials and centered

on the origin sits a crack of length l < a. Outside the crack, the interface

is assumed to be imperfect, which models a thin layer of adhesive joining

the materials together. The extent of this imperfection is represented by the

parameter κ.
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Figure 3.2: Geometry of the elementary cell.

The functions u(j)(x, y) are defined in Π
(j)
ε , j = 1, 2 as solutions of the

Helmholtz equations

∇2u(j)(x, y) +
ω2

c2j
u(j)(x, y) = 0, (x, y) ∈ Π(j)

ε , j = 1, 2. (3.97)

Here, cj =
√

µj/ρj are the shear speeds in their respective domains Π
(j)
ε

j = 1, 2. The functions u(j) are regarded as out-of-plane displacements, µj

denotes the shear modulus and ρj the mass density of the material occupying

Π
(j)
ε . The quantity ω represents the radian frequency of the time-harmonic

vibrations with amplitude u.

3.2.2 Boundary conditions

We impose boundary conditions along the horizontal parts of the boundary

of Πε and on the crack face itself. We use similar notation to that in the

previous section to denote the components of stress (see (3.2)).

We assume a zero stress component in the out-of-plane direction along

the top and bottom of the strip, as well as along the face of the crack itself:

σ(1)
yz (x, εH1) = 0, σ(2)

yz (x,−εH2) = 0, x ∈ (−a/2, a/2), (3.98)

σ(1)
yz (x, 0

+) = 0, σ(2)
yz (x, 0

−) = 0, x ∈ (−l/2, l/2). (3.99)
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Outside the crack, along the boundary between Π
(1)
ε and Π

(2)
ε , there is an

imperfect interface described by the conditions of continuity of tractions

σ(1)
yz (x, 0

+) = σ(2)
yz (x, 0

−), x ∈ (−a/2,−l/2) ∪ (l/2, a/2), (3.100)

and a displacement jump across the interface that is proportional to the

traction on the interface:

u(1)(x, 0+)− u(2)(x, 0−) = εκσ(1)
yz (x, 0

+), x ∈ (−a/2,−l/2) ∪ (l/2, a/2).

(3.101)

We seek the solutions u(j) which represent the Bloch-Floquet waves, so

that at the ends of our elementary cell x = ±a/2 we have for j = 1, 2 the

Bloch-Floquet conditions

u(j)(−a/2, y) = e−iKau(j)(a/2, y), y ∈ (−εH2, εH1), (3.102)

σ(j)
xz (−a/2, y) = e−iKaσ(j)

xz (a/2, y), y ∈ (−εH2, εH1). (3.103)

For a fixed value of the Bloch parameter K, we seek the eigenvalues ω and

the corresponding eigenfunctions u(j) with finite norm in W 1
2 (Π

(j)
ε ), j = 1, 2.

In (3.101), the case in which κ = 0 corresponds to an ideal/perfect in-

terface between the different materials; such a problem was considered in

[44]. To summarise the approach used here, we approximate u in a certain

form, derive a lower-dimensional model together with boundary layers in the

vicinity of the vertices of the crack and then use our weight function to assist

in the derivation of junction conditions for a skeleton model.
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3.2.3 Asymptotic Ansatz

In the remainder of this chapter, we will often refer to u(x, y), which we

define for (x, y) ∈ Π
(1)
ε ∪Π

(2)
ε by

u(x, y) =











u(1)(x, y), (x, y) ∈ Π
(1)
ε ,

u(2)(x, y), (x, y) ∈ Π
(2)
ε .

(3.104)

The eigenfunctions u(x, y) are approximated in the form

u(x, y, ε) =
N
∑

k=0

εk

{

4
∑

m=1

χm

(

v(k)m (x) + ε2V (k)
m (x, Y )

)

+
(

W
(k)
A (XA, Y ) +W

(k)
B (XB, Y )

)}

+RN (x, y, ε), (3.105)

with scaled co-ordinates XA, XB and Y introduced in the vicinity of the left

and right vertices of the crack defined as

XA =
x− xA
ε

, XB =
x− xB
ε

, Y =
y

ε
. (3.106)

Here, v
(k)
m represent solutions of lower-dimensional problems within limit sets

Ω
(m)
0 , m = 1, 2, 3, 4 (see Figure 3.3 on page 53). χm = χm(x, y, ε) are cut-off

functions defined so that χm(x, y; ε) ≡ 1 in Ω
(m)
ε and decay rapidly to zero

outside Ω
(m)
ε . They vanish near the so-called junction points A and B (the

vertices of the crack). The terms W
(k)
A and W

(k)
B represent the boundary

layers near A and B, and V
(k)
m is the ‘fast’ change of eigenfunctions in the

transverse direction in the domain Ω
(m)
ε . RN is the remainder term in the

asymptotic approximation. The uppercase scaled co-ordinate XB defined

in (3.106) corresponds to X from the derivation of the weight function in

Section 3.1.

More specifically, the smooth cut-off functions χm ∈ C∞(R),m = 1, 2, 3, 4
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Figure 3.3: Geometry for the low dimensional model, consisting of four beams

Ω
(m)
0 in which the functions v

(k)
m are sought. Dashed lines show the ‘junction

points’ where the beams meet, which correspond to the crack tips.

are related to a function

χ(ξ) =











0, ξ ≤ 0,

1, ξ ≥ 1,

(3.107)

by the formulae

χ1(x, y; ε) = χ(−XA), χ2(x, y; ε) = χ(XA)χ(−XB)H(y),

χ3(x, y; ε) = χ(XA)χ(−XB)H(−y), χ4(x, y; ε) = χ(XB), (3.108)

where H(y) is the Heaviside step function.

We note that this form of Ansatz relies upon the vital assumption that

the boundary layers surrounding the crack vertices A and B are independent.

That is, we assume that the exponential decay of both boundary layers is

sufficiently rapid so that each boundary layer is negligible in the vicinity of

the other crack tip in the given elementary cell and near the tips of other

cracks in the periodic structure.

In this chapter we will consider the form of approximation given in (3.105)

with N = 1 and will comment on the effect of taking higher order approxi-

mations.
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3.2.4 One-dimensional model problems

Outside the vicinity of A and B, the boundary layers W
(j)
A and W

(j)
B decay

(we later verify this to be the case) and so seek u in the form

u(x, y, ε) ∼
1
∑

k=0

εk
(

v(k)m (x) + ε2V (k)
m (x, Y )

)

, (3.109)

where V
(k)
m have zero average over the cross-section of Ω

(m)
ε for all m =

1, 2, 3, 4 and x ∈ Ω
(m)
ε . That is,

∫ H1

0

V (k)
m (x, Y )dY = 0,

0
∫

−H2

V (k)
m (x, Y )dY = 0, (3.110)

for any x ∈ Ω
(m)
ε . In the region above and below the crack (in Ω

(2)
ε and Ω

(3)
ε ),

the low dimensional model problem is as in [44] and so for this part of the

domain we proceed in a similar fashion. The problem is however differently

formulated in Ω
(1)
ε and Ω

(4)
ε due to the imperfect transmission conditions in

these domains.

Zero and first order approximations: k = 0 and k = 1.

We first consider the cases where k = 0, 1 and begin by concentrating on the

part of the domain above and below the crack, that is Ω
(2)
ε and Ω

(3)
ε . We use

the notation v
(k)
1j to denote the function v

(k)
1 in Π

(j)
ε . Substitution of the form

of (3.109) into the Helmholtz equations (3.97) yields

∂2V
(k)
m

∂Y 2
(x, Y ) + (v(k)m )′′(x) +

ω2

d2m
v(k)m (x) = 0, m = 2, 3, k = 0, 1, (3.111)

where d2 = c1 and d3 = c2. Furthermore, we have along the cut as well as

on the top and bottom of our domain that

∂V
(k)
m

∂Y

∣

∣

∣

∣

∣

Y=0±

= 0, m = 2, 3,
∂V

(k)
2

∂Y

∣

∣

∣

∣

∣

Y=H1

=
∂V

(k)
3

∂Y

∣

∣

∣

∣

∣

Y=−H2

= 0. (3.112)
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It is easily seen that these boundary value problems are solvable if and only

if

(v(k)m )′′(x) +
ω2

d2m
v(k)m (x) = 0, |x| < l, m = 2, 3; k = 0, 1. (3.113)

This gives us equations for the low dimensional model in the domains Ω
(m)
0 ,

m = 2, 3. Moreover, it follows from (3.112) and (3.113) that V
(k)
m is a linear

function in Y for k = 0, 1, and we conclude from the condition that the

average of V
(k)
m over the cross-section of the strip must be zero that

V (k)
m (x, Y ) = 0, m = 2, 3; k = 0, 1. (3.114)

Let us now focus our attention on the layered structure Ω
(1)
ε ; analogous

arguments apply to Ω
(4)
ε The functions V

(k)
1j , k = 0, 1; j = 1, 2 satisfy the

equations

∂2V
(k)
1j

∂Y 2
(x, Y ) + (v

(k)
1j )

′′(x) +
ω2

c2j
v
(k)
1j (x) = 0. (3.115)

Integration of (3.115) taking into account boundary conditions (3.98) yield

that

∂V
(k)
11

∂Y
= −(Y −H1)

(

(v
(k)
11 )

′′(x) +
ω2

c21
v
(k)
11 (x)

)

(3.116)

∂V
(k)
12

∂Y
= −(Y +H2)

(

(v
(k)
12 )

′′(x) +
ω2

c22
v
(k)
12 (x)

)

(3.117)

It then follows from (3.100) that

µ1H1

(

(v
(k)
11 )

′′(x) +
ω2

c21
v
(k)
11 (x)

)

+ µ2H2

(

(v
(k)
12 )

′′(x) +
ω2

c22
v
(k)
12 (x)

)

= 0.

(3.118)

We now utilise the transmission condition across the imperfect interface as
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given in (3.101) to obtain

v
(0)
11 + εv

(1)
11 + ε2v

(2)
11 + ε2 V

(0)
11

∣

∣

∣

Y=0+
− v

(0)
12 − εv

(1)
12 − ε2v

(2)
12 − ε2 V

(0)
12

∣

∣

∣

Y=0−

= µ1κ
∂

∂Y

{

ε2 V
(0)
11

∣

∣

∣

Y=0+

}

+O(ε3),

(3.119)

which upon comparing terms in ε0, ε1 and ε2 gives the conditions

v
(0)
11 − v

(0)
12 = 0, (3.120)

v
(1)
11 − v

(1)
12 = 0, (3.121)

v
(2)
11 + V

(0)
11

∣

∣

∣

Y=0+
− v

(2)
12 − V

(0)
12

∣

∣

∣

Y=0−
= µ1κ

∂V
(0)
11

∂Y

∣

∣

∣

∣

∣

Y=0+

. (3.122)

For k = 0, 1 we have from equations (3.120) and (3.121) that v
(k)
11 (x) =

v
(k)
12 (x) = v(k)(x), say. Equation (3.118) then gives that

(v(k))′′(x) +
ω2

d2
v(k)(x) = 0, (3.123)

where

d = c1c2

√

µ1H1 + µ2H2

µ1H1c22 + µ2H2c21
. (3.124)

It follows that for k = 0, 1,

∂V
(k)
11

∂Y
(x, Y ) = ω2

(

1

c21
− 1

d2

)

v(k)(x) (Y −H1) , (3.125)

∂V
(k)
12

∂Y
(x, Y ) = ω2

(

1

c22
− 1

d2

)

v(k)(x) (Y +H2) . (3.126)

and so

V
(k)
11 (x, Y ) = ω2

(

1

c21
− 1

d2

)

v(k)(x)

{

(Y −H1)
2

2
+D1(x)

}

, (3.127)

V
(k)
12 (x, Y ) = ω2

(

1

c22
− 1

d2

)

v(k)(x)

{

(Y +H2)
2

2
+D2(x)

}

, k = 0, 1,

(3.128)
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where D1(x),D2(x) are functions which can be determined from the condition

that the cross sectional averages of V
(k)
m are zero as stated in equation (3.110).

We find that D1(x) and D2(x) are the constants

D1(x) = −H
2
1

6
, D2(x) = −H

2
2

6
. (3.129)

Second order approximation: k = 2.

We now consider the case k = 2. This analysis was not included in the paper

corresponding to this chapter [62], but is included here to demonstrate that

the asymptotic procedure can be extended further.

Hitherto we have only considered those cases in which k = 0, 1. When

k ≥ 2 our equations have an additional term in V
(k−2)
m :

∂2V
(k)
m

∂Y 2
(x, Y ) + (v(k)m )′′(x) +

ω2

c2j
v(k)m (x) +

ω2

c2j
V (k−2)
m = 0. (3.130)

Since we have already demonstrated that V
(0)
m (x, Y ) ≡ 0 for m = 2, 3, this

equation reduces to the same form as (3.111) when k = 2, implying that

V (k)
m (x, Y ) = 0, m = 2, 3, k = 0, 1, 2. (3.131)

This also implies that (3.113) is true for k = 2 as well as for k = 0, 1.

In the layered structure Ω
(1)
ε , we have that V

(0)
1 is the known function

described in (3.127) and (3.128), giving

∂2V
(2)
1j

∂Y 2
(x, Y ) + (v

(2)
1j )

′′(x) +
ω2

c2j
v
(2)
1j (x)

+
ω4

c2j

(

1

c2j
− 1

d2

)

v
(0)
1j (x)

{

(Y + (−1)jHj)
2

2
−
H2

j

6

}

= 0,

(3.132)
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together with boundary conditions

∂V
(2)
11

∂Y

∣

∣

∣

∣

∣

Y=H1

=
∂V

(2)
12

∂Y

∣

∣

∣

∣

∣

Y=−H2

= 0, µ1
∂V

(2)
11

∂Y

∣

∣

∣

∣

∣

Y=0+

= µ2
∂V

(2)
12

∂Y

∣

∣

∣

∣

∣

Y=0−

.

(3.133)

Integrating once with respect to Y and taking into account the boundary

conditions along the top and bottom of the strip give that

∂V
(2)
11

∂Y
= −(Y −H1)

(

ω2

c21
v
(2)
11 + (v

(2)
11 )

′′

)

− ω2

c21

Y
∫

0

V
(0)
11 (x, T )dT, (3.134)

∂V
(2)
12

∂Y
= −(Y +H2)

(

ω2

c22
v
(2)
12 + (v

(2)
12 )

′′

)

− ω2

c22

Y
∫

0

V
(0)
12 (x, T )dT. (3.135)

We note that the second boundary condition in (3.133) yields that equation

(3.118) holds also for the case k = 2, that is for k = 0, 1, 2:

µ1H1

(

(v
(k)
11 )

′′(x) +
ω2

c21
v
(k)
11 (x)

)

+ µ2H2

(

(v
(k)
12 )

′′(x) +
ω2

c22
v
(k)
12 (x)

)

= 0.

(3.136)

Moreover, it follows from (3.122) along with our equations for V
(0)
1j ((3.127)

and (3.128)) that

v
(2)
11 − v

(2)
12 = Bv(0)(x), (3.137)

where B is the constant

B = ω2

{

H2
2

3

(

1

c22
− 1

d2

)

− H2
1

3

(

1

c21
− 1

d2

)

− µ1κH1

(

1

c21
− 1

d2

)}

, (3.138)

derived by exploiting the condition that V
(k)
m has zero average over the cross

section of Ω
(m)
ε (see (3.110)). Substitution of (3.137) into (3.136) then gives

the following ordinary differential equation for v
(2)
12 :

(µ1H1 + µ2H2)(v
(2)
11 )

′′(x) +
ω2

c21
v
(2)
11 (x) = µ2H2B

{

(v(0))′′(x) +
ω2

c22
v(0)(x)

}

,

(3.139)
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and taking into account (3.123) we have

(µ1H1 + µ2H2)(v
(2)
11 )

′′(x) +
ω2

c21
v
(2)
11 (x) =

(

µ2H2B
c22

− 1

d2

)

ω2v(0)(x). (3.140)

This, in conjunction with (3.137) gives an expression for v
(2)
12 .

To conclude this section, we have found that our problem with the im-

perfect interface has the same low dimensional model up to terms in ε as the

case with the perfect interface studied in [44], but with a different distribu-

tion of the fast-changing part. The equations for v
(k)
4 and V

(k)
4 are of course

similar to the case examined here where m = 1. We would like to stress that

the imperfect interface impacts on the low dimensional model equations for

terms in εk, k ≥ 2. The equations gained in this section need to be comple-

mented with the boundary conditions and junction conditions at the points

xA and xB. In order to derive these junction conditions which depend on the

imperfect parameter κ, we construct boundary layers in the vicinity of the

vertices of the crack.

3.3 Junction conditions

The smooth cut-off functions χm that were defined in (3.108) allow us to

extend the function (3.109) outside Ω
(m)
ε , m = 1, 2, 3, 4, giving

u(x, y; ε) ∼
2
∑

k=0

εk
4
∑

m=1

χm(x, y, ε)
(

v(k)m (x) + ε2V (k)
m (x, Y )

)

, (3.141)

however this gives an error near the junction points xA and xB. We therefore

introduce boundary layers WA(XA, Y ) and WB(XB, Y ), and so seek u in the
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form

u(x, y, ε) ∼
2
∑

k=0

εk

{

4
∑

m=1

χm(x, y, ε)(v
(k)
m (x) + ε2V (k)

m (x, Y ))

+W
(k)
A (XA, Y ) +W

(k)
B (XB, Y )

}

(3.142)

Here, substituting (3.142) into the original equation and comparing terms in

the same degree of ε we have

∇2
XαY

{

W (k)
α (Xα, Y ) + F (k)

α (Xα, Y )
}

= 0, α = A,B, k = 0, 1. (3.143)

∇2
XαY

{

W (2)
α (Xα, Y ) + F (2)

α (Xα, Y ) +

4
∑

m=1

χm(x, y; ε)V
(0)
m (xα, Y )

}

(3.144)

= −
4
∑

m=1

χm
ω2

c2j
v(0)m (xα)−

ω2

c2j
W (0)

α , α = A,B, k = 2. (3.145)

with the functions F given by

F (0)
A =

3
∑

m=1

v(0)m (xA)χm(x, y; ε), F (0)
B =

4
∑

m=2

v(0)m (xB)χm(x, y; ε), (3.146)

F (1)
A =

3
∑

m=1

{

(v(0)m )′(xA)XA + v(1)m (xA)
}

χm(x, y; ε), (3.147)

F (1)
B =

4
∑

m=2

{

(v(0)m )′(xB)XB + v(1)m (xB)
}

χm(x, y; ε), (3.148)

F (2)
A =

3
∑

m=1

{

(v(0)m )′′(xA)
X2

A

2
+ (v(1)m )′(xA)XA + (v(2)m )(xA)

}

χm(x, y; ε),

(3.149)

F (2)
B =

4
∑

m=2

{

(v(0)m )′′(xB)
X2

B

2
+ (v(1)m )′(xB)XB + (v(2)m )(xB)

}

χm(x, y; ε).

(3.150)
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We now focus our attention on the right-hand crack tip xB; analogous argu-

ments apply to xA. We also restrict ourselves to the cases k = 0, 1 for the

moment and will deal with the case k = 2 separately later. We will consider

in the following analysis four functions gi, i = 1, 2, 3, 4, which are solutions of

the Laplace equation. These solutions also satisfy the boundary conditions

corresponding to zero traction on the top and bottom edges of the strip as

well as along the cut itself:

µ1
∂gi
∂Y

∣

∣

∣

∣

Y=H1

= µ2
∂gi
∂Y

∣

∣

∣

∣

Y=−H2

= 0, X ∈ R, (3.151)

µ1
∂gi
∂Y

∣

∣

∣

∣

Y=0+
= µ2

∂gi
∂Y

∣

∣

∣

∣

Y=0−
= 0, X < 0. (3.152)

They also satisfy the transmission conditions across the imperfect interface

gi|Y=0+ − gi|Y=0− = µ1κ
∂gi
∂Y

∣

∣

∣

∣

Y=0+
, X > 0, (3.153)

and
∂gi
∂Y

∣

∣

∣

∣

Y=0+
=
∂gi
∂Y

∣

∣

∣

∣

Y=0−
, X > 0. (3.154)

These solutions are given by

g1 = 1, g2 = XB, g3 = Y , g4 =
∂Y
∂XB

, (3.155)

where Y is the weight function derived earlier.

We expect thatWB behave as boundary layers, decaying exponentially as

X → +∞ and behaving as C
(k)
j X+D

(k)
j as X → −∞. We first express C

(k)
j ,

D
(k)
j , k = 0, 1 in terms of v

(k)
m and their derivatives. We have from Green’s

formula that

0 =
2
∑

j=1

µj

∫

∂Π
(j)
B (L)

(

gi
∂

∂n
(W

(k)
B + F (k)

B )− (W
(k)
B + F (k)

B )
∂gi
∂n

)

dS; (3.156)
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l
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3

l
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l
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S
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S
(2)
δ

Π
(1)
B

(L)

Π
(2)
B

(L)

XB = −L XB = L

Figure 3.4: Contour of integration for (3.156)

the contour of integration ∂Π
(j)
B (L) is shown in Figure 3.4. In the following

subsections, we will consider a number of cases that correspond to different

choices of the indices i and k.

3.3.1 The cases k = 0, 1, i = 1, 2, 3.

We see from boundary conditions that integrals over the horizontal parts

of the boundary l
(j)
1 , l

(j)
3 , l

(j)
4 , j = 1, 2 give zero contribution to the integral.

Moreover, the contribution from Sδ also disappears as δ → 0 (see Figure 3.4)

for g1, g2 and g3, leaving contributions solely from l
(j)
2 and l

(j)
5 in these cases.

From the definitions of F (m)
B , we obtain the following limits as XB → ±∞
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for k = 0, 1:

F (0)
B = v

(0)
4 (xB), XB → +∞, (3.157)

F (0)
B = v

(0)
2 (xB)H(Y ) + v

(0)
3 (xB)H(−Y ), XB → −∞, (3.158)

F (1)
B = (v

(0)
4 )′(xB)XB + v

(1)
4 (xB), XB → +∞, (3.159)

F (1)
B =

{

(v
(0)
2 )′(xB)XB + v

(1)
2 (xB)

}

H(Y )

+
{

(v
(0)
3 )′(xB)XB + v

(1)
3 (xB)

}

H(−Y ), XB → −∞. (3.160)

Since W
(k)
B → 0 as XB → +∞, equation (3.156) reduces to

0 =

2
∑

j=1

µj

{

∫

l
(j)
5

(

gi
∂

∂XB
F (k)

B − F (k)
B

∂gi
∂XB

)

dS

−
∫

l
(j)
2

(

gi
∂

∂XB

(

F (k)
B +W

(k)
B

)

−
(

F (k)
B +W

(k)
B

) ∂gi
∂XB

)

dS

}

(3.161)

As an example of how to proceed, let us first consider the case where we

use g1 = 1 and F (0)
B . Then equation (3.161) becomes

0 =
2
∑

j=1

µj















∫

l
(j)
5

0dS −
∫

l
(j)
2

1 · C(0)
j dS















= µ1H1C
(0)
1 + µ2H2C

(0)
2 . (3.162)

Applying this procedure with g1, g2, g3; F (0)
B ,F (1)

B and for brevity of notation

defining the constants

ζ1 = µ1H1, ζ2 = µ2H2, (3.163)
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we obtain the following equations:

ζ1C
(0)
1 + ζ2C

(0)
2 = 0, (3.164)

ζ1(v
(0)
2 (xB) +D

(0)
1 ) + ζ2(v

(0)
3 (xB) +D

(0)
2 ) = (ζ1 + ζ2)v

(0)
4 (xB), (3.165)

ζ1((v
(0)
2 )′(xB) + C

(1)
1 ) + ζ2((v

(0)
3 )′(xB) + C

(1)
2 ) = (ζ1 + ζ2)(v

(0)
4 )′(xB),

(3.166)

ζ1(v
(1)
2 (xB) +D

(1)
1 ) + ζ2(v

(1)
3 (xB) +D

(1)
2 ) = (ζ1 + ζ2)v

(1)
4 (xB), (3.167)

ζ1(D1C
(0)
1 − (v

(0)
2 (xB) +D

(0)
1 )C1) + ζ2(D2C

(0)
2 − (v

(0)
3 (xB) +D

(0)
2 )C2) = 0,

(3.168)

ζ1(D1(v
(0)
2 )′(xB) +D1C

(1)
1 − C1v

(1)
2 (xB)− C1D

(1)
1 )

+ ζ2(D2(v
(0)
3 )′(xB) +D2C

(1)
2 − C2v

(1)
3 (xB)− C2D

(1)
2 ) = 0. (3.169)

3.3.2 The cases k = 0, 1; i = 4.

To obtain two further equations, we apply the same procedure to the solution

g4 = ∂Y
∂XB

. Again, the contribution from the horizontal parts of the contour

of integration is zero, leaving nonzero contributions from the vertical parts of

the contour, l
(j)
2 and l

(j)
5 . Unlike with g1, g2 and g3 however, the contribution

from Sδ
(j) is non-zero. We investigate the behaviour of g4 near the crack tip.

We have that

g
(j)
4 =

∂Yj

∂X
=
∂Yj

∂R
cos θ − 1

R

∂Yj

∂θ
sin θ, (3.170)

where (R, θ) is the usual polar co-ordinate system, with R =
√

X2
B + Y 2 and

so from our asymptotic estimate for Yj near the crack tip we deduce that

near the crack tip,

g
(j)
4 ∼ (−1)j

πµj

{

b
(Y)
0 + a

(Y)
0 lnR + (−1)(j+1)a

(Y)
0 sin 2θ(π + (−1)jθ)

}

(3.171)
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and so for small R,

∂g
(j)
4

∂R
∼ (−1)ja

(Y)
0

πµjR
. (3.172)

Noting that the outward normal to S
(j)
δ is in the direction of −R, we have

that as δ → 0

µj

∫

Sδ

(

g4

(

− ∂

∂R

)

(W
(k)
B + F (k)

B )− (W
(k)
B + F (k)

B )

(

−∂g4
∂R

))

dS

= µj

∫

Sδ

(

(W
(k)
B + F (k)

B )
∂g4
∂R

)

Rdθ (3.173)

= µj

∫

Sδ

(−1)ja
(Y)
0

πµjR

(

W
(k)
B + F (k)

B

)

Rdθ. (3.174)

Since WB satisfies the same model problem as Y , it too will possess asymp-

totic behaviour at the crack tip of the same form as g4 in (3.171), but with

different constants which we denote a
(W )
(k) and b

(W )
(k) for k = 1, 2. The contri-

bution to the integral from the circular part of the contour is therefore given

by

a
(Y)
0

π

( 0
∫

−π

(

W
(k)
B (0+, θ) + F (k)

B (0+, θ)
)

dθ −
π
∫

0

(

W
(k)
B (0+, θ) + F (k)

B (0+, θ)
)

dθ

)

=
a
(Y)
0

π

0
∫

−π

µ1κ

µ1 + µ2
a
(W )
(k) dθ +

a
(Y)
0

π

π
∫

0

µ2κ

µ1 + µ2
a
(W )
(k) dθ = κa

(Y)
0 a

(W )
(k) .

(3.175)

With this information at hand, we are now able to apply (3.156) with g4 and

F (1)
B ,F (2)

B , yielding our further two relationships

µ1H1C1C
(0)
1 + µ2H2C2C

(0)
2 = κa

(Y)
0 a

(W )
(0) (3.176)

and

µ1H1C1((v
(0)
2 )′(xB)+C

(1)
1 )+µ2H2C2((v

(0)
3 )′(xB)+C

(1)
2 ) = κa

(Y)
0 a

(W )
(1) . (3.177)
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Note that due to the chosen normalisation for the constants C1 and C2 (see

3.61 on page 43), we have that µjHjCj = (−1)j+1 for j = 1, 2.

3.3.3 The cases for which k = 2.

When studying the second order approximation, we again substitute our

Ansatz (3.142) into our Helmholtz equations and compare terms in ε0, yield-

ing

∇2
XBY

{

W
(2)
B (XB, Y ) +

4
∑

m=2

χm(x, y; ε)

(

v(2)m (xB) + (v(1)m )′(xB)XB

+ (v(0)m )′′(xB)
X2

B

2
+ V (0)

m (xB, Y )

)}

= −
4
∑

m=2

χm(x, y; ε)
ω2

d2m
v(0)m (xB)−

ω2

d2m
W

(0)
B . (3.178)

We can rewrite this as

∇2
XBY

{

W
(2)
B (XB, Y ) +

4
∑

m=2

χm(x, y; ε)

(

v(2)m (xB) + (v(1)m )′(xB)XB

+ (v(0)m )′′(xB)
X2

B

2
+ V (0)

m (xB, Y )

)}

= −
4
∑

m=2

χm(x, y; ε)

(

(v(0)m )′′(xB) +
ω2

d2m
v(0)m (xB)

)

− ω2

d2m
W

(0)
B ,

(3.179)

and since (v
(0)
m )′′(xB) +

ω2

d2m
v
(0)
m (xB) = 0, we have

∆XBY

{

W
(2)
B (XB, Y ) + F (2)

B (XB, Y )
}

= −ω2

d2m
W

(0)
B , (3.180)

where we have defined

F (2)
B =

4
∑

m=2

χm(x, y; ε)
(

v(2)m (xB) + (v(1)m )′(xB)XB + V (0)
m (xB, Y )

)

. (3.181)
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We see that F (2)
B behaves at ±∞ as

F (2)
B = v

(2)
4 (xB) + (v

(1)
4 )′(xB)XB + V

(0)
4 (xB, Y ), XB → +∞, (3.182)

and behaves as follows as X → −∞:

F (2)
B =

{

v
(2)
2 (xB) + (v

(1)
2 )′(xB)XB + V

(0)
2 (xB, Y )

}

H(Y )

+
{

v
(2)
3 (xB) + (v

(1)
3 )′(xB)XB + V

(0)
3 (xB, Y )

}

H(−Y ). (3.183)

Green’s formula then yields that

∫

ΠB

gi∇2
XBY (W

(2)
B + F (2)

B )dΠB

=
2
∑

j=1

µj

∫

∂Π
(j)
B

(

gi
∂

∂n
(W

(2)
B + F (2)

B )− (W
(2)
B + F (2)

B )
∂gi
∂n

)

dS.

(3.184)

We consider first the case where i = 1, that is g1 ≡ 1. Then (3.184) reduces

to

−
2
∑

j=1

∫

Π
(j)
B

ω2

c2j
W

(0)
B dΠ

(j)
B =

2
∑

j=1

µj

∫

∂Π
(j)
B

∂

∂n
(W

(2)
B + F (2)

B )dS. (3.185)

The contribution from the horizontal parts of the integral on the right hand

side of (3.185) is zero, and so

−
2
∑

j=1

∫

Π
(j)
B

ω2

c2j
W

(0)
B dΠ

(j)
B =

2
∑

j=1

µj















∫

l
(j)
5

∂

∂XB

F (2)
B dY −

∫

l
(j)
2

∂

∂XB

(F (2)
B +W

(2)
B )dY















= (ζ1 + ζ2)(v
(1)
4 )′(xB)− ζ1((v

(1)
2 )′(xB) + C

(2)
1 )− ζ2((v

(1)
3 )′(xB) + C

(2)
2 ).

(3.186)
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Here we have used condition (3.110) which states that V
(0)
m has zero average

across the cross section (and therefore so does its XB-derivative). Rearrang-

ing gives

µ1H1C
(2)
1 + µ2H2C

(2)
2 = (µ1H1 + µ2H2)(v

(1)
4 )′(xB)− µ1H1(v

(1)
2 )′(xB)

−µ2H2(v
(1)
3 )′(xB) +

2
∑

j=1

∫

Π
(j)
B

ω2

c2j
W

(0)
B dΠ

(j)
B .

(3.187)

3.3.4 Deriving the junction conditions

We define the column matrices

E(k) =
[

C
(k)
1 C

(k)
2 D

(k)
1 D

(k)
2

]T

, k = 0, 1. (3.188)

The eight equations obtained in the previous two subsections can then be

rewritten as two matrix equations, the first of which is found to be

ME(0) =

















0

(µ1H1 + µ2H2)v
(0)
4 (xB)− µ1H1v

(0)
2 (xB)− µ2H2v

(0)
3 (xB)

µ1H1C1v
(0)
2 (xB) + µ2H2C2v

(0)
3 (xB)

κa
(Y)
0 a

(W )
0 ,

















(3.189)

where M is the 4x4 matrix























µ1H1 µ2H2 0 0

0 0 µ1H1 µ2H2

µ1H1D1 µ2H2D2 −µ1H1C1 −µ2H2C2

µ1H1C1 µ2H2C2 0 0

,























(3.190)
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where Cj and Dj are the asymptotic constants from the weight function

defined in (3.61). The determinant of M is given by

det(M) = −(µ1H1 + µ2H2)
2 < 0. (3.191)

Therefore for C
(0)
1 = C

(0)
2 = D

(0)
1 = D

(0)
2 = 0 (that is, for W to vanish far

away from the crack tip as we would expect for such a boundary layer), we

have that the matrix in the right hand side of (3.189) must be equal to zero.

From this follow the junction conditions

v
(0)
2 (xB) = v

(0)
3 (xB) = v

(0)
4 (xB), (3.192)

a
(W )
(0) = 0. (3.193)

The latter condition (3.193) yields that W
(0)
B ≡ 0. The second matrix equa-

tion is

ME(1) = (3.194)
















(µ1H1 + µ2H2)(v
(0)
4 )′(xB)− µ1H1(v

(0)
2 )′(xB)− µ2H2(v

(0)
3 )′(xB)

(µ1H1 + µ2H2)v
(1)
4 (xB)− µ1H1v

(1)
2 (xB)− µ2H2v

(1)
3 (xB)

µ1H1C1v
(1)
2 (xB) + µ2H2C2v

(1)
3 (xB)− µ1H1D1(v

(0)
2 )′(xB)− µ2H2D2(v

(0)
3 )′(xB)

κa
(Y)
0 a

(W )
1 − µ1H1C1(v

(0)
2 )′(xB)− µ2H2C2(v

(0)
3 )′(xB)

















where M is the matrix given in (3.190). For C
(1)
1 = C

(1)
2 = D

(1)
1 = D

(1)
2 = 0,

the right hand matrix is again set to zero. Noting that a
(Y)
0 = λ (see (3.92))

and that µ1H1C1 + µ2H2C2 = 0, setting the fourth row of the RHS matrix

to zero then yields that

a
(W )
(1) =

1

κλ
∆{(v(0))′}. (3.195)

where

∆{(v(0))′}(xB) = (v
(0)
2 )′(xB)− (v

(0)
3 )′(xB). (3.196)
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The other conditions imply

v
(1)
2 (xB) = v

(1)
4 (xB)− µ2H2

µ1H1+µ2H2

(

α
π
+ 1

λ

)

∆{(v(0))′}(xB), (3.197)

v
(1)
3 (xB) = v

(1)
4 (xB) +

µ1H1

µ1H1+µ2H2

(

α
π
+ 1

λ

)

∆{(v(0))′}(xB), (3.198)

along with the relationship

(µ1H1 + µ2H2)(v
(0)
4 )′(xB)− µ1H1(v

(0)
2 )′(xB)− µ2H2(v

(0)
3 )′(xB) = 0. (3.199)

We stress that α and λ are functions of κ and so expressions (3.197)

and (3.198) describe how the junction conditions depend upon the extent of

imperfection of the interface. In particular, (α/π + 1/λ) is a constant that

plays a crucial physical role since it defines the proportionality between the

displacement jump in the first order approximation and the angle of opening

in the zero order approximation. Equation (3.199) complements conditions

(3.192) and (3.193) to give full information for the zero order approximation.

We later present numerical results for the normalized constant αI = ((α/π)+

1/λ)/(H1 +H2).

The conditions regarding the first order approximation (3.195), (3.197)

and (3.198) can be complemented by a further equation in (v
(1)
m )′(xB), which

follows from the next level of approximation, i.e. taking N = 2 in (3.105):

µ1H1(v
(1)
2 )′(xB) + µ2H2(v

(1)
3 )′(xB)− (µ1H1 + µ2H2)(v

(1)
4 )′(xB)

=

2
∑

j=1

∫

Π
(j)
B

ω2

c2j
W

(0)
B dΠ

(j)
B , (3.200)

and by our earlier comment that W
(0)
B ≡ 0, the right side of this expression

is zero. At this point we would like to comment that taking higher order ap-

proximations and evaluating higher order junction conditions is possible but

much more advanced. For example, integrals analogous to that on the right
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hand side of the above expression would depend upon W
(1)
B and boundary

layers from higher order approximations, and so would not in general be zero.

However, since we focus on thin strips, ε is small and so terms in ε2 would

give significantly less contribution than the lower order approximations. We

later comment on the accuracy of the zero order approximation by comparing

computations against FEM results in a case where ε is not too small. While

the accuracy of the low dimensional model will increase for smaller ε, finite

element computations become difficult and inefficient for very small values

which correspond to very thin strips.

3.3.5 Summary of low dimensional model and bound-

ary layer analysis

Figure 3.5 on page 72 summarises the results obtained in this section by

illustrating the right-hand junction point/crack tip xB for both the low di-

mensional model (illustrated by three beams meeting near the junction point)

and the boundary layer near the crack tip. Red lines correspond to the crack

faces while blue lines illustrate the imperfect interface.

In the zero order low dimensional model, displacement is continuous at

the junction point (see (3.192)) and the boundary layer has zero opening at

the crack tip (3.193). However, the low dimensional model allows an opening

angle of the beams of size ∆{(v(0))′} as defined in (3.196).

For the first order low dimensional model, there is a displacement jump

at the junction point proportional to the angle of opening in the zero order

model as demonstrated by (3.197) and (3.198) on page 70; the constant of

proportionality is αI . For the first order approximation, there is a displace-

ment opening at the crack tip whose size is also proportional to ∆{(v(0))′}.
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∆{(v(0))′} 0

LDM Zero order approximation (ε0) BL

αI∆{(v(0))′} ∆{(v(0))′}

LDM First order approximation (ε1) BL

Figure 3.5: Zero and first order behaviours of the low dimensional model

(LDM) and boundary layer (BL) near the right-hand junction point/crack

tip xB.

3.4 Numerical simulations and discussions

To enable us to compare results with the perfect interface case discussed in

[44] effectively, we seek normalized constants. We first seek a normalized

representation of α as defined in equation (3.55) on page 42. We introduce

the notation

H = H1 +H2, H∗ =
H1 −H2

H1 +H2
, µ∗ =

µ1 − µ2

µ1 + µ2
, κ∗ =

κ(µ1 + µ2)

H
, λ∗ = λH,

(3.201)

where H∗, µ∗ and κ∗ are non-dimensional parameters which respectively de-

scribe the geomterical, mechanical and imperfect properties of the problem.

λ is the constant dependent on µj, Hj and κ defined in (3.30). λ∗ can be
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expressed in terms of the other dimensionless parameters as

λ2∗ =
8(1 + µ∗H∗)

κ∗(1− µ2
∗)(1−H2

∗ )
. (3.202)

We also introduce the function

Ξ∗∗(t) =
t

λ2∗ + t2

(

t +
2

κ∗(1 + µ∗)
coth

t(1 +H∗)

2
+

2

κ∗(1− µ∗)
coth

t(1−H∗)

2

)

,

which satisfies the relationship Ξ∗∗(t) = Ξ∗

(

t
H

)

, and so we can write

α =

∞
∫

0

ln Ξ∗(ξ)

ξ2
dξ =

∞
∫

0

H2 ln Ξ∗∗(t)

t2
dt

H
= H

∞
∫

0

ln Ξ∗∗(t)

t2
dt = Hα∗, (3.203)

where we have defined the non-dimensional quantity α∗. We find through

asymptotic analysis that

lnΞ∗∗(t)

t2
=

1

12

H3
∗µ∗ −H2

∗ − µ∗H∗ + 1

1 + µ∗H∗

+O(t2), t→ 0. (3.204)

Mishuris, Movchan and Bercial [44] showed that in the analogous prob-

lem to that discussed in this chapter with a perfect interface instead of an

imperfect interface,

Dj = αP (H1 +H2)Cj, (3.205)

where

αP =
1

π
ln

{

(

1 +H∗

2

)
1+H∗

2
(

1−H∗

2

)
1−H∗

2

}

− µ∗

π

∞
∫

0

H∗ − tanh(tH∗) coth(t)

(sinh(t) + µ∗ sinh(tH∗))t
dt. (3.206)

We have demonstrated (see the form of the constants Cj , Dj in (3.61)) that

for the imperfect interface problem,

Dj = αI(H1 +H2)Cj , (3.207)
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Figure 3.6: Contour plots of the ratio αI/αP for four different values of κ∗, a dimen-

sionless parameter describing the extent of imperfection of the interface between the two

materials. The axes of each plot are µ∗ and H∗, dimensionless parameters respectively

describing the mechanical and geometric properties of the problem. The ratio αI/αP gets

closer to 1 as κ∗ decreases in value towards 0.

where

αI = −





1

π

∞
∫

0

ln Ξ∗∗(t)

t2
dt +

1

λ∗



 , (3.208)

and since small κ∗ correspond to an interface which is ‘almost perfect’, we

would expect αI → αP as κ∗ → 0. Figure 3.6 shows a plot of the ratio αI/αP

on axes of µ∗ against H∗ for four different values of κ∗. From this it is easily

seen that as κ∗ → 0, αI/αP gets close to 1 as expected. The behaviour of

the weight functions near the crack tip are however absolutely different since
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the problem is singularly perturbed, that is:

JYK ∼ √
ηκ, κ→ 0, (3.209)

µ1
∂Y
∂Y

∣

∣

∣

∣

Y=0+

∼ −
√

η

κ
, X → 0, κ→ 0, (3.210)

where η is defined in (3.33). In the plots showing the ratio for small values

of κ∗, the highest deviations from 1 occur near the corner of the plot. These

correspond to the cases where there is a high contrast between the shear

moduli and thicknesses of the two materials. We see that in the cases where

the materials have similar shear moduli and thicknesses (nearer the center of

the plot), the ratio αI/αP quickly approaches 1 as κ∗ → 0.
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Figure 3.7: Surface plots of αI for κ∗ = 100, 1 and 0.01; also of αP , all plotted on axes

of µ∗ and H∗.
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Region where crack is present

-0.04 -0.04

Figure 3.8: Finite element computation (COMSOL) contour plot of the eigensolution

corresponding to the standing Bloch-Floquet waves for three different values of κ. Top:

Bonding material with shear modulus 1000µresin. Middle: Bonding material is epoxy

resin. Bottom: Bonding material with shear modulus µresin/10. Countours join points

of integer values, and the dotted vertical lines indicate the location of the crack tips.

Figure 3.7 on page 75 shows surface plots of αI on axes of µ∗ and H∗ for

κ∗ = 100, 1, and 0.01. This constant describes the impact that the imperfect

interface has upon the junction conditions as described in equations (3.197)

and (3.198). Also shown in the figure is a plot of αP . The similarity between

the plot of αI for κ∗ = 0.01 and the plot of αP is evident here. For the

cases with larger κ∗ values, we see that αP is differently dependent upon the

mechanical and geometric parameters of the problem.

Figure 3.8 shows finite-element plots (using the COMSOL Multiphysics

software package) of standing wave eigensolutions. For these simulations we

use the following geometrical parameters for the elementary cell:

l = 0.8[m], a = 2.4[m], H1 = 0.1[m], H2 = 0.05[m],

and the following material constants which correspond to iron (in Π
(2)
ε ) and
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aluminium (in Π
(1)
ε ):

µ2 = 82 · 109[N/m2], µ1 = 26 · 109[N/m2],

ρ2 = 7860[kg/m3], ρ1 = 2700[kg/m3].

Presented in this figure are three plots corresponding to Al-Fe strips with

different materials bonding them together, with the vertical dotted lines in-

dicating the location of the crack tips. The imperfect interface is modelled in

the COMSOL simulations by a thin layer occupied by an adhesive material;

this approach was justified in [40, 43], among others. Provided that hresin/H2

is sufficiently small and µresin is small in comparison to µ1 and µ2, this gives

κ = hresin/µresin.

The second of the three plots in Figure 3.8 uses epoxy resin as the bonding

material with parameters

µresin = 2.5 · 109[N/m2], ρresin = 1850[kg/m3], hresin = 0.01[m].

For comparison, the first plot shows a simulation with a gluing layer of shear

modulus 1000 greater than that of epoxy resin. The third plot uses a material

with shear modulus 10 times less than epoxy resin. Equivalently, these three

cases in the top, middle and bottom parts of the figure correspond to κ∗ =

2.88 · 10−3, κ∗ = 2.88, and κ∗ = 28.8, respectively. The plots show that the

standing wave is more localised and intense in the locality of the crack when

the bonding material is stiffer. Conversely, when the bonding material is less

stiff, the standing wave extends further beyond the locality of the crack and

is less intense. Closely packed contours indicate areas where stress is high;

as we would expect, the highest stress intensity is found in the case with the

stiffest bonding material.
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Figure 3.9: Finite element computation (COMSOL) of the eigensolution corresponding

to the standing Bloch-Floquet wave. Note that the standing wave is localised within the

region above and below the crack.

It is readily seen in the bottom plot of Figure 3.8 (which corresponds to a

highly imperfect interface) that the boundary layer support extends almost

to the edge of the elementary cell. This extension far away from the crack

tips suggests that the boundary layers decay slowly from the crack tips and

so may not be assumed independent. In this case, therefore, our analysis may

become invalid due to the assumption in our asymptotic procedure that the

exponentially decaying boundary layer does not influence the Bloch-Floquet

conditions. This assumption is satisfied if γ+ is far from zero, so if κ is

not too large. More accurately, we assume γ+ ≫ ε
a−l

(see (3.94) for large

κ). If the imperfect interface is too weak and this condition is violated then

the junction conditions evaluated here will no longer be accurate and other

analysis should be sought.

Figures 3.9 and 3.10 show two different eigensolutions computed in COM-

SOL. Figure 3.9 shows a standing wave eigensolution. It is clearly seen from

this plot that the standing wave is localised within the region directly above

and below the crack, as we would expect. Figure 3.10 shows an eigensolution

corresponding to a propagating wave. This wave travels through the strip

and is largely uninfluenced by the presence of the crack.
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Figure 3.10: Finite element computation (COMSOL) of another eigensolution. This

eigensolution corresponds to a wave that propagates through the strip.

For the moment, we do not present dispersion diagrams since we will de-

vote the next chapter to the analysis and improvement of the low dimensional

model. Nevertheless it is worth mentioning that dispersion diagrams com-

puted from the low dimensional model display excellent agreement with the

COMSOL simulations for the eigenfrequencies of propagating waves with a

typical discrepancy between finite element and asymptotic results of around

0.3% in the case where the strip has the same dimensions as used throughout

this section, which corresponds to ε = 0.0625. A discrepancy is apparent in

the case of standing waves, however. The size of this discrepancy varies de-

pending upon the mechanical and geometric parameters considered but may

typically lie somewhere within the region of 5-10%. A similar discrepancy

in standing wave eigenfrequencies was observed by Mishuris et al. for the

perfect interface case in [44].

For engineering applications, this discrepancy may be an important short-

coming, since the standing waves may cause the crack to propagate. To jus-

tify this statement, consider equation (3.195) on page 69 which demonstrates

that the first non-zero term in the asymptotic expansion of the boundary

layer near the right hand crack tip, a
(W )
(1) , is proportional to ∆{(v(0))′}(xB),

the angle of opening of the crack in the zero order skeleton model. Thus if
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the crack opening angle is small or zero in the zero order low dimensional

model (as is the case for waves that propagate through the strip), then the

crack tip opening displacement in the boundary layer will be small or zero.

For standing waves, however, (3.195) yields that the crack tip opening dis-

placement will be larger, since the angle of opening in the low dimensional

model is much greater in the case of standing waves. It is therefore impor-

tant to identify their frequencies with as much precision as possible. This

motivates our work in the next chapter, in which we offer a computationally

efficient method that significantly improves the accuracy of standing wave

eigenfrequencies.
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Chapter 4

Eigenfrequency correction for

the low dimensional model

4.1 Introduction

In this chapter we focus in greater detail on the low dimensional model

considered in the previous chapter. An analogous LDM was derived in [44] for

the perfect interface version of the problem discussed in Chapter 3. In order

to verify the accuracy of the low dimensional models for both the perfect and

imperfect cases, we can compare computations against finite element method

(FEM) simulations like those presented at the end of the previous chapter in

Figures 3.9 and 3.10.

While finite element simulations are useful for geometries which are not

too thin, they become inefficient in cases where the thickness of the strip

H1 + H2 is much smaller than the length of the elementary cell a. This

problem with FEM simulations is further heightened by the fact that the

imperfect interface is implemented by means of placing a very thin layer with
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a small shear modulus between Π
(1)
ε and Π

(2)
ε . Thus for problems involving

a thin strip, the layer representing the interface is very thin indeed, making

computations inefficient.

For this reason an easily computable low dimensional model and asymp-

totic approach is very useful; moreover, the weight function approach yields

analytic expressions for the behaviour of the solution near the crack tip,

which a FEM approach alone could not. The asymptotic model derived in

the previous chapter which we will adapt in the present chapter is designed

for use in very thin strips (i.e. small ε) with geometries such that boundary

layers near the crack tips are independent; we will however demonstrate that

it is possible to obtain useful information even in cases where the strip is

not particularly thin or crack tips in the periodic structure are close to each

other, with some limitations which we will discuss.

As we discussed at the end of the previous chapter, upon comparing

the eigenfrequencies computed from the LDM with FEM simulations, a dis-

crepancy arises in the frequency of the standing waves. The size of this

discrepancy depends greatly upon material and geometrical parameters but

is typically somewhere in the region of 3-15%. In this present chapter, we de-

vise an improved model which significantly lowers the size of this discrepancy,

typically by at least an order of magnitude.

4.2 Problem formulation

The full problem formulation is as given in Chapter 3. As discussed in that

chapter, the problem is singularly perturbed and so the case κ = 0 which

corresponds to the perfect interface case requires different analysis [44] to
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the imperfect case. The distance between adjacent cracks is a − l, and we

assume that a, l and Hj are all of the same order. The functions u(j)(x, y),

j = 1, 2, are respectively defined above and below the interface as solutions

of the Helmholtz equations

∆u(j)(x, y) +
ω2

c2j
u(j)(x, y) = 0, (x, y) ∈ Π(j)

ε , (4.1)

where

Π(j)
ε =

{

(x, y) ∈ R : x ∈
(

−a
2
,
a

2

)

, (−1)j+1y ∈ (0, εHj)
}

. (4.2)

We will consider low range frequencies; high frequency treatments are avail-

able in [28] and high frequency long wavelength analysis of hard and soft

interfaces can be found in [29]. As in the previous chapter, the sought so-

lutions u(j) represent Bloch-Floquet waves, so at the ends of our elementary

cell x = ±a/2 we have for j = 1, 2 the Bloch-Floquet conditions

u(j)(−a/2, y) = e−iKau(j)(a/2, y), y ∈ (−εH2, εH1), (4.3)

σ(j)
xz (−a/2, y) = e−iKaσ(j)

xz (a/2, y), y ∈ (−εH2, εH1). (4.4)

Again, eigenfunctions u(x, y) are approximated in the form

u(x, y, ε) =

N
∑

k=0

εk

{

4
∑

m=1

χm

(

v(k)m (x) + ε2V (k)
m (x, Y )

)

+
(

W
(k)
A (XA, Y ) +W

(k)
B (XB, Y )

)}

+RN (x, y, ε), (4.5)

with scaled co-ordinates XA, XB and Y introduced in the vicinity of the left

and right vertices of the crack defined as

XA =
x− xA
ε

, XB =
x− xB
ε

, Y =
y

ε
. (4.6)

When solving the low dimensional model to find the functions v
(k)
m , com-

putations display a discrepancy for standing wave eigenfrequencies between
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the low order model and finite element simulations of the problem; these

computations are presented in Section 4.5. In order to address the discrep-

ancies that arise in this asymptotic model, in this chapter we further consider

the square of the frequency, ω2, as an asymptotic quantity, writing

ω2 =

N
∑

k=0

εkω2
k. (4.7)

It is not immediately apparent a priori that this amendment will lead to a

large correction in the approximations of eigenfrequencies, but we will later

see that this allows us to solve the first order low dimensional model which

causes a significant improvement in the accuracy of the model in those cases

where the zero order model displays large discrepancies. Interestingly, in

cases where the zero order model gives high accuracy, the corrections are

very small. As an example, in one case we consider in Section 4.5, the

first order correction method alters the frequency of the first standing wave

(for which the zero order model gives a significant discrepancy) by 11% of

its zero order value, while the propagating waves (for which the zero order

model displays high accuracy) are only corrected by 10−6.

4.3 Solution of low dimensional model equa-

tions

Since the boundary layers WA and WB (see (4.5)) decay exponentially, we

have that far from the crack tip, χm = 1,

u ≈
N
∑

k=0

εk
4
∑

m=1

(

v(k)m + ε2V (k)
m

)

. (4.8)
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Substitution of this expression into the Helmholtz equation (4.1) and compar-

ing coefficients of terms in εk, k = 0, 1 respectively yields the two equations

(v(0)m )′′ +
∂2V

(0)
m

∂Y 2
+
ω2
0

c2j
v(0)m = 0, m = 1, 2, 3, 4; j = 1, 2, (4.9)

(v(1)m )′′ +
∂2V

(1)
m

∂Y 2
+
ω2
1

c2j
v(0)m +

ω2
0

c2j
v(1)m = 0, m = 1, 2, 3, 4; j = 1, 2. (4.10)

Expression (4.9) corresponding to terms in k = 0 is the same as before when

ω was not treated as an asymptotic series, but (4.10) is new. Above and

below the crack, that is for m = 2, 3, we therefore have that

∂2V
(1)
m

∂Y 2
= −

[

(v(1)m )′′ +
ω2
1

d2m
v(0)m +

ω2
0

d2m
v(1)m

]

, m = 2, 3, (4.11)

where d2 = c1 and d3 = c2, which after integration and application of the

boundary condition ∂V
(1)
m

∂Y

∣

∣

∣

Y=0±
≡ 0 yields the equation

(v(1)m )′′(x) +
ω2
0

d2m
v(1)m (x) +

ω2
1

d2m
v(0)m (x) = 0, m = 2, 3. (4.12)

For m = 1, 4 (where no crack is present), rearranging and integrating (4.10)

and applying the condition for continuity of tractions across the imperfect

interface yields the equation

(v(1)m )′′(x) +
ω2
0

d2
v(1)m (x) +

ω2
1

d2
v(0)m (x) = 0, (4.13)

where as in the preceding chapter

d = c1c2

√

µ1H1 + µ2H2

µ1H1c22 + µ2H2c21
. (4.14)

For the zero order approximation,

(v(0)m )′′(x) +
ω2
0

d2m
v(0)m (x) = 0, m = 1, 2, 3, 4. (4.15)
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4.3.1 Junction conditions and crack tip asymptotics

The asymptotic representation of ω does not affect junction conditions on

the first two levels of the approximation. Junction conditions for the zero

order approximation have been derived in Chapter 3 and read

v
(0)
1 (xA) = v

(0)
2 (xA) = v

(0)
3 (xA); v

(0)
2 (xB) = v

(0)
3 (xB) = v

(0)
4 (xB), (4.16)

along with the conditions for flux

µ1H1(v
(0)
2 )′(xA) + µ2H2(v

(0)
3 )′(xA) = (µ1H1 + µ2H2)(v

(0)
1 )′(xA). (4.17)

µ1H1(v
(0)
2 )′(xB) + µ2H2(v

(0)
3 )′(xB) = (µ1H1 + µ2H2)(v

(0)
4 )′(xB). (4.18)

The junction conditions for the first order approximation at the right hand

crack tip are given for m = 2, 3, by

v(1)m (xB) = v
(1)
4 (xB) + (−1)m+1 µ2H2

µ1H1 + µ2H2

αN∆{(v(0))′}(xB), (4.19)

where by αN we mean αP if κ = 0 (the perfect interface case) and αI if κ > 0

(the imperfect interface case), and

∆{(v(0))′}(x) = (v
(0)
2 )′(x)− (v

(0)
3 )′(x). (4.20)

The junction conditions (4.19) are valid for both perfect and imperfect cases,

but the form of the corresponding constants αP and αI are absolutely dif-

ferent and come from different analyses; this arises from the fact that the

problem is singularly perturbed and so different analysis is needed in the

cases κ > 0 to the case κ = 0. The definition of the constant αP is given in

[44] while the constant αI was derived in the previous chapter of this thesis;

both are stated below. For the perfect interface case, the constant is defined
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as

αP =
H1 +H2

π







µ∗

∞
∫

0

f(t)dt− ln

{

(

1 +H∗

2

)
1+H∗

2
(

1−H∗

2

)
1−H∗

2

}







,

(4.21)

where

f(t) =
H∗ − tanh(tH∗) coth(t)

(sinh(t) + µ∗ sinh(tH∗))t
, µ∗ =

µ1 − µ2

µ1 + µ2

, H∗ =
H1 −H2

H1 +H2

. (4.22)

In the imperfect interface case, the constant is given by

αI = (H1 +H2)







1

π

∞
∫

0

ln g(t)

t2
dt +

1

λ∗







, (4.23)

where

g(t) =
t

λ2∗ + t2

(

t+
2

κ∗(1 + µ∗)
coth

t(1 +H∗)

2
+

2

κ∗(1− µ∗)
coth

t(1−H∗)

2

)

,

(4.24)

λ∗ = (H1 +H2)

√

µ1H1 + µ2H2

µ1µ2H1H2κ
, κ∗ =

κ(µ1 + µ2)

(H1 +H2)
. (4.25)

We stress that αI is a constant that depends heavily upon κ and so describes

how the junction conditions are impacted by the imperfect interface. The

first order fluxes satisfy the relationship

(µ1H1 + µ2H2)(v
(1)
4 )′(xB)− µ1H1(v

(1)
2 )′(xB)− µ2H2(v

(1)
3 )′(xB) = 0. (4.26)

The analogous conditions for m = 2, 3, at the other vertex can be obtained

by replacing B by A and m + 1 by m in equation (4.19). The other crack

tip’s condition for fluxes is as in equation (4.26), but again replacing B by

A.

The zero order and first order constants describing the singular behaviour

of the full solution near the crack tips derived for the perfect and imperfect
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interface cases are unaffected by the consideration of ω as an asymptotic

series. However, if one continues to deeper levels of the asymptotics, the

junction conditions of fifth order and higher would be affected by taking ω

as an asymptotic series.

4.3.2 Corrected low dimensional model

Zero order low dimensional model

Solutions of the zero order equation (4.15) for m = 1, 2, 3, 4 are of the form

v(0)m (x) = A(0)
m sin

(

ω0

dm
x

)

+B(0)
m cos

(

ω0

dm
x

)

, (4.27)

The first order equation (4.15) has solutions in the form

v(1)m (x) = A(1)
m sin

(

ω0

dm
x

)

+B(1)
m cos

(

ω0

dm
x

)

+ ω2
1Fm(x), (4.28)

where

Fm(x) =
x

2dmω0

{

A(0)
m cos

(

ω0

dm
x

)

− B(0)
m sin

(

ω0

dm
x

)}

. (4.29)

We note that assuming the zero order system has been solved, all constants

in this expression for Fm(x) are considered known.

Let us first consider the zero order case. We see from (4.27) that eight

constants need to be evaluated, A
(0)
m and B

(0)
m for m = 1, 2, 3, 4 which we

write in the column vector A(0) defining the notation

A(k) =
[

A
(k)
1 B

(k)
1 A

(k)
2 B

(k)
2 A

(k)
3 B

(k)
3 A

(k)
4 B

(k)
4

]T

. (4.30)

We have six junction conditions to apply: two from (4.16) and one from each

of (4.17) and (4.18), which can be complemented by the two Bloch-Floquet

conditions to yield the 8× 8 matrix equation

M8×8A
(0) = 0. (4.31)
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We introduce notation to abbreviate the entries of M8×8 as follows:

Sm = sin

(

d

dm
̟0xB

)

; Cm = sin

(

d

dm
̟0xB

)

; m = 1, 2, 3, 4; (4.32)

ψj =
µjHj

µ1H1 + µ2H2

d

dj+1

; j = 1, 2; Sa = sin
(

̟0
a

2

)

;Ca = cos
(

̟0
a

2

)

,

(4.33)

where ̟j = ωj/d is introduced for normalisation. Now, M8×8 =











































0 0 S2 C2 0 0 −S4 −C4

0 0 0 0 S3 C3 −S4 −C4

0 0 ψ1C2 −ψ1S2 ψ2C3 −ψ2S3 −C4 S4

−S1 −C1 S2 C2 0 0 0 0

S1 −C1 0 0 −S3 C3 0 0

−C1 −S1 ψ1C2 ψ1S2 ψ2C3 ψ2S3 0 0

−Sa Ca 0 0 0 0 −e−iKaSa −e−iKaCa

Ca Sa 0 0 0 0 −e−iKaCa e−iKaSa











































(4.34)

The determinant of M8×8 can be written in the form

det(M8×8) = A(ω0)e
−2iKa + B(ω0)e

−iKa +A(ω0). (4.35)

It can be shown that for the case in which all wave speeds dm are equal to

d, say, both A(ω0) and B(ω0) are zero when ω0 = nπd/(2xB), n ∈ N. It

follows that in this case, the standing waves have no dependence upon the

Bloch-Floquet parameter K. This observation motivates us to consider the

special case discussed in Subsection 4.4.1.
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First order low dimensional model

Applying the junction and Bloch-Floquet conditions for the first order equa-

tion (4.15) yields the matrix equation

M8×8A
(1) = ̟2

1N8×8A
(0) +BA∆{(v(0))′}(xA) +BB∆{(v(0))′}(xB). (4.36)

Here, M8×8 is the matrix defined in (4.34), A(0) and A(1) are the coefficients

defined in (4.30). Since M8×8, is singular, this equation gives a solvability

condition which will allow us to find the correction term, ω1. The matrix

N8×8 is defined as










































0 0 −dxBC2

2d2̟0

dxBS2

2d2̟0
0 0 xBC4

2̟0

−xBS4

2̟0

0 0 0 0 −dxBC3

2d3̟0

dxBS3

2d3̟0

xBC4

2̟0

−xBS4

2̟0

0 0 N3,3 N3,4 N3,5 N3,6 N3,7 N3,8

−xBC1

2̟0

−xBS1

2̟0

dxBC2

2d2̟0

dxBS2

2d2̟0
0 0 0 0

−xBC1

2̟0

−xBS1

2̟0
0 0 dxBC3

2d3̟0

dxBS3

2d3̟0
0 0

N6,1 N6,2 N6,3 N6,4 N6,5 N6,6 0 0

aCa

4̟0

aSa

4̟0
0 0 0 0 aZCa

4̟0

−aZSa

4̟0

N8,1 N8,2 0 0 0 0 N8,7 N8,8











































(4.37)

where Z = e−iKa and for q ∈ {3, 4, 5, 6, 7, 8},

N3,q =
d

d⌊ q+1
2

⌋

xB

((

1 + (−1)q

2

)

C⌊ q+1
2

⌋ +

(

1− (−1)q

2

)

S⌊ q+1
2

⌋

)

− 1

̟0

((

1− (−1)q

2

)

C⌊ q+1
2

⌋ −
(

1 + (−1)q

2

)

S⌊ q+1
2

⌋

)

. (4.38)

Here, the notation ⌊·⌋ denotes the usual floor function. For q ∈ {1, 2, 3, 4, 5, 6},

N6,q =
(−1)q+1d

d⌊ q+1
2

⌋

xB

((

1 + (−1)q

2

)

C⌊ q+1
2

⌋ +

(

1− (−1)q

2

)

S⌊ q+1
2

⌋

)

+
(−1)q

̟0

((

1− (−1)q

2

)

C⌊ q+1
2

⌋ −
(

1 + (−1)q

2

)

S⌊ q+1
2

⌋

)

, (4.39)
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and the expressions of the eighth row are given by

N8,1 =
a

4
Sa −

1

2̟0
Ca, N8,2 =

1

2̟0
Sa −

a

4
Ca, (4.40)

N8,7 = e−iKa

(

1

2̟0
Ca −

a

4
Sa

)

, N8,8 = −e−iKa

(

1

2̟0
Sa +

a

4
Ca

)

. (4.41)

The vectors BA and BB are given by

BA = αN

[

0 0 0− µ2H2

µ1H1+µ2H2

µ1H1

µ1H1+µ2H2
0 0 0

]T

, (4.42)

BB = αN

[

− µ2H2

µ1H1+µ2H2

µ1H1

µ1H1+µ2H2
0 0 0 0 0 0

]T

. (4.43)

To conclude this section, we have obtained a matrix equation (4.36) involving

the correction term ̟2
1. In the following section, we will solve this equation,

firstly for a simple special case which allows a closed-form solution to be

obtained, before considering the general case.

4.4 Derivation of first order correction term,

ω1

4.4.1 Homogeneous symmetric case

In this section, we condsider the symmetric case in which H1 = H2 and

µ1 = µ2. This simple case is instructive since the symmetry enables us to an-

alytically determine the eigenfrequency of the first standing wave in an easily

traceable process; we will later make indications on how the method for the

general case relates to and differs from this procedure. Moreover, this eigen-

frequency does not have any K-dependence as is the case for inhomogeneous

setups, which enables us to easily separate the first standing wave solution
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from the others. In the case of the standing wave, the beams above and be-

low the crack vibrate while the others do not (that is, v
(k)
1 (x) = v

(k)
4 (x) = 0

for k = 0, 1).

The problem formulation for the symmetric case is as follows. For the

zero order approximation, solutions satisfy (4.15) with dm = d for all m =

1, 2, 3, 4. To isolate the standing waves (whose frequencies we wish to impose

a correction upon) we impose the condition

v
(0)
1 (x) ≡ v

(0)
4 (x) ≡ 0. (4.44)

The junction conditions for the zero order approximation then simplify to

v
(0)
2 (xA) = v

(0)
2 (xB) = 0, v

(0)
3 (xA) = v

(0)
3 (xB) = 0, (4.45)

along with

(v
(0)
2 )′(xA) + (v

(0)
3 )′(xA) = 0, (v

(0)
2 )′(xB) + (v

(0)
3 )′(xB) = 0. (4.46)

For m = 2, 3, we have that the general solution of the zero order LDM is of

the form (4.27) with dm = d. Applying conditions (4.45)-(4.46) yields

v
(0)
2 (x) = B cos

(ω0

d
x
)

, v
(0)
3 (x) = −B cos

(ω0

d
x
)

. (4.47)

The first order approximation equation is of the form (4.12) with dm = d.

Since v
(0)
m are now known functions, the corresponding system consists of the

two ordinary differential equations

(v
(1)
2 )′′(x) +

ω2
0

d2
v
(1)
2 (x) +

ω2
1

d2
B cos

(ω0

d
x
)

= 0, (4.48)

(v
(1)
3 )′′(x) +

ω2
0

d2
v
(1)
3 (x)− ω2

1

d2
B cos

(ω0

d
x
)

= 0. (4.49)

These ODEs have respective elementary solutions

v
(1)
2 (x) = A

(1)
2 sin

(ω0

d
x
)

+B
(1)
2 cos

(ω0

d
x
)

− ω2
1

Bx sin
(

ω0

d
x
)

2ω0d
, (4.50)
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v
(1)
3 (x) = A

(1)
3 sin

(ω0

d
x
)

+B
(1)
3 cos

(ω0

d
x
)

+ ω2
1

Bx sin
(

ω0

d
x
)

2ω0d
, (4.51)

complemented by the junction conditions (which follow from the previous

chapter)

v(1)m (xβ) =
(−1)m+p

2
αN∆

{

(v(0))′
}

(xβ), m = 2, 3; β = A,B, (4.52)

where p = 0 if β = A and p = 1 if β = B.

For the first standing wave, ω0 = πd/l, and so applying (4.52) with β = B,

m = 2, we see that

A
(1)
2 = B

(

ω2
1

l2

4πd2
+
παN

l

)

. (4.53)

Applying the condition (4.52) with β = A, m = 2, yields the condition

A
(1)
2 = −B

(

ω2
1

l2

4πd2
+
παN

l

)

. (4.54)

Summing equations (4.53) and (4.54), we see that A
(1)
2 = 0, and deduce that

ω2
1 = −4π2d2αN

l3
. (4.55)

Thus, for the symmetrical case where both materials are the same, we have

found an expression for the correction term ω2
1. Note that in this case, ω2

1 < 0;

we remind the reader that the asymptotic expansion used was

ω2 = ω2
0 + εω2

1 +O(ε2) (4.56)

and so the negative sign of ω2
1 indicates that the correction decreases the

standing wave eigenfrequency.
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Figure 4.1: Dispersion diagram for the perfect interface case with medium crack length

l = 2m in an elementary cell with a = 6m. The material above and below the crack is

iron. The solid black lines show finite element results, while red crosses (×) show the zero

order approximation and blue circles (◦) show the corrected regime, with the first standing

wave corrected by the analytic derivation of ω1 as presented in equation (4.55).

Figure 4.1 shows the dispersion diagram for this homogeneous, symmetric

case. The red crosses on the diagram indicate the zero order approximation

(ω0) of the eigenfrequencies, while the blue circles show the corrected first

order approximation. The black lines result from a finite element computa-

tion. The derived correction method improves the standing wave frequency

discrepancy from 3.7% to just 0.26%.
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4.4.2 General case

We now consider the general case in which the materials above and below the

crack and interface may have different thicknesses and shear moduli. For the

first order approximation, after the application of junction and Bloch-Floquet

conditions we obtain a matrix equation of the form

MA(1) = ω2
1NA

(0) +BA∆{(v(0))′}(xA) +BB∆{(v(0))′}(xB). (4.57)

Here, M and N are both 8×8 matrices as defined earlier in (4.34) and (4.37)

respectively whose elements depend on the Bloch-Floquet parameter K and

the eigenfrequency ω0 which is such that det(M) = 0. Because det(M) = 0,

M has zero among its eigenvalues. We can write

M = V DV −1 (4.58)

where V is a matrix whose columns are eigenvectors ofM and D is a diagonal

matrix with the respective eigenvalues of M along the diagonal. Premulti-

plying (4.57) by V −1, we can write

V −1MV V −1A(1) = V −1(ω2
1NA

(0) +BA∆{(v(0))′}(xA) +BB∆{(v(0))′}(xB)),
(4.59)

which upon substitution of (4.58) becomes

DV −1A(1) = ω2
1V

−1NA(0) + V −1BA∆{(v(0))′}(xA) + V −1BB∆{(v(0))′}(xB).

(4.60)

Since M is singular, it posesses zero as an eigenvalue, and so one row of the

left hand side matrix in (4.60) is equal to zero. Let us denote that row l.

Then

ω2
1

(

V −1NA(0)
)

l
+
(

V −1BA

)

l
∆{(v(0))′}(xA) +

(

V −1BB

)

l
∆{(v(0))′}(xB) = 0.

(4.61)
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All matrices and parameters in this equation are now known, with the ex-

ception of ω2
1 which can now be written in terms of known quantities:

ω2
1 = −

(

V −1(BA∆{(v(0))′}(xA) +BB∆{(v(0))′}(xB))
)

l

(V −1NA(0))l
. (4.62)

A potential problem with this computational method is that the matrix

V may have a determinant which is close to zero when eigenvalues of M

are close together. To eliminate any possible errors arising from this, we

introduce a second computational scheme for computing ω1.

The Schur decomposition states that if A is a n × n square matrix with

complex entries, then A can be expressed in the form A = QUQ−1 where Q

is unitary and U is upper triangular, with the eigenvalues of A. In our case,

we apply Schur decomposition to the transpose of M :

MT = QUQ−1. (4.63)

Schur decomposition is not unique; we may place the smallest eigenvalue in

the first position along the leading diagonal, and since M is singular, this

eigenvalue is zero. The first column of the upper triangular matrix U is

therefore a row of zeros. Since M = (Q−1)TUTQT , we can premultiply the

first order matrix equation by QT and substutite to obtain

UTQTA(1) = ω2
1Q

TNA(0) +QTBA∆{(v(0))′}(xA) +QTBB∆{(v(0))′}(xB).

(4.64)

The first row of the left hand side is zero, whence

ω2
1 = −

(

QT (BA∆{(v(0))′}(xA) +BB∆{(v(0))′}(xB))
)

1

(QTNA(0))1
. (4.65)
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4.5 Numerical results

4.5.1 Materials and geometries used in numerical sim-

ulations

For our numerical calculations we will consider a strip whose elementary

cell is of length a = 6m with an overall thickness of H1 + H2 = 0.15m.

This geometry corresponds to a value of ε = 0.025. We will compare results

from the low dimensional model against those from finite element simulations

(computed using COMSOL). We stress that finite element simulations are

efficient for comparison only in cases when the strip is not too thin, i.e. when

ε is not too small. The low dimensional model, however, remains valid as

ε → 0.

For our computations we vary four parameters. These parameters (de-

tailed in the following list) are the type of interface (perfect, imperfect, highly

imperfect), length of crack (shorter, medium, longer), materials (iron/aluminium

[similar wave speeds], magnesium/aluminium [less similar wave speeds]) and

thicknesses of each material (symmetric geometry, asymmetric geometry).
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1. Type of interface

• Perfect.

• Imperfect — in the finite element computations, a thin layer of

epoxy resin is used. This corresponds to a value of κ∗ = 2.88 in

the asymptotic model (recall that κ∗ = κ(µ1 + µ2)/(H1 +H2) as

defined on page 72).

• Highly imperfect — in this case, the bonding material has a

shear modulus a tenth that of epoxy resin. This corresponds to a

value of κ∗ = 28.8.

2. Length of crack

• Shorter — Crack length of l = a/10 = 0.6m.

• Medium — Crack length of l = a/3 = 2m. This can be viewed

as a ‘sensible’ crack length.

• Longer — Crack length of l = 9a/10 = 5.4m.

3. Materials

• Iron/Aluminium — see Figure 4.2 on page 99 for shear moduli,

densities and wave speeds.

• Magnesium/Aluminium — both materials have similar wave

speeds.

4. Thicknesses of each material

• Symmetrical geometry — εH1 = εH2 = 0.075m.

• Asymmetrical geometry — εH1 = 0.01m, εH2 = 0.14m.
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Material Shear modulus Mass density Wave speed

[Nm−2] [kgm−3] [ms−1]

Iron 82× 109 7860 3230

Magnesium 17× 109 1738 3128

Aluminium 26× 109 2700 3103

Epoxy resin 2.5× 109 1850 1162

Figure 4.2: Material parameters used in computations.

We will present in the following subsections a number of dispersion di-

agrams, plotting frequency ω against the Bloch-Floquet parameter K. We

refer to plots of ω = ω0 as the zero order approximation, and to plots of ω

calculated according to (4.7) (that is, ω2 = ω2
0 + εω2

1 + O(ε2)) as the first

order approximation, or the corrected frequency.
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4.5.2 Correction in the perfect interface case
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Figure 4.3: Dispersion diagram for a perfect interface strip composed of equal thicknesses

of aluminium and magnesium with a medium length crack (l = 2m). The solid black lines

show the finite element results, while red crosses (×) show the zero order approximation

and blue circles (◦) show the corrected first order approximation.

Materials with similar wave speeds

Figure 4.3 demonstrates the effectiveness of the method of eigenfrequency

correction for the standing waves. This dispersion diagram results from

computations corresponding to the case of a strip with a ‘sensible’ crack
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length, composed of equal thicknesses of magnesium and aluminium (mate-

rials possessing similar wave speeds, see the table in Figure 4.2 for the precise

values). The diagram demonstrates that the zero order approximation agrees

to a very high degree of accuracy with the finite element results in the cases

of the waves which propagate through the strip (the slanted lines). Typically

the zero order approximation for these waves’ eigenfrequencies differs from

the finite element simulation only by a factor of around 10−6. However, it

is clear that there is a discrepancy between the zero order model and the

finite element results in the case of the standing waves (horizontal lines on

the dispersion diagram). The corrected first order model retains the excel-

lent accuracy for propagating waves, slightly increasing the accuracy while

remaining of the order of 10−6, and significantly improves the discrepancy of

the standing wave frequencies. While the correction is not completely uni-

form since the standing waves’ frequencies depend upon the Bloch-Floquet

parameter K except in the case where materials have identical wave speeds,

a typical discrepancy for the first standing wave has decreased from 3.9%

to 0.38%. This can be considered as a surprisingly useful correction, since

there is no reason a priori to suspect that considering ω as an asymptotic

quantity should cause such an improvement in the accuracy of the low di-

mensional model’s approximation of the standing wave frequency. The lack

of uniformity becomes more clear for the second standing wave than the first,

particularly near the edges of the dispersion diagram. We will later see that

such effects become more pronounced for materials with more contrasting

wave speeds.
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Figure 4.4: Dispersion diagrams for a perfect interface strip composed of equal thick-

nesses of aluminium and magnesium Left: Shorter crack (l = 0.6m) Right: Longer crack

(l = 5.4m). The solid black lines show the finite element results, while red crosses (×)

show the zero order approximation and blue circles (◦) show the corrected regime.

The dispersion diagrams for the cases with shorter and longer crack

lengths, again with materials of similar wave speeds, perfect interfaces and

the same thicknesses of both material are contained within Figure 4.4. As

one would expect, the length of the crack does not significantly alter the

eigenfrequencies of those waves that propagate through the strip (again the

correction is on the level of 10−6), since they are not strongly influenced by

the presence of the crack. In similar agreement with physical intuition, the

first standing wave for the longer crack is of much lower frequency than in

the geometry housing the particularly shorter crack. The correction offered

by the first order approach is relatively small in the longer crack case, but
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since the zero order model in this case already gave good accuracy with only

a 1.3% discrepancy for the first standing wave, this is not surprising. The

corrected eigenfrequency of this wave agrees with finite element results to

within 10−5. This can be seen as a surprisingly effective correction since in

the longer crack geometry, the crack tips are close to the ends of the ele-

mentary cell. This gives the boundary layers surrounding the crack tips a

small area in which to decay so that they do not influence the Bloch-Floquet

conditions.

In the case of the shorter crack, the zero order approximation of the first

standing wave eigenfrequency is easily seen to be significantly different to the

true value found in the finite element simulation, with a 12.2% discrepancy.

After applying the correction method, the discrepancy decreases to 0.95%.

Together, the computations for the longer and shorter cracks demonstrate

that the decay of the boundary layers is sufficiently rapid for them to remain

independent even while crack tips are quite close to each other. We will see

later (see Figure 4.6 on page 107) that in the imperfect interface case, this is

not true when the extent of imperfection is very high and similarly we would

expect the model to break down if they crack was much shorter or longer

than the lengths used.

We noted in the introduction the assumption that only lower range fre-

quencies are considered by the model, specifically we assume ω ≪ cj/ε. In

this case of the aluminium/magnesium strip with the geometry considered

here, we therefore assume that ω is much less than around 1.2×105s−1. The

dispersion diagrams demonstrate that there are many standing waves with

frequencies significantly lower than this value.
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4.5.3 Discussion of model limitations

The figures presented in the previous subsection gave results for strips whose

materials possessed similar wave speeds and demonstrated that the amended

model provides a useful correction. In the remainder of this chapter we

will present results in which the correction is less uniform but often still an

improvement on the zero order model.

In performing the comparisons between finite element models and the low

dimensional model, we have chosen geometric parameters for the strip to be

such that it is not too thin to make finite element computations too onerous.

The asymptotic model, however, increases in accuracy as ε → 0. Perform-

ing computations using a value for ε that is not very small may therefore

be pushing the model outside of its designed range of validity. While this

causes lack of uniformity in the correction of standing wave eigenfrequencies,

especially for higher frequencies, the computations demonstrate that useful

information can be obtained with ε outside the originally intended regime.

Moreover, problems can be caused by communicating boundary layers

which may occur if their decay is insufficiently rapid. For our analysis we

have assumed that boundary layers are independent; this is not always a

suitable assumption. For instance, if κ is very large, then the decay of the

boundary layer surrounding one crack tip may not be fast enough to main-

tain independence with the boundary layer surrounding the other crack tip.

Moreover, if the cracks are very long then boundary layers surrounding crack

tips in one elementary cell may interact with boundary layers surrounding

tips of different cracks in adjacent elementary cells.
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Figure 4.5: Dispersion diagrams for a perfect interface strip composed of aluminium

and iron containing a medium-length crack (l = 2m). Left: Equal thicknesses of iron

and aluminium. Right: Different thicknesses (εH1 = 0.01m thickness of aluminium,

εH2 = 0.14m thickness of iron). The solid black lines show the finite element results,

while red crosses (×) show the zero order approximation and blue circles (◦) show the

corrected regime.

Materials with more contrasting wave speeds

We first emphasise that the computations presented in the following figures

correspond to ε = 0.025; this is not vanishingly small but allows comparison

against finite element simulations. In particular, during the construction of

the asymptotic model we made the assumption that ω ≪ cj/ε and so when

ε is not too small, the model may be pushed near to (or beyond) its range of

applicability, especially for higher frequencies. We will see from the following
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computations that this often leads to good agreement between finite element

simulations and asymptotic model results for at least the first standing wave

eigenfrequency, but approximations of the higher frequency eigenfrequencies

display less accuracy and uniformity. Despite these limitations, the model

continues to give useful predictions in most cases.

The standing wave dispersion diagrams for a strip of aluminium and mag-

nesium are presented in Figure 4.5 on page 105, for both the symmetrical and

asymmetrical cases. The correction is largest, as is the zero order discrep-

ancy, in the symmetrical case. However, it is readily seen that the correction

is less uniform in the symmetric case, particularly for higher frequencies; due

to this lack of uniformity is is harder to quantify the exact size of a typi-

cal discrepancy. This can be attributed to the fact that the low dimensional

model considers the part of the bi-material elementary cell that does not con-

tain the crack as a single rod; this approximation becomes less appropriate

if the two materials of similar thickness have more contrasting wave speeds.

In the right-hand subfigure of Figure 4.5 corresponding to the case where

the iron is 14 times thicker than the aluminium, the correction maintains

its uniformity to higher frequencies, suggesting that this structure (in which

most of the thickness is composed of one material) is better modelled as a

single rod.
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4.5.4 Correction in the imperfect interface case
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Figure 4.6: Dispersion diagrams for imperfect interface strips composed of equal thick-

nesses of aluminium and iron Left: Bonding material corresponding to epoxy resin

(κ∗ = 2.88). Right: A highly imperfect interface (κ∗ = 28.8) representing an extremely

soft bonding material. This rightmost subfigure demonstrates an example in which the low

dimensional model is not effective. The solid black lines show the finite element results,

while red crosses (×) show the zero order approximation and blue circles (◦) show the

corrected regime.

The results in the case of the imperfect interface analogue follow broadly

the same qualitative pattern as in the perfect interface case. The left hand

subfigure of Figure 4.6 gives the dispersion diagram for an iron-aluminium

strip, joined with a thin layer of epoxy resin adhesive. Due to the different

wave speeds, the sizes of the standing wave corrections are dependent on
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the Bloch-Floquet parameter K, but in most cases the correction gives a

significant improvement in accuracy. An interesting phenomenon can be

observed when eigenvalues are close to each other in this subfigure; a zoomed

section of the dispersion diagram to illustrate this is given in Figure 4.7. In

Figure 4.7, some of the circles have been replaced by squares; these are

the points which approximated propagating waves in the zero order model

which are corrected to approximate the standing waves for some values of

K. In doing so, a crossing-over phenomenon occurs, where the order of

eigenfrequencies switches after correction. The phenomenon becomes more

pronounced at higher frequencies and indicate that the parameters have been

pushed outside the limitations of the model’s validity.
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Figure 4.7: Zoomed section of the imperfect interface case, showing how the eigenfre-

quency correction method causes a crossing-over phenomenon.
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The right hand figure of Figure 4.6 corresponds to a case where the ma-

terials are bonded in a highly imperfect fashion, using an adhesive with a

shear modulus just a tenth that of the epoxy resin whose parameters are

given in Figure 4.2 (i.e. a material with shear modulus 2.5 × 108Nm−2 and

mass density 1850kgm−3). This subfigure serves the purpose of presenting

a case in which the low dimensional model ceases to provide entirely use-

ful approximations. Here the finite element simulation displays qualitatively

different features which the low dimensional model does not predict at all.

The fact that the low dimensional model breaks down is not surprising; we

found a required condition on κ in Section 3.4 on page 78 for the analysis on

which the low dimensional model is based to be valid. The key point of this

condition is that if κ is too large, the boundary layers WA andWB (see equa-

tion (4.5) on page 83) decay sufficiently slowly for the assumption that they

are independent to cease to hold. Moreover, if the boundary layers decay

slowly from the crack tip, the Bloch-Floquet conditions will be influenced by

the boundary layers. This case is interesting in itself and requires separate

analysis; the phenomenon has been discussed in [5].

4.5.5 Conclusions

The comparisons between the low dimensional model and the finite element

simulations demonstrate that the proposed method of eigenfrequency correc-

tion is highly effective in most cases, typically improving accuracy for the

standing wave eigenfrequency by an order of magnitude for setups where ε

is not too small and even where crack tips are close to each other. Thus

the corrected model continues to give useful information in setups where

the parameters are being pushed near to the limits of the model’s range
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of validity. Moreover, the correction itself is computationally very efficient.

The correction becomes less uniform for materials with significantly different

wave speeds, improving the accuracy by different amounts in different parts

of the dispersion diagram, and misses qualitative features for setups with

highly imperfect interfaces. Practically, however, such highly imperfect in-

terfaces are unlikely to be encountered. Fracture parameters are not affected

by the analysis and for that reason are omitted in this chapter and refer the

reader to [44] and the previous chapter of this thesis, where discussions and

details relating to these parameters can be found. We only underline here

that SIF (in the perfect interface case) or imperfect interface analogues can

be constructed as functionals on the low dimensional model without further

work.
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Chapter 5

Weight function and

perturbation analysis for a

crack and imperfect interface in

a bi-material plane

5.1 Introduction

In this chapter we consider a problem of out-of-plane shear in the whole

plane (as opposed to the strip geometries in which we have hitherto formu-

lated problems), with different materials occupying the regions above and

below the crack line. The geometry considered contains a semi-infinite crack

situated along an imperfect interface; we will formulate and solve a weight

funtion problem in this geometry. By using Betti’s identity in the imperfect

interface case, we will use the weight function to derive important constants

in a related physical problem. We then conduct perturbation analysis to de-
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termine how the presence of small defects in the material affects the stresses

near the main crack tip.

5.2 Formulation

5.2.1 Physical formulation

We consider an infinite two-phase plane with an imperfect interface posi-

tioned along the x-axis. A semi-infinite crack is placed occupying the line

{(x, y) : x < 0, y = 0}. We refer to the half-planes respectively above and

below the crack and interface as Π(1) and Π(2). The material occupying Π(j)

has shear modulus µj and mass density ρj for j = 1, 2. The out-of-plane

shear displacement function u satisfies the Laplace equation

∇2u(x, y) = 0. (5.1)

The plane also contains a micro-defect whose centre is at the point Y ; we

will consider in particular elliptic inclusions although other types of defect

may be incorporated into the model provided a suitable dipole matrix can be

obtained (see for example the paper of Piccolroaz [45] in which micro-cracks

and rigid line inclusions are considered). The defect gε has shear modulus

µin, is placed at a distance d from the crack tip, makes an angle φ with the

imperfect interface and is oriented at an angle α to the horizontal as shown

in Figure 5.1. The value of µin may be greater than or less than the value of

µout (which may be µ1 or µ2 depending where the defect is placed), and so

both stiff and soft defects can be considered.

We assume continuity of tractions across the crack and interface, and
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Figure 5.1: Geometry for the physical setup. The crack tip is placed at

the origin of an infinite plane composed of materials with shear modulus

µj occupying half-planes Π(j) above and below the the crack and imperfect

interface for j = 1, 2. The central point Y of a micro-defect is situated at a

distance d from the tip of the main crack.
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introduce imperfect interface conditions ahead of the crack:

µ1
∂u

∂y

∣

∣

∣

∣

y=0+

= µ2
∂u

∂y

∣

∣

∣

∣

y=0−

, x > 0, (5.2)

JuK − κµ1
∂u

∂y

∣

∣

∣

∣

y=0+

= 0, x > 0, (5.3)

where (as in the previous chapters) the notation JuK defines the jump in

displacement across y = 0, i.e. JuK(x) = u1(x, 0
+)−u2(x, 0−). The parameter

κ > 0 describes the extent of imperfection of the interface, with larger κ

corresponding to more imperfect interfaces. We further impose prescribed

tractions p± on the crack faces:

µ1
∂u

∂y

∣

∣

∣

∣

y=0+

= p+(x), µ2
∂u

∂y

∣

∣

∣

∣

y=0−

= p−(x); x < 0. (5.4)

These tractions are assumed to be self-balanced; that is

0
∫

−∞

p+(x)dx−
0
∫

−∞

p−(x)dx = 0, (5.5)

and it is further assumed that p±(x) vanishes in a neighbourhood of the

crack tip. Although the techniques we will establish can be applied to any

permissible loading, we will particularly focus our attention on the case where

these loadings are point loadings, with a loading on the upper crack face

positioned at x = −a (where a > 0) balanced by two equal point loadings

on the lower crack face positioned at x = −a − b and x = −a + b, where

0 < b < a. This loading makes computations more difficult to perform

than for the smooth loadings considered by Antipov et al. [1], but is more

illustrative for showing the asymmetry of the load.
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Near the crack tip as r → 0, the physical displacement behaves as

uj(r, θ) =
(−1)j+1a0

πµj

{

µ1µ2κπ

µ1 + µ2

+

(

1− ln

(

r

b0

))

r cos θ

+ (−1)j+1(π + (−1)jθ)r sin θ

}

+O(r2 ln2 r), (5.6)

as demonstrated by Mishuris in [40]. It follows that the displacement jump

is approximated by

JuK(x) = κa0 +O(x ln |x|), x→ 0±, (5.7)

as the crack tip is approached along the x-axis.

In the neighbourhood of the crack tip, the out-of-plane component of

stress behaves as

σj ∼
(−1)j

π

{

a0 ln r sin θ + c0 sin θ + (−1)ja0(π + (−1)jθ) cos θ
}

, r → 0,

(5.8)

in the usual polar co-ordinate system and so along the interface,

σ ∼ a0, x→ 0+. (5.9)

These estimates demonstrate that Fourier transforms of the displacement

jump and out-of-plane stress components can be taken, which implies that

as ξ → ∞:

JūK(ξ) = −κa0iξ−1 +O(ξ−(1+δ)), ξ → ∞, δ > 0. (5.10)

Moreover, along the axis, the out-of-plane stress component decays as

σ̄ = a0iξ
−1 +O(ξ−(1+δ)), ξ → ∞, δ > 0. (5.11)
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Figure 5.2: Geometries for the unperturbed physical (Figure 2a) and weight

function (Figure 2b) setups.

5.2.2 Weight function formulation

The sought weight function U also satisfies the Laplace equation, but with

the crack occupying {(x, y) : x > 0, y = 0}. We define the functions Σj in

their respective half-planes by

Σj(x, y) := µj
∂Uj

∂y
, j = 1, 2. (5.12)

Boundary conditions analogous to the physical set-up apply. That is,

Σ1(x, 0
+) = Σ2(x, 0

−), x < 0, (5.13)

JUK(x)− κΣ1(x, 0
+) = 0, x < 0, (5.14)

Σ1(x, 0
+) = 0, x > 0, (5.15)

Σ2(x, 0
−) = 0, x > 0. (5.16)

We expect that along the interface, the displacement jump behaves as

JUK(x) = O(1), x→ 0−; JUK(x) = O(|x|−1/2), x→ −∞, (5.17)
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while along the crack,

JUK(x) = c1 + c2x log x+ c3x+ o(x), x→ 0+, (5.18)

and

JUK(x) = c4 + c5
√
x+ o(

√
x), x→ +∞, (5.19)

where ci are constants. We further expect that

Σj = O(1), x→ 0−; Σj = O(x−1/2), x→ −∞. (5.20)

5.2.3 Derivation of Wiener-Hopf type equation for the

weight function

The asymptotic behaviour of Uj allows us to apply Fourier transforms. More-

over, the behaviour near r = 0 demonstrates that the Fourier transform exists

as a Cauchy value integral. Applying the Fourier transform with respect to

x

Ūj(ξ, y) =

∞
∫

−∞

Uj(x, y)e
iξxdx (5.21)

and taking into account the behaviour of U at infinity, we obtain that the

transformed solutions of (5.1) are of the form

Ūj(ξ, y) = Aj(ξ)e
−|ξy|, (5.22)

with the corresponding expressions for tractions at y = 0± given by

Σ̄j(ξ, 0
±) = (−1)jµj|ξ|Aj(ξ). (5.23)

We define the functions Φ±(ξ) by

Φ−(ξ) = Σ̄|y=0+ , (5.24)
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Φ+(ξ) = JŪK − κΣ̄|y=0+ . (5.25)

These functions Φ±(ξ) are analytic in the complex half-planes denoted by

their superscripts. We expect that as ξ → ∞ in their respective domains,

asymptotic estimates for Φ±(ξ) are

Φ±(ξ) = O

(

1

ξ

)

, ξ → ∞, (5.26)

and near zero,

Φ+(ξ) = O(ξ−3/2), Φ−(ξ) = O(ξ−1/2), ξ → 0; (5.27)

we verify this later (see equations (5.52)-(5.55)). The condition of continuity

of tractions across the crack and interface (5.2) gives that

µ1A1(ξ) = −µ2A2(ξ), (5.28)

and the Fourier transform of the jump function JUK can be seen from (5.21)

to be

JŪK(ξ) = A1(ξ)−A2(ξ). (5.29)

Combining these conditions (5.28)-(5.29), we conclude that the functions

Φ±(ξ) satisfy the functional equation of the Wiener-Hopf type

Φ+(ξ) = −κΞ(ξ)Φ−(ξ), (5.30)

where

Ξ(ξ) = 1 +
µ0

|ξ| , (5.31)

with the constant µ0 given by

µ0 =
µ1 + µ2

µ1µ2κ
. (5.32)

This Wiener-Hopf kernel Ξ(ξ) is the same as that found in the paper of

Antipov et al. [1] which considered a similar geometry but with a perfect
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interface in place of the presently considered imperfect interface between

materials. The authors factorise this function as Ξ(ξ) = X+(ξ)/X−(ξ), where

X±(ξ) are the limiting values of

X±(ξ) = exp







1

2πi

∞
∫

−∞

ln

(

1 +
µ0

|β|

)

dβ

β − ξ







, ξ ∈ C
±. (5.33)

Asymptotic behaviours of the functions X± are presented; we note in par-

ticular that

X+(ξ) = O(ξ−1/2), ξ → 0, ξ ∈ C
+. (5.34)

This bad behaviour of X+(ξ) as ξ → 0 would make computations difficult;

while asymptotic estimates are given, no computations are performed. More-

over, the authors do not construct a weight function for this problem. These

points inspire the following section in which we obtain a different more com-

putationally convenient factorisation of Ξ(ξ).

5.3 Factorisation

In this section we factorise the function Ξ(ξ) which is defined in (5.31). As

we just remarked, despite this function having been previously factorised in

[1], we provide here an alternative factorisation which is more convenient for

computations. We define an auxiliary function Ξ∗ by

Ξ∗(ξ) =
ξ
1/2
+ ξ

1/2
−

ξ
tanh

(

ξ

µ0

)(

1 +
µ0

|ξ|

)

, (5.35)

with the functions ξ
1/2
± given by

ξ
1/2
± =

√

∓iξ. (5.36)

Here
√· is the standard square root function with its branch cut positioned

along the negative real axis. Thus ξ
1/2
± are analytic functions in half-planes
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corresponding to their respective subscripts; note that their product is equal

to the absolute value of ξ, that is ξ+ξ− = |ξ|. Now, Ξ∗(ξ) is an even function

and behaves at zero and infinity as follows:

Ξ∗(ξ) = 1 +
|ξ|
µ0

− 5

6

( |ξ|
µ0

)2

+O

(

( |ξ|
µ0

)3
)

, ξ → 0, (5.37)

Ξ∗(ξ) = 1 +
µ0

|ξ| +O(e−2|ξ|/µ0), |ξ| → ∞. (5.38)

The kernel function Ξ(ξ) can be factorised as

Ξ(ξ) =
ξ

ξ
1/2
+ ξ

1/2
−

Ξ∗(ξ)Ξ0(ξ), (5.39)

where

Ξ0(ξ) = coth

(

ξ

µ0

)

. (5.40)

This function can itself be factorised as

Ξ0(ξ) =
πµ0

ξ
Ξ+
0 (ξ)Ξ

−
0 (ξ), (5.41)

where

Ξ±
0 (ξ) =

Γ
(

1∓ iξ
πµ0

)

Γ
(

1
2
∓ iξ

πµ0

) . (5.42)

The functions Ξ±
0 (ξ) satisfy Ξ+

0 (ξ) = Ξ−
0 (−ξ), with Ξ+

0 (ξ) being regular and

non-zero in the half-plane Im(ξ) > −πµ0/2. Moreover, Stirling’s formula

gives that the behaviour as ξ → ∞ in an upper half-plane is

Ξ+
0 (ξ) = β1/2 +

1

8
β−1/2 +

1

128
β−3/2 +O(β−5/2), ξ → ∞, (5.43)

where β = iξ/(πµ0). Analogous asymptotics for Ξ−
0 (ξ) are easily obtained by

noting that Ξ+
0 (ξ) = Ξ−

0 (−ξ) and exploiting standard asymptotic expansions

of the Gamma function. Near ξ = 0, the asymptotics for Ξ+
0 (ξ) are given by

Ξ+
0 (ξ) =

1√
π
− 2 ln(2)iξ

π3/2µ0

− (π2 + 12 ln2(2))ξ2

6µ2
0π

5/2
+O

(

ξ3
)

, ξ → 0. (5.44)
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The function Ξ∗(ξ) can be written in the form

Ξ∗(ξ) = Ξ+
∗ (ξ)Ξ

−
∗ (ξ), ξ ∈ C

± (5.45)

where

Ξ±
∗ (ξ) = exp







±1

2πi

∞
∫

−∞

ln Ξ∗(t)

t− ξ
dt







. (5.46)

In particular, we stress that the functions Ξ±
∗ (ξ) are easy to compute. Near

zero, we find that

Ξ+
∗ (ξ) = 1 +

αξ

πi
+O(ξ2), ξ → 0, (5.47)

where

α =

∞
∫

0

ln Ξ∗(t)

t2
dt. (5.48)

This result follows from Theorem 9 which we stated and proved earlier on

page 39.

Moreover, applying Theorem 9 further yields that behaviour near infinity

in a suitable domain is described by

Ξ+
∗ (ξ) = 1 +

µ0

πi

ln(−iξ)
ξ

+O

(

1

ξ

)

, Im(ξ) → +∞. (5.49)

These expressions again emphasise the well behaved nature of the func-

tions Ξ±
∗ (ξ). The ‘bad’ behaviour of the kernel near ξ = 0 is all contained in

the function Ξ0(ξ) which has subsequently been factorised into the product

of readily computable analytic functions.
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5.4 Solution to theWiener-Hopf equation (5.30)

Substituting our factorised expressions for Ξ±
0 (ξ) and Ξ±

∗ (ξ) into (5.30), we

arrive at the Wiener-Hopf type equation

ξΦ+(ξ)ξ
1/2
+

Ξ+
0 (ξ)Ξ

+
∗ (ξ)

= −κπµ0Φ
−(ξ)Ξ−

∗ (ξ)Ξ
−
0 (ξ)

ξ

ξ
1/2
−

. (5.50)

Both sides of (5.50) represent analytic functions in their respective half-planes

and do not have any poles along the real axis. The asymptotic estimates as

ξ → ∞ given in (5.26), (5.43) and (5.49), demonstrate that both sides of

equation (5.50) behave as O(1) as ξ → ∞ in their respective domains. We

therefore deduce that both sides must be equal to a constant, which we

denote A.

We deduce that the functions Φ±(ξ) are given by

Φ−(ξ) =
−Aξ1/2−

κπµ0Ξ
−
∗ (ξ)Ξ

−
0 (ξ)ξ

, Φ+(ξ) =
A
ξξ

1/2
+

Ξ+
0 (ξ)Ξ

+
∗ (ξ). (5.51)

These expressions validate our earlier expectations (see equations (5.26) and

(5.27) on page 118) regarding the asymptotic estimates for Φ±. In particular,

accurate estimates near zero are given by

Φ−(ξ) = − A
κµ0

√
π

ξ
1/2
−

ξ

{

1 +

(

αµ0 + 2 ln 2

πiµ0

)

ξ +O(ξ2)

}

, ξ → 0, (5.52)

Φ+(ξ) =
A

√
πξξ

1/2
+

{

1 +

(

αµ0 + 2 ln 2

πiµ0

)

ξ +O(ξ2)

}

, ξ → 0, (5.53)

and as ξ → ∞ in the appropriate domains,

Φ−(ξ) =
−A

ξκ
√
µ0π

(

1− µ0

πi

ln(−iξ)
ξ

+O

(

1

ξ

))

, ξ → ∞, (5.54)

Φ+(ξ) =
A
ξ

(

1√
πµ0

+

√
πµ0

iπ2

ln(−iξ)
ξ

+O

(

1

ξ

))

, ξ → ∞. (5.55)
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It also follows from (5.51) that the Fourier transform of U is given by

Ūj(ξ, y) =
(−1)j+1Ae−|ξy|

µjκπµ0Ξ
−
∗ (ξ)Ξ

−
0 (ξ)ξ

1/2
+ ξ

, j = 1, 2. (5.56)

Expressions for the transforms of the displacement jump and the mean dis-

placement across the interface are therefore respectively given by

JŪK(ξ) = A
πΞ−

∗ (ξ)Ξ
−
0 (ξ)ξ

1/2
+ ξ

, (5.57)

〈Ū〉(ξ) := 1

2

(

Ū1(ξ, 0
+) + Ū2(ξ, 0

−)
)

=
−Aµ∗

2πΞ−
∗ (ξ)Ξ

−
0 (ξ)ξ

1/2
+ ξ

, (5.58)

where µ∗ is the dimensionless mechanical contrast parameter

µ∗ =
(µ1 − µ2)

(µ1 + µ2)
. (5.59)

These expressions will be useful in Section 5.5 where we consider the Betti

identity in an imperfect interface setting. In particular we note that JŪK has

asymptotic expansions near zero and infinity as follows

JŪK(ξ) = A√
πµ0

πξξ
1/2
+ ξ

1/2
−

(

1 +
µ0 ln(iξ)

πξ
+O

(

1

ξ

))

, ξ → ∞, (5.60)

JŪK(ξ) = A
π3/2ξξ

1/2
+

(

1 +
(2 ln(2)− α)iξ

πµ0
+O(ξ2)

)

, ξ → 0. (5.61)

The function 〈Ū〉 behaves similarly, as

〈Ū〉(ξ) = −Aµ∗
√
πµ0

2πξξ
1/2
+ ξ

1/2
−

(

1 +
µ0 ln(iξ)

πξ
+O

(

1

ξ

))

, ξ → ∞, (5.62)

〈Ū〉(ξ) = −Aµ∗

2π3/2ξξ
1/2
+

(

1 +
(2 ln(2)− α)iξ

πµ0
+O(ξ2)

)

, ξ → 0. (5.63)

Another key difference between the imperfect and perfect interface (as

considered in [52]) cases is also readily seen here. Due to the condition of

continuity of displacement across perfect interfaces, the function JŪK(ξ) is a
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plus function in the perfect case, since JUK(x) is zero for x lying along the

negative real axis. However, across an imperfect interface, the displacement

is no longer continuous and so JŪK is neither a plus function nor a minus

function.

5.5 Betti identity in the imperfect interface

setting

In this section we refer to the physical fields for displacement and stress as u

and σ respectively, and the weight function fields for displacement and stress

as U and Σ respectively. We will use the reciprocal theorem (Betti formula)

as in [71] to relate the physical solution to the weight function.

Applying the Betti formula to the physical fields and to the upper and

lower half-plane we obtain

∞
∫

−∞

{

U(x′ − x, 0+)σ(x, 0+)− Σ(x′ − x, 0+)u(x, 0+)
}

dx = 0, (5.64)

and

∞
∫

−∞

{

U(x′ − x, 0−)σ(x, 0−)− Σ(x′ − x, 0−)u(x, 0−)
}

dx = 0. (5.65)

These identities were proved under the assumption that the integrand decays

faster at infinity than 1/R along any ray. It is clear from the asymptotic esti-

mates for the physical solution and the weight function given in subsections

5.2.1 and 5.2.2 that this condition is satisfied. Subtracting (5.65) from (5.64)
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we obtain
∞
∫

−∞

{U(x′ − x, 0+)σ(x, 0+)− U(x′ − x, 0−)σ(x, 0−)

− [Σ(x′ − x, 0+)u(x, 0+)− Σ(x′ − x, 0−)u(x, 0−)]}dx = 0. (5.66)

We split the terms for physical stress into two parts, writing

σ(x, 0±) = p
(−)
± (x) + σ(+)(x), (5.67)

where p
(−)
± and σ(+) are defined as follows

p
(−)
± (x) = H(−x)σ(x, 0±), σ(+)(x) = H(x)σ(x, 0); (5.68)

here H(x) denotes the Heaviside step function. The functions p
(−)
± (x) repre-

sent the prescribed loading on the crack faces. After this splitting, equation

(5.66) becomes

∞
∫

−∞

{JUK(x′ − x)σ(+)(x)− Σ(x′ − x, 0)JuK(x)}dx

= −
∞
∫

−∞

{U(x′ − x, 0+)p
(−)
+ (x)− U(x′ − x, 0−)p

(−)
− (x)}dx. (5.69)

We introduce notation for symmetric and skew-symmetric parts of the load-

ing:

〈p〉(−)(x) =
1

2
(p

(−)
+ (x) + p

(−)
− (x)), JpK(−)(x) = p

(−)
+ (x)− p

(−)
− (x). (5.70)

This allows us to rewrite the right hand side of (5.69), giving

∞
∫

−∞

{JUK(x′ − x)σ(+)(x)− Σ(x′ − x, 0)JuK(x)}dx

= −
∞
∫

−∞

{JUK(x′ − x)〈p〉(x) + 〈U〉(x′ − x)JpK(x)}dx. (5.71)
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We now split JUK into the sum of JUK(±) in the spirit of (5.67), and similarly

split JuK into the sum of JuK(±). We will use the usual notation of f ∗ g to

denote the convolution of f and g. Rewriting (5.71) using these expressions

gives

JUK(+) ∗ σ(+) + JUK(−) ∗ σ(+) − Σ ∗ JuK(+) − Σ ∗ JuK(−) =

− JUK ∗ 〈p〉(−) − 〈U〉 ∗ JpK(−). (5.72)

Taking Fourier transforms in x yields

JUK(+)(ξ)σ(+)(ξ) + JUK(−)(ξ)σ(+)(ξ)− Σ(ξ)JuK(+)(ξ)− Σ(ξ)JuK(−)(ξ) =

− ¯JUK(ξ) ¯〈p〉(ξ)− ¯〈U〉(ξ) ¯JpK(ξ). (5.73)

We now make use of the transmission conditions which state that

JUK(−)(ξ) = κΣ(ξ), JuK(+)(ξ) = κσ(+)(ξ). (5.74)

This causes the second and third terms in the left hand side of (5.73) to

cancel, leaving

JUK(+)(ξ)σ(+)(ξ)− Σ(ξ)JuK(−)(ξ) = − ¯JUK(ξ) ¯〈p〉(ξ)− ¯〈U〉(ξ) ¯JpK(ξ), ξ ∈ R.

(5.75)

We note that

JUK(+)(ξ) ≡ Φ+(ξ), Σ̄(ξ) ≡ Φ−(ξ), (5.76)

and can therefore combine the asymptotic estimates in (5.10), (5.11), (5.54)

and (5.55) to yield that

JUK(+)(ξ)σ(+)(ξ) =
a0i√
πµ0ξ2

+O(ξ−(2+δ)), ξ → ∞ in C
+, (5.77)

Σ̄(ξ)JuK(−)(ξ) =
a0i√
πµ0ξ2

+O(ξ−(2+δ)), ξ → ∞ in C
−, (5.78)
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where δ > 0. We now multiply both sides of (5.75) by ξ, giving

ξ
(

JUK(+)(ξ)σ(+)(ξ)− Σ(ξ)JuK(−)(ξ)
)

= −ξ
( ¯JUK(ξ) ¯〈p〉(ξ) + ¯〈U〉(ξ) ¯JpK(ξ)

)

.

(5.79)

Then, and similarly to the expression obtained for the perfect interface Betti

formula approach of Willis and Movchan [71], the left hand side now has

asymptotics at infinity (in appropriate domains) of the form

ξ
(

JUK(+)(ξ)σ(+)(ξ)− Σ(ξ)JuK(−)(ξ)
)

∼ a0i√
πµ0

[

1

ξ + i0
− 1

ξ − i0

]

, ξ → ∞,

(5.80)

where the term in square brackets is the regularization of the Dirac delta

function, namely −2πiδ(ξ). Integrating both sides of (5.79), we can derive

an expression for the constant a0 in terms of known, readily computable

functions:

a0 =
1

2

√

µ0

π

∞
∫

−∞

ξ
( ¯JUK(ξ) ¯〈p〉(ξ) + ¯〈U〉(ξ) ¯JpK(ξ)

)

dξ. (5.81)

We note that since JŪK(ξ) and 〈Ū〉(ξ) behave as O(ξ−2) as ξ → ∞, and

the functions Jp̄K(ξ) and 〈p̄〉(ξ) behave as bounded oscillations as ξ → ∞
for point loadings, the integrand is well behaved at infinity. Moreover, near

ξ = 0 the integrand is also sufficiently well behaved, acting as O(ξ
−1/2
+ ).

Equation (5.81) is a particularly important result; it gives an expression

for the leading order of the out-of-plane component of stress near the crack

tip (see (5.9)) in terms of known functions and acts as an imperfect interface

analogue to the stress intensity factor from the perfect interface setting.
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5.5.1 The functions Jp̄K and 〈p̄〉 for specific point load-

ings

As we stated in the introduction to this chapter, although the methods de-

scribed are applicable to any permissible loading, we will later perform com-

putations using the specific point loading configuration shown in Figure 5.1

on page 113.

For this configuration, the loadings are defined as a point load on the

upper crack face at x = −a balanced by two equal loads at x = −a + b and

x = −a− b, that is

p
(−)
+ (x) = Fδ(x+ a), p

(−)
− (x) =

F

2
(δ(x+ a+ b) + δ(x+ a− b)) . (5.82)

The corresponding explicit expressions for 〈p〉(x) and JpK(x) are

〈p〉(x) = F

2

{

δ(x+ a) +
1

2
(δ(x+ a + b) + δ(x+ a− b))

}

, (5.83)

JpK(x) = F

{

δ(x+ a)− 1

2
(δ(x+ a+ b) + δ(x+ a− b))

}

, (5.84)

which have Fourier transforms given by

〈p̄〉(ξ) = F

4
(eibξ + 1)2e−i(a+b)ξ , (5.85)

Jp̄K(ξ) = −F
2
(eibξ − 1)2e−i(a+b)ξ. (5.86)

These expressions are useful in generating the numerical results which are

later presented in Section 5.10.

5.6 The unperturbed solution, u0

We will later require a method to evaluate the unperturbed physical solution

u0 and its first order partial derivatives with respect to x and y. This problem
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has been solved by Antipov et al. [1] by approximating the loading by a

linear combination of exponentials; this approximation is however not ideal

for point loadings.

Tractions on the upper and lower crack faces can be written as

σ̄1(ξ, 0
+) = p̄1(ξ) + ϕ+

1 (ξ), (5.87)

σ̄2(ξ, 0
−) = p̄2(ξ) + ϕ+

2 (ξ). (5.88)

It follows immediately from continuity of tractions across the imperfect in-

terface that

ϕ+
1 (ξ) = ϕ+

2 (ξ) =: ϕ+(ξ). (5.89)

We further define minus functions, ϕ−
1 and ϕ−

2 as

ϕ−
1 (ξ) = JūK(ξ)− κσ̄1(ξ, 0

+), (5.90)

ϕ−
2 (ξ) = JūK(ξ)− κσ̄2(ξ, 0

−). (5.91)

We expect that the unknown functions ϕ+(ξ) and ϕ−
j (ξ) behave at infinity

as

ϕ±
j (ξ) = O

(

1

ξ

)

, ξ → ∞, ±Im(ξ) > 0. (5.92)

From these expressions follow the relationships

Jσ̄K(ξ) ≡ Jp̄K(ξ), (5.93)

〈σ̄〉(ξ) ≡ 〈p̄〉(ξ) + ϕ+(ξ), (5.94)

and also

−κJσ̄K(ξ) ≡ ϕ−
1 (ξ)− ϕ−

2 (ξ), (5.95)

2JūK(ξ)− 2κ〈σ̄〉(ξ) ≡ ϕ−
1 (ξ) + ϕ−

2 (ξ). (5.96)
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Moreover, since transformed solutions are of the form

ūj(ξ, y) = Aj(ξ)e
−|ξy|, (5.97)

we further have the relationships

JūK(ξ) = A1(ξ)− A2(ξ), (5.98)

Jσ̄K(ξ) = −|ξ|(µ1A1(ξ) + µ2A2(ξ)), (5.99)

and

〈σ̄〉(ξ) = |ξ|
2
(µ2A2(ξ)− µ1A1(ξ)). (5.100)

These seven equations in eight unknowns reduce to the following Wiener-

Hopf type equation relating ϕ+(ξ) and ϕ−
1 (ξ):

−κ
{

1 +
µ0

|ξ|

}

ϕ+(ξ)− κ

{

1 +
µ0

|ξ|

}

〈p〉(ξ) = ϕ−
1 (ξ) +

κ

2

{

1− µ∗µ0

|ξ|

}

JpK(ξ).

(5.101)

Noting that the term in braces on the left hand side of (5.101) is the function

we earlier defined as Ξ(ξ) and have already suitably factorised, we can write

−κΞ(ξ)ϕ+(ξ)− κΞ(ξ)〈p〉(ξ) = ϕ−
1 (ξ) + κΛ(ξ)JpK(ξ), (5.102)

where

Λ(ξ) =
1

2

{

1− µ∗µ0

|ξ|

}

. (5.103)

Recall that Ξ(ξ) can be factorised in the form

Ξ(ξ) = πµ0B
+(ξ)B−(ξ), (5.104)

where we have defined the functions B±(ξ) for the sake of notational brevity

by

B+(ξ) =
Ξ+
0 (ξ)Ξ

+
∗ (ξ)

ξ
1/2
+

, B−(ξ) =
Ξ−
0 (ξ)Ξ

−
∗ (ξ)

ξ
1/2
−

, (5.105)
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which are analytic in the half-planes indicated by their superscripts. These

functions have behaviour near zero and infinity given by

B±(ξ) = O(ξ−1/2), ξ → 0, (5.106)

B±(ξ) = O(1), ξ → ∞. (5.107)

Thus

−κπµ0B
+(ξ)ϕ+(ξ) =

ϕ−
1 (ξ)

B−(ξ)
+ κ

Λ(ξ)

B−(ξ)
JpK(ξ) + κπµ0B

+(ξ)〈p〉(ξ). (5.108)

We can decompose the final term on the right hand side as usual into

κ
Λ(ξ)

B−(ξ)
JpK(ξ) + κπµ0B

+(ξ)〈p〉(ξ) = L+(ξ)− L−(ξ), (5.109)

where L±(ξ) are given by

L±(ξ) =
1

2πi

∞
∫

−∞

{

κ
Λ(β)

B−(β)
JpK(β) + κπµ0B

+(β)〈p〉(β)
}

dβ

β − ξ
, ξ ∈ C

±.

(5.110)

We expect that L±(ξ) behave as O(ξ−1) as ξ → ∞.

The Wiener-Hopf equation becomes

−κπµ0B
+(ξ)ϕ+(ξ)− L+(ξ) =

ϕ−
1 (ξ)

B−(ξ)
− L−(ξ). (5.111)

Both terms of on each side of (5.111) decay as O(1/ξ), ξ → ∞. Moreover,

each side is analytic in the half-plane denoted by the superscripts. Liouville’s

theorem yields that both sides are equal to zero, and so

ϕ+(ξ) =
−L+(ξ)

κπµ0B+(ξ)
, ϕ−

1 (ξ) = L−(ξ)B−(ξ). (5.112)

These expressions verify that our expectations of the behaviour of ϕ+(ξ) and

ϕ−
1 (ξ) as ξ → ∞ were correct. Moreover, (5.95) enables us to express ϕ−

2 (ξ)

as

ϕ−
2 (ξ) = L−(ξ)B−(ξ) + κJp̄K(ξ). (5.113)
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Condition (5.96) then yields an expression for the transform of the displace-

ment jump

JūK(ξ) = ϕ−
1 (ξ)

2
+
ϕ−
2 (ξ)

2
+ κ〈σ̄〉(ξ) = ϕ−

1 (ξ) + κϕ+(ξ) + κ〈p̄〉(ξ) + κ

2
Jp̄K(ξ),

(5.114)

from which we can obtain expressions for A1(ξ) and A2(ξ) as follows

A1(ξ) = − 1

µ1|ξ|

{

ϕ+(ξ) + 〈p̄〉(ξ) + 1

2
Jp̄K(ξ)

}

, (5.115)

A2(ξ) =
1

µ2|ξ|

{

ϕ+(ξ) + 〈p̄〉(ξ)− 1

2
Jp̄K(ξ)

}

. (5.116)

These expressions now enable us (see (5.97)) to compute the Fourier trans-

form of the unperturbed solution (i.e. the setup with no small defect present)

ūj(ξ, y) for any ξ, y.

5.7 Perturbation analysis

We shall construct an asymptotic solution of the problem using the method

of Movchan and Movchan [46], that is the asymptotics of the solution will be

taken in the form

u1,2(x, ε) = u
(0)
1,2(x) + εW (1)(ξ) + ε2u

(1)
1,2(x) + o(ε2), ε → 0. (5.117)

In (5.117), the leading term u
(0)
1,2(x) corresponds to the unperturbed solution,

which is described in the previous section. The term εW (1)(ξ) corresponds

to the boundary layer concentrated near the defect and needed to satisfy the

transmission conditions for the elastic inclusion gε

uin = uout, µin
∂uin
∂n

= µout
∂uout
∂n

on ∂gε. (5.118)

The term ε2u
(1)
1,2(x) is introduced to fulfil the original boundary conditions

(5.4) on the crack faces and the interface conditions (5.2), (5.3) disturbed by
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the boundary layer; this term, in turn, will produce perturbations of the

crack tip fields and correspondingly of the constant a0.

We shall consider an elastic inclusion, situated in the upper (or lower)

half-plane. The leading term u
(0)
1,2 clearly does not satisfy the transmission

conditions (5.118) on the boundary ∂gε. Thus, we shall correct the solution

by constructing the boundary layer W (1)(ξ), where the new scaled variable

ξ is defined by

ξ =
x− Y

ε
, (5.119)

with Y = (X, Y ) being the “centre” of the inclusion gε (see Figure 5.1).

For W (1)(ξ) = {W (1)
in , ξ ∈ g; W

(1)
out, ξ ∈ R2 \ g} we consider the following

problem

∇2W
(1)
in (ξ) = 0, ξ ∈ g, ∇2W

(1)
out(ξ) = 0, ξ ∈ R

2 \ g, (5.120)

where

g = ε−1gε ≡ {ξ ∈ R
2 : εξ + Y ∈ gε}.

The function W (1) remains continuous across the interface ∂g, that is,

W
(1)
in = W

(1)
out on ∂g,

and satisfies on ∂g the following transmission condition

µin
∂

∂n
W

(1)
in (ξ)− µout

∂

∂n
W

(1)
out(ξ) = (µout − µin)n · ∇u(0)(Y ) +O(ε), ε→ 0,

(5.121)

where n = nξ is an outward unit normal on ∂g. The formulation is com-

pleted by setting the following condition at infinity

W
(1)
out → 0 as |ξ| → ∞. (5.122)

The problem above has been solved by various techniques and the solution

can be found, for example, in Movchan and Movchan [46].
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Since we assume that the inclusion is at a finite distance from the in-

terface between the half-planes, we shall only need the leading term of the

asymptotics of the solution at infinity. This term reads as follows

W
(1)
out(ξ) = − 1

2π

[

∇x u
(0)
∣

∣

Y

]

·
[

M
ξ

|ξ|2
]

+O(|ξ|−2) as ξ → ∞, (5.123)

where M is a 2 × 2 matrix which depends on the characteristic size ℓ of the

domain g and the ratio µout/µin; it is called the dipole matrix. For example,

in the case of an elliptic inclusion with the semi-axes ℓa and ℓb making an

angle α with the positive direction of the x-axis and y-axis, respectively, the

matrix M takes the form

M = −π
2
ℓaℓb(1+e)(µ⋆−1)









1 + cos 2α

e+ µ⋆
+

1− cos 2α

1 + eµ⋆
−(1− e)(µ⋆ − 1) sin 2α

(e+ µ⋆)(1 + eµ⋆)

−(1− e)(µ⋆ − 1) sin 2α

(e+ µ⋆)(1 + eµ⋆)

1− cos 2α

e + µ⋆
+

1 + cos 2α

1 + eµ⋆









,

(5.124)

where e = ℓb/ℓa and µ⋆ = µout/µin. We note that for a soft inclusion,

µout > µin, the dipole matrix is negative definite, whereas for a stiff inclusion,

µout < µin, the dipole matrix is positive definite. In the limit µin → ∞, we

obtain the dipole matrix for a rigid movable inclusion. In the case of an

elliptic rigid inclusion, we have

M =
π

2
ℓaℓb(1/e+1)







1 + cos 2α + e(1− cos 2α) (1− e) sin 2α

(1− e) sin 2α 1− cos 2α + e(1 + cos 2α)






.

(5.125)

The term εW (1)(ξ) in a neighbourhood of the x-axis written in the x co-

ordinates takes the form

εW (1)(ξ) = ε2w(1)(x) + o(ε2), ε→ 0, (5.126)

where

w(1)(x) = − 1

2π

[

∇xu
(0)
∣

∣

Y

]

·
[

M
x− Y

|x− Y |2
]

. (5.127)
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As a result, one can compute the average ε2〈σ(1)〉 and the jump ε2Jσ(1)K
of the “effective” tractions on the crack faces induced by the elastic inclusion

gε. Since ∂u
(1)
1,2/∂y = −∂w(1)/∂y must hold on the crack line (to satisfy the

original boundary conditions (5.4)), this gives for x < 0

〈σ(1)〉(−)(x) = −1

2
(µ1 + µ2)

∂w(1)

∂y
:= P (−)(x), (5.128)

Jσ(1)K(−)(x) = −(µ1 − µ2)
∂w(1)

∂y
:= Q(−)(x), (5.129)

where

∂w(1)

∂y
= − 1

2π

[

∇xu
(0)
∣

∣

Y

]

·M e2

|x− Y |2+
1

π

[

∇xu
(0)
∣

∣

Y

]

·M(x− Y )(y − Y )

|x− Y |4 .

(5.130)

Additionally, we can compute the transmission conditions for the functions

u
(1)
1,2 across the interface. In order for the perturbed solution u1,2 in (5.117)

to satisfy the original transmission conditions (5.2) and (5.3), the following

relations must hold for x > 0

Ju(1)K(+)(x) = κ〈σ(1)〉(+)(x) +
κ

2
(µ1 + µ2)

∂w(1)

∂y
:= κ〈σ(1)〉(+)(x)− κP (+)(x),

(5.131)

Jσ(1)K(+)(x) = −(µ1 − µ2)
∂w(1)

∂y
:= Q(+)(x). (5.132)

Note that we have defined the functions P (±) and Q(±) above. We will later

need an expression for the Fourier transform of ∂w(1)/∂y, so we note the

useful expressions for ξ ∈ R

∞
∫

−∞

eiξxdx

|x− Y |2 =

∞
∫

−∞

eiξxdx

(x−X)2 + Y 2
=
π

Y
eiξXe−Y |ξ|, (5.133)

and
∞
∫

−∞

eiξxdx

|x− Y |4 =

∞
∫

−∞

eiξxdx

((x−X)2 + Y 2)2
=

π

2|Y |3 e
iξXe−|ξY |(1 + |ξY |). (5.134)
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5.8 Model problem for the first order pertur-

bation

The constant a0 which describes the traction near the crack tip (see (5.9)) is

expanded in the form

a0 = a
(0)
0 + ε2∆a0 + o(ε2), ε→ 0. (5.135)

Our objective is to find the first order variation ∆a0.

Let us consider the model problem for the first order perturbation u(1)

and write the corresponding Betti identity in the form

∫ ∞

−∞

{

JUK(x′ − x)〈σ(1)〉(x) + 〈U〉(x′ − x)Jσ(1)K(x)

− 〈Σ〉(x′ − x)Ju(1)K(x)
}

dx = 0. (5.136)

This follows immediately from (5.66) by noting that JΣK ≡ 0. We split the

terms for stress into two parts,

〈σ(1)〉 = 〈σ(1)〉(+) + P (−), Jσ(1)K = Q(+) +Q(−), (5.137)

observing that in contrast to the zero order problem where the load is de-

scribed by (5.70), the terms with superscript (+) are non-zero since the pres-

ence of inclusions induces stresses along the imperfect interface and should

be taken into account. Equation (5.136) becomes

∫ ∞

−∞

{

JUK(x′ − x)〈σ(1)〉(+)(x)− 〈Σ〉(x′ − x)Ju(1)K(x)
}

dx =

−
∫ ∞

−∞

{

JUK(x′ − x)P (−)(x) + 〈U〉(x′ − x)Q(−)(x) + 〈U〉(x′ − x)Q(+)(x)
}

dx.

(5.138)
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We now split JUK into the sum of JUK± and similarly split JuK into the sum

of JuK±. This gives

JUK(+) ∗ 〈σ(1)〉(+) + JUK(−) ∗ 〈σ(1)〉(+) − 〈Σ〉 ∗ Ju(1)K(+) − 〈Σ〉 ∗ Ju(1)K(−) =

−JUK ∗ P (−) − 〈U〉 ∗Q(−) − 〈U〉 ∗Q(+).

(5.139)

Taking the Fourier transform in x yields

JUK+(ξ)〈σ(1)〉+(ξ) + JUK−(ξ)〈σ(1)〉+(ξ)− 〈Σ〉(ξ)Ju(1)K+(ξ)− 〈Σ〉(ξ)Ju(1)K−(ξ) =

−JUK(ξ)P−
(ξ)− 〈U〉(ξ)Q−

(ξ)− 〈U〉(ξ)Q+
(ξ).

(5.140)

We now make use of the transmission conditions

JUK−(ξ) = κ〈Σ〉(ξ), Ju(1)K+(ξ) = κ〈σ(1)〉+(ξ)− κP
+
(ξ), (5.141)

thus obtaining

JUK+(ξ)〈σ(1)〉+(ξ)− 〈Σ〉(ξ)Ju(1)K−(ξ)

= −JUK(ξ)P−
(ξ)− 〈U〉(ξ)Q−

(ξ)− κ〈Σ〉(ξ)P+
(ξ)− 〈U〉(ξ)Q+

(ξ).

(5.142)

The same reasoning used in Section 5.5, allows us to derive the integral

representation for ∆a0 in the form

∆a0 = −1

2

√

µ0

π

{
∫ ∞

−∞

[

ξJUK(ξ)P−
(ξ) + ξ〈U〉(ξ)Q−

(ξ)

]

dξ

+

∫ ∞

−∞

[

κξ〈Σ〉−(ξ)P+
(ξ) + ξ〈U〉(ξ)Q+

(ξ)
]

dξ

}

. (5.143)

This important constant has an immediate physical meaning. If ∆a0 = 0

then the defect configuration is neutral; its presence causes zero perturba-

tion to the leading order of tractions at the crack tip. Otherwise, if ∆a0 < 0,
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Figure 5.3: Contour of integration around the branch cut occupying Re(β) =

0, Im(β) > 0.

the presence of the defect causes a reduction in the crack tip traction and

so shields the crack from propagating further. Finally, if ∆a0 > 0 then

the defect causes an amplification effect and so can be considered to be en-

couraging the propagation of the main crack. This interpretation makes the

vital assumption that the crack will propagate along the imperfect interface.

This assumption seems reasonable since the interface is soft, but should be

treated with caution when the inclusion is lying near to the interface; in such

a configuration the crack may deviate from the interface line.

5.9 Computation of the solution’s gradient

The remainder of this chapter is devoted to performing numerical computa-

tions of a0 and ∆a0. We will use the balanced point loading configuration

as described earlier for computations of a0, but for computations of ∆a0 we

will use smooth loadings in order to reduce the complexity of the compu-

tations. In particular, this alternative loading will cause integrands to have

more favourable (i.e. faster decaying) behaviour at infinity. Nevertheless, we

138



stress that it is perfectly possible to perform computations for ∆a0 in the

point loading case.

In the present section we discuss the computation of ∂u0

∂x
, which is needed

in the evaluation of the function ∂w(1)

∂y
, as can be seen in (5.130). We here

detail the computation for a point above the interface (y > 0). We see from

equation (5.115) that for y > 0,

ū0(ξ, y) = − 1

µ1|ξ|

{

ϕ+(ξ) + 〈p̄〉(ξ) + 1

2
Jp̄K(ξ)

}

e−|ξ|y. (5.144)

It follows that

∂u0
∂x

=
1

2π

∞
∫

−∞

iξ

µ1|ξ|

{

ϕ+(ξ) + 〈p̄〉(ξ) + 1

2
Jp̄K(ξ)

}

e−|ξ|ye−iξxdξ. (5.145)

We split this integral into two parts, writing ∂u0

∂x
= 1

2π
(IA + IB), where IA

and IB are defined by

IA =

∞
∫

−∞

iξ

µ1|ξ|

{

〈p̄〉(ξ) + 1

2
Jp̄K(ξ)

}

e−|ξ|ye−iξxdξ, (5.146)

IB =

∞
∫

−∞

iξ

µ1|ξ|
ϕ+(ξ)e−|ξ|ye−iξxdξ. (5.147)

The integral IA may be evaluated analytically, while IB is to be computed

numerically.

5.9.1 Imposed tractions

As described in the introduction to this section, while the procedure described

is suitable for application to point loadings, we will ease the computational

effort required by performing computations for specific imposed tractions on

the upper and lower crack face given respectively by

p+(x) = −a
2
1

a22
xea1x, p−(x) = −xea2x, x < 0, a1, a2 > 0. (5.148)
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The Fourier transforms of the loadings are

p̄1(ξ) =
a21

a22(a1 + iξ)2
, p̄2(ξ) =

1

(a2 + iξ)2
, (5.149)

and so the transformed jump and average functions are found to be

Jp̄K(ξ) = a21
a22(a1 + iξ)2

− 1

(a2 + iξ)2
, 〈p̄〉(ξ) = 1

2

{

a21
a22(a1 + iξ)2

+
1

(a2 + iξ)2

}

.

(5.150)

As expected, the transformed jump disappears as ξ → 0 while the average

does not, with

Jp̄K(ξ) = 2i(a1 − a2)

a1a32
ξ +O(ξ2), 〈p̄〉(ξ) = 1

a22
+O(ξ), ξ → 0, (5.151)

and both the jump and average decay as O(1/ξ2) as ξ → ∞. This quadratic

decay for large ξ makes computation easier than for point loadings, since the

analogous transformed jump in the point loading case oscillates boundedly

at infinity. This makes the numerical computation of L+(ξ) (as defined in

(5.110)) difficult (in the sense of being very sensitive to computational error)

since terms in the integrand decay only as 1/β multiplied by a bounded

oscillation.

5.9.2 Computation of IB

The integral IA may be evaluated analytically. Let us now restrict our at-

tention to the integral IB. Recalling the expression for ϕ+(ξ) obtained in

(5.112), we see that

IB =
−i

κπµ0µ1

∞
∫

−∞

ξ

|ξ|
L+(ξ)

B+(ξ)
e−|ξ|ye−iξxdξ. (5.152)
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Note that the integrand is well behaved in the upper half-plane, with the

exception of a branch cut along the positive imaginary axis. We write

IB =
−i

κπµ0µ1







0
∫

−∞

−L+(ξ)

B+(ξ)
eξye−iξxdξ +

∞
∫

0

L+(ξ)

B+(ξ)
e−ξye−iξxdξ







. (5.153)

We will evaluate IB along a contour split into four parts (see Figure 5.3 on

page 138), with the horizontal contours of integration having an imaginary

part of τ > 0. That is, we write the first integral in (5.153) as

−ε+iτ
∫

−∞+iτ

−L+(ξ)

B+(ξ)
eξye−iξxdξ −

−ε+iτ
∫

−ε+0i

−L+(ξ)

B+(ξ)
eξye−iξxdξ, (5.154)

and the second integral in (5.153) as

ε+iτ
∫

ε+0i

L+(ξ)

B+(ξ)
e−ξye−iξxdξ +

∞+iτ
∫

ε+iτ

L+(ξ)

B+(ξ)
e−ξye−iξxdξ, (5.155)

where 0 < ε≪ 1. We can combine the integrals along the vertical contours,

and find that as ε → 0, these integrals become

−ε+iτ
∫

−ε+0i

L+(ξ)

B+(ξ)
eξye−iξxdξ+

ε+iτ
∫

ε+0i

L+(ξ)

B+(ξ)
e−ξye−iξxdξ =

iτ
∫

0

2L+(α)

B+(α)
e−ixα cosh(αy)dα.

(5.156)

In order to compute the integrals along the horizontal contours, we need to

tabulate L+(ξ)/B+(ξ) along the contour Im(ξ) = τ . After this tabulation,

we will be able to follow the above procedure to find IA and IB, and thus ∂u0

∂x

for y > 0.

5.9.3 Computation of L+(ξ)

While the function B+(ξ) can be easily computed, L+(ξ) (as defined in

(5.110)) requires more effort. We write

L+(ξ) =
κ

2πi
{IC(ξ) + πµ0ID(ξ)} , Im(ξ) > 0, (5.157)
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where

IC(ξ) =

∞
∫

−∞

Λ(β)Jp̄K(β)
B−(β)

dβ

β − ξ
, Im(ξ) > 0, (5.158)

and

ID(ξ) =

∞
∫

−∞

B+(β)〈p̄〉(β) dβ

β − ξ
, Im(ξ) > 0. (5.159)

Computation of IC

Noting that we only aim to compute IC for ξ with positive imaginary part,

the integral is not singular. We further note from our asymptotic estimates

for Jp̄K and B− (see (5.106), (5.107) and (5.151)) that

Λ(β)Jp̄K(β)
B−(β)

∼ µ∗µ0i(a2 − a1)
√
π

a1a
3
2

sgn(β)β
1/2
− , β → 0, (5.160)

and
Λ(β)Jp̄K(β)
B−(β)

∼ (a22 − a21)
√
πµ0

2a22β
2

, β → ∞, (5.161)

and so we may straightforwardly compute the integral IC along the real line.

Computation of ID

We note that

B+(β)〈p̄〉(β) = O(β−1/2), β → 0. (5.162)

In order to make the computation more simple by removing this integrable

singularity, we further split the integral ID, writing

ID =

∞
∫

−∞

B+(β)

{

〈p̄〉(β)− 1

a22 − iβ

}

dβ

β − ξ
+

∞
∫

−∞

B+(β)
1

a22 − iβ

dβ

β − ξ
.

(5.163)

The term in curly braces in the first integral now behaves as O(β) as β → 0

(see (5.151) and (5.162)), and so this integral is easily computed. Noting
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that the second integrand in (5.163) is analytic in the upper half-plane and

decays faster than 1/β as β → ∞, the residue theorem yields that

∞
∫

−∞

B+(β)
1

a22 − iβ

dβ

β − ξ
=

2πiB+(ξ)

a22 − iξ
, (5.164)

and so ID is now computed.

With IC and ID now computed, we can substitute their values into (5.157)

to obtain L+(ξ) and follow the procedure described at the beginning of this

section to obtain ∂u0

∂x
.

5.10 Numerical results

5.10.1 Computations of a0

In this section we present results of computations obtained by following the

methods previously described in this chapter. All results have been computed

using MATLAB.

Figure 5.4 on page 144 plots a0 against µ∗, showing how the constant

from the asymptotic expansion at the crack tip a0 varies with differently

contrasting stiffnesses of materials. Recalling that

µ∗ =
µ1 − µ2

µ1 + µ2
, (5.165)

we note that when µ∗ is near to −1, this corresponds to µ2 ≫ µ1. That is, the

material occupying the region below the crack is far stiffer than the material

above the crack. As this limit is approached, the precise locations of the

point loadings on the lower face of the crack decrease in importance, since

the material becomes sufficiently stiff for the material to act as an almost

rigid body; this explains the meeting of the two lines at µ∗ = −1.
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Figure 5.4: Plot of a0 against µ∗. Both cases plotted here use the param-

eters κ∗ = 1 and a = 1, but with different values for b, which controls the

separation between the point loadings. The red plot has b = 3/4 while the

blue plot uses b = 1/4.

In Figure 5.5 we present a log-log plot of a0 against κ∗, the dimensionsless

parameter of interface imperfection defined as κ∗ = κ(µ1+µ2). This has been

computed for different values of µ∗ (describing the contrast in material stiff-

nesses) and also for different values of b (describing the separation distance

between the point loadings) while keeping a fixed (a = 1). The solid lines

correspond to b = 3
4
while dotted lines represent b = 1

4
and different colours

correspond to different values of µ∗: green corresponds to µ∗ = −0.8, blue to

µ∗ = 0 and red to µ∗ = +0.8.

Bearing in mind our remarks regarding Figure 5.4, we would expect that

changing the value of b would have the greatest impact for values of µ∗ near

+1. This is indeed the case in Figure 5.5.
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Figure 5.5: Log-log plot of a0 against κ∗ for differently contrasting materials.

Also plotted in Figure 5.5 is a grey dotted line that is tangent to the

curves (which run parallel) as κ∗ → 0; this tangent has slope −1
2
, indicating

that a0 = O(κ
−1/2
∗ ) as κ∗ → 0. As κ∗ → 0, the interface becomes almost

perfect, and so the square-root behaviour associated with fields near crack

tips in the perfect interface setting is not unexpected. This is consistent for

instance with the estimate given for the case in the strip in equation (3.210)

on page 75. Moreover, as κ→ +∞, the curves on the log-log plot have slope

−1, implying that a0 = O(κ−1
∗ ) as κ∗ → +∞.

145



5.10.2 Comparison of a0 with stress intensity factors

from the perfect interface case

In this subsection we discuss an approach which enables a comparison to be

made between imperfect and perfect interface situations.

Comparing the fields directly is not a simple task since in the perfect

interface case the stresses become unbounded at the crack tip, exhibiting

asymptotic behaviour of the form σyz ∼ O(r−1/2), r → 0. In the imperfect

setting, we have derived the leading order of stresses at the crack tip, a0,

which is independent of r. Moreover, different normalisations may make

comparisons difficult.

However, given two particular pairs of materials with constrast parame-

ters (µ∗)1 and (µ∗)2 say, we might expect the dimensionless ratios of stress in-

tensity factors (K
(0)
III)1/(K

(0)
III)2 (from the perfect interface case) and (a0)1/(a0)2

(imperfect case) to be similar for small κ∗.

This approach of comparing ratios of a0 with stress intensity factors can be

justified by considering the paper of Mishuris et al. [43] which examines the

use of the crack tip opening displacement in fracture criteria by considering a

crack within a thin soft layer of shear modulus µint and thickness H between

two larger, stiffer bodies. Lemma 5.3 in that paper demonstrates that the

Mode-III stress intensity factor for the crack in the soft medium is given by

K int
III =

µint√
H

JuK(0+), (5.166)

where JuK(0+) is computed from the model problem in which the thin layer is

replaced by soft imperfect interface transmission conditions; in the presently

considered problem recall that JuK(0+) = κa0 and κ = H/µint. Thus the

stress intensity factor for the crack inside the thin layer is related to a0 by
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the expression

K int
III =

√
Ha0. (5.167)

Thus given two pairs of material parameters for a fixed extent of interfacial

imperfection (κ,H, µint fixed), the ratio of the respective (a0)1 and (a0)2

values is related to the ratios of the stress intensity factors (K int
III)1 and (K int

III)2

via
(a0)1
(a0)2

=
(K int

III)1
(K int

III)2
. (5.168)

Note that while H does not explicitly appear in equation (5.168), all param-

eters in the equation depend on the thickness of the interfacial layer H . If

we fix µint and let H → 0 then the perfect interface case is approached.

In the perfect interface case, the stress intensity factor (derived in [54])

is given by

K
(0)
III = −

√

2

π

∞
∫

0

{

〈p〉(−r) + µ0

2
JpK(−r)

}

r−1/2dr. (5.169)

As derived earlier in this thesis in Section 5.5, the leading order of tractions

near the crack tip in the imperfect interface case is given by

a0(κ∗) =
1

2

√

µ0

π

∞
∫

−∞

ξ
( ¯JUK(ξ) ¯〈p〉(ξ) + ¯〈U〉(ξ) ¯JpK(ξ)

)

dξ. (5.170)
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Figure 5.6: Plot of the ratio r as defined in (5.171) for four different values

of (µ∗)2.

Figure 5.6 plots the ratio

r(κ∗) =
(a0(κ∗))1/(a0(κ∗))2

(K
(0)
III)1/(K

(0)
III)2

(5.171)

for 0 < κ∗ < 1 with (µ∗)1 = 0 fixed and for four different values of (µ∗)2.

The loadings used are balanced; a point loading on the upper crack face at

x = −1 is balanced by two equal loadings at x = −1.25 and x = −0.75.

We see from the plot that as κ∗ → 0, r(κ∗) → 1. This provides some

verification of the accuracy of our computations and demonstrates that the

comparison of ratios approach for small κ again the perfect interface case is

useful.
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Figure 5.7: Plot of the sign of ∆a0 for varying α and φ which describe the

defect’s location and orientation (see Figure 5.1). The darker shaded areas

are those (φ, α) for which ∆a0 > 0 while paler regions have ∆a0 < 0.

5.10.3 Computation of ∆a0

We now present numerical results for the perturbed problem computed using

MATLAB. Figure 5.7 shows the sign of ∆a0 for a specific configuration. The

tractions on the upper and lower crack faces are of the form described earlier

in equation (5.148) with a1 = 2 and a2 = 3 and the imperfect interface has

κ∗ = 1. The inclusion is stiff, with the contrast between the internal and

external materials of the inclusion given by µ⋆ = 5.

The figure clearly shows the regions for which crack growth is encouraged

or discouraged for this configuration. When the stiff inclusion is located near

the interface (that is, φ is close to zero), the orientation angle α appears to

have little influence on the sign of ∆a0; in this case the propagation of the

crack is discouraged (that is, ∆a0 < 0). However, we should be particularly
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cautious when interpreting results when φ is particularly close to zero since

this corresponds to the crack being placed near the imperfect interface which

makes our model invalid as we commented before equation (5.123). Moreover,

if the inclusion is close to the interface then the assumption that the crack

propagates along the interface line may become invalid, since the inclusion’s

presence may deflect the line of propagation.

The other regions of the graph illustrate that both the angle of orienta-

tion and location of the defect play a more complicated role in determining

whether the main crack’s propagation is encouraged or discouraged, as was

also seen in the analysis of the perfect interface analogue to the problem

presented in [54], albeit for different types of loading.

5.11 Conclusion

To conclude this chapter, the imperfect interface weight function techniques

presented allow for the leading order out-of-plane component of stress and the

displacement discontinuity near the crack tip to be quantified. The displace-

ment discontinuity can serve as an important parameter in fracture criteria

for imperfect interface problems; we demonstrated that, in the limiting case

as the extent of imperfection tends towards zero, the criterion is consistent

with classical criteria based on the notion of the stress intensity factor. Per-

turbation analysis further enables us to correct the solution to account for

the presence of a small inclusion.
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Chapter 6

Summary of main results and

indications of possible further

work

6.1 Summary of main results

In this thesis we have adapted the weight function technique to solve prob-

lems in solids containing cracks and imperfect interfaces.

We first considered a weight function problem in a strip for a semi-infinite

crack sitting on an imperfect interface and derived a new weight function with

significantly different behaviour to previously derived weight functions for

analogous perfect interface problems. We then applied this weight function to

find expressions for physical fields near the crack tips in a periodic structures

consisting of an array of cracks sitting on an imperfect interface in a thin

bimaterial strip. This analysis not only yielded constants describing the

distribution of stresses near the crack tip in terms of the solution to an easily
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solved low dimensional model, but allowed us to estimate eigenfrequencies

for the thin structures.

In both the imperfect interface case and a previously studied analogous

perfect interface problem, the asymptotic approach displayed a discrepancy

against finite element simulations in the prediction of standing wave eigenfre-

quencies; other eigenfrequencies displayed excellent accuracy. We amended

the model by improving the asymptotic algorithm, considering the frequency

as an asymptotic quantity. While it is not clear a priori that this would

make a significant difference, we found that in most cases the accuracy of

the standing wave eigenfrequency improves by around an order of magnitude

while the eigenfrequencies for propagating waves retain their already excel-

lent accuracy. The correction made by this improved model is most uniform

in materials with similar wave speeds, although still gives useful information

for bimaterial strips consisting of more contrasting materials. Different anal-

ysis should be sought if the interface is very highly imperfect however, since

this causes slow decay of boundary layers and thus the model’s assumption

of independent boundary layers may become unjustified.

We then considered a different weight function problem, defined for a

bi-material structure sitting in the whole plane rather than a strip, with a

semi-infinite crack sitting on an imperfect interface. Betti’s formula in a

new imperfect interface setting allowed us to find asymptotic expressions for

the physical behaviour near the crack tip for prescribed loadings applied to

the crack faces. We conducted perturbation analysis to determine how the

leading order coefficient of stress near the crack tip is affected by the presence

of small linear defects such as elliptic inclusions in the materials. Depending

on whether this increased or decreased the coefficient, this is interpreted as
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the inclusion having a shielding or amplifying effect on the propagation of

the main crack.

6.2 Further work

There are many different possible directions in which the research presented

here could be extended. Among these would be the extension of the problem

formulated in the strip containing imperfect interfaces to the full 2D case

to include consideration of shear longitudinal waves. This problem would

involve some additional technical difficulties but the approach would be fun-

damentally similar. The work in Chapter 5 could be extended to provide

integral identities which would aid in the solution of many further imperfect

interface problems. Further, a range of delamination problems for sandwich-

type structures is another area for possible research.

6.2.1 Wider areas for further work

The cases examined in this thesis have all concerned isotropic materials;

there are many interesting and important applications relating to anistropic

materials in which modelling could be performed, including the addition of

imperfect interfaces. An example of such a case is the modelling of piezo-

electric structures.

Piezoelectricity is the charge that accumulates in certain solids (includ-

ing many ceramics) in response to applied mechanical stress. Similarly, such

a material undergoes stress and thus deformation when a current is passed

through it. Actuators are components that are constructed from multilay-

ered structures whose layers are typically thinner than 100µm; thin metal
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electrode films are embedded in a piezo-ceramic material. The modelling of

these structures can make use of asymptotic approaches for the thin layers

and it may be interesting to investigate how the presence of manufacturing

defects affects such components.

Another potential application of imperfect interface techniques is in the

modelling of hydraulic fracture for enhanced oil and gas extraction, the pro-

cess by which fractures propagate through a brittle rock layer due to pres-

surized fluid. Problems related to this application are computationally chal-

lenging; many physical mechanisms are simultaneously in play, including

fracture mechnics, fluid flow in the fracture, fluid leak-off into the rock and

deformation of the rock due to the fluid pressure. These coupled mechanisms

introduce a number of challenges including strong non-linearity.
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