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Abstract

The focus of the thesis is interfacial crack problems in anisotropic

and piezoelectric bimaterials. We seek to solve a variety of problems

using weight function techniques and singular integral equations.

We begin by studying a dynamic crack along a perfectly bonded

interface in an anisotropic bimaterial. Using a weight function de-

rived from a mirrored problem it is possible to derive important ma-

terial parameters which govern the crack propagation. Following this

a static crack is considered. However, in this case the materials are not

bonded perfectly, an imperfect interface is present instead. A method

is derived where singular integral equations for the imperfect interface

problem are derived through use of perfect interface weight functions.

The weight functions are then extended to fracture in piezoelectric

bimaterials which allows equivalent integral equations to be derived

relating the mechanical and electrical fields. In past literature a num-

ber of results have been found which can only be used when consider-

ing a symmetric load system on the crack faces. All of the problems

considered here have asymmetric loading.

Firstly, a steady-state formulation is used to derive asymptotic

coefficients of the crack displacement and interfacial tractions for a

dynamic crack along a perfect interface. The method can be used to

find many asymptotic coefficients but the one of most importance here

is the stress intensity factor which therefore enables the calculation

of energy release rate at the crack tip. As an example an orthotropic

bimaterial with two different loading configurations is used to examine

the importance of crack speed and load asymmetry on the properties

of the crack propagation.
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We proceed to study imperfect interface conditions for an anisotropic

bimaterial. Usually when looking at such a problem it is necessary to

derive new weight functions which correspond to the imperfect inter-

face. An innovative method which makes use of the Betti formula and

existing weight functions for the analogous perfect interface problem

is derived. This procedure is used to obtain singular integral equations

which relate the crack loading, which is assumed to be known, to the

displacement jump over both the crack and interface and tractions

along the bonded area between the materials. Examples of the results

obtained through solving the integral equations numerically are given.

Finally, we extend the weight functions used previously in the the-

sis to a piezoelectric setting. The general form of the weight function

for any piezoelectric bimaterial is given before two specific examples

are studied in depth. The examples are chosen in such a way to illus-

trate the effect that the poling direction of the bimaterial can have on

both the mechanical and electrical fields. For both examples explicit

expressions are derived for the weight functions which are then used

to derive singular integral equations which can be used to study the

effect of both mechanical loading and electrical charges being applied

to the crack faces. To finish we present some examples for both poling

directions to illustrate the use of the derived equations.
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Chapter 1

Introduction and literature

review

The work presented in this thesis consists of a number of problems concern-

ing crack propagation along interfaces in bimaterials with complex properties.

When considering such problems both the mechanical properties of the bi-

material and the nature of the interface separating them must be taken into

account. The problems we analyse in the thesis concern both anisotropic

and piezoelectric bimaterials and also consider perfect and imperfect trans-

mission conditions along the bonded section between the materials. The

work seen in Chapters 3, 4 and 5 can be found in Pryce et al. (2013, 2014,

2015) respectively.

Throughout the thesis we make use of weight functions, defined as singu-

lar, non-trivial solutions of homogeneous traction-free crack problems which

are used in the derivation of important parameters in fracture mechanics.

Weight functions are an efficient tool for studying the behaviour of certain

physical fields in the region of the crack tip.
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This chapter presents a historical review of some of the previous work in

fracture mechanics which will be used in the analysis presented in the re-

mainder of the thesis. Specific attention will be given to advances in the field

of stress intensity factors, weight functions and imperfect interfaces. We then

proceed to give a deeper study of anisotropic materials and results concerning

interfacial fracture for these materials. Finally, piezoelectric materials will

be reviewed and the extension of existing concepts for anisotropic materials

to piezoelectric materials will be discussed. To conclude this chapter of the

thesis we will discuss the room for further development in the field and give

an outline of the remaining chapters.

1.1 Literature review

Early studies of elasticity saw the development of Hooke’s law in the late

17th century. However, it was not until the early 1900s that study in fracture

mechanics began to truly flourish. The first major developments were seen

in Inglis (1913) where an elliptical hole in glass was considered. It was

found that applying a perpendicular, tensile load to the ellipse resulted in the

vertices being subjected to the highest level of mechanical stress. Following

the work of Inglis (1913), Griffith (1920) replaced the ellipse with a crack

due to contrasting results between theoretical work and experimental results.

Griffith discovered that the potential energy of the system, Ω, was dependent

on the crack length. If the crack was extended there would be an increase

in crack surface area and, at a microscopic level, a certain amount of work

per unit area was expended in the creation of that additional area. This

work per unit area was given the name surface energy, denoted Ωs. Using
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the equilibrium principle of minimum potential energy gave

∂

∂l
(Ω + Ωs) = 0, (1.1)

where l is the crack length. Griffith stated that a crack was at a critical

state of incipient growth if the microscopic increase of the work per unit area

was the same as the decrease in overall potential energy when the crack was

extended and new surface area formed.

It was in 1948 that Mott attempted to extend the work of Griffith to

a moving crack. Mott (1948) adopted a steady-state approach to a crack

moving at a constant speed, where the system was independent of time if the

observer was moving at the same speed as the crack. Finding an approxima-

tion for the total kinetic energy Ttot, as a function of the crack length and

velocity, Mott also applied the equilibrium principle of minimum potential

energy to give:

∂

∂l
(Ω + Ωs + Ttot) = 0. (1.2)

It was believed that this formula could be used to find the velocity at which

the Griffith crack would propagate through a material. However, the as-

sumption of Mott that the derivative of the combined total energy of the

system (with respect to the length of the fracture) vanishes was not correct.

Therefore, the conclusions drawn from this work are widely seen as being

invalid. In spite of this the work performed in Mott (1948) was still of great

importance to the field.

The next step of major importance in the study of fracture mechanics

was that of Irwin (1957). It was here that Irwin introduced the stress in-

tensity factor, K, commonly shortened to SIF. The stress intensity factor is

a key parameter in studying the behaviour of physical fields in the vicinity
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of the crack tip. K depends on a number of features of the geometry being

considered, including material parameters, crack properties and the applied

loading on the crack faces. Irwin also introduced the notion of crack opening

modes: Modes I, II and III. Mode I fracture opening is that which is perpen-

dicular to the crack faces and parallel to the crack front. Mode II refers to

the shear opening of the crack perpendicular to the crack front and parallel

to the crack face. Finally, Mode III opening is parallel to both the crack

front and the crack surface. The three types of crack opening are illustrated

in Figure 1.1. When considering two-dimensional geometries it is often said

that the Mode I and II openings are the in-plane fields whereas Mode III

describes the out-of-plane (or antiplane) fields.

Mode I Mode II Mode III

Figure 1.1: Crack opening modes

In his analysis, Irwin considered the energy release rate at the crack tip,

which is often thought as the energy released from the crack tip when the

fracture propagates and more surface area is created. For a Mode I crack a

4



relationship relating the energy release rate to the Young’s modulus, E, and

stress intensity factor for the material was found

G =
K2

E
. (1.3)

Irwin (1957) also discovered a critical value of the stress intensity factor

at which the fracture will begin to propagate, often referred to as fracture

toughness. As a direct result of this and equation (1.3), and considering

conservation of energy, it is possible to find a minimum energy required for

a crack to propagate.

The next major breakthrough in the analysis of energy release rates came

courtesy of Cherepanov (1967) and Rice (1968) in the form of the J-integral.

The J-integral is defined as a path-independent contour integral around the

crack tip which can be used to find the energy released through the crack tip

during crack propagation. It was shown that the energy release rate obtained

by using the J-integral is the same as that found using the equation derived

by Irwin (1957) for a quasistatic crack in a brittle material.

Another area of great interest is when you have a crack lying along an

interface between two bonded materials. The case of a crack between dis-

similar isotropic media was considered by Williams (1959). It was found

that the Mode III stress fields had a square-root singularity at the crack tip,

whereas the in-plane fields had a similar square-root behaviour with an ad-

ditional oscillatory effect. Work on fracture was extended to a homogeneous

anisotropic body by Stroh (1958) and Hoenig (1982). Hoenig found that the

square-root behaviour of the physical fields at the crack tip was also present

for the crack in an anisotropic material. It was also found that the angular

variation of the fields surrounding the crack tip was more complex due to the
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anisotropy of the material.

Work on a crack propagating along an interface in an anisotropic bi-

material was not as clear as that for the corresponding isotropic problem,

with some problems arising in finding the properties of the stresses and dis-

placements in the vicinity of the crack tip. Willis (1971) defined a stress

concentration vector, containing three complex numbers, for use in the eval-

uation of the near-tip stresses. However, these results led to complications

in the derivation of the stress intensity factors and therefore progression in

the manner of Irwin (1957) was not possible.

A number of advancements in the field were found in the work of Qu and

Bassani (1989) where they derived conditions for the near-tip fields to be

non-oscillatory. It was found in this case that the fields corresponding to the

three Modes of crack opening could be separated and that the stress intensity

factors took only real values. The work was studied further for a Griffith crack

by Bassani and Qu (1989). Following this work by Qu and Bassani, significant

breakthroughs were made by Suo (1990). Making use of the formalisms

developed by Lekhnitskii (1963) and Eshelby et al. (1953), Suo constructed

near-tip solutions for both non-oscillatory and oscillatory fields. It was shown

that for non-oscillatory fields the structure of the stresses and displacements

at the crack tip were the same for those in a homogeneous anisotropic body

due to the real-valued stress intensity factors. However, when considering

oscillatory fields the in-plane fields were seen to be governed by one complex

valued stress intensity factor whereas the antiplane components were still

derived using a real-valued constant.

The work of Suo (1990) was extended to a dynamic crack by Yang et al.
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(1991). A steady-state crack was considered and the formalisms used by

Suo were adapted accordingly for the new, moving coordinate system. The

results found hold up to the Rayleigh-wave speed of the more compliant of

the two bonded materials, that is the lowest of the two Rayleigh-wave speeds.

In the moving coordinate system it was found that the behaviour of the near-

tip fields were identical to those for a static crack and the oscillations still

occurred for the in-plane fields, with the oscillation index becoming infinite

at the crack limiting speed.

Further studies into fracture in both isotropic and anisotropic bimate-

rials have made significant use of weight functions. Originally introduced

by Bueckner (1970) and Rice (1968), weight functions are defined as func-

tions which can be used in conjunction with the loading on crack faces to

obtain integral expressions for the stress intensity factors. Bueckner (1985)

used weight function techniques to find SIF for a penny shaped crack and

a half-plane crack. A number of results on the relationship between weight

functions and stress intensity factors are found in Wu and Carlsson (1991)

and Fett and Munz (1997). Many other examples of weight functions can be

found in existing literature, including for Mode I fracture (Glinka and Shen,

1991), a 3-dimensional semi-infinite crack in an infinite body (Kassir and Sih,

1973), a crack lying perpendicular to an interface in a thin surface layer (Fett

et al., 1996) and a corner crack in a plate of finite thickness (Zheng et al.,

1996). A special weight function was found in Willis and Movchan (1995) for

a semi-infinite crack in an infinite homogeneous, isotropic medium. Defined

as a singular displacement field to a traction free interfacial crack problem,

this weight function was used in the derivation of a reciprocal identity con-
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necting the weight function to the physical fields, often referred to as the

Betti identity. The Betti identity has been used in a number of studies, in-

cluding that of a 3-dimensional interfacial crack (Bercial-Velez et al., 2005)

and the derivation of stress intensity factors in an isotropic (Piccolroaz et al.,

2007) and anisotropic bimaterial (Morini et al., 2013b).

All of the work discussed up to this point for bimaterial fracture has

involved perfect transmission conditions over the area of adhesion between

the two materials, that is continuity of both tractions and displacements.

A more realistic concept was developed by Atkinson (1977) where a thin

layer of soft adhesive was placed between the materials. This thin layer

can then be replaced by suitable transmission conditions, provided that the

bonding agent is soft enough. A number of studies into these transmission

conditions were performed, in the early 2000’s,(Antipov et al., 2001; Lenci,

2001; Mishuris, 2001), where it was found that it was suitable to replace

the thin layer by continuity of tractions and a discontinuous displacement,

directly proportional to the traction, over the interface. When considering

such interfaces the behaviour of the physicals fields in the vicinity of the

crack tip are altered significantly. The work of Mishuris and Kuhn (2001)

found that the square-root singularity found for a perfect interface was not

present for imperfect interfaces; a logarithmic singularity was present at the

crack tip in its place. Imperfect transmission conditions were studied more

generally by Benveniste and Miloh (2001) for a thin curved isotropic layer of

constant thickness whereas Benveniste (2006) considered the 3-dimensional

problem of two anisotropic materials separated by an arbitrarily curved layer

of anisotropic material.
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With the differing behaviour of physical fields at the crack tip, and there-

fore the lack of stress intensity factors, a more general definition of weight

functions was developed. The new definition said that weight functions were

used in the derivation of key asymptotic constants at the crack tip, which in

the case of a perfect interface agrees with the definition of the stress intensity

factor. However, for imperfect interfaces weight functions are used to find

the asymptotic constants required to find the crack tip opening displacement,

which was originally proposed as a key parameter for studying fracture crite-

ria by Cottrell (1962) and Wells (1961). The importance of the displacement

at the crack tip was further justified by Rice and Sorenson (1978), Kanninen

et al. (1979) and Shih et al. (1979). Recently, weight functions have been used

to look at waves in thin waveguides containing imperfect interfaces (Vellender

et al., 2011; Vellender and Mishuris, 2012) and the effect of material defects

on the propagation of a semi-infinite crack along an imperfect interface in an

infinitely large isotropic bimaterial (Vellender et al., 2013).

Recent developments for semi-infinite cracks in an infinite bimaterial have

seen the implementation of singular integral equations. Making use of weight

functions and the Betti formula, expressions for crack and interface displace-

ment jumps and interfacial tractions have been found for a perfect interface

in an isotropic bimaterial (Piccolroaz and Mishuris, 2013), a perfect interface

in an anisotropic bimaterial (Morini et al., 2013a) and an imperfect interface

in an isotropic bimaterial (Mishuris et al., 2013). Historically singular inte-

gral equations have played a large role in the study of cracks in elastic media

since being introduced by Muskhelishvili (1963). Using the linear singular

operator theory of Gohberg and Krein (1960), Duduchava (1979) analysed
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singular integral equations with fixed point singularities. They were also

used by Mishuris (1997a,b) in the analysis of layers and wedges separated by

imperfect interfaces.

The study of cracks in piezoelectric materials has also seen some impor-

tant developments. In order to formulate the problem suitable boundary

conditions on the crack faces are required. Parton (1976) suggested using

the continuity of both electrical potential and displacements over the crack,

However, these conditions are unrealistic due to the vast difference between

permeability of the materials and the space separating the crack faces. As an

alternative, Pak (1990) used the zero electric displacement condition on the

crack face instead. With these conditions Kuo and Barnett (1991) performed

asymptotic analysis of the behaviour at the crack tip in a piezoelectric ma-

terial. This work showed that the singularity present at the crack tip was

similar to that in a non-piezoelectric material apart from an additional real-

valued constant which is involved in the asymptotics of the out-of-plane and

electrical fields at the crack tip.

A major breakthrough in piezoelectric fracture mechanics was that of

Suo et al. (1992). Similar to his work in Suo (1990), a perfect interface in

a bimaterial was considered and the Stroh formalism was extended to the

piezoelectric setting. Full field expressions for both mechanical and electri-

cal fields in the vicinity of the crack tip were found and the results agreed

with those of Kuo and Barnett (1991) with the existence of the additional

constant governing the out-of-plane and piezoelectric asymptotics. Follow-

ing from this work Gao and Wang (2001) used an alternative method based

on Green’s functions to formulate singular integral equations to derive the
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fields. However, as reported by Pan and Yuan (2000) and Pan (2003), these

formulations usually result in the need of complicated schemes in order to

calculate the integrals numerically. The further restriction of all of the re-

sults reported so far is that they were restricted to symmetrical loading on

the crack faces.

The derivation of the general, extended Stroh matrices for piezoelectric

materials usually results in the need to numerically solve a highly complex

octic equation. As an alternative to this Hwu (2008) extended the Lekhnit-

skii formalism to piezoelectric materials and made use of this to formulate

the Stroh matrices for piezoelectric materials with transversely isotropic be-

haviour. In recent years another significant development was that of Had-

jesfandiari (2013) where the Betti reciprocal identity was also extended to a

piezoelectric setting to relate two sets of mechanical and electrical compo-

nents over the same geometry.

1.2 Thesis structure

It is clear from the review of the literature that the breadth of knowledge

in the field of fracture mechanics is already vast but there are some areas

that still require further investigation. The remainder of the thesis will con-

sider three separate problems concerning different material and interfacial

properties.

Chapter 2 will give more information on the background knowledge re-

quired for further analysis. This will include an in depth study of anisotropic

materials, the Stroh formalism and interfacial fracture in anisotropic bimate-

rials. We also give more mathematical detail on piezoelectric materials and
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how the existing methods for anisotropic bimaterials have been extended

to include the added electrical effects. Finally, an insight into some of the

mathematical techniques used in this thesis will be given.

The third Chapter sees the beginning of the new research. The work

presented concerns the derivation of stress intensity factors for a moving

semi-infinite crack along a perfect interface in an anisotropic bimaterial. The

analysis here extends the approach of Morini et al. (2013b) for a stationary

crack to the steady-state moving crack with an arbitrary load on the crack

face. A method for computing further asymptotic terms, which can be used

in perturbation analysis, is also developed. The newly derived stress intensity

factors are then used to find the variation in energy release rate as the crack

velocity is changed. Moreover, the effect of the crack speed on the oscillatory

behaviour of the near-tip fields is also considered.

Chapter 4 proceeds to study a crack along an imperfect interface in an

anisotropic bimaterial. In the same vein as Piccolroaz and Mishuris (2013),

Morini et al. (2013a) and Mishuris et al. (2013), singular integral equations

are found which are then used to find the displacement jump over both the

crack and interface. However, a variation in approach is used here. Pre-

viously, corresponding material properties and interfacial transmission con-

ditions have been used in the derivation of the weight functions required

to obtain the integral equations. Here, we use an approach where weight

functions formed using perfect interface transmission conditions are used to

obtain the physical fields for the imperfect interface problem. Finite element

simulations are also performed and their results compared to those obtained

through numerically solving the integral equations.
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Piezoelectric materials are the main focus of Chapter 5. We introduce a

weight function similar to that of Willis and Movchan (1995) for a perfect

interface in a transversely isotropic piezoelectric bimaterial. Following this,

singular integral equations are derived which relate the components of both

the mechanical and electrical fields in the material. Two specific poling direc-

tions are considered: firstly we consider when the piezoelectric effect couples

with the in-plane fields and therefore has no effect on the antiplane defor-

mations and secondly the opposite case, where the piezoelectricity decouples

from the in-plane fields and affects only the antiplane deformations.

The final Chapter of the thesis will summarise the main results from

Chapters 3, 4 and 5. We also discuss the possibilities of extending the work

further and possible applications of the new results to other fields of research.
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Chapter 2

Background

In this chapter we present a detailed summary of some of the important re-

sults used in the remainder of the thesis. We begin by looking at the math-

ematical models used when considering displacement and traction fields in

anisotropic materials before proceeding to look at known results for fractures

along perfect interfaces in anisotropic bimaterials. The extension of these re-

sults to piezoelectric materials is also discussed in detail. The final part of

the chapter will consider some of the mathematical techniques which are used

extensively in Chapters 3, 4 and 5 of the thesis.

2.1 Anisotropic materials

Anisotropic materials are classed as those with physical properties that are

directionally dependent, as opposed to isotropic materials which have iden-

tical properties in all directions. Hooke’s law for anisotropic materials was

developed in the 17th century and relates stresses and strains:

σij = Cijklεkl, εij = Sijklσkl, for i, j, k, l = 1, 2, 3, (2.1)
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where σ and ε are the stress and strain respectively. Cijkl and Sijkl are the

components of the fourth-order stiffness tensor, C, and compliance tensor,

S. It is immediately clear from (2.1) that S = C−1.

Due to the symmetry of the stiffness tensor, σij, it is possible to reduce the

fourth-order tensor, Cijkl, to a second-order tensor, Cij. In order to do this

Voigt notation is introduced, that is 11 → 1, 22 → 2, 33 → 3, 23(or 32) →

4, 13(or 31) → 5 and 12(or 21) → 6. Through use of this notation the first

part of (2.1) can be rewritten in matrix form

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε1

ε2

ε3

ε4

ε5

ε6


. (2.2)

For general anisotropic materials the stiffness and compliance matrices both

contain 21 independent components.

In this thesis, certain subclasses of anisotropic materials will be consid-

ered. One such material is an orthotropic material which has three mutually

orthogonal planes of symmetry. In such a case the stiffness matrix reduces

further and only relies on 9 independent components. Another type of mate-

rial that can be considered is a transverse isotropic material which has sym-

metrical material properties about an axis which is also normal to a plane

of isotropy. As a result of this further restriction the stiffness matrix for

transverse isotropic materials depends only on 5 parameters. For perfectly

isotropic materials only two parameters are required in order to classify the
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entire material: Young’s modulus and Poisson’s ratio.

2.1.1 The Stroh formalism

In the 1950s the study of anisotropic materials was evolved by the results

introduced in Eshelby et al. (1953) for calculating stress and displacement

fields for two-dimensional geometries in the (x1, x2) plane. The complex

variable formalism introduced by Eshelby is commonly referred to as the

Stroh formalism after its appearance in Stroh (1958). The method used was

developed form the governing equations of linear anisotropy

σij,j = 0, εij =
1

2
(ui,j + uj,i) i, j, k, l = 1, 2, 3, (2.3)

where u is the displacement field. When combined with Hooke’s law, (2.1),

the following second order partial differential equations were obtained

σij = Cijkluk,l Cijkluk,lj = 0. (2.4)

A solution to (2.4) was found as a linear combination of the two co-ordinates,

x1 and x2,

uk = akfk(z), where z = x1 + µx2, (2.5)

where µ is a complex constant. When considering fracture mechanics with

interfaces this form of the solution is of great use if the geometry is oriented

sensibly to the coordinate system. Specifically, if the crack and interface are

said to lie along the x1 axis then the displacement along them is a function

of x1 only.

Using the desired form of the solution, (2.5), along with the second part

of (2.4) yields an eigenvalue problem which can be solved to find µ and ak:

[Q + µ(R + RT ) + µ2T]A = 0 (2.6)
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where Qik = Ci1k1,Rik = Ci1k2 and Tik = Ci2k2. In general, for anisotropic

materials the six eigenvalues of (2.6) are found to be three pairs of distinct

complex conjugate numbers. This gives a final result for the displacement

field as

u =


u1

u2

u3

 = 2ReAf(z) = 2Re


A11 A12 A13

A21 A22 A23

A31 A32 A33



f1(z1)

f2(z2)

f3(z3)

 , (2.7)

where the columns of the matrix A consist of the three eigenvectors, ak, for

the three solutions of (2.6) which have real positive imaginary part (µk where

k = 1, 2, 3) and zk = x1 + µkx2. The methods used for the degenerate cases

of (2.6) have been discussed in detail by Ting (1996).

Following a similar procedure an expression for stresses in the materials

were also found to be

σ2i = 2ReLf ′(z), where Liµ = (Ci2k1 + µCi2k2)Akµ. (2.8)

At a similar time to the work performed by Eshelby another method for

finding displacement and stresses in anisotropic materials was developed by

Lekhnitskii (1963). Despite a great difference in the approach of Lekhnitskii

it was later realised that the resulting matrices, A and L, obtained from

his work gave a specific normalisation for the eigenvalue problem given in

Eshelby et al. (1953). Further details on the methods used by Lekhnitskii will

be seen later in this chapter where their extension to piezoelectric materials

is discussed in detail.
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2.1.2 Results for a perfect interface in an anisotropic

bimaterial

The work presented here is that of Suo (1990) where a semi-infinite crack

along a perfect interface in an anisotropic bimaterial was considered. The

static crack is said to occupy the region {x1 < 0, x2 = 0} with the interface

bonding the two materials lying along the region {x1 > 0, x2 = 0}. The

material in the upper half-plane (x2 > 0) and lower half-plane (x2 < 0) are

referred to as materials I and II respectively. The transmission conditions

along the interface, given as continuity of displacement and tractions, are

represented mathematically as

JuK(x1) = u(x1, 0
+)− u(x1, 0

−) = 0, Jσ2iK(x1) = 0, for x1 > 0, (2.9)

where the superscript ± refers to the approach from above or below the

x1−axis respectively. Using this information Suo (1990) found expressions

for the near-tip displacement and tractions when a symmetric loading system

was applied on the crack faces. Expressions for energy release rate and stress

intensity factor at the crack tip were also found.

In order to proceed further the single material matrix B = iAL−1, com-

monly called the surface admittance tensor, was introduced. The bimaterial

matrix H = BI + B?
II is also defined, where the subscript is used to notify

which material the matrix is associated with and ? denotes complex conjuga-

tion. It was shown by Stroh (1958) that B is positive-definite Hermitian. It

follows that H is also positive-definite Hermitian and is therefore invertible.

Making use of the transmission conditions (2.9) for a traction free crack

face problem, the following Riemann-Hilbert problem was found along the
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crack for the unknown function h(z) (Suo, 1990):

h+(x1) + (H?)−1Hh−(x1) = 0, −∞ < x1 < 0. (2.10)

The branch cut of h is situated along the negative x1-axis and the superscript

± refers to the limiting value of the function as the branch cut is approached

from above and below.

The method used by Suo (1990) found a solution in the form h(z) =

wz−
1
2

+iε. The real valued parameter ε is known as the oscillatory index of

the bimaterial. When inserted into equation (2.10) the following eigenvalue

problem is obtained

H?w = e2πεHw. (2.11)

The three sets of eigenvalues and eigenvectors which solve (2.11) are given

by: (ε,w), (−ε,w?), (0,w3), where w is a complex valued vector and w3 is

purely real-valued.

Using the solutions of the eigenvalue problem (2.11) it was found in Suo

(1990) that the interfacial traction is given by

σ2i(x1) =
1√

2πx1

[
Kxiε1 w +K?x−iε1 w? +K3w3

]
for 0 < x1 <∞, (2.12)

where K = K1 + iK2 is the stress intensity factor associated with the Mode

I and II fields and K3 is the Mode III SIF. The jump in displacement over

the crack face was also found:

JuK(x1) = (H + H?)

√
(−x1)

2π

[
K(−x1)iεw

(1 + 2iε) coshπε
+
K?(−x1)−iεw?

(1− 2iε) coshπε
+K3w3

]
,

for −∞ < x1 < 0. (2.13)

In order to find the energy release rate at the crack tip, G, the relationship
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developed in Irwin (1957) was used:

G =
1

2∆

∫ ∆

0

σT2i(∆− r)JuK(r)dr, (2.14)

where ∆ is an arbitrary length scale. Using equations (2.12), (2.13) and

(2.14) Suo (1990) found the following expression for G

G =
w?T (H + H?)w|K|2

4 cosh2 πε
+

wT
3 (H + H?)w3K

2
3

8
. (2.15)

The final result needed from Suo (1990) is the formulae used to derive

the stress intensity factors when a symmetric loading, p = (p1, p2, p3)T , is

applied on the crack faces. The expressions found for K and K3 were found

to be

K = −
(

2

π

) 1
2

cosh πε

∫ 0

−∞
(−x1)−

1
2
−iεp1dx1, K3 = −

(
2

π

) 1
2
∫ 0

−∞
(−x1)−

1
2p31dx1,

(2.16)

where

p1 =
w?THp

w?THw
, p31 =

wT
3 Hp

wT
3 Hw3

.

2.2 Piezoelectric materials

We now proceed to study the mathematical framework used when considering

piezoelectric materials. The definition of a piezoelectric material is one that

produces an electric charge when subjected to a stress field. These materials

also deform when an electric charge is run through them (commonly referred

to as the inverse piezoelectric effect and illustrated in Figure 2.1). There

are many uses for piezoelectric materials in modern industry; for example

they are commonly used in cars in both the collision detection system which
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Piezoceramic

No Electric Current With Electric Current

Figure 2.1: Inverse piezoelectric effect

activates airbags for safety and also in actuators in diesel engines which

control the fuel flow in the vehicle.

To study piezoelectric materials it is necessary to find expressions relat-

ing the mechanical and electrical fields in the material. Using an energy

based argument Suo et al. (1992) found the following governing equations

for piezoelectric materials

σij = Cijklεkl − eljiEl, Di = ωilEl + eiklεkl, (2.17)

where E is the electrical field, D is the electrical displacement, ω is the

material permittivity tensor and e is the piezoelectric tensor of the material.

Similarly to the results for anisotropic materials the Voigt notation is used

21



to give the following matrix expressions

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε1

ε2

ε3

ε4

ε5

ε6


−



e11 e21 e31

e12 e22 e32

e13 e23 e33

e14 e24 e34

e15 e25 e35

e16 e26 e36




E1

E2

E3



(2.18)


D1

D2

D3

 =


e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36





ε1

ε2

ε3

ε4

ε5

ε6


+


ω11 ω12 ω13

ω21 ω22 ω23

ω31 ω32 ω33



E1

E2

E3

 .

(2.19)

The permittivity and piezoelectric tensors are also simplified when subclasses

of anisotropic materials are used as the poling direction of the material would

be changed. An example of this is a transverse isotropic piezoelectric material

with poling direction parallel to one of the cartesian axes. This will be

discussed in more detail in Chapter 5.

2.2.1 Extended Stroh formalism for piezoelectricity

As seen previously in this chapter the Stroh formalism is a very effective

tool to use in the study of anisotropic materials. With this in mind it was

extended to piezoelectric material in Suo et al. (1992) in order to find the

electric potential, φ, and electrical displacement in addition to the physical
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displacement and traction fields. Here we present a summary of the results

from that paper.

In order to obtain the desired results the following definitions for the

electrical fields are required

Di,i = 0, Ei = −φ,i . (2.20)

Inserting equations (2.3) and (2.20) into equation (2.17) yields

(Cijkluk + eljiφ),li = 0, (−ωilφ+ eikluk),li = 0. (2.21)

The extended displacement field, u = (u1, u2, u3, φ)T , was introduced by Suo

et al. (1992) and a solution was once again found in the form u = afk(z)

where z is the same linear combination of x1 and x2 used in the Stroh formal-

ism for anisotropic materials. This yields the following eigenvalue problem

which has the same form as that for anisotropic materials

[Q + µ(R + RT ) + µ2T]A = 0. (2.22)

Despite looking similar to the previous results for non-piezoelectric materials

this problem is significantly different as 4 × 4 matrices are now involved

to incorporate the additional piezoelectric effects. For general anisotropic

piezoceramics the matrices have the following form:

Q =


C11 C16 C15 e11

C16 C66 C56 e16

C15 C56 C55 e15

e11 e16 e15 −ω11


, R =


C16 C12 C14 e16

C66 C26 C46 e12

C56 C25 C45 e14

e21 e26 e25 −ω12


,
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T =


C66 C26 C46 e26

C26 C22 C24 e22

C46 C24 C44 e24

e26 e22 e24 −ω22


.

The eight eigenvalues of (2.22) are found to be four pairs of complex conju-

gate numbers and therefore the extended displacement field is given by
u1

u2

u3

φ


= 2Re


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44




f1(z1)

f2(z2)

f3(z3)

f4(z4)


, (2.23)

where zk = x1 + µkx2 (for k = 1, 2, 3, 4) with µk once again being taken as

the four eigenvalues of (2.22) with positive imaginary part.

When considering the tractions and electrical displacements Suo et al.

(1992) introduced the extended traction field t = (σ2i, D2)T . Using the same

method as used for anisotropic materials this extended traction vector was

found to be given by

t(x1) = 2ReLf ′(z). (2.24)

The components of the 4× 4 matrix, L, are given by

Ljk =
3∑
r=1

[(C2jr1 + µkC2jr2)Ark] + (e1j2 + µke2j2)A4k, for j = 1, 2, 3,

L4k =
3∑
r=1

[(e2r1 + µke2r2)Ark]− (ω12 + µkω22)A4k.

2.2.2 Fracture in piezoelectric bimaterials

The paper of Suo et al. (1992) considered the same geometry previously con-

sidered for anisotropic materials earlier in this Chapter. The transmission
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conditions used had continuity of displacements and tractions over the in-

terface but to incorporate the piezoelectric effect both the electric potential

and electric displacement fields were also considered to be continuous over the

bonded portion of the interface. Following the same procedure as Suo (1990)

for anisotropic bimaterials the following eigenvalue problem was obtained

H?w = e2πεHw. (2.25)

Despite being similar in appearance to equation (2.11) the bimaterial matrix

H is now the 4 × 4 matrix resulting from the matrices A and L obtained

when extending the Stroh formalism to piezoelectric materials.

The solution to (2.25) consists of four pair of eigenvalues and eigenvectors.

These are given by: (ε,w), (−ε,w?), (−iκ,w3) and (iκ,w4). Once again w

is a complex valued vector whereas w3 and w4 are real-valued vectors. With

these results the extended traction field t was found along the interface:

t(x1) =
1√

2πx1

[
Kxiε1 w +K?x−iε1 w? +K3x

κ
1w3 +K4x

−κ
1 w4

]
, (2.26)

where K4 is the electric intensity factor, introduced by Suo et al. (1992) as the

equivalent of the stress intensity factors for the electrical fields. The following

results for the jump in the extended displacement, u = (u1, u2, u3, φ),over the

crack and energy release rate at the crack tip were also found:

JuK(x1) = (H + H?)

√
(−x1)

2π

[
K(−x1)iεw

(1 + 2iε) coshπε
+

K?(−x1)−iεw?

(1− 2iε) coshπε

+
K3(−x1)κw3

(1 + 2κ) cosπκ
+

K4(−x1)−κw4

(1− 2κ) cosπκ

]
,

(2.27)

G =
w̄T (H + H̄)w|K|2

4 cosh2 πε
+

wT
3 (H + H̄)w4K3K4

4 cos2 πκ
. (2.28)
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2.2.3 The Lekhnitskii formalism for piezoelectric ma-

terials

When finding the fields for a crack propagating along a piezoelectric bima-

terial interface it is clear that the single material matrices A and L are of

utmost importance. While it is possible to use the extended Stroh formal-

ism, as seen in Suo et al. (1992), to find these matrices it often leads to a

very complicated eigenvalue problem (2.22) which is not easily numerically

solvable. It is therefore helpful to use another method to find the matrices.

For anisotropic materials Lekhnitskii (1963) provided an alternate method to

find A and L. The results presented here are the extension of this approach

to piezoelectric materials, as seen in Hwu (2008), which results in the need to

numerically solve a sextic equation as opposed to the octic equation obtained

through the extended Stroh formalism.

When using the Lekhnitskii formalism the plane strain and short circuit

conditions are imposed, that is ε = 0 and E3 = 0. The inverse of equations

(2.18) and (2.19) can then be written as follows:

εp = Spσp, (2.29)

where εp = (ε1, ε2, ε4, ε5, ε6,−E1,−E2)T , σp = (σ1, σ2, σ4, σ5, σ6, D1, D2)T

and Sp is a 7 × 7 matrix constructed using the compliance tensor, dielec-

tric non-permittivities and piezoelectric strain/voltage tensor of the material

(Hwu, 2008). We note here that the expression is simplified by the plane

strain and short circuit conditions mentioned previously. For the general

case, where ε3 and E3 are not equal to 0, the full 9× 9 matrix representation

of Sp would be required.
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The stress function ψi = lif(z) is introduced where the li are the unknown

vectors required to construct the material matrix L and z is the same linear

combination of the coordinates x1 and x2 as used for the Stroh formalism.

The function ψ is related to the stress fields by the equations: σi1 = −ψi,2 and

σi2 = ψi,1 where σ4j = Dj. Using this definition of ψ along with equations

(2.3) and (2.20) gives

Dεu = SpDσψ, (2.30)

where the operator matrices are given by

Dε =



∂
∂x1

0 0 0

0 ∂
∂x2

0 0

0 0 ∂
∂x2

0

0 0 ∂
∂x1

0

∂
∂x2

∂
∂x1

0 0

0 0 0 ∂
∂x1

0 0 0 ∂
∂x2


, Dσ =



− ∂
∂x2

0 0 0

0 ∂
∂x1

0 0

0 0 ∂
∂x1

0

0 0 − ∂
∂x2

0

∂
∂x1

0 0 0

0 0 0 − ∂
∂x2

0 0 0 − ∂
∂x1


. (2.31)

To continue with deriving the matrices Hwu (2008) used the compatibility

equations for two-dimensional problems, given as

ε11,22 + ε22,11 − 2ε12,12 = 0, −ε23,1 + ε13,2 = 0, E1,2 − E2,1 = 0. (2.32)

Combining these three relationships gives the equation DCεp = 0, where DC

is the matrix differential operator:

DC =


∂2

∂x22

∂2

∂x21
0 0 − ∂2

∂x1x2
0 0

0 0 − ∂
∂x1

∂
∂x2

0 0 0

0 0 0 0 0 ∂
∂x2

− ∂
∂x1

 . (2.33)
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From equation (2.30) it follows immediately that DCSpDσψ = 0. Substitut-

ing in ψi = lif(z) and recalling z = x1 + µx2, where the unknown complex

number µ is required to find A and L, yields the equation

ΓCSpΓσl = 0, (2.34)

where

ΓC =


µ2 1 0 0 −µ 0 0

0 0 −1 µ 0 0 0

0 0 0 0 0 µ −1

 , Γσ =



−µ 0 0 0

0 1 0 0

0 0 1 0

0 0 −µ 0

1 0 0 0

0 0 0 −µ

0 0 0 1


.

(2.35)

This is a system of three equations, however, there are four unknowns, li,

to be found. In order to find all four components of l the symmetry of the

stress tensor must also be considered. This gives us σ12 = σ21, which in turn

gives that ψ1,1 = −ψ2,2. From here it is seen that l1 and l2 are related by the

additional constraint

l1 = −µl2. (2.36)

With these four relationships it was possible for Hwu (2008) to proceed to

find the vectors l.

Making use of (2.36) the equation (2.34) is reduced to

ΓCSpΓ
−
σ l−1 = 0, (2.37)
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where

l−1 =


l2

l3

l4

 , Γ−σ =



µ2 0 0

1 0 0

0 1 0

0 −µ 0

−µ 0 0

0 0 −µ

0 0 1


. (2.38)

Solving this eigenvalue problem Hwu (1993) once again found that the eight

values obtained for µ were four sets of complex conjugate numbers. Once

again taking those values of µ with positive imaginary part it is possi-

ble to find four distinct vectors, l−, which can then be used to find l =

(−µl2, l2, l3, l4)T . These eigenvectors are then used to construct the required

matrix L.

With the matrix L now found Hwu (2008) made use of equation (2.30)

in order to find A. Substituting ui = aif(z) along with ψi = lif(z) into

equation (2.30) gives

Γεa = SpΓσl, (2.39)

where

Γε =


1 0 0 0 µ 0 0

0 µ 0 0 1 0 0

0 0 µ 1 0 0 0

0 0 0 0 0 1 µ



T

. (2.40)

In order to find the vectors a a matrix, Γ−ε , which satisfies the relationship

Γ−ε Γε = I is required. It was found in Hwu (2008) that the matrix which
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satisfies this condition is given by

Γ−ε =


1 0 0 0 0 0 0

0 1
µ

0 0 0 0 0

0 0 1
µ

0 0 0 0

0 0 0 0 0 1 0


. (2.41)

This means that it is now possible to write an expression for a:

a = Γ−ε SpΓσl. (2.42)

Using the four vectors, l, found from the eigenvalue problem (2.38) it is now

possible to use equation (2.42) to find the four corresponding vectors a which

are then used as the four columns of the matrix A.

With the matrices A and L found the single material matrix B can once

again be constructed and in the context of a bimaterial it is then possible

to find H. The decision over which formalism to choose out of Stroh and

Lekhnitskii is dependent on the preferred method of the author as both give

the same results. In this thesis we use the Stroh formalism when considering

anisotropic materials in Chapters 3 and 4 whereas we use the Lekhnitskii

formalism when considering piezoelectric bimaterials in Chapter 5.

2.3 Mathematical concepts

Here we present a number of mathematical techniques that will be used

throughout the remainder of the thesis. To begin we define an analytic func-

tion in the complex plane before proceeding to look at the Cauchy integral

formula and its inversion. We then define the Fourier transform of a func-

tion and discuss the many useful properties associated with these transforms
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that make them such an efficient tool when solving partial differential equa-

tions. Finally, Green’s second identity is presented and its application to

displacement and traction fields in a half-plane are introduced.

2.3.1 Analyticity

When using functions of complex variables analyticity is an important prop-

erty of said function. A function f(z) of a complex variable z = x + iy is

said to be analytic at z if f is infinitely differentiable with respect to z at

that point. For an open and connected region of the complex plane, Γ, it is

said that f is analytic on Γ if it is analytic for every point z ∈ Γ. If f is

analytic on the region Γ then it will satisfy the Cauchy-Riemann equations

which state that if f is written in the form f(z) = u(x, y) + iv(x, y):

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
, (2.43)

for every point z ∈ Γ. As a direct result of the Cauchy-Riemann equations it

is clear that if f is analytic on the region Γ then both u and v are harmonic

in Γ.

2.3.2 Cauchy integrals

Throughout the remainder of the thesis we will consider integrals on closed

domains and contours in the complex plane. Here we demonstrate some

important results which will be of use when solving such problems.

If a function f(z) is analytic on the track and inside of a closed Jordan

contour, Γ, then the Cauchy integral theorem states that∫
Γ

f(z)dz = 0. (2.44)
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Under the same conditions, if a is a point inside of Γ then the Cauchy integral

formula is given by

f(a) =
1

2πi

∫
Γ

f(z)

z − a
dz. (2.45)

A more generalised Cauchy integral formula can be written as

f (n)(a) =
n!

2πi

∫
Γ

f(z)

(z − a)n+1
dz, (2.46)

where (2.45) is obtained when n = 0.

A number of the problems seen later in the thesis are of the form

f(z) =
1

2πi

∫
L

g(t)

t− z
dt, (2.47)

where L is the union of smooth arcs and closed contours. When considering

such problems it is often desirable that the function, g, satisfies the Hölder

condition on each arc or contour of L. The function is said to satisfy the

Hölder condition along an arc, T , if for any t1, t2 ∈ T the following condition

holds: |g(t2)−g(t1)| ≤ A|t2− t1|c. A and c are both positive constants called

the Hölder constant and index respectively. If 0 < c ≤ 1 then g is a Hölder

continuous function and in the specific case where c = 1 it is said that g

satisifes the Lipschitz condition.

When integrating over arcs it is common convention to refer to the pos-

itive and negative side of the arc as the left and right sides relative to the

direction of traversal respectively. Closed contours are traversed in a counter-

clockwise direction so that the positive side is the enclosed region inside the

contour and the negative side is the outer region. The limit of a function,

f , from the positive and negative directions shall be denoted f+ and f− re-

spectively. Making use of this notation, the Plemelj formulae state that for
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the problem considered in (2.47):

f+(z) =
1

2
g(z) +

1

2πi

∫
L

g(t)

t− z
dt, (2.48)

f−(z) = −1

2
g(z) +

1

2πi

∫
L

g(t)

t− z
dt. (2.49)

In turn these equations can be use to derive equations relating the approach

of the functions f+ and f− along L. Firstly by subtracting (2.49) from (2.48):

f+(z)− f−(z) =
1

2
g(z) +

1

2πi

∫
L

g(t)

t− z
dt+

1

2
g(z)− 1

2πi

∫
L

g(t)

t− z
dt,

= g(z). (2.50)

Additionally, if (2.48) and (2.49) are added together the following important

relationship is obtained:

f+(z) + f−(z) =
1

2
g(z) +

1

2πi

∫
L

g(t)

t− z
dt− 1

2
g(z) +

1

2πi

∫
L

g(t)

t− z
dt,

=
1

πi

∫
L

g(t)

t− z
dt. (2.51)

Muskhelishvili (1963) made use of all of these properties to invert the

following problem:

f(z) =
1

πi

∫
L

φ(t)

t− z
dt, (2.52)

where L is the union of a finite number of non-closed arcs, φ is an unknown

function and f is known and satisfies the Hölder condition along L. The

inversion of this problem will be useful for the remainder of the thesis, in

particular Chapter 5.

Muskhelishvili (1963) introduced the holomorphic function Φ(z) which

vanishes at ∞, given by:

Φ(z) =
1

2πi

∫
L

φ(t)

t− z
dt. (2.53)
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It then follows immediately from (2.51) that

Φ+(z) + Φ−(z) =
1

πi

∫
L

φ(t)

t− z
dt = f(z), (2.54)

which can be used to find Φ. Once Φ is known (2.50) can then be used in

order to find φ.

Muskhelishvili (1963) solved for Φ(z):

Φ(z) =

√
R1(z)

2πi
√
R2(z)

∫
L

√
R2(t)f(t)√
R1(t)(t− z)

dt+
Qp−1(z)√
R(z)

, (2.55)

where Qp−1 is an arbitrary polynomial with degree less than or equal to p−1

and p is the number of arcs contained in L. The remaining terms in the

solution are given by:

R1(z) =

q∏
k=1

(z − ck), R2(z) =

2p∏
k=q+1

(z − ck),

R(z) = R1(z)R2(z) =

2p∏
k+1

(z − ck).

Here, ck are the end points of the arcs contained in L and c1, ..., cq are all the

endpoints at which the solution is bounded.

Using the Plemelj formula Muskhelishvili (1963) found that

φ(z) =

√
R1(z)

πi
√
R2(z)

∫
L

√
R2(t)f(t)√
R1(t)(t− z)

dt+
Pp−1(z)√
R(z)

, (2.56)

where Pp−1 is an arbitrary polynomial defined in a similar manner to Qp−1.

The types of problems in this thesis concern cracks along the negative

real-axis along which we’ll need to integrate. We now consider the specific

example when L consist of of one arc along this portion of the real axis:

{x1 < 0, x2 = 0}. To do this we first consider the region {−a < x1 < 0, x2 =

0} then take the limit as a goes to ∞. The problem to invert is therefore

f(z) =
1

πi

∫ 0

−a

φ(t)

t− z
dt. (2.57)
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For the problems in this thesis the solution is required to be bounded at −a

but unbounded at 0. With these additional constraints the equation found

by Muskhelishvili (1963) yields the following expression for φ(z):

φ(z) =

√
z + a

πi
√
z

∫ 0

−a

√
tf(t)√

t+ a(t− z)
dt+

P0√
z(z + a)

, (2.58)

where P0 is an arbitrary constant. Taking the limit as a goes to ∞ gives

φ(z) =
1

πi

∫ 0

−∞

√
t

z

f(t)

t− z
dt. (2.59)

2.3.3 Fourier transforms

When working with partial differential equations it is often useful to use

Fourier transforms in order to solve them. The Fourier transform of an

integrable function f(x1) is defined as

F [f(x1)] = f̄(ξ) =

∫ ∞
−∞

f(x1)eiξx1dx1. (2.60)

If the Fourier transform of f is also integrable it is possible to reobtain the

original function using the inverse Fourier transform, given by:

F−1
[
f̄(ξ)

]
= f(x1) =

1

2π

∫ ∞
−∞

f̄(ξ)e−iξx1dξ. (2.61)

We now present some of the properties of Fourier transforms that make

them such an effective tool for the solving of partial differential equations:

LINEARITY. For two integrable functions f and g and two constants

α, β ∈ R the following result holds:

F [αf(x1) + βg(x1)] = αf̄(ξ) + βḡ(ξ). (2.62)

CONVOLUTION. The Fourier transform of the convolution of two inte-

grable functions f and g is:

F [f ∗ g(x1)] = f̄(ξ)ḡ(ξ). (2.63)
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DERIVATIVE. The Fourier transform of the derivative of a differentiable

function f is:

F [f ′(x1)] = −iξf̄(ξ). (2.64)

2.3.4 Green’s second identity

In this final section of this chapter we give Green’s second identity and show

how it can be used in solid mechanics to relate displacement and traction

fields.

Green’s second identity. For two functions ψ, φ which are both continuous

and differentiable on a volume, V , Green’s second identity states that:∫
V

(ψ∆φ− φ∆ψ)dV =

∫
∂V

(
ψ
∂φ

∂n
− φ∂ψ

∂n

)
dS, (2.65)

where ∂V is the surface of the volume, V . The derivative terms are taken

with respect to n, the normal of the surface, and can also be written in the

form: ∂f/∂n = ∇f · n.

We now consider a simple example of Mode III fields in a two-dimensional,

infinite, homogeneous, isotropic body. Two displacement fields over the same

body will be denoted u(1), u(2) with both disappearing at infinity. In an

isotropic material both of these displacement fields must satisfy Laplace’s

equation (∆u(1) = ∆u(2) = 0) and therefore∫
V

[
u(2)∆u(1) − u(1)∆u(2)

]
dV = 0, (2.66)

for any volume V . Making use of Green’s second identity:∫
∂V

[
u(2)∇u(1) · n− u(1)∇u(2) · n

]
dS = 0. (2.67)
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In isotropic materials µ∇u = σi3 where µ is the shear modulus of the material.

This gives ∫
∂V

[
u2σ

(1)
i3 · n
µ

− u1σ
(2)
i3 · n
µ

]
dS = 0. (2.68)

which then simplifies to∫
∂V

[
u(2)σ

(1)
i3 · n− u(1)σ

(2)
i3 · n

]
dS = 0. (2.69)

As an example of the direct application of this type of equation the vol-

ume, V , is taken to be the semi-circular domain of radius r in the upper-half

plane with flat edge along the x1-axis. If we denote the curved portion of the

domain as R then the integral can be split in the following manner:∫ r

−r

[
u(2)σ

(1)
i3 · n− u(1)σ

(2)
i3 · n

]
dx1 +

∫
R

[
u(2)σ

(1)
i3 · n− u(1)σ

(2)
i3 · n

]
dS = 0.

(2.70)

Taking this integral over the whole upper half-plane, that is as r tends to

infinity: ∫
x2=0+

[
u(2)σ

(1)
i3 · n− u(1)σ

(2)
i3 · n

]
dx1 = 0, (2.71)

with the second terms disappearing as a result of both displacement fields

vanishing at infinity. This then simplifies to∫
x2=0+

[
u(2)σ

(1)
23 − u(1)σ

(2)
23

]
dx1 = 0. (2.72)

A similar equation can be found using the lower half-plane∫
x2=0−

[
u(2)σ

(1)
23 − u(1)σ

(2)
23

]
dx1 = 0. (2.73)

In the problems considered in this thesis we consider bimaterials with a

semi-infinite crack and interface situated along the x1-axis. By taking linear

combinations of equations (2.72) and (2.73), or similar equations for Mode
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I and Mode II fields, it is possible to find relationships between the average

and jump in displacement and stresses of the two fields. Explicit examples of

how weight functions are used to find physical fields using similar expressions

to (2.72) and (2.73) will be seen in the remaining chapters.
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Chapter 3

Weight function approach to

derive stress intensity factors

and energy release rates for a

dynamic semi-infinite crack

lying along a perfect interface

in an anisotropic bimaterial

This chapter sees the beginning of the new work for the thesis. We begin

by looking at a dynamic semi-infinite crack propagating at a constant speed

along a perfect interface in an anisotropic bimaterial. For the purpose of this

chapter only the in-plane (Modes I and II) fields are considered as Mode III

fields are non-oscillatory and we seek to examine the effect of the velocity
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on the oscillations at the crack tip. The main focus here is to find a method

which can be used to derive stress intensity factors for arbitrary loads acting

on the crack faces. Making use of these stress intensity factors it is then

possible to calculate the energy release rate and see the effect that the forces

acting on the crack faces and the velocity have on the propagation. Further to

this, we also present a method which can be used to derive further asymptotic

coefficients for any loading configuration.

The analogous problem for a static crack has been studied previously for

isotropic and anisotropic bimaterials in Piccolroaz et al. (2009) and Morini

et al. (2013b) respectively. Both papers employed Betti’s reciprocal theorem

and the weight function developed in Willis and Movchan (1995) in their

analysis. The same method is used here with suitable changes being made

to incorporate the crack speed.

The chapter is organised as follows: Chapter 3.1 sees the mathematical

formulation of the problem and gives some extended background specific to

the work in this chapter. The incorporation of the crack velocity to the Stroh

formalism (Stroh, 1962) seen in Chapter 2 is given. The method shown is

that of Yang et al. (1991) which is based on the previously discussed results

seen in Suo (1990). A full definition of the Willis and Movchan (1995) weight

function, and its incorporation in the Betti identity (which is the matricial

extension of the results reported in Chapter 2.3.4), is also given. Chapter 3.2

sees the beginning of the new work with the derivation of weight function

matrices for a semi-infinite crack propagating at constant speed at the inter-

face between two dissimilar orthotropic materials under plane deformation.

In Chapter 3.3, using the newly derived explicit weight functions together
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with the Betti integral theorem, general formulae for stress intensity factors

and higher order asymptotic terms are obtained. By means of the developed

approach, both symmetric and skew-symmetric loading configurations acting

on the crack faces can be considered, and higher order asymptotic terms can

also be computed for non-smooth loading functions. The derived stress inten-

sity factors are then used to evaluate the energy release rate. Two illustrative

examples of numerical computations for a specific asymmetric load are pre-

sented in Chapter 3.4. To conclude, the effects of the loadings asymmetry on

the energy release rate and the dependence of stress intensity factors on the

crack tip velocity are discussed, and possible physical implications of these

results on the continuing propagation of the crack are explored.

3.1 Problem formulation

We now introduce the mathematical framework of the model used for the

remainder of the chapter. Existing results regarding the extension of the

Stroh formalism to a dynamic setting, weight functions and the Betti formula

are also reported.

The model used consists of a semi-infinite crack propagating at a constant

speed, v, along a perfect interface between two semi-infinite anisotropic ma-

terials. The crack is said to be occupying the region x1 − vt < 0, x2 = 0, as

illustrated in Figure 3.1.

Considering the Cartesian coordinate system shown in Figure 3.1, the

traction on the crack faces is defined as follows

σ2i(x1 − vt, 0±) = p±i (x1 − vt) for x1 − vt < 0, (3.1)
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Figure 3.1: Geometry

and body forces are assumed to be zero. The only restriction on the loading

considered in this chapter is that it must vanish within a region of the crack

tip.

3.1.1 Extension of the Stroh formalism to a steady

state interfacial crack

Here we present the changes to the Stroh formalism (seen in Chapter 2) when

the crack is no longer static. We begin by recalling that for both anisotropic

elastic media, occupying the upper and the lower half-planes in Figure 3.1,

Hooke’s law is given by

σij = Cijklεkl = Cijkl
∂uk
∂xl

, for i, j, k, l = 1, 2, (3.2)

where σ is the stress, ε is the strain and C is the stiffness tensor for the

material. Furthermore, the following relationship relating the stress and
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displacement is also used

2∑
j=1

∂σij
∂xj

= ρ
∂2ui
∂t2

, (3.3)

where v is the crack speed and ρ is the material density. Combining (3.2)

and (3.3) gives

Cijkl
∂2uk
∂xj∂xl

= ρ
∂2ui
∂t2

. (3.4)

A new coordinate system is now introduced: (x̃1 = x1−vt, x̃2 = x2). The

following relationship is therefore found in this new coordinate system

C̃ijkl
∂2uk
∂x̃j∂x̃l

= 0, (3.5)

where C̃ijkl = Cijkl − ρv2δikδ1jδ1l.

From this stage, for convenience, the steady state coordinates will be

written as x̃1 = x and x̃2 = y. Following the same procedure as was used for

a static crack (Stroh, 1962), a solution is found in the form ui = Aif(x+µy)

to yield the eigenvalue problem

[Q + µ(R + RT ) + µ2T]A = 0. (3.6)

Despite looking identical to the eigenvalue problem seen for a static crack it

is important to note that there is a fundamental change to one of the material

matrices. The matrix Q is now given by Q = Ci1k1 − ρv2δik, and therefore

depends on both the material constants and the crack speed. However, R =

Ci1k2 and T = Ci2k2 depend only on elastic constants of the material. This

eigenvalue problem has previously been solved and general expressions for the

traction and displacement fields can be found in Yang et al. (1991) and Ting

(1996). At this stage we remind ourselves of the following single material
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matrices:

L = (RT + µT)A, B = iAL−1.

It is also important, for further analysis, to re-introduce the bimaterial matrix

H = BI + B?
II and define the additional matrix W = BI − B?

II . It is

important to note that, in the considered dynamic steady-state case, the

matrices A,L,B,H and W all depend on both the elastic constants for the

materials and the crack speed, v.

The work seen in Suo (1990) has been extended to the steady-state crack

by Yang et al. (1991) using the new coordinates x and y . Considering the

traction-free condition, the following Riemann-Hilbert problem is satisfied

along the negative portion of the real axis (Suo, 1990)

h+(x) + (H?)−1Hh−(x) = 0, −∞ < x < 0. (3.7)

Once again the solution, h(z), is found in the form h(z) = wz−
1
2

+iε, where

z = x+ µy and the branch cut of h(z) is placed along the negative real axis.

Combining this solution with (3.7) gives the eigenvalue problem

H?w = e2πεHw, (3.8)

which can be used to find ε and w, both of which depend on the crack velocity

(Yang et al., 1991). Making use of the results obtained from (3.8) expressions

were found for the interfacial tractions and displacement jump over the crack

faces by Yang et al. (1991). The expressions found once again look identical

to those reported for the static case in Chapter 2 (Suo, 1990) but differ due to

the incorporation of the moving crack into the material matrices and moving

coordinate system.
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For the physical problem with forces acting on the crack faces the asymp-

totic expansions of the physical traction and the jump in displacement across

the interface, as x→ 0, can be written as follows (Morini et al., 2013b):

JuK(x) =
(−x)

1
2

√
2π

U(x)K+
(−x)

3
2

√
2π

U(x)Y2+
(−x)

5
2

√
2π

U(x)Y3+O((−x)
7
2 ), (3.9)

t(x) =
x−

1
2

2
√

2π
T (x)K +

x
1
2

2
√

2π
T (x)Y2 +

x
3
2

2
√

2π
T (x)Y3 +O(x

5
2 ), (3.10)

where K = [K,K?] and Yi = [Yi, Y
?
i ]. K = K1 + iK2 is the complex stress

intensity factor and Yi are constants derived in the same manner as the in

order to find further terms in the asymptotic expansions. The matrices U(x)

and T (x) are represented as follows

U(x) =
2(H + H?)

cosh πε

[
w(−x)iε

1 + 2iε
,
w?(−x)−iε

1− 2iε

]
, T (x) = 2

[
wxiε,w?x−iε

]
.

(3.11)

An explicit formula for computing the stress intensity factor for symmet-

ric loading was given in Suo (1990). Whilst this expression is correct it is

highly restricted as it is often desirable to use a non-symmetric loading con-

figuration. In this chapter we will often split the stress intensity factor into

two parts corresponding to the symmetric, KS, and asymmetric, KA, parts

of the loading, given as 〈p〉 and JpK respectively. The expression found for

the symmetric load (Suo, 1990) is written, using the notation of this chapter,

below:

KS = −
(

2

π

) 1
2

cosh πε

∫ 0

−∞
(−x)−

1
2
−iε〈p1〉(x)dx, (3.12)

where the vector 〈p1〉(x) is related to the applied traction p(x) in the follow-

ing way

〈p1〉 =
w?TH〈p〉
w?THw

.
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Once the stress intensity factors are found it is possible to evaluate the

energy release rate. The expression found by Irwin (1957) was for a static

crack:

G =
1

2∆

∫ ∆

0

tT (∆− r)JuK(r)dr, (3.13)

where ∆ is an arbitrary length scale. However, it was stated in Yu and

Suo (2000) that this equation can still be used with an arbitrary ∆ as long

as the crack is moving at subsonic speeds. In order to use the moving co-

ordinate system introduced in this chapter only sub-Rayleigh wave speeds

are considered. Therefore it is still possible to use equation (3.13) for our

steady state formulation as sub-Rayleigh waves are always subsonic. As only

the in-plane fields are being analysed in this chapter the portion of the energy

release rate we seek to find is given by

G =
w?T (H + H̄)w|K|2

4 cosh2(πε)
. (3.14)

The value of G will change as the crack moves at different speeds and this

is one of the key features we seek to explore in this chapter, with the results

being shown in Chapter 3.4.

3.1.2 Weight Functions

The weight function U is now defined in the same vein as Willis and Movchan

(1995). U = (U1, U2)T is the displacement field with a square root singularity

at the crack tip that is obtained from the problem where the steady-state

crack occupies the region of the x-axis with x > 0. Therefore U is discon-

tinuous over the positive portion of the real axis. Despite being defined as

a singular displacement field, the weight function is not a physical field and
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is merely a function used to help solve the problem defined earlier in the

chapter.

The symmetric and skew-symmetric parts of the weight function are given

by the following expressions:

JUK(x) = U(x, 0+)−U(x, 0−), (3.15)

〈U〉(x) =
1

2
(U(x, 0+) + U(x, 0−)). (3.16)

The traction field associated with the displacement field, U, is denoted as

Σ = (Σ1,Σ2)T and is said to be continuous over the interface (x < 0) and

the zero traction condition is imposed on the crack faces. Therefore, the

following Riemann-Hilbert problem stands along the positive section of the

real axis for this problem, as seen in Morini et al. (2013b)

h+(x) + (H?)−1Hh−(x) = 0, 0 < x <∞, (3.17)

A solution for h(z) is found in the form

h(z) = vz−
3
2

+iε, (3.18)

where the branch cut is now said to be along the positive x-axis. This gives

the eigenvalue problem

H?v = e−2πεHv. (3.19)

H is positive definite hermitian and therefore it is clear, by comparing (3.19)

with the solutions of (3.8), that v = w?.

An expression for Σ along the negative real axis is given by

Σ(x) = h+(x) + (H?)−1Hh−(x), −∞ < x < 0. (3.20)
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Therefore the singular traction in the steady state has the form Morini et al.

(2013b)

Σ(x) =
(−x)−

3
2

√
2π

Re(R(−x)iεw?), (3.21)

where R = R1 + iR2 is an arbitrary, complex number in a similar fashion

to the stress intensity factor for the physical problem. By considering the

results obtained for Σ when {R1 = 1, R2 = 0} and {R1 = 0, R2 = 1} it is

possible to obtain two linearly independent vectors, and therefore a 2 × 2

matrix representing Σ (Piccolroaz et al., 2009).

Expressions relating the Fourier transform of the symmetric and skew-

symmetric weight functions were found in Morini et al. (2013b) following

from the work seen in Piccolroaz et al. (2007)

JŪK+(ξ) =
1

|ξ|
(isign(ξ)Im(H)− Re(H))Σ̄−(ξ), (3.22)

〈Ū〉(ξ) =
1

2|ξ|
(isign(ξ)Im(W)− Re(W))Σ̄−(ξ). (3.23)

Here the superscripts ± denotes whether the function is analytic in the upper

or lower half plane respectively.

3.1.3 Betti Formula

It was mentioned previously that there are now two displacement fields to

consider; the physical displacement, u, and the singular displacement, U.

However, U is discontinuous across the x-axis for x > 0 whereas u is discon-

tinuous across the x-axis for x < 0. Also considered is the traction associated

with U, given by Σ, which is continuous when x < 0 and the traction t as-

sociated with u which is continuous when x > 0.

48



It was shown in Willis and Movchan (1995) that the Betti formula still

holds for a crack moving with constant speed. Therefore, the following ex-

pressions are found along the upper and lower parts of the real axis, respec-

tively∫ ∞
−∞
{RU(x′ − x, 0+) · σ(x, 0+)−RΣ(x′ − x, 0+) · u(x, 0+)}dx = 0,

(3.24)∫ ∞
−∞
{RU(x′ − x, 0−) · σ(x, 0−)−RΣ(x′ − x, 0−) · u(x, 0−)}dx = 0,

(3.25)

where

R =

−1 0

0 1

 .

The homogeneous case of (3.7) is now considered. Combined with the ap-

plied traction on the crack faces, p(x), the following expressions for traction

are obtained

σ2i(x, y = 0+) = p+(x) + t(x), σ2i(x, y = 0−) = p−(x) + t(x). (3.26)

Subtracting (3.25) from (3.24) and using (3.26), along with the definition of

the symmetric and skew-symmetric parts of the weight function, the following

formula is obtained∫ ∞
−∞
{RJUK(x′ − x) · t(x)−RΣ(x′ − x, 0) · JuK(x)}dx

=−
∫ ∞
−∞
{RJUK(x′ − x) · 〈p〉(x) + R〈U〉(x′ − x) · JpK(x)}dx. (3.27)

Here, 〈p〉 and JpK refer to the symmetric and skew-symmetric parts of the

loading respectively.

Using the Fourier convolution theorem the following identity, which re-

lates the Fourier transforms of the weight functions and the solutions of the
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physical problem, is obtained (Piccolroaz et al., 2007; Morini et al., 2013b)

JŪK+TRt̄+ − Σ̄−TRJūK− = −JŪK+TR〈p̄〉 − 〈Ū〉TRJp̄K, (3.28)

where the ± once again denotes whether the transform is analytic in the

upper or lower half plane.

Further work performed in Piccolroaz et al. (2007) and Morini et al.

(2013b), combining (3.22), (3.23) and (3.28), found an explicit expression

for finding the stress intensity factor, K, using the weight functions and the

loading applied on the crack faces. The following expression was obtained

K =
1

2πi
Z−1

1

∫ ∞
−∞

JŪK+T (τ)R〈p̄〉(τ) + 〈Ū〉T (τ)RJp̄K(τ)dτ, (3.29)

where Z1 is a constant matrix derived from the asymptotic representation

of (3.28). It can be shown that both expressions for K, (3.12) and (3.29),

are equivalent when the loading considered is symmetric.

Following the method developed in Piccolroaz et al. (2007) and Morini

et al. (2013b) an expression for further asymptotic coefficients can be found

depending on whether the applied loading is smooth and has a Fourier trans-

form that vanishes at a fast enough rate at infinity. If this is the case the

general expression for the asymptotic coefficients can be found using the

equation

Yj =
1

2πi
Z−1
j

∫ ∞
−∞

τ j−1{JŪK+T (τ)R〈p̄〉(τ) + 〈Ū〉T (τ)RJp̄K(τ)}dτ. (3.30)

Here, Zj is also derived from the asymptotic representation of (3.28). An

example of finding Z2 for orthotropic bimaterials is shown later in the chap-

ter.
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3.2 Steady-state weight functions for orthotropic

bimaterials

In this section, expressions for the symmetric and skew-symmetric weight

function matrices corresponding to a steady-state plane strain interfacial

crack in orthotropic bimaterials are derived. Substituting the solution for

w found in Yang et al. (1991), and shown in Appendix 1, into (3.21), and

using the method used in Piccolroaz et al. (2009), yields the following linearly

independent traction vectors for −∞ < x < 0

Σ1(x) =
(−x)−

3
2

2
√

2π

 i[(−x)iε − (−x)−iε]√
H11

H22
[(−x)iε + (−x)−iε]

 , (3.31)

Σ2(x) =
(−x)−

3
2

2
√

2π

 −[(−x)iε + (−x)−iε]

i
√

H11

H22
[(−x)iε − (−x)−iε]

 , (3.32)

where H11 and H22 are parameters depending on the crack tip speed and

elastic constants of both considered materials. Explicit expressions for H11

and H22 have been introduced in Yang et al. (1991) and are given in Appendix

1. The branch cut for these vectors is situated along the positive real axis

and polar coordinates with angle between −2π and 0 are taken. The Fourier

transforms obtained are

Σ̄1−(ξ) =

(iξ)
1
2

√
2

(1 + 4ε2)
√
π

 i
[
(−1

2
− iε)Γ(1

2
+ iε)(iξ)−iε − (−1

2
+ iε)Γ(1

2
− iε)(iξ)iε

]√
H11

H22

[
(−1

2
− iε)Γ(1

2
+ iε)(iξ)−iε + (−1

2
+ iε)Γ(1

2
− iε)(iξ)iε

]
 ,

(3.33)
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Σ̄2−(ξ) =

(iξ)
1
2

√
2

(1 + 4ε2)
√
π

 −
[
(−1

2
− iε)Γ(1

2
+ iε)(iξ)−iε + (−1

2
+ iε)Γ(1

2
− iε)(iξ)iε

]
i
√

H11

H22

[
(−1

2
− iε)Γ(1

2
+ iε)(iξ)−iε − (−1

2
+ iε)Γ(1

2
− iε)(iξ)iε

]
 ,

(3.34)

where Γ(·) is the gamma function and the branch cut of Σ̄− is situated along

the positive imaginary axis. Note that the expressions (3.33) and (3.34)

are written using a different representation than was used in Morini et al.

(2013b). The reason behind this will become clearer in Chapter 3.3.

The Fourier transforms (3.22) and (3.23) can now be computed, for ξ ∈ R,

with the expressions for H and W found in Yang et al. (1991) and Morini

et al. (2013b) respectively

JŪK+(ξ) =
1

|ξ|

 −H11 −iβsign(ξ)
√
H11H22

iβsign(ξ)
√
H11H22 −H22

 Σ̄−(ξ), (3.35)

〈Ū〉(ξ) =
1

2|ξ|

 −δ1H11 iγsign(ξ)
√
H11H22

−iγsign(ξ)
√
H11H22 −δ2H22

 Σ̄−(ξ), (3.36)

where branch cuts are now situated along the negative imaginary axis. Here

β, γ, δ1 and δ2 are all dimensionless parameters depending on the elastic

coefficients of the bimaterial and the crack tip velocity (Yang et al., 1991).

Full expressions for both matrices, H and W, are stated in Appendix 1,

including full expressions for the parameters β, γ, δ1 and δ2. It is clearly

seen from the results of Yang et al. (1991) that β is of great importance

when considering the oscillations near the crack tip as the oscillation index

ε = 0 when β = 0.
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3.3 Evaluation of the Coefficients in the Asymp-

totic Expansion of the Displacement and

Stress Fields for the Steady-State Crack

3.3.1 Determination of the Stress Intensity Factor

It is now possible to develop a method in order to find the stress intensity

factor for an orthotropic bimaterial, similar to that seen for the static crack

in Morini et al. (2013b). Making use of the eigenvalues, w, found by Yang

et al. (1991) for the case of orthotropic materials, the matrix T (x) in equation

(3.10) is given by

T (x) =

 −ixiε ix−iε√
H11

H22
xiε

√
H11

H22
x−iε

 . (3.37)

Note that this result is equivalent to (3.11) with the known value of w in-

serted. The Fourier transform of this expansion is computed in order to find

the asymptotic expansion as ξ →∞, with Im(ξ) ∈ (0,∞). The result is

t̄(ξ) =
(−iξ)− 1

2

2
√

2π
T1(ξ)K +

(−iξ)− 3
2

2
√

2π
T2(ξ)Y2 +O((ξ)−

5
2 ), (3.38)

where

T1(ξ) =

 −i(−iξ)−iεΓ(1
2

+ iε) i(−iξ)iεΓ(1
2
− iε)√

H11

H22
(−iξ)−iεΓ(1

2
+ iε)

√
H11

H22
(−iξ)iεΓ(1

2
− iε)

 , (3.39)

T2(ξ) =

 −i(−iξ)−iεΓ(3
2

+ iε) i(−iξ)iεΓ(3
2
− iε)√

H11

H22
(−iξ)−iεΓ(3

2
+ iε)

√
H11

H22
(−iξ)iεΓ(3

2
− iε)

 . (3.40)

It is noted here that these expressions differ to those seen in Morini et al.

(2013b) and Piccolroaz et al. (2007) to incorporate the different branch cut
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used in this chapter. It is now possible to find the asymptotic expansion

of the members of Betti’s identity from equation (3.28), using expressions

(3.35) and (3.36), as ξ →∞

JŪK+TRt̄+ = ξ−1Z1K + ξ−2Z2Y2 + ξ−3Z3Y3+O(ξ−4),

where Im(ξ) ∈ (0,∞),

(3.41)

Σ̄−TRJūK− = ξ−1Z1K + ξ−2Z2Y2 + ξ−3Z3Y3+O(ξ−4),

where Im(ξ) ∈ (−∞, 0).

(3.42)

The matrices Z1 and Z2 are given by

Z1 = − H11

4s+s−(1 + 4ε2)

− (β−1)(1−2iε)
E2 E2(β + 1)(1 + 2iε)

i(β−1)(1−2iε)
E2 iE2(β + 1)(1 + 2iε)

 ,

Z2 = − H11

4(1 + 4ε2)

− (β−1)(1−2iε)
g+s−E2

E2(β+1)(1+2iε)
s+g−

i(β−1)(1−2iε)
g+s−E2

iE2(β+1)(1+2iε)
s+g−

 ,

where

E = eε
π
2 , s± =

(1 + i)
√
π

2Γ
(

1
2
± iε

) , g± =
(1− i)

√
π

2Γ
(

3
2
± iε

) .
Following the method of Morini et al. (2013b), (3.28) is rewritten as

ψ+(ξ)−ψ−(ξ) = −JŪK+TR〈p̄〉 − 〈Ū〉TRJp̄K, (3.43)

using the Plemelj formula it is possible to find ψ±(ξ) using the formula

ψ±(ξ) =
1

2πi

∫ ∞
−∞

ψ(τ)

τ − ξ
dτ, (3.44)
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where ψ(τ) = −JŪK+T (τ)R〈p̄〉(τ)−〈Ū〉T (τ)RJp̄K(τ). The solution of (3.43)

is given by

JŪK+TRt̄+ = ψ+, where Im(ξ) ∈ (0,∞),

Σ̄−TRJūK− = ψ−, where Im(ξ) ∈ (−∞, 0).

The asymptotic expansion of the Plemelj formula as ξ →∞± is given by

ψ±(ξ) =
1

2πi

∫ ∞
−∞

ψ(τ)

τ − ξ
dτ = ξ−1V±1 + ξ−2V±2 +O(ξ−3). (3.45)

Comparing the terms of this asymptotic expansion with the terms of the

expansions (3.41) and (3.42) it is clear that V±j = ZjYj, where Y1 = K.

Using (3.45) it is easily seen that the stress intensity factor, K, is given by

K = lim
ξ→∞±

1

2πi
Z−1

1

∫ ∞
−∞

ξ
(
−JŪK+T (τ)R〈p̄〉(τ)− 〈Ū〉T (τ)RJp̄K(τ)

)
τ − ξ

dτ,

(3.46)

where the explicit expression for Z1
−1 is given by

Z1
−1 =

2s+s−(1 + 4ε2)

H11

 E2

(β−1)(1−2iε)
iE2

(β−1)(1−2iε)

− 1
(β+1)(1+2iε)E2

i
(β+1)(1+2iε)E2

 .

Assuming that the loading disappears in the region of the crack tip the limit

in (3.46) exists and therefore the general expression for the stress intensity

factor, K, for the steady state is identical to that found in Morini et al.

(2013b) (see equation (3.29)). For symmetric loading (JpK = 0) equation

(3.46) yields the same expression for the stress intensity factors as (3.12).

Now that an expression for the stress intensity factor has been found

it is possible to determine the energy release rate(ERR). Using (3.14) the

following expression is obtained for the ERR in orthotropic materials

G =
H11(1− β2)|K|2

4
. (3.47)
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The effect of crack speed on the energy release rate is explored in Chapter

3.4.

3.3.2 General Expression for the Coefficients of the

Higher Order Terms

Using the asymptotic expansions (3.41), (3.42) and the corresponding terms

of (3.45) a general expression for the jth coefficient of the asymptotic expan-

sions, Yi, is found

V±j = lim
ξ→∞±

[
ξj(−1)j−1

2πi(j − 1)!

∫ ∞
−∞
ψ(τ)

dj−1

dξj−1

(
ξj−1

τ − ξ

)
dτ

]
. (3.48)

This gives a general expression for the coefficients of the asymptotic expan-

sion of the displacement and stress fields as

Yj = lim
ξ→∞±

1

2πi
Z−1
j

∫ ∞
−∞

τ j−1(JŪK+T (τ)R〈p̄〉(τ)+〈Ū〉T (τ)RJp̄K(τ))

(
ξ

ξ − τ

)j
dτ.

(3.49)

If the limit can be taken through the integral and the loading is applied

in such a way that the limit exists it is clearly seen that equation (3.49) is

identical to (3.30). The limit in (3.49) can be computed directly for j ≥ 2

if the loading is given by a particularly smooth function which is therefore

differentiable, otherwise it is computationally challenging. However, we wish

to use a general asymmetric loading system in which case equation (3.30)

cannot always be used. An example of loading for which (3.30) cannot be

used is when point forces are applied on the crack faces (Piccolroaz et al.,

2009). To find further asymptotic terms, for arbitrary loading, an alternate

method must be used.
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Figure 3.2: Integration Shift in the ξ-Plane

As the function p only exists on the negative real x-axis its Fourier trans-

form is analytic in the lower half ξ-plane. Therefore, Jp̄K and 〈p̄〉 are also

analytic in the lower-half plane. As long as the applied loading p vanishes

within a region of the crack tip it is clearly seen that Jp̄K and 〈p̄〉 decay

exponentially as ξ tends to −i∞. It is also known that both JŪK+ and 〈Ū〉

are analytic in the lower-half plane apart from the negative imaginary axis.

For computing Yj the contour of integration shown in Figure 3.2 is used.

However, as there is exponential decay as ξ goes to −i∞, L−∞ and L∞ do

not contribute to the total integral. Equation (3.49) now becomes

Yj = lim
ξ→∞±

(
− 1

2πi
Z−1
j

[∫
L̃l

τ j−1ψ(τ)

(
ξ

ξ − τ

)j
dτ

−
∫
L̃r

τ j−1ψ(τ)

(
ξ

ξ − τ

)j
dτ

])
.

(3.50)
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The limit of (3.50) can be taken to give

Yj = − 1

2πi
Z−1
j

∫ 0

−i∞
τ j−1Jψ(τ)Kdτ, (3.51)

where Jψ(τ)K refers to the jump of the function ψ over the negative imaginary

axis.

The expression (3.51) can be simplified further by considering the con-

tinuity of (3.22) and (3.23). The first term in both equations is analytic in

the lower half-plane and therefore continuous over the negative imaginary

axis. For this reason they do not contribute to the general expression for the

asymptotic coefficients, (3.51). Therefore, equation (3.51) simplifies to give

Yj = − 1

2πi
Z−1
j

∫ 0

−i∞
τ j−1JφK(τ)dτ, (3.52)

where φ(τ) is given by

φ(τ) =
Re(H){Σ̄−(τ)R〈p̄〉(τ)}

|τ |
+

Re(W){Σ̄−(τ)RJp̄K(τ)}
2|τ |

.

3.4 Specific Examples

Specific examples for computing the stress intensity factors for orthotropic

materials are now considered. Firstly, the loading on the crack faces is given

by a point force of magnitude F acting perpendicular to the upper crack face

a distance a behind the crack tip and two point forces, both of magnitude

F/2, acting perpendicular to the lower crack face a distance b away from the

point force acting upon the upper crack face. The loading moves at the same

speed and in the same direction that the crack is propagating. This is shown

in Figure 3.3. The forces are represented mathematically using the Dirac
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Figure 3.3: Mode I dominant loading

delta distribution (Piccolroaz et al., 2009)

p+(x) = −Fδ(x+ a), p−(x) = −F
2
δ(x+ a+ b)− F

2
δ(x+ a− b). (3.53)

It is now possible to decompose the loading into its symmetric and skew-

symmetric components

〈p〉(x) =
1

2
[p+(x) + p−(x)] = −F

2
δ(x+ a)− F

4
δ(x+ a− b)− F

4
δ(x+ a− b),

JpK(x) = p+(x)− p−(x) = −Fδ(x+ a) +
F

2
δ(x+ a+ b) +

F

2
δ(x+ a− b).

(3.54)

In order to compute the stress intensity factors the Fourier transforms of the

skew-symmetric and symmetric parts of the loading are required. These are

given by

〈p̄〉(ξ) = −F
2
e−iξa − F

4
e−iξ(a+b) − F

4
e−iξ(a−b), (3.55)

Jp̄K(ξ) = −Fe−iξa +
F

2
e−iξ(a+b) +

F

2
e−iξ(a−b). (3.56)
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It is now possible to compute expressions for the first and second order

asymptotic coefficients, K and Y2, using expressions (3.46) and (3.52) re-

spectively.

To find an expression for K equation (3.46) is used, which is identical to

using the dynamic equivalent of (3.29). The solution is split into the parts

corresponding to the symmetric and anti-symmetric parts of the loading,

denoted KS and KA respectively

KS
(a) = F

E2

(1− β)

√
H22

H11

√
2

π
Λ(1, a, b, ε),

KA
(a) = F

E2δ2

(1− β)

√
H22

H11

√
2

π
Ξ(1, a, b, ε). (3.57)

where

Λ(c, a, b, ε) = a−
c
2
−iε
[

1

2
+

1

4
(1 + b/a)−

c
2
−iε +

1

4
(1− b/a)−

c
2
−iε
]
,

Ξ(c, a, b, ε) = a−
c
2
−iε
[

1

2
− 1

4
(1 + b/a)−

c
2
−iε − 1

4
(1− b/a)−

c
2
−iε
]
.

Regarding higher order asymptotic coefficients for the loading shown in

Figure (3.3) the alternate method developed in Chapter 3.3.2 must be used.

Once again the coefficient is split into symmetric and anti-symmetric parts.

The second order term is given by

Y S
2(a) = F

E2

(β − 1)

√
H22

H11

√
2

π
Λ(3, a, b, ε),

Y A
2(a) = F

E2δ2

(β − 1)

√
H22

H11

√
2

π
Ξ(3, a, b, ε). (3.58)

A different configuration has also been considered. This other point load-

ing system consists of point forces acting on the crack faces at the same

points as previously considered but the forces are now running parallel to
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Figure 3.4: Mode II dominant loading

the crack as opposed to the perpendicular system shown in Figure 3.3. This

different loading is shown in Figure 3.4.

For this loading the following expressions are found for the symmetric

and antisymmetric part of the stress intensity factors

KS
(b) = iF

E2

(1− β)

√
2

π
Λ(1, a, b, ε),

KA
(b) = iF

E2δ1

(1− β)

√
2

π
Ξ(1, a, b, ε). (3.59)

Using the method developed in Chapter 3.3.2, the symmetric and antisym-

metric components of the second order asymptotic coefficient are found

Y S
2(b) = iF

E2

(β − 1)

√
2

π
Λ(3, a, b, ε),

Y A
2(b) = iF

E2δ1

(β − 1)

√
2

π
Ξ(3, a, b, ε). (3.60)

Having computed expressions for the stress intensity factors it is now

possible to calculate the energy release rate for two given materials. The
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velocity is normalised by dividing by cR, the lowest of the two Rayleigh

wave speeds for the given materials. This is done because the Rayleigh wave

speed is a limiting velocity for which the steady-state coordinate system can

be used. In the results shown the energy release rate is normalised in the

following manner: GC
(1)
66 /F

2. Here, C
(1)
66 is taken as the value of C66 for the

material above the crack. In all figures graphs labelled a) correspond to the

Mode I dominant loading whereas those labelled b) refer to the case with

Mode II dominant loading. For the purpose of calculations, a is set as 1.

In this chapter the material constants chosen for material I are those of

Barium Titanate. Information on this material has been obtained from Geis

et al. (2004) which states that the material is transverse isotropic, which is

a subgroup of orthotropic materials. Material II is set as monocrystalline

Aluminium, with a cubic structure, where material parameters have been

obtained from Bower (2009). The properties of these materials are shown

in Table 3.1. Using the method outlined in Appendix 1, it can be shown

that the Rayleigh wave speed of Barium Titanate is 1, 771 ms−1 and for

Aluminium it is 2, 941 ms−1. Therefore the normalising velocity, cR, used is

that of Barium Titanate.

Material C11(GPa) C22(GPa) C12(GPa) C66(GPa) ρ(kgm−3)

I. Barium Titanate 120.3 120.3 75.2 21.0 6,020

II. Aluminium 107.3 107.3 60.9 28.3 2,700

Table 3.1: Material properties

Figure 3.5 shows the variation of the normalised energy release rate, as

a function of the velocity, for both loadings considered, whereas Figures 3.6
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Figure 3.5: The normalised ERR, as a function of the velocity, for differ-

ent positions of the self-balanced point forces applied to the crack surfaces,

described by the ratio b/a.

and 3.7 illustrate the symmetric and antisymmetric contribution to the ERR,

corresponding to KS and KA respectively. Both GS and GA are normalised

by the total energy release rate G, associated with K = KS +KA.

It can be observed in Figure 3.5 that the energy release rate increases as

the velocity increases and tends towards infinity as the velocity approaches

the Rayleigh wave speed. This behaviour is observed regardless of the asym-

metry of the loading acting on the crack faces. It is important to note that,

as velocity increases, asymmetry gives a larger ERR, therefore it can be said

that symmetric loading is more energetically beneficial than any asymmetric

load.

Graphs in Figures 3.6 and 3.7 show that for b/a = 0, when both loadings
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Figure 3.6: The normalised symmetric part of the ERR, as a function of the

velocity, for different positions of the self-balanced point forces applied to the

crack surfaces, described by the ratio b/a.

become symmetric, GS/G = 1 and GA/G = 0 therefore the energy release

rate only consists of its symmetric part, regardless of velocity, which agrees

with the results found for isotropic and anisotropic bimaterials in Piccolroaz

et al. (2009) and Morini et al. (2013b). When asymmetry is introduced into

the loading it is observed that the symmetric contribution to the energy

release rate is higher than the total ERR and the ratio increases as the

velocity increases. Upon approaching the Rayleigh wave speed there is an

unexpected sharp decrease in the ratio GS/G. This unexpected effect should

be studied further by performing experiments studying crack propagation at

near-Rayleigh speeds.

In comparison to the symmetric contribution shown in Figure 3.6, the
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Figure 3.7: The normalised antisymmetric part of the ERR, as a function of

the velocity, for different positions of the self-balanced point forces applied

to the crack surfaces, described by the ratio b/a.

asymmetric part of the ERR, illustrated in Figure 3.7, is very small, in par-

ticular for low velocities. As the velocity starts to increase the asymmetric

contribution to G becomes larger. This result is supported by Figure 3.8,

showing the ratio GA/GS, which also shows an increased contribution by the

asymmetric part of the loading at higher velocities.

The dependence of the stress intensity factor, K, on the normalised crack

tip speed is illustrated in Figure 3.9. The first graph shows the ratio K2/K1

for the Mode I dominant loading. Here, K1 and K2 are the Mode I and

II contributions to the SIF, respectively. For symmetric loading there is no

Mode II contribution to K, due to the fact that there is only Mode I opening

of the crack. It is important to observe that if asymmetry is introduced, for
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Figure 3.8: The ratio of antisymmetric and symmetric parts of the energy

release rate, as a function of the velocity, for different positions of the self-

balanced point forces applied to the crack surfaces, described by the ratio

b/a.

all values of b/a, there exists a velocity at which K2 changes sign. The second

image in Figure 3.9 shows a similar result for the Mode II dominant loading

when considering the ratio K1/K2. In this case, it is the K1 component

which changes sign. The velocity at which this change takes place is the

same for both types of loading and does not depend on the asymmetry. This

velocity corresponds to the value of the crack tip speed at which the Dundurs

parameter, β, vanishes. This characteristic velocity can be found by solving

the algebraic equation β(v) = 0 and depends only on the elastic properties

of the materials and the speed at which the crack is propagating. Therefore

it is clear that the asymmetry of the load does not affect the value at which
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Figure 3.9: The ratios K2/K1 and K1/K2 for the Mode I and Mode II load-

ings respectively. The graphs of β and ε, as a function of velocity, are also

shown.

the stress intensity factors have a change in sign. It is also clear from the

results in Appendix 1 that when β vanishes the oscillatory term, ε, vanishes

and this has also been shown in Figure 3.9. This agrees with the obtained

results as, when ε = 0, it can be observed that (3.57) consists only of real

terms and (3.59) only has imaginary components.

It can be said that, when the crack tip speed reaches this characteristic

value of the velocity, associated with β = 0, the propagation should continue

along the interface in a straight line. Instead, when neither K1 or K2 are 0

there is a possibility of kinking or branching of the propagation. Increased

magnitudes of the ratios considered in Figure 3.9 lead to an increased prob-

ability of crack redirection and as the velocity increases the ratios exhibit

this behaviour which explains why straight propagation along the interface
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Figure 3.10: The change in behaviour of the crack propagation when the

material below the crack is changed, for fixed asymmetry of the loading.

is unlikely for high crack speeds. These results are in agreement with many

theoretical and experimental studies which have demonstrated that there ex-

ists a specific sub-Rayleigh velocity which is related to the stability of the

crack propagation (Obrezanova et al., 2002a,b).

The behaviour of the stress intensity factor is also observed in Figure

3.10 for different materials in the lower half plane. The asymmetry of the

load was fixed at b/a = 0.8. The results in these graphs show that the

previously mentioned speed at which the direction of the crack propagation

changes does not exist for all bimaterials. This is due to the fact that there

does not always exist a velocity at which β = 0. For bimaterials which do

not have this characteristic velocity the change of behaviour of the crack

propagation would not be expected. However, the increased probability of
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Figure 3.11: The normalised components of KS and KA for v = 0 with mode

I dominant loading.

kinking/branching at higher velocities is still observed.

Figure 3.11 shows the variation in the real and imaginary parts of the

normalised stress intensity factor when v = 0 and the asymmetry of the

loading is varied. The loading considered here is the Mode I dominant loading

so a comparison can be made to the results obtained for this system in Morini

et al. (2013b). The behaviour of the results shown agree with those in Morini

et al. (2013b) with only the real part of the symmetric stress intensity factor

existing for symmetric loading and the magnitude of all components increases

as the asymmetry becomes more profound. The behaviour is not identical to
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that seen in Morini et al. (2013b) due to the different materials considered

here.

3.5 Conclusions

A general method for calculating stress intensity factors and higher order

terms in the asymptotic expansions of the displacement and stress fields

for a dynamic steady-state crack at the interface between two dissimilar

anisotropic materials has been developed. The proposed approach, based

on weight functions and the Betti integral formula, can be applied to many

crack problems in a wide range of materials, for example, several classes of

anisotropic elastic media (monoclinic, orthotropic) and piezoceramics. As a

particular case, a steady-state plane interfacial crack in orthotropic bima-

terials has been studied. Expressions for the SIF and further higher order

asymptotic coefficients have been found for two different configurations of

loading acting on the crack faces.

It has been shown in our examples that greater asymmetry of the loading

configuration leads to an increase in the energy release rate at the crack tip

and has a particularly large effect for high crack velocities. Moreover, the

analysis of the stress intensity factors for both loadings shows the existence of

a sub-Rayleigh velocity at which the non-dominant part of the SIF changes

sign which could lead to a change in direction in the crack propagation. This

effect is only observable when asymmetric loading was applied and may give

some explanation to the fact that kinking/branching is more probable at cer-

tain velocities. As different materials for the lower half-plane are considered,

it has been shown that this characteristic velocity does not exist for every bi-
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material and therefore experimental study is of great importance in order to

clearly detect the presence of this critical value and its physical implications

on crack propagation stability.
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Chapter 4

Derivation of singular integral

equations for an imperfect

interface in an anisotropic

bimaterial using perfect

interface weight functions

This chapter sees the introduction of an imperfect interface in an anisotropic

bimaterial. For the purpose of the work seen here only a static crack is

considered and both the in-plane (Modes I and II) and out-of-plane (Mode

III) fields are considered. The Mode III problem decouples from the in-plane

problem to leave a scalar problem whereas Modes I and II are once again

coupled, which lead to 2×2 matricial problems. The purpose of this chapter

is to find singular integral equations which relate interfacial tractions and
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crack displacements to the applied loadings on the crack faces.

Singular integral equations have been derived for the analogous problem

with a perfect interface for both isotropic (Piccolroaz and Mishuris, 2013)

and anisotropic (Morini et al., 2013a) bimaterials. Both papers made use

of the Betti identity and the weight function of Willis and Movchan (1995)

(introduced in the previous chapter) in their derivation. The incorporation of

an imperfect interface was seen in Mishuris et al. (2013) where an imperfect

interface in an isotropic bimaterial was considered. The weight function used

here was similar to that of Willis and Movchan (1995) but with an imperfect

interface as opposed to a perfect one. This means that it was necessary

to derive the new weight function before proceeding to derive the integral

equations. The approach seen in this chapter utilises the Betti identity in

such a way that it is possible to use the weight function containing the perfect

interface in order to find results for the imperfect physical problem, therefore

negating the need to derive new weight functions.

The structure of the remainder of the chapter is as follows: Chapter 4.1

sees the introduction of the mathematical framework used for the remainder

of the chapter. In Chapter 4.2 we report the Betti formula and begin the new

work by combining perfect interface weight functions with imperfect inter-

face physical fields in this reciprocal identity. We confirm the validity of this

new method by verifying that it gives the same results for isotropic materials

as those found in Mishuris et al. (2013). Once the relationship between the

existing weight functions and sought solution has been established we then

proceed to look at the out-of-plane and in-plane problems separately in Chap-

ters 4.3 and 4.4 respectively. In both sections we first derive relationships
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between the Fourier transforms of the applied crack load (which is known)

and the displacement jump over the crack and interfacial traction. Inverse

Fourier transforms are then used to obtain the desired equations. We then

present some numerical results for both cases to illustrate the implementa-

tion of our singular integral equations. For the Mode III solution we also

show a comparison between results obtained from finite element solutions in

COMSOL to those obtained from the equations we have derived.

4.1 Problem formulation

We consider an infinite anisotropic bimaterial with an imperfect interface

and a semi-infinite interfacial crack respectively lying along the positive and

negative x1 semi-axes. The materials above and below the x1-axis will be

denoted materials I and II respectively.
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The imperfect interface transmission conditions for x1 > 0 are given by

t(x1, 0
+) = t(x1, 0

−), (4.1)

u(x1, 0
+)− u(x1, 0

−) = Kt(x1, 0
+), (4.2)

where t = (t1, t2, t3)T = (σ21, σ22, σ23)T is the traction vector and u =

(u1, u2, u3)T is the displacement vector. The matrix K quantifies the extent

of imperfection of the interface, with K = 0 corresponding to the perfect in-

terface. For an anisotropic bonding material, K has the following structure:

K =


K11 K12 0

K12 K22 0

0 0 κ

 . (4.3)

Expressions for the components of K, in terms of the material parameters of

the bonding agent, were found by Antipov et al. (2001). In the case when a

thin layer of isotropic material is used it was shown that K12 = 0.

The loading on the crack faces is considered known and given by

t(x1, 0
+) = p+(x1), t(x1, 0

−) = p−(x1), for x1 < 0. (4.4)

The geometry considered is illustrated in Figure 4.1. The only restriction

imposed on p± is that they must be self-balanced; note in particular that this

allows for discontinuous and/or asymmetric loadings. The symmetric and

skew-symmetric parts of the loading are given by 〈p〉 and JpK respectively,

where the notation 〈f〉 and JfK respectively denote the average and jump of

the argument function.
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4.2 Application of existing weight functions

4.2.1 Weight functions and the Betti formula

In this section we introduce a method where integral identities for the physical

problem with an imperfect interface are found using existing weight functions

formulated in a perfect interface setting. Such weight functions can be found

in the paper of Morini et al. (2013b). It is important to note that such

weight functions play a role only as solutions to auxiliary problems and have

no immediate physical interpretation.

The weight function used is that previously introduced in Chapter 3 with

the crack occupying the positive x1 axis with square-root singular displace-

ment at the crack tip. The transmission conditions for the weight functions

for x1 < 0 are given as

Σ(x1, 0
+) = Σ(x1, 0

−), (4.5)

U(x1, 0
+) = U(x1, 0

−). (4.6)

Note in particular that condition (4.6) corresponds to a perfect interface

weight function problem in contrast to the imperfect interface problem being

physically considered.

It was shown in Morini et al. (2013b) that the following equations hold

for the Fourier transforms of the symmetric and skew-symmetric parts of the

weight function:

JŪK+(ξ) =
1

|ξ|
(isign(ξ)Im(H)− Re(H))〈Σ̄〉−(ξ); (4.7)

〈Ū〉(ξ) =
1

2|ξ|
(isign(ξ)Im(W)− Re(W))〈Σ̄〉−(ξ), (4.8)
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where H and W are defined in the same manner seen previously in the thesis.

We note here that for the work in this chapter the 3× 3 matrices for H and

W are required, as opposed to the 2× 2 matrices used in Chapter 3. This is

due to the Mode III fields also being analysed here.

The matrices H and W have the form

H =


H11 −iβ

√
H11H22 0

iβ
√
H11H22 H22 0

0 0 H33

 , (4.9)

W =


δ1H11 iγ

√
H11H22 0

−iγ
√
H11H22 δ2H22 0

0 0 δ3H33

 . (4.10)

The entries of these matrices can be expressed in terms of the components

of the material compliance tensors, S. Explicit expressions for H and W for

orthotropic bimaterials are given in Appendix 1.

The reciprocal identity introduced in Chapter 3 will once again be used

heavily in this chapter. In convolution form the Betti identity is written as

RJUK ∗ 〈t〉(+) −R〈Σ〉(−) ∗ JuK = −RJUK ∗ 〈p〉 −R〈U〉 ∗ JpK, (4.11)

where the convolutions are taken with respect to x1 and superscripts (±)

denote the restriction of the preceding function to the respective semi-x1-

axis. The rotational matrix R is now given as

R =


−1 0 0

0 1 0

0 0 −1

 .
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Applying Fourier transforms then gives

¯JUKTR ¯〈t〉+ − ( ¯〈Σ〉−)TR ¯JuK = − ¯JUKTR ¯〈p〉 − ¯〈U〉TR ¯JpK, (4.12)

which is the same as the result used in Chapter 3.

Note that the exact nature of the weight functions U and Σ used in

the derivation of equations (4.11) and (4.12) have not been specified at this

stage and therefore both are valid for a large class of weight functions. In

particular, this is what enables us to use perfect interface weight functions

for the imperfect interface physical setting. In the next section we show how

this method could have been used to simplify the derivation of previous work

in the field.

4.2.2 Verify method for isotropic materials

Here we show that the method discussed previously gives the same results for

an imperfect interface in an isotropic bimaterial as those obtained in Mishuris

et al. (2013). This is done to further illustrate that using the perfect interface

weight functions yields the correct results.

Antiplane (Mode III)

In Mishuris et al. (2013) it was shown that the following expression holds

relating the physical stresses and displacement with the physical loading on

the crack faces

〈t〉(+)(ξ)−F (ξ)JuK(−)(ξ) = −(1+κF (ξ)) ¯〈p〉(ξ)+
µ∗
2

(1+κF (ξ)) ¯JpK(ξ), (4.13)
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where t = t3 and u = u3. Explicit expressions for F (ξ) and µ∗ are given in

terms of the shear moduli of materials I and II, given by µ1 and µ2 respectively

F (ξ) = − |ξ|
κ|ξ|+ κξ0

, ξ0 =
µ1 + µ2

κµ1µ2

, µ∗ =
µ1 − µ2

µ1 + µ2

.

For the Mode III case, equation (4.12) becomes

¯JUK〈t〉(+) − 〈Σ〉(−) ¯JuK = − ¯JUK ¯〈p〉 − ¯〈U〉 ¯JpK. (4.14)

where U = U3 and Σ = Σ3. Inserting ¯JUK = JUK(+) + JUK(−) and ¯JuK =

JuK(+) + JuK(−) into this expression and using the transmission conditions,

JUK(−) = 0 and JuK(+) = κ〈̄t〉 yields the following expression

(JUK(+) − κ〈Σ〉(−))〈t〉(+) − 〈Σ〉(−) JuK(−) = − ¯JUK ¯〈p〉 − ¯〈U〉 ¯JpK. (4.15)

Dividing through by U (+) − κ〈Σ〉(−) gives

〈t〉(+) − F (ξ)JuK(−) = −G(ξ) ¯〈p〉 −H(ξ) ¯JpK, (4.16)

where

F (ξ) =
〈Σ〉(−)

JUK(+) − κ〈Σ〉(−)
, G(ξ) =

¯JUK
JUK(+) − κ〈Σ〉(−)

,

H(ξ) =
¯〈U〉

JUK(+) − κ〈Σ〉(−)
.

For isotropic materials, the weight functions with a perfect interface have the

following relationships (Piccolroaz and Mishuris, 2013):

JUK(+) = −µ1 + µ2

|ξ|µ1µ2

〈Σ〉(−) = −κξ0

|ξ|
〈Σ〉(−), ¯〈U〉 = −µ∗

2
JUK(+).

Inserting these expressions into (4.16), and noting that ¯JUK = JUK(+) when

a perfect interface is considered, the result shown in (4.13) is obtained.
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In-plane (Modes I and II)

For the in-plane components, it was shown in Mishuris et al. (2013) that the

following equation holds

〈t〉(+)(ξ)− F(ξ)
ξ

i
JuK(−)(ξ) = −G(ξ) ¯〈p〉(ξ)−H(ξ) ¯JpK(ξ), (4.17)

where only the in-plane components are considered, that is ¯〈t〉 = (t̄1, t̄2)T ,

¯JuK = ( ¯Ju1K, ¯Ju2K)T and p̄ = (p̄1, p̄2)T . Explicit expressions for F,G and H

were found to be

F(ξ) =
1

2
R−1 [|ξ|K∗ + bI− idsign(ξ)E]−T [bαI− ibγsign(ξ)E]T R, (4.18)

G(ξ) = −iR−1 [ξK∗bsign(ξ)I− idE]−T R, (4.19)

H(ξ) = R−1 [|ξ|K∗ + bI− idsign(ξ)E]−T [bI− idsign(ξ)E]T R. (4.20)

The matrices in these expressions are given by

R =

−1 0

0 1

 , I =

1 0

0 1

 , E =

 0 1

−1 0

 ,

K =

K11 K12

K12 K22

 , K∗ = RKTR =

 K11 −K12

−K12 K22

 .

The scalar constants in equations (4.18), (4.19) and (4.20) depend on the

materials considered and are given by

b =
1− ν1

µ1

+
1− ν2

µ2

, d =
1− 2ν1

2µ1

− 1− 2ν2

2µ2

,

α =
µ2(1− ν1)− µ1(1− ν2)

µ2(1− ν1) + µ1(1− ν2)
, γ =

µ2(1− 2ν1) + µ1(1− 2ν2)

2µ2(1− ν1) + 2µ1(1− ν2)
,

where νi is the Poisson’s ratio of the material.
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For the in-plane case, equation (4.12) becomes

¯JUKTR〈t〉(+) − 〈Σ〉(−)
T
R ¯JuK = − ¯JUKTR ¯〈p〉 − ¯〈U〉TR ¯JpK, (4.21)

where U and Σ are 2 × 2 matrices with each column representing the two

linearly independent, in-plane weight functions that are obtainable for elastic

bimaterials (Piccolroaz et al., 2009). Similar to the method described for

Mode III previously, ¯JUK and ¯JuK are both split into the sum of their ±

components. The transmission conditions JUK(−) = 0 and JuK(+) = K〈t̄〉−

are used to give the expression

(JUK(+)
T
R−〈Σ〉(−)

T
RK)〈t〉(+)−〈Σ〉(−)

T
RJuK(−) = − ¯JUKTR ¯〈p〉− ¯〈U〉TR ¯JpK.

(4.22)

For isotropic bimaterials, the in-plane weight functions where a perfect in-

terface is present have the form:

JUK(+)(ξ) = − 1

|ξ|
[bI− idsign(ξ)E]〈Σ〉(−), (4.23)

¯〈U〉(ξ) = − b

2|ξ|
[αI− iγsign(ξ)E]〈Σ〉(−). (4.24)

Inserting these into (4.22) yields the following equation(
− 1

|ξ|
[bI−idsign(ξ)E]TR−RK

)
〈t〉(+) −RJuK(−) =(

1

|ξ|
[bI− idsign(ξ)E]TR

)
¯〈p〉+

(
1

2|ξ|
[αI− iγsign(ξ)E]TR

)
¯JpK.

(4.25)

Rearranging and simplifying this equation yields (4.17). Once again we have

shown that using the perfect interface weight function yields the same re-

sults as imperfect interface ones obtained in Mishuris et al. (2013), therefore
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emphasising the validity of the method that has been developed in this chap-

ter. We now proceed to derive singular integral equations for an imperfect

interface in an anisotropic bimaterial.

4.3 Integral identities for Mode III

4.3.1 Derivation of integral identities

We now seek boundary integral equations relating the Mode III interfacial

traction and displacement jump over the crack in the anisotropic bimaterial.

This will utilise the Betti identity in order to relate the physical solution with

the perfect interface weight functions.

The equivalent results for isotropic materials have been reported previ-

ously in Section 4.2.2. However, equation (4.16) is derived by simple manip-

ulation of the weight functions and is a general expression. Therefore it can

also be used for anisotropic materials:

〈t〉(+) −

(
〈Σ〉(−)

JUK(+) − κ〈Σ〉(−)

)
JuK(−) =

−

(
¯JUK

JUK(+) − κ〈Σ〉(−)

)
¯〈p〉 −

(
¯〈U〉

JUK(+) − κ〈Σ〉(−)

)
¯JpK. (4.26)

From equations (4.7) and (4.8) the following relationships hold for the

Mode III components of the anisotropic weight functions:

¯JUK = JUK(+)(ξ) = −H33

|ξ|
〈Σ〉(−)(ξ); 〈Ū〉 = −δ3H33

2|ξ|
〈Σ〉(−)(ξ) =

δ3

2
JŪK(ξ);

(4.27)

when combined with equation (4.26) the following relationship is obtained:

〈t〉(+) − A(ξ)JuK(−) = −(1 + κA(ξ)) ¯〈p〉 − δ3

2
(1 + κA(ξ)) ¯JpK, (4.28)
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where

A(ξ) = − |ξ|
κ|ξ|+ κH33

, H33 =
H33

κ
.

Applying the inverse Fourier transform to equation (4.28) for the two

cases, x1 < 0 and x1 > 0, the following relationships are obtained:

F−1
x1<0

[
A(ξ)JuK(−)

]
= F−1

x1<0

[
(1 + κA(ξ)) ¯〈p〉

]
+
δ3

2
F−1
x1<0

[
(1 + κA(ξ)) ¯JpK

]
;

(4.29)

〈t〉(+)(x1) = F−1
x1>0

[
A(ξ)JuK(−)

]
−F−1

x1>0

[
(1 + κA(ξ)) ¯〈p〉

]
− δ3

2
F−1
x1>0

[
(1 + κA(ξ)) ¯JpK

]
.

(4.30)

To calculate these inversions the following relationships are used:

F−1
[
A(ξ)f̄(ξ)

]
=

1

πκ
(SH33 ∗ f ′) (x1); (4.31)

F−1
[
(1 + κA(ξ))f̄(ξ)

]
= −H33

π
(TH33 ∗ f) (x1), (4.32)

where

SH33(x1) = sign(x1)si(H33|x1|) cos(H33|x1|)−sign(x1)ci(H33|x1|) sin(H33|x1|),

(4.33)

TH33(x1) = si(H33|x1|) sin(H33|x1|)− ci(H33|x1|) cos(H33|x1|), (4.34)

and si and ci are the sine and cosine integral functions respectively, given by

si(x1) = −
∫ ∞
x1

sin t

t
dt, ci(x1) = −

∫ ∞
x1

cos t

t
dt. (4.35)

These functions have the same properties as their counterparts from the

isotropic case considered by Mishuris et al. (2013), but with different con-

stants. In particular, the function SH33(x1) behaves as

SH33(x1) = −π
2

sign(x1) +O(|x1|), x1 → 0, (4.36)

83



SH33(x1) = −sign(x1)

H33|x1|
+O

(
1

|x1|3

)
, x1 → ±∞, (4.37)

while TH33(x1) has behaviour of the form

TH33(x1) = ln(H33|x1|) +O(1), x1 → 0, (4.38)

TH33(x1) = − 1

H2
33|x1|2

+O

(
1

|x1|3

)
, x1 → ±∞. (4.39)

We introduce convolution operators SH33 and TH33 , as well as projection

operators P±:

SH33ϕ(x1) = (SH33 ∗ ϕ)(x1), TH33ϕ(x1) = (TH33 ∗ ϕ)(x1), (4.40)

P±ϕ(x1) =


ϕ(x1) ± x1 ≥ 0,

0 otherwise,

(4.41)

in order to rewrite the identities (4.29) and (4.30) as

1

πκ
S(s)
H33

∂JuK(−)

∂x1

− 1

πκ
JuK(−)(0−)SH33(x1) =

− H33

π
T (s)
H33
〈p〉(x1)− δ3H33

2π
T (s)
H33

JpK(x1), x1 < 0,

(4.42)

〈t〉(+)(x1) =
1

πκ
S(c)
H33

∂JuK(−)

∂x1

− 1

πκ
JuK(−)(0−)SH33(x1)

+
H33

π
T (c)
H33
〈p〉(x1) +

δ3H33

2π
T (c)
H33

JpK(x1), x1 > 0,

(4.43)

where

S(s)
H33

= P−SH33P−, T (s)
H33

= P−TH33P−, (4.44)
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are singular operators and

S(c)
H33

= P+SH33P−, T (c)
H33

= P+TH33P−, (4.45)

are compact. The second term on the left hand side of (4.42) and right hand

side of (4.43) appear as a result of the discontinuity of the derivative of JuK(−)

at x1 = 0.

4.3.2 Alternative integral identities

The integral identities (4.42) and (4.43) can be formulated in alternative

ways, which depending upon the specific problem parameters and loadings,

can aid the ease with which computations may be performed. Combining

equations (4.31), (4.32) and (4.40) yields the auxiliary relationship

−H33

π
TH33ϕ = Iϕ+

1

π
SH33ϕ

′. (4.46)

Using this relationship, equations (4.42) and (4.43) can be rewritten as fol-

lows:

−H33

πκ
T (s)
H33

JuK(−)−1

κ
JuK(−) =

1

π
S(s)
H33

∂〈p〉
∂x1

− 1

π
〈p〉(0−)SH33 + 〈p〉

+
δ3

2π
S(s)
H33

∂JpK
∂x1

− δ3

2π
JpK(0−)SH33 +

δ3

2
JpK, x1 < 0;

(4.47)

〈t〉(+) = −H33

πκ
T (c)
H33

JuK(−) − 1

π
S(c)
H33

∂〈p〉
∂x1

+
1

π
〈p〉(0−)SH33 + 〈p〉

− δ3

2π
S(c)
H33

∂JpK
∂x1

+
δ3

2π
JpK(0−)SH33 , x1 > 0.

(4.48)
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It is also possible to write these equations using only the operator TH33 :

−H33

πκ
T (s)
H33

JuK(−)−1

κ
JuK(−) = −H33

π
T (s)
H33
〈p〉−δ3H33

2π
T (s)
H33

JpK, x1 < 0; (4.49)

〈t〉(+) = −H33

πκ
T (c)
H33

JuK(−) +
H33

π
T (c)
H33
〈p〉+

δ3H33

2π
T (c)
H33

JpK, x1 > 0, (4.50)

or solely the operator SH33 :

1

πκ
S(s)
H33

∂JuK(−)

∂x1

− 1

πκ
JuK(−)(0−)SH33 =

1

π
S(s)
H33

∂〈p〉
∂x1

− 1

π
〈p〉(0−)SH33 + 〈p〉+

δ3

2π
S(s)
H33

∂JpK
∂x1

− δ3

2π
JpK(0−)SH33 +

δ3

2
JpK, x1 < 0;

(4.51)

〈t〉(+) =
1

πκ
S(c)
H33

∂JuK(−)

∂x1

− 1

πκ
JuK(−)(0−)SH33 −

1

π
S(c)
H33

∂〈p〉
∂x1

+
1

π
〈p〉(0−)SH33 + 〈p〉 − δ3

2π
S(c)
H33

∂JpK
∂x1

+
δ3

2π
JpK(0−)SH33 , x1 > 0.

(4.52)

Each of the four formulations have advantages for numerical computations

depending on the mechanical parameters of the problem and which quan-

tities are known or unknown. The merits of alternative formulations for

the analogous isotropic case have been discussed in detail in Mishuris et al.

(2013).

4.3.3 Numerical results

Results from singular integral equations

In this section, the integral identities found previously will be used to calcu-

late the jump in displacement over the crack and imperfect interface between
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two orthotropic materials. Results for finite element simulations using COM-

SOL will also be presented and compared to the results using the integral

identity approach derived previously.

We will present results for the displacement jump JuK. Note for the Mode

III case that for x1 > 0, the interfacial tractions and displacement jump

JuK are straightforwardly related via the imperfect interface transmission

conditions (4.2). In particular for the Mode III displacement jump, the

relationship is as follows:

JuK(x1) = κ〈t〉(x1), x1 > 0. (4.53)

Here, we only consider tractions along the crack/interface line; discussions

of full radial asymptotics (for stress and displacement) and their relationship

to the displacement jump can be found in Lenci (2001); Mishuris (2001);

Antipov et al. (2001); Vellender et al. (2013), among others.

For orthotropic materials, the material parameters H33 and δ3 are given in

terms of the components of the material compliance tensor, S, in Appendix

1. It is possible to express S44 and S55 in terms of the shear moduli, µij of

the material:

S44 =
1

µ23

, S55 =
1

µ13

. (4.54)

In our computations, the same orthotropic material will be used as ma-

terial I and II. However, the axes corresponding to each axis of symmetry

of the material in the lower half-plane is altered. The parameters used for

the computations presented are shown in Table 4.1. The values of µ12 are

given in Table 4.1 to illustrate that the materials considered are the same

but differently oriented. Henceforth, the material above the crack (I) will be

material A from Table 4.1.
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Orientation µ23 µ13 µ12

A 1 2/3 1/2

B 1 1/2 2/3

C 1/2 2/3 1

Table 4.1: Material properties

We first consider a symmetric distribution of loadings given by

JpK(x1) = 0, 〈p〉(x1) = −F
l
e
x1
l . (4.55)

Figure 4.2 plots the normalised displacement jump along the x1-axis induced

by the above loading for the three possible orientations for material II for

two different degrees of interface imperfection which have been computed by

numerically solving the integral equations (4.49) and (4.50) using an iterative

scheme in Mathematica. The normalised displacement jump is denoted Ju∗K

and defined by

Ju∗K =
1

F
[√
S44S55

]
I

JuK. (4.56)

A normalised traction, t∗, is also used in the calculations and is related to

the normalised displacement jump by the relationship Ju∗K = κ∗t∗, where

t∗ =
l

F
t, κ∗ =

1

l
[√
S44S55

]
I

κ. (4.57)

Figure 4.2 shows that a higher value of κ gives a higher jump in displace-

ment across the crack and interface for all orientations of the material II;

this result is expected as a larger κ refers to a less stiff interface. It is also

seen that for the same value of κ, the orientation of the anisotropy has a

88



-8 -6 -4 -2 0 2 4 6 8

x1

l

0.5

1

1.5

2

2.5

3
Pu*T

Κ=5, Orientation C

Κ=5, Orientation B

Κ=5, Orientation A

Κ=20, Orientation C

Κ=20, Orientation B

Κ=20, Orientation A

Figure 4.2: Graph of normalised displacement jump over the crack and interface induced

by loading (4.55).

diminishing effect along the interface (x1 > 0) as the distance from the crack

tip is increased.

The difference in orientation of material II has a clear effect on the jumps

in displacement shown in Figure 4.2, with the same behaviour observed for

both values of κ studied here. The highest jump in both cases is seen for

orientation C in the lower half-plane. This is due to the lower shear moduli

contributing to the Mode III fields in this case. Orientation A leads to the

smallest displacement jump; this is due to the higher shear moduli in the

out-of-plane direction.

In order to demonstrate that the method is applicable for asymmetric

as well as symmetric loadings, we present in Figure 4.3 a similar plot, but

instead using asymmetric loadings of the form

p+(x1) = −F
l
ex1/l, p−(x1) =

F

l2
x1e

x1/l. (4.58)
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Figure 4.3: Displacement jump for asymmetric loading.

The results once again show that higher values of κ lead to a higher

displacement jump. Asymmetry also varies the point of highest displacement

jump for different orientations whereas this was seen to be at the same point

for symmetric loading regardless of the extent of interface imperfection and

material orientation.

Finite element results

We now compare results from finite element simulations performed in COM-

SOL for a crack along an imperfect interface with computations from the

integral equations. When using COMSOL it is not possible to directly im-

plement the transmission conditions (4.1) and (4.2) across the interface. In-

stead, a very thin layer of a softer material is used for the interface and

the properties of that material are varied to obtain the desired value for κ

(see for instance Antipov et al. (2001)). Also, it is not possible to realise
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an infinite geometry in COMSOL and therefore a very large, finite geome-

try is used as an approximation. These issues with the finite element model

demonstrate the advantage of the boundary integral formulation, since the

issues of the very fine meshing required in the interface layer and the large

geometries of the main material bodies are respectively replaced by imper-

fect interface transmission conditions and the lower dimensional nature of

the boundary problem. We present results comparing the two approaches in

a case where the soft interface layer is not too thin in order to demonstrate

the comparability of the two approaches.

An example colour map of the Mode III displacement from COMSOL is

shown in Figure 4.4, using material orientation A for both main material

bodies and an interface layer corresponding to κ = 20.

Using COMSOL, values for the displacement jump over the crack and

interface have been extracted for a number of points near the crack tip for

two of the examples shown in Figure 4.2. The results of these comparisons

are shown in Figure 4.5 and Table 4.2. Figure 4.5 shows good agreement

Material -5 -4 -3 -2 -1 0 1 2 3 4 5

A, κ = 5 2.30 1.81 1.07 0.61 0.20 0.06 0.18 0.70 3.41 2.77 4.66

C, κ = 20 0.53 0.62 0.84 0.87 1.13 0.55 1.80 2.75 3.81 5.19 6.70

Table 4.2: Percentage difference between Mathematica and COMSOL.

between the results from the singular integral equations and those obtained

from finite element methods. The difference in results is smallest at the crack

tip but more error can be seen at a further distance along both the crack and

interface, which is emphasised by the larger percentage errors shown in Table
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Figure 4.4: Finite element computations of displacement jump, using a thin densely-

meshed soft layer in place of the imperfect interface.

4.2. This is likely caused by the finite geometry that was used in COMSOL

which leads to an influence caused by the outer boundaries.

4.4 Integral identities for Mode I and II

4.4.1 Derivation of integral identities

Heretofore, we have derived integral identities for the Mode III regime only.

This section seeks to find boundary integral equations relating the Mode I and

II interfacial traction and displacement jump over the crack in an imperfectly

bound anisotropic bimaterial. For the Mode I and II components we remind
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Figure 4.5: Graph of the comparison between displacement jumps from Mathematica

and COMSOL. The lines show the results of computations from the integral equations

while finite element computations are represented by dots.

ourselves of equation (4.12):

¯JUKTR〈t〉(+) − 〈Σ〉(−)
T
R ¯JuK = − ¯JUKTR ¯〈p〉 − ¯〈U〉TR ¯JpK. (4.59)

The matrices and vectors shown here contain only the Mode I and II com-

ponents from (4.12). Ū and Σ̄ are once again 2 × 2 matrices consisting of

two linearly independent weight functions (Piccolroaz et al., 2009).

Splitting ¯JUK into the sum of JUK(±) and ¯JuK into JuK(±), where (as pre-

viously) superscripts (±) denote the restriction of the preceding function to

the respective semi-x1-axis, gives

JUK(+)
T
R〈t〉(+) + JUK(−)

T
R〈t〉(+)−〈Σ〉(−)

T
RJuK(+) − 〈Σ〉(−)

T
RJuK(−)

= − ¯JUKTR ¯〈p〉 − ¯〈U〉TR ¯JpK. (4.60)

Applying the transmission conditions, JUK(−) = 0 and JuK(+) = K〈t〉(+),
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along with equations (4.7) and (4.8) gives the following expression:

〈t〉(+) −B(ξ)
ξ

i
JuK(−) = −C(ξ) ¯〈p〉 −A(ξ) ¯JpK, (4.61)

where

A(ξ) =
1

2
R−1(|ξ|K∗ + RH − isign(ξ)IH)−T (RW − isign(ξ)IW)TR,

B(ξ) = −iR−1(ξK∗ + sign(ξ)RH − iIH)−TR,

C(ξ) = R−1(|ξ|K∗ + RH − isign(ξ)IH)−T (RH − isign(ξ)IH)TR.

Here, RH = Re(H), RW = Re(W), IH = Im(H), IW = Im(W) and K∗ =

RKR.

Matrices A(ξ), B(ξ) and C(ξ) have the following form

A(ξ) =
1

2D

A11 A12

A21 A22

 , B(ξ) =
1

D

B11 B12

B21 B22

 , C(ξ) =
1

D

C11 C12

C21 C22


(4.62)

where the denominator D is defined as

D = d0 + d1|ξ|+ d2|ξ|2, (4.63)

d0 = H11H22(1− β2), d1 = K11H22 +K22H11, d2 = K11K22 −K2
12,

and the elements Aij, Bij, Cij are given by

A11 = H11H22(δ1 + βγ) + |ξ|(δ1H11K22 − iγK12

√
H11H22 sign(ξ)),

A12 = −i sign(ξ)H22

√
H11H22(γ+βδ2)−|ξ|(iγK22

√
H11H22 sign(ξ)+δ2H22K12),

A21 = i sign(ξ)H11

√
H11H22(δ1β+γ)−|ξ|(δ1H11K12−iγK11

√
H11H22 sign(ξ)),

A22 = H11H22(βγ + δ2) + |ξ|(δ2H22K11 + iγK12

√
H11H22 sign(ξ)),
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B11 = −i(ξK22 +H22 sign(ξ)), B12 = iξK12 − β
√
H11H22,

B21 = iξK12 + β
√
H11H22, B22 = −i(ξK11 +H11 sign(ξ)),

C11 = H11H22(1− β2) + |ξ|(H11K22 + iβK12

√
H11H22 sign(ξ)),

C12 = −|ξ|(H22K12 − iβ sign(ξ)K22

√
H11H22),

C21 = −|ξ|(H11K12 + iβ sign(ξ)K11

√
H11H22),

C22 = H11H22(1− β2) + |ξ|(H22K11 − iβK12

√
H11H22 sign(ξ)).

Applying the inverse Fourier transform to equation (4.61) for the two

cases, x1 < 0 and x1 > 0, the following relationships are obtained:

F−1
x1<0

[
B(ξ)

ξ

i
JuK(−)

]
= F−1

x1<0

[
C(ξ) ¯〈p〉

]
+ F−1

x1<0

[
A(ξ) ¯JpK

]
; (4.64)

〈t〉(x1) = F−1
x1>0

[
B(ξ)

ξ

i
JuK(−)

]
−F−1

x1>0

[
C(ξ) ¯〈p〉

]
−F−1

x1>0

[
A(ξ) ¯JpK

]
. (4.65)

The inverse Fourier transforms of the matrices A(ξ), B(ξ) and C(ξ) are

derived in Appendix 2. The singular integral equations obtained for the

in-plane fields are thus

B(s)∂JuK(−)

∂x1

+
1

πd2(ξ2 − ξ1)

2∑
j=1

B
(j)
R Tξj(x1)JuK(−)(0−)

+
1

πd2(ξ2 − ξ1)

2∑
j=1

B
(j)
I Sξj(x1)JuK(−)(0−) = C(s)〈p〉(x1) + A(s)JpK(x1),

(4.66)
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for x1 < 0, and

〈t〉(x1) = B(c)∂JuK(−)

∂x1

+
1

πd2(ξ2 − ξ1)

2∑
j=1

B
(j)
R Tξj(x1)JuK(−)(0−)

+
1

πd2(ξ2 − ξ1)

2∑
j=1

B
(j)
I Sξj(x1)JuK(−)(0−)− C(c)〈p〉(x1)−A(c)JpK(x1),

(4.67)

for x1 > 0. The operators used in equations (4.66) and (4.67) are given by

A(s,c) = − 1

2πd2(ξ2 − ξ1)

{
2∑
j=1

A
(j)
R T

(s,c)
ξj

(x1) +
2∑
j=1

A
(j)
I S

(s,c)
ξj

(x1)

}
, (4.68)

B(s,c) = − 1

πd2(ξ2 − ξ1)

{
2∑
j=1

B
(j)
R T

(s,c)
ξj

(x1) +
2∑
j=1

B
(j)
I S

(s,c)
ξj

(x1)

}
, (4.69)

C(s,c) = − 1

πd2(ξ2 − ξ1)

{
2∑
j=1

C
(j)
R T

(s,c)
ξj

(x1) +
2∑
j=1

C
(j)
I S

(s,c)
ξj

(x1)

}
. (4.70)

Further details on these operators, including their derivation, can be found

in Appendix 2.

4.4.2 Numerical examples

In this section we present an illustrative example of applying the derived

integral equations (4.66) and (4.67) to find the in-plane tractions and dis-

placement jump when an asymmetrical, Mode I loading is applied to the crack

faces. For the purpose of these calculations, incompressible orthotropic ma-

terials will be used. It was shown by Itskov and Aksel (2002) that for such

materials only four parameters are required to express the components of S,

which are related to the matrices H and W (as seen in Appendix 1). The

96



components are

S11 =
1

E1

, S22 =
1

E2

, S66 =
1

µ12

,

S12 =
1

2

(
1

E3

− 1

E1

− 1

E2

)
, (4.71)

where Ei are the Young’s moduli of the material in question. The materials

considered here will have the properties shown in Table 4.3.

Material E1 E2 E3 µ12

I 20 10 10 5

II 20 10 15 5

Table 4.3: Material parameters.

We present computations resulting from an applied asymmetric crack face

loading of the form

p+(x1) =

 0

−F
l
ex1/l

 , p−(x1) =

 0

F
l2
x1e

x1/l

 , (4.72)

with F = 1 and l = 1; the interfacial imperfection parameters are K11 = 10,

K12 = 2, K22 = 3. The interfacial tractions are shown in Figure 4.6, along

with the displacement jump in the x1 and x2 directions. Note that since the

crack face loadings were applied in the x2-direction, the displacement jump

across the crack and interface, as well as the interfacial traction, is domi-

nant in that direction. Note in particular that the presence of the imperfect

interface causes components of stress to remain bounded at the crack tip

along the interface/crack line, in contrast to the analogous perfect interface

problem.
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Figure 4.6: In-plane displacement jump across the crack and interface line (left), and

interfacial stresses for x1 > 0 (right).

4.5 Conclusions

Singular integral equations have been derived which relate the loading on

crack faces to the consequent crack opening displacement and interfacial

tractions for a semi-infinite crack situated along a soft anisotropic imperfect

interface for an anisotropic bimaterial. The derivation made efficient use of

perfect interface weight functions applied to an imperfect interface physi-

cal problem; this did not require derivation of new weight functions. As in

the previously studied analogous isotropic problem, the imperfect interface’s

presence causes a logarithmic singularity in the kernel of the integral oper-

ator. Alternative formulations have been presented for the Mode III case

and used to perform computations for orthotropic materials, which display a

good degree of accuracy when compared against finite element simulations.

Examples were given for both symmetric and asymmetric loadings to illus-

trate the benefits of the equations here as a number of previous results in the

literature have restricted the loading to be symmetric which is not always
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possible. For the in-plane problem equations have been solved numerically

for an asymmetric loading configuration and the results obtained exhibit the

known properties of displacements and tractions when an imperfect interface

is present.
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Chapter 5

Weight functions and singular

integral equations for a

piezoelectric bimaterial

containing a perfect interface

This final chapter of original work sees the incorporation of piezoelectric

materials into the bimaterial structure. A static semi-infinite crack along a

perfect interface in a piezoelectric bimaterial is considered. When analysing

such a problem the fields for Modes I, II and III are considered along with the

electrical effects (often referred to as Mode IV). The purpose of the work seen

here is to extend the weight function of Willis and Movchan (1995) to the

piezoelectric setting. Once this has been done we then proceed to formulate

singular integral equations relating physical and electrostatic loadings applied

on the crack faces to the interfacial fields.
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The problem of a static semi-infinite interfacial crack between dissimilar

anisotropic piezoelectric materials under symmetric loading conditions has

been studied in Suo et al. (1992) using an approach based on the Stroh for-

malism (Stroh, 1962) and Riemann-Hilbert formulation. As an alternative

to this method, singular integral formulations for two-dimensional interfa-

cial crack problems in piezoelectric bimaterials have been derived by means

of approaches based on Green’s function method (Gao and Wang, 2001).

Although Green’s functions for several crack problems in piezoelectric bima-

terials have been derived (Pan, 2003; Pan and Yuan, 2000), their utilisation

in evaluating physical displacements and stress fields on the crack faces re-

quires challenging numerical estimation of integrals for which convergence

should be asserted carefully. Moreover, both the complex variable formu-

lation proposed by Suo et al. (1992) and the approaches based on Green’s

function method work when the tractions applied on the discontinuity sur-

face are symmetric, but not in the case of asymmetric loading acting on the

crack faces. The aim of the work seen in this chapter is to enable the incorpo-

ration of asymmetric loading to the problem whilst also introducing singular

integral equations which avoid the use of Green’s functions and the resulting

challenging computations.

The remainder of the chapter is structured as follows: in Chapter 5.1 we

introduce the mathematical model used for the remainder of the chapter and

also recall the Riemann-Hilbert problem and the resulting eigenvalue prob-

lem which will be used extensively when deriving the weight functions for

piezoelectric bimaterials. We then proceed to introduce the general form of

the Willis and Movchan (1995) weight function for piezoelectric bimaterials
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and the extension of the Betti identity to the piezoelectric setting in Chapter

5.2. Chapter 5.3 sees the beginning of the new content and from this stage

onwards two specific examples of transversely isotropic piezoelectric bima-

terials will be used to see the effect of poling direction on the bimaterial.

Only the fields affected by the piezoelectric effect will be analysed in de-

tail as the non-affected fields will behave identically to how they would in an

anisotropic bimaterial. Chapter 5.3 sees the derivation of explicit expressions

for the symmetric and skew-symmetric parts of the weight function before we

proceed to formulate our singular integral equations in Chapter 5.4. Finally,

in Chapter 5.5 we show some examples of how the derived equations can

be used for a number of mechanical and electrical loading configurations on

the crack faces. We also show a comparison with results for the analogous

problem in COMSOL.

5.1 Problem formulation

In this section we introduce the mathematical model used for the remainder of

the chapter. We consider a semi-infinite crack lying along a perfect interface

between two dissimilar piezoelectric half-planes, referred to as materials I

and II. The crack occupies the region {x1 < 0, x2 = 0}, as illustrated in

Figure 5.1. The perfect interface conditions in a piezoelectric bimaterial

are continuity of displacement, traction, electric potential and the electric

displacement. The loading along the crack faces, for x1 < 0, is known and

given by the functions

p±j (x1) = σ2j(x1, 0
±), for j = 1, 2, 3, p±4 (x1) = D2(x1, 0

±), (5.1)
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where σij andDi represent tractions and electrical displacements respectively.

x2

x1

CI , ωI , eI

CII , ωII , eII

crack

interface

E+
2

E+
1

p+
2

p+
1

p+
3

E−2

E−1

p−2

p−1

p−3

Figure 5.1: A semi-infinite crack along an interface between two dissimilar

piezoelectric materials subject to the state of generalised plane strain and

short circuit (ε±3 = E±3 = 0)

As reported in Chapter 2 the eigenvalue which is used in the derivation

of extended traction and displacement fields in piezoelectric materials takes

the form (Suo et al., 1992):

[Q + µ(R + RT ) + µ2T]A = 0, (5.2)

where the material matrices take the form:

Q =


C11 C16 C15 e11

C16 C66 C56 e16

C15 C56 C55 e15

e11 e16 e15 −ω11


, R =


C16 C12 C14 e16

C66 C26 C46 e12

C56 C25 C45 e14

e21 e26 e25 −ω12


,

103



T =


C66 C26 C46 e26

C26 C22 C24 e22

C46 C24 C44 e24

e26 e22 e24 −ω22


.

where C, ω and e are components of the stiffness, permittivity and piezoelec-

tric tensors respectively.

Solving the eigenvalue problem (5.2) enables the evaluation of the ma-

terial matrix B, introduced in Chapter 2. We also remind ourselves of the

bimaterial matrices H and W which are used throughout the remainder of

the chapter:

H = BI + B?
II , W = BI −B?

II . (5.3)

It was found in Suo et al. (1992) that the solution to the bimaterial inter-

facial crack problem is governed by the following Riemann-Hilbert problem

along the negative x1- axis:

h+(x1) + (H?)−1Hh−(x1) = 0, −∞ < x1 < 0. (5.4)

A solution was found in the form h(z) = wz−
1
2

+iε with the branch cut situ-

ated along the negative real axis. Inserting this solution into equation (5.4)

yielded the eigenvalue problem

H?w = e2πεHw. (5.5)

The four sets of eigenvectors and eigenvalues are:

(ε,w), (−ε,w?), (−iκ,w3), (iκ,w4). (5.6)

From here Suo et al. (1992) then proceeded to find expressions for the

extended interfacial traction, t = (σ2i, D2)T , and displacement jump, JuK =
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(JuiK, JφK)T along with an expression for the energy release rate at the crack

tip. Further details on this have previously been reported in Chapter 2.2.2.

5.2 Weight functions and Betti’s reciprocal

identity for piezoelectric bimaterials

In this section we show the extension of some of the results used previously

in the thesis to the piezoelectric setting. We begin by showing how the

weight function of Willis and Movchan (1995) is extended to a piezoelectric

bimaterial. We then show the work of Hadjesfandiari (2013) which extended

the Betti identity to incorporate the extended tractions and displacements

introduced by Suo et al. (1992).

5.2.1 Weight functions

The weight function for piezoelectric materials is given by the extended sin-

gular displacement field, U incorporating both displacement and electric po-

tential, corresponding to a homogeneous, traction-free problem similar to

Fig. 5.1 with the crack occupying the region x1 > 0 and the perfect interface

lying along the region x1 < 0. The symmetric and skew-symmetric parts of

the weight function across the plane x2 = 0 are given by

JUK(x1) = U(x1, 0
+)−U(x1, 0

−), (5.7)

〈U〉(x1) =
1

2

[
U(x1, 0

+) + U(x1, 0
−)
]
. (5.8)

To satisfy the perfect interface conditions it is clear that JUK = 0 for x1 < 0.
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The extended traction field corresponding to the extended displacement

U, is denoted Σ. The following Riemann-Hilbert problem is found along the

positive portion of the x1-axis

h+(x1) + (H?)−1Hh−(x) = 0, 0 < x1 <∞. (5.9)

A solution for h(z) is now sought in the form h = vz−
3
2

+iε. The branch cut

of h is situated along the positive part of the x1-axis. Inserting this solution

into (5.9) yields the following eigenvalue problem

H?v = e−2πεHv. (5.10)

It is immediately clear by considering the solutions of equation (5.5) (given

in (5.6)) that v = w?, v3 = w4 and v4 = w3.

Along the negative part of the real axis Σ is given by

h+(x1) + (H?)−1Hh−(x) = Σ(x1), −∞ < x1 < 0. (5.11)

Therefore the extended traction vector corresponding to the weight function

U is given by

Σ(x1) =

(−x1)−3/2

2
√

2π

[
C(−x1)iεw? + C?(−x1)−iεw + C3(−x1)−κw3 + C4(−x1)κw4

]
,

(5.12)

where C = C1 + iC2, C3 and C4 are constants defined in the same manner

as the stress and electric intensity factors for the physical problem.

For anisotropic materials it was shown in Morini et al. (2013b) that the

Fourier transforms of the symmetric and skew-symmetric parts of the weight

functions are related to Σ̄ in the following manner

JŪK+(ξ) =
1

|ξ|
(isign(ξ)Im(H)− Re(H))Σ̄−(ξ), (5.13)
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〈Ū〉(ξ) =
1

2|ξ|
(isign(ξ)Im(W)− Re(W))Σ̄−(ξ), (5.14)

As the method used in Morini et al. (2013b) was for general matrices H

and W, it can be deduced that these results also hold for the extended weight

functions in piezoelectric bimaterials by following the same procedure.

5.2.2 The generalised Betti formula

We now consider the Betti identity in the context of a semi-infinite crack

in a piezoelectric bimaterial. The Betti formula is used to form a relation-

ship between the physical fields and the weight function introduced in the

previous part of the paper. Originally used to relate the displacement and

traction fields (Willis and Movchan, 1995; Piccolroaz et al., 2007) the ap-

proach was extended to the piezoelectric setting (with electric potential and

electric displacement) by Hadjesfandiari (2013) and is reported here.

Two sets of stresses, strains, electric fields and electrical displacements

acting on the same physical space are assumed and denoted by the super-

scripts (1) and (2), respectively. The energy based equations relating these

fields are (Hadjesfandiari, 2013):

σ
(1)
ij ε

(2)
ij −D

(1)
j E

(2)
j = σ

(2)
ij ε

(1)
ij −D

(2)
j E

(1)
j . (5.15)

Taking the integral of (5.15) over a volume, V , yields:∫
V

[
(σ

(1)
ij u

(2)
i ),j + (D

(1)
j φ(2)),j

]
dV =

∫
V

[
(σ

(2)
ij u

(1)
i ),j + (D

(2)
j φ(1)),j

]
dV,

(5.16)

where the following definitions of strain and electric fields have been used:

εij =
1

2
(ui,j + uj,i), Ei = −φ,i. (5.17)
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Making use of the Divergence Theorem and then rearranging gives∫
S

[
σ

(1)
ji nju

(2)
i +D

(1)
j njφ

(2) − σ(2)
ji nju

(1)
i −D

(2)
j njφ

(1)
]

dS = 0, (5.18)

where S is the boundary of the volume V .

Taking V to be a hemisphere in the upper half-plane, with flat edge along

the x2−plane, in equation (5.18), leads to the following equation:∫
x2=0+

[
σ

(1)
2i u

(2)
i +D

(1)
2 φ(2) − σ(2)

2i u
(1)
i −D

(2)
2 φ(1)

]
dx1 = 0, (5.19)

which can written in terms of the extended displacement and traction vectors

used for piezoelectric materials∫
x2=0+

[
t(1) · u(2) − t(2) · u(1)

]
dx1. (5.20)

Taking (5.21) u(1) and t(1) as the physical fields, u(2) = RU and t(2) =

RΣ gives:∫
x2=0+

[
RU(x′1 − x1, 0

+) · t(x1, 0
+)−RΣ(x′1 − x1, 0

+) · u(x1, 0
+)
]

dx1 = 0,

(5.21)

where R is given by

R =


−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


.

The equivalent equation for a semi-circular domain in the lower half-plane

gives∫
x2=0−

[
RU(x′1 − x1, 0

−) · t(x1, 0
−)−RΣ(x′1 − x1, 0

−) · u(x1, 0
−)
]

dx1 = 0.

(5.22)
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Subtracting equation (5.22) from (5.21) yields the following relationship

RJUK ∗ t(+) −RΣ(−) ∗ JuK = −RJUK ∗ 〈p〉 −R〈U〉 ∗ JpK, (5.23)

where ∗ represents the convolution with respect to x1 and (±) is used to

represent the restriction of a function to the positive or negative portion of

the x1-axis respectively. It can be easily deduced that in equation (5.23) the

contribution to the generalised traction vector defined on the negative semi-

axis x1 < 0 is given by the loading functions t(−) = (σ
(−)
21 , σ

(−)
22 , σ

(−)
23 , D

(−)
2 )T =

(p1, p2, p3, p4)T = p, and the symmetrical and skew-symmetrical part of the

load, respectively 〈p〉 and JpK, are defined in the usual manner.

Applying the Fourier transform to (5.23) gives the following relationship

JŪKTRt̄+ − (Σ̄−)TRJūK = −JŪKTR〈p̄〉 − 〈Ū〉TRJp̄K, (5.24)

which will be used in Section 5.4 when our singular integral equations are

derived.

In the next sections, explicit expressions for the weight function matri-

ces (5.13) and (5.14) are derived and used together with the the generalised

Betti identity (5.24) for formulating the considered interface crack problem

in terms of singular integral equations. Since the bimaterial matrices H and

W involved in the weight functions (5.13) and (5.14) depend on the surface

admittance tensors of both piezoelectric half-planes , in order to derive ex-

plicit expressions for these matrices the solution of the Stroh’s eigenvalue

problem (5.2) is needed. In the general fully anisotropic case, this eigenvalue

problem must be solved numerically. Nevertheless, exact algebraic expres-

sions of Stroh’s eigenvalues and eigenvectors have been obtained for the class

of transversely isotropic piezoelectric materials in Suo et al. (1992) and Hwu
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(2008), with the latter making use of the extended Lekhnitskii formalism

given in Chapter 2.2.3. This class of materials has practical significance,

because many poled ceramics that are actually in use fall into this category.

5.3 Weight functions

For the remainder of the chapter piezoelectric materials occupying both lower

and upper half-planes in Figure 5.1 are assumed to be transversely isotropic.

In this section, using eigenvalue matrices and surface admittance tensors,

explicit weight functions are derived for the cases where poling directions of

both materials are parallel to the x2 and x3 axes respectively.

5.3.1 Poling direction parallel to the x2−axis

Poling direction directed along the x2−axis is assumed for both upper and

lower piezoelectric half-planes. Considering the geometry of the model shown

in Figure 5.1, it is easy to observe that in this case the poling direction is

perpendicular to the crack plane.

When considering transverse isotropic materials with poling direction par-

allel to the x2-axis the stiffness tensor, C, simplifies to

C =



C11 C12 C13 0 0 0

C12 C22 C12 0 0 0

C13 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 (C11 − C13)/2 0

0 0 0 0 0 C44


,
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and the permittivity and piezoelectric tensors simplify to

ω =


ω11 0 0

0 ω22 0

0 0 ω11

 , e =


0 0 0 0 0 e16

e21 e22 e21 0 0 0

0 0 0 e16 0 0

 .

This is the same system as used in Hwu (2008). Using these conditions the

matrices from equation (5.2) reduce to

Q =


C11 0 0 0

0 C44 0 e16

0 0 (C11 − C13)/2 0

0 e16 0 −ω11


, R =


0 C12 0 e21

C44 0 0 0

0 0 0 0

e16 0 0 0


,

T =


C44 0 0 0

0 C22 0 e22

0 0 C44 0

0 e22 0 −ω22


.

Under these conditions the Mode III component of the solution decouple

from Modes I and II and the piezoelectric effect (Ou and Wu, 2003; Hwu,

2008). This means that the antiplane tractions and displacement have no

dependency on the electric field and therefore behave in the same way as

they would in an elastic material with no piezoelectric effect.

The focus of this chapter is to study the piezoelectric effect in the bima-

terial so from this stage forwards only the in-plane and electric fields will

be considered when a poling direction parallel to the x2-axis is used. The

sought solutions are therefore u = (u1, u2, φ)T and t = (σ21, σ22, D2)T . The
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decoupled part of the eigenvalue problem (5.2) now has matrices

Q =


C11 0 0

0 C44 e16

0 e16 −ω11

 , R =


0 C12 e16

C44 0 0

e21 0 0

 ,

T =


C44 0 0

0 C11 e22

0 e22 −ω22

 . (5.25)

The surface admittance tensor B then takes the form:

B =


B11 iB12 iB14

−iB12 B22 B24

−iB14 B24 B44

 . (5.26)

The expressions for the components of the matrix B, found by Hwu (2008)

for the two-dimensional state of generalised plane strain and open circuit,

are quoted in Appendix 3.

With an expression for B it is now possible to construct the bimaterial

matrices required. The bimaterial matrices H and W can be written as

H =


H11 iH12 iH14

−iH12 H22 H24

−iH14 H24 H44

 , W =


W11 iW12 iW14

−iW12 W22 W24

−iW14 W24 W44

 , (5.27)

where

Hαα = [Bαα]I + [Bαα]II , Wαα = [Bαα]I − [Bαα]II , for α = 1, 2, 4,

H1β = [B1β]I − [B1β]II , ,W1β = [B1β]I + [B1β]II , for β = 2, 4,

H24 = [B24]I + [B24]II , W24 = [B24]I − [B24]II .
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Having found the bimaterial matrix H it is now possible to find expres-

sions for the traction field, Σ using the eigenvalue problem (5.5). From

(5.27)(1) it is only necessary to find three sets of eigenvalues and eigenvec-

tors. They have the form

(ε,w), (−ε,w?), (iκ,w4).

As the Mode III components of the solutions have decoupled and behave

purely elastically it is expected that κ = 0. Therefore it is expected that the

eigenvalues are given by two non-zero real valued numbers, with the same

magnitude but differing in sign, and 0. With these particular eigenvalues

and eigenvectors the expression for Σ is given by

Σ(x1) =
(−x1)−3/2

2
√

2π

[
C(−x1)iεw? + C?(−x1)−iεw + C4w4

]
. (5.28)

To find the eigenvalues from (5.5) the following equation must be solved

||H? − e2πεH|| = 0, (5.29)

where ||.|| is used to denote the determinant of a matrix. Substituting

(5.27)(1) in (5.29) the following equation is derived

(1− e2πε)[(1− e2πε)2H11(H22H44 −H2
24)

−(1 + e2πε)2(H2
12H44 +H2

14H24 − 2H12H14H24)] = 0.

(5.30)

As expected solving the equation 1 − e2πε = 0 yields the eigenvalue 0. The

other eigenvalues are given by

±ε = ± 1

2π
ln

(
1− β
1 + β

)
, (5.31)

113



where

β2 =
B

A
, A = H11(H22H44−H2

24), B = 2(H2
12H44+H2

14H24−2H12H14H24).

Using these eigenvalues it is possible to find expressions for the eigen-

vectors w and w4. The expressions chosen here are made for notational

convenience. The expression for w4 is

w4 =
1

2


0

H14

−H12

 . (5.32)

There are three possible expressions for the eigenvector w. They are

w =
1

2


−iβ(H2

24 −H22H44)

H44H12 −H14H24

H14H22 −H24H12

 , or
1

2


−iβ(H14H22 −H12H24)

β2H11H24 −H12H14

H2
12 − β2H11H22

 ,

or
1

2


−iβ(H14H24 −H12H44)

β2H11H44 −H2
14

H12H14 − β2H11H24

 . (5.33)

For the purpose of the remaining results derived in this section the first

representation of w from equation (5.33) shall be used.

Using (5.28) it is possible, using the method described in Piccolroaz et al.

(2009), to construct three independent traction vectors using the following

three cases:

1. C1 = 1, C2 = C4 = 0,

2. C2 = 1, C1 = C4 = 0,

3. C4 = 1, C1 = C2 = 0.
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Using (5.33) the three traction vectors obtained are

Σ1(x1) =
(−x1)−3/2

2
√

2π


iβ(H2

24 −H22H44)[(−x1)iε − (−x1)−iε]

(H44H12 −H14H24)[(−x1)iε + (−x1)−iε]

(H14H22 −H24H12)[(−x1)iε + (−x1)−iε]

 , (5.34)

Σ2(x1) =
(−x1)−3/2

2
√

2π


−β(H2

24 −H22H44)[(−x1)iε + (−x1)−iε]

i(H44H12 −H14H24)[(−x1)iε − (−x1)−iε]

i(H14H22 −H24H12)[(−x1)iε − (−x1)−iε]

 , (5.35)

Σ4(x1) =
(−x1)−3/2

2
√

2π


0

H14

−H12

 . (5.36)

Here, a superscript 4 has been used instead of 3 in equation (5.36) so as

not to confuse this with the Mode III components which have already been

decoupled.

In order to calculate explicit expressions for JŪK+ and 〈Ū〉 it is necessary

to find the Fourier transforms of (5.34), (5.35) and (5.36)

Σ̄1(ξ) =

√
2(iξ)1/2

(1 + 4ε2)
√
π


iβ(H2

24 −H22H44)G−

(H44H12 −H14H24)G+

(H14H22 −H24H12)G+

 , (5.37)

Σ̄2(ξ) =

√
2(iξ)1/2

(1 + 4ε2)
√
π


−β(H2

24 −H22H44)G+

i(H44H12 −H14H24)G−

i(H14H22 −H24H12)G−

 , (5.38)

Σ̄4(ξ) =
(iξ)1/2

√
2


0

−H14

H12

 , (5.39)
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where

G± =

(
−1

2
− iε

)
Γ

(
1

2
+ iε

)
(iξ)−iε ±

(
−1

2
+ iε

)
Γ

(
1

2
− iε

)
(iξ)iε.

With these expressions it is now possible to use a 3×3 matrix, whose columns

are the three linearly independent traction vectors found, along with equa-

tions (5.13) and (5.14) to find expressions for JUK and 〈U〉 (Piccolroaz et al.,

2009).

5.3.2 Poling direction parallel to the x3−axis

Observing Figure 5.1, it can be noted that in the case where both the upper

and lower piezoelectric half-planes are assumed to be poled along the x3−axis,

the poling axis coincides with the crack front. For a transversely isotropic

with said poling direction the stiffness tensor, C, simplifies to

C =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 (C11 − C12)/2


,

and the permittivity and piezoelectric tensors are

ω =


ω11 0 0

0 ω11 0

0 0 ω33

 , e =


0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

 .
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Using these conditions the matrices from equation (5.2) reduce to

Q =


C11 0 0 0

0 (C11 − C12)/2 0 0

0 0 C44 e15

0 0 e15 −ω11


, R =


0 C12 0 0

(C11 − C12)/2 0 0 0

0 0 0 0

0 0 0 0


,

T =


(C11 − C12)/2 0 0 0

0 C11 0 0

0 0 C44 e15

0 0 e15 −ω11


.

For this example the Mode I and Mode II components of the displacement

and stress fields decouple from the Mode III fields and piezoelectric effects

on the material (Ou and Wu, 2003; Hwu, 2008). This means that the in-

plane fields will behave similarly to those for purely elastic materials with no

piezoelectric behaviour. Noting once again that the focus of the work in this

chapter is to explore the piezoelectric behaviour of a material and therefore

only the out-of-plane and piezoelectric components are considered, that is:

u = (u3, φ)T and t = (σ23, D2)T .

In this case Q and T are reduced to 2× 2 matrices and R vanishes:

Q = T =

C44 e15

e15 −ω11

 , R = 0. (5.40)

The surface admittance tensor, B, then becomes

B =

B33 B34

B34 B44

 . (5.41)
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Explicit expressions for the components of this matrix are given by (Hwu,

2008):

B33 =
ω11

e2
15 + ω11C44

, B44 =
−C44

e2
15 + ω11C44

,

B34 =
e15

e2
15 + ω11C44

.

Consequently, the bimaterial matrices H and W can be computed and have

the form

H =

H33 H34

H34 H44

 , W =

δ3H33 γH34

γH34 δ4H44

 , (5.42)

where:

Hαβ = [Bαβ]I + [Bαβ]II , for α, β = 3, 4,

δα =
[Bαα]I − [Bαα]II
[Bαα]I + [Bαα]II

, for α = 3, 4,

γ =
[B34]I − [B34]II

H34

.

In order to obtain the weight functions for the materials considered here

the Riemann-Hilbert problem (5.4) must again be considered. For this case

the bimaterial matrix H has no imaginary part, and then substituting ex-

pression (5.42)(1) into equation (5.4) we get

h+(x1) + h−(x) = 0, −∞ < x1 < 0. (5.43)

For this special case it was shown in Suo et al. (1992) that the extended

traction along the interface and displacement jump across the crack are given

by

t(x1) = (2πx1)−
1
2

K3

K4

 , for x1 > 0, (5.44)

JuK(x1) =

(
2(−x1)

π

) 1
2

H

K3

K4

 for x1 < 0. (5.45)
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Knowing the traction fields makes it possible to evaluate the weight func-

tion traction Σ for these particular materials. The expression for Σ is

Σ(x1) =
(−x1)−

3
2

√
2π

C3

C4

 , for x1 < 0. (5.46)

The Fourier transforms of the symmetric and skew-symmetric parts of the

weight function, JŪK and 〈Ū〉, are once again given by equations (5.13) and

(5.14). However, due to H, and therefore W being purely real the expressions

simplify to

JŪK+(ξ) = − 1

|ξ|
HΣ̄−(ξ), (5.47)

〈Ū〉(ξ) = − 1

2|ξ|
WΣ̄−(ξ), (5.48)

where Σ̄ is the 2 × 2 matrix consisting of two independent tractions. The

linearly independent tractions are given by the case C3 = 1, C4 = 0 and

C3 = 0, C4 = 1 in equation (5.46). The results obtained are;

Σ3(x1) =
(−x1)−

3
2

√
2π

1

0

 , Σ4(x1) =
(−x1)−

3
2

√
2π

0

1

 . (5.49)

The Fourier transforms of these vectors are given by

Σ̄3(ξ) = (iξ)
1
2

−√2

0

 , Σ̄4(ξ) = (iξ)
1
2

 0

−
√

2

 . (5.50)

It is now possible to use these vectors, along with equations (5.47) and (5.48),

to construct the matricial expressions for the symmetric and skew-symmetric

parts of the weight function.

119



5.4 Integral identities

In this section the weight function matrices are used together with the Betti

identity, (5.24), to formulate the considered crack problem in terms of sin-

gular integral equations. Integral identities relating the applied loading to

the resulting crack opening and traction ahead of the tip are derived for

transversely isotropic piezoelectric materials in both the cases where poling

direction is parallel to the x2 and x3 axes.

5.4.1 Poling direction parallel to the x2−axis

Considering the case where both upper and lower transversely isotropic piezo-

electric half-spaces possess poling direction parallel to the x2−axis (perpen-

dicular to the crack plane), the in-plane fields and piezoelectric effect decou-

ple from the antiplane displacement and traction. Consequently, the Betti

formula still has the form

JŪKTRt̄+ − Σ̄TRJūK− = −JŪKTR〈p̄〉 − 〈Ū〉TRJp̄K, (5.51)

where JŪK and 〈Ū〉 are given by expressions (5.13) and (5.14) together with

matrices (5.27), and the rotational matrix R becomes

R =


−1 0 0

0 1 0

0 0 −1

 .

Multiplying both sides of (5.51) by R−1JŪK−T yields the following equation

t̄+ −NJūK− = −〈p̄〉 −MJp̄K, (5.52)
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where M and N are given by

M = R−1JŪK−T 〈Ū〉TR, N = R−1JŪK−T Σ̄TR. (5.53)

Using (5.13) and (5.14) full expressions for M and N can be found:

M =
1

2D
(M′ + isign(ξ)M′′) , (5.54)

N =
|ξ|
D

(N′ + isign(ξ)N′′) , (5.55)

where explicit expressions for D,M′,M′′,N′ and N′′ can be found in Ap-

pendix 4.

Taking the inverse Fourier transform of equation (5.52), the following

equations are found for x1 < 0 and x1 > 0 respectively:

F−1
x1<0[NJūK−] = 〈p〉(x1) + F−1

x1<0[MJp̄K], x1 < 0, (5.56)

t(+)(x1) + F−1
x1>0[MJp̄K] = F−1

x1>0[NJūK−], x1 > 0. (5.57)

The term involving t̄ cancels for x1 < 0 as it is only defined along the interface

and 〈p̄〉 does not appear for x1 > 0 as it is only defined along the crack.

In order to derive explicit expressions for equations (5.56) and (5.57),

we need to compute the inverse Fourier transform of terms of the form

isign(ξ)f̄(ξ), |ξ|f̄(ξ) and iξf̄(ξ). Using the Fourier convolution theorem

and the knowledge that the inverse Fourier transform of sign(ξ) is given

by −i/(πx1) gives:

F−1[isign(ξ)f̄(ξ)] = iF−1[sign(ξ)] ∗ F−1[f̄(ξ)],

= i
( −i
πx1

)
∗ f(x1),

=
1

π

∫ ∞
−∞

f(η)

x1 − η
dη. (5.58)
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The inverse Fourier transform of |ξ|f̄(ξ) is found:

F−1[|ξ|f̄(ξ)] = F−1[sign(ξ)] ∗ F−1[ξf̄(ξ)],

=
(
− i

πx1

)
∗ i ∂f
∂x1

,

=
( 1

πx1

)
∗ ∂f
∂x1

. (5.59)

Finally, the inverse Fourier transform of isign(ξ)|ξ|f̄(ξ) is given by

F−1[isign(ξ)|ξ|f̄(ξ)] = F−1[iξf̄(ξ)],

= − ∂f

∂x1

. (5.60)

We now introduce the singular operator S and reintroduce the orthogonal

projectors P± seen in Chapter 4:

Sψ =
1

πx1

∗ ψ(x1), (5.61)

P±ψ =


ψ(x1), ±x1 > 0,

0, otherwise.

(5.62)

Introducing the singular integral operator S(s) = P−SP− and the compact

operator S(c) = P+SP−, equations (5.56) and (5.57) become

N (s)∂JuK(−)

∂x1

= 〈p〉(x1) +M(s)JpK, x1 < 0, (5.63)

t(+)(x1) +M(c)JpK = N (c)∂JuK(−)

∂x1

, x1 > 0. (5.64)

The matrix operators M(s),M(c),N (s) and N (c) are given by

M(s) =
1

2D

(
M′ + M′′S(s)

)
, N (s) =

1

D

(
N′S(s) −N′′

)
, (5.65)

M(c) =
1

2D
M′′S(c), N (c) =

1

D
N′S(c). (5.66)

An example of the use of these integral equations when a known load is

applied to the crack faces is given in Chapter 5.5.
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5.4.2 Poling direction parallel to the x3−axis

For the case where both upper and lower transversely isotropic piezoelectric

half-spaces possess poling direction parallel to the x3 axis, the weight func-

tions consist of the 2×2 matrices (5.47) and (5.48). The Betti identity (5.24)

then becomes a 2×2 matricial integral equation, where the rotational matrix

R is given by

R =

−1 0

0 −1

 .

Therefore, equation (5.24) can be simplified further to give

JŪKT t̄+ − Σ̄T JūK− = −JŪKT 〈p̄〉 − 〈Ū〉T Jp̄K. (5.67)

Multiplying both sides of equation (5.67) by JŪK−T gives

t̄+ − JŪK−T Σ̄T JūK− = −〈p̄〉 − JŪK−T 〈Ū〉T Jp̄K−. (5.68)

Using (5.47) and (5.48) gives

t̄+ − Z(ξ)JūK− = −〈p̄〉 −YJp̄K−, (5.69)

where

Y =
1

2
H−1W =

1

2(H33H44 −H2
34)

δ3H33H44 − γH2
34 H44H34(γ − δ4)

H33H34(γ − δ3) δ4H33H44 − γH2
34

 ,

(5.70)

Z(ξ) = −|ξ|H−1 = − |ξ|
H33H44 −H2

34

 H44 −H34

−H34 H33

 . (5.71)

Taking inverse Fourier transforms and methods seen in Piccolroaz and

Mishuris (2013) and Morini et al. (2013a) gives the following singular integral

equations

Q(s)∂JuK(−)

∂x1

= −〈p〉(x1)−YJpK(x1), for x1 < 0, (5.72)
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t(x1) = −Q(c)∂JuK(−)

∂x1

, for x1 > 0, (5.73)

where Q(s) = H−1S(s) and Q(c) = H−1S(c).

The integral identities (5.63), (5.64), (5.72) and (5.73) relate the mechan-

ical and electrostatic loading applied on the crack faces to the corresponding

crack opening and tractions ahead of the tip. The crack opening associated

with an arbitrary non-symmetrical mechanical or electrostatic loading can

be derived by the inversion of the matricial operators N (s) and Q(s) in equa-

tions (5.63) and (5.72). Using the obtained crack opening functions in (5.64)

and (5.73), explicit expressions for the tractions ahead of the crack tip are

yielded. Some simple illustrative examples of this procedure are reported in

next section.

5.5 Illustrative Examples

In this section we consider some examples of loadings for both poling direc-

tions and find solutions using the singular integral equations derived in the

previous section. Both mechanical and electrical configurations will be con-

sidered. Explicit expressions for crack opening and tractions ahead of the tip

corresponding to both symmetrical and skew-symmetrical mechanical and

electrostatic loading configurations are derived. The proposed illustrative

cases show that the obtained integral identities represent a very useful tool

for studying interfacial crack problems in piezoelectric bimaterials.

To begin with we consider a symmetric distribution of point loadings

when the poling direction is parallel to the x2-axis before considering both

symmetric and asymmetric loading configurations for the piezoelectric bima-
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terial poled in the direction of the x3-axis. For the decoupled Mode III and

IV example with symmetric loading we also present a comparison between

the results from our singular integral equations and those obtained using

finite element methods in COMSOL Multiphysics.

5.5.1 Poling direction parallel to the x2-axis under sym-

metric mechanical loading

We consider a symmetric system of two perpendicular point loads of varying

magnitude on each crack faces acting in the opposite direction to their cor-

responding load on the opposite crack face at a distance a behind the crack.

Mathematically these forces are represented as

〈p〉(x1) =


−F1δ(x1 + a)

−F2δ(x1 + a)

0

 , JpK = 0. (5.74)

where δ represents the Dirac delta distribution. Under such a loading the

singular integral equations used to find JuK and t reduce to

N (s)∂JuK(−)

∂x1

= 〈p〉(x1), for x1 < 0, (5.75)

t(+)(x1) = N (c)∂JuK(−)

∂x1

, for x1 > 0. (5.76)

To simplify the problem we consider the set of bimaterials for which the

matrix H from equation (5.27)(1) has no imaginary part, that is H12 = H14 =

0. An example of when this may occur is when the upper and lower materials

are the same. Under these conditions the matrix N′′ = 0 and therefore the
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integral equation for x1 < 0 becomes

1

D


N11 0 0

0 N22 N24

0 N24 N44

S(s)∂JuK(−)

∂x1

=


−F1δ(x1 + a)

−F2δ(x1 + a)

0

 . (5.77)

From the system (5.77) it is possible to obtain the following three equations

for the derivatives of the displacements and electric potential

N11S(s)∂Ju1K(−)

∂x1

= −F1Dδ(x1 + a), (5.78)

S(s)

[
N22

∂Ju2K(−)

∂x1

+N24
∂JφK
∂x1

]
= −F2Dδ(x1 + a), (5.79)

S(s)

[
N24

∂Ju2K(−)

∂x1

+N44
∂JφK
∂x1

]
= 0. (5.80)

It is clear from these equations that the x1 directed part of the solution for

the example considered decouples from the component of the solution in the

x2 direction and the electrical effects. As a result of this we first proceed

with solving for u1 before proceeding to find expressions for u2 and φ.

We begin by inverting the integral operator S(s) in equation (5.78) using

the methods seen in Piccolroaz and Mishuris (2013) and Morini et al. (2013a),

which were based on the work of Muskhelishvili (1963) seen in Chapter 2:

∂Ju1K(−)

∂x1

=
F1D

N11π

∫ 0

−∞

√
η

x1

δ(η + a)

x1 − η
dη =

F1D

N11π

√
−a
x1

1

x1 + a
. (5.81)

Using the expressions for D and N11 reported in Appendix 4, this expression

simplifies to

∂Ju1K(−)

∂x1

= −F1H11

π

√
− a

x1

1

x1 + a
, (5.82)

which agrees with those results found in Piccolroaz and Mishuris (2013) and

Morini et al. (2013a) when a component of a displacement field decouples

126



from all other components. Note here that the results differ from those in

Piccolroaz and Mishuris (2013) due to the anisotropy of the material and

they differ from that in Morini et al. (2013a) due to u1 being decoupled here

whereas in their work it was u2 that separated from the rest of the solution.

It is also important to note that, despite the similarity of the appearance

of these results with these papers, the piezoelectric nature of the bimaterial

still has an effect here contained in the material parameter H11.

Integrating (5.82) gives the following expressions for the displacement

jump along the crack

Ju1K(x1) =
2F1H11

π
arctanh

√
−x1

a
, for − a < x1 < 0, (5.83)

Ju1K(x1) =
2F1H11

π
arctanh

√
− a

x1

, for x1 < −a. (5.84)

We now proceed to invert the operator in equations (5.79) and (5.80) in

the same manner. The resulting equations are therefore

N22
∂Ju2K(−)

∂x1

+N24
∂JφK(−)

∂x1

=
F2D

π

√
− a

x1

1

x1 + a
, (5.85)

N24
∂Ju2K(−)

∂x1

+N44
∂JφK(−)

∂x1

= 0. (5.86)

Solving these equations and simplifying gives the following expressions

∂Ju2K(−)

∂x1

= −F2H22

π

√
− a

x1

1

x1 + a
, (5.87)

∂JφK(−)

∂x1

=
F2H24

π

√
− a

x1

1

x1 + a
. (5.88)

Integrating these expressions gives the following expressions for the jump in

displacement and potential over the crackJu2K(−)

JφK(−)

 =
2F2

π
arctanh

√
−x1

a

 H22

−H24

 , for − a < x1 < 0, (5.89)
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Ju2K(−)

JφK(−)

 =
2F2

π
arctanh

√
− a

x1

 H22

−H24

 , for x1 < −a. (5.90)

Using equation (5.76) the following expressions, for use in finding expres-

sions for the interfacial traction and electric displacement, are obtained
σ21

σ22

D2

 =
1

D


N11 0 0

0 N22 N24

0 N24 N44

S(c)∂JuK(−)

∂x1

. (5.91)

The decoupled traction component can now be found:

σ
(+)
21 (x1) =

N11

Dπ

∫ 0

−∞

1

x1 − η
∂Ju1K(−)

∂η
dη =

F1

π

√
a

x1

1

x1 + a
. (5.92)

Once again the obtained result is identical to that obtained for a decoupled

field in anisotropic bimaterials (Morini et al., 2013a), with the only difference

here arising from the difference in direction of the decoupled field. Using the

same method, the expressions for the coupled portion of the traction and

electric displacement field are given as

σ22(x1)(+) =
F2

π

√
a

x1

1

x1 + a
, D

(+)
2 (x1) = 0. (5.93)

It is seen that the mechanical part of the solution behaves identically to that

in an anisotropic bimaterial and there is no electrical displacement compo-

nent along the interface for any bimaterial with the given conditions.

5.5.2 Poling direction parallel to the x3-axis

Symmetric mechanical loading

The loading considered here consists of a point load acting in opposite direc-

tions on each of the crack faces at a distance a from the crack tip. Mathemat-

ically this system of forces is represented using the Dirac delta distribution.

128



The expressions for the symmetric and skew-symmetric parts of the extended

loading are given by:

〈p〉(x1) =

−Fδ(x1 + a)

0

 , JpK(x1) = 0. (5.94)

Inserting these expressions into equation (5.72) gives the singular integral

equation

S(s)∂JuK(−)

∂x1

= F

H33

H34

 δ(x1 + a). (5.95)

Inverting the operator S(s) in a similar way to that seen previously gives:

∂JuK(−)

∂x1

= −F
π

H33

H34

∫ 0

−∞

√
η

x1

δ(η + a)

x1 − η
dη

= −F
π

√
− a

x1

1

x1 + a

H33

H34

 . (5.96)

Integrating this equation gives the resultJu3K

JφK

 =
2F

π
arctanh

√
−x1

a

H33

H34

 , for − a < x1 < 0, (5.97)

Ju3K

JφK

 =
2F

π
arctanh

√
− a

x1

H33

H34

 , for x1 < −a. (5.98)

Making use of equation (5.73) it is possible to obtain the expression for
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Figure 5.2: Displacement jump for symmetric mechanical loading. The green

dots represent values obtained from COMSOL Multiphysics.

the extended traction vector, t, along the interface:

t(+)(x1) = −H−1

π

∫ 0

−∞

1

x1 − η
∂JuK
∂η

dη,

=
F

π

√
a

x1

1

x1 + a
H−1

H33

H34

 ,

=
F

π

√
a

x1

1

x1 + a

1

0

 . (5.99)

It is now possible to use (5.99) to obtain expressions for the stress intensity

factor, K3, and the electric intensity factor, K4:K3

K4

 = lim
x1→0

√
2πx1

 t3(x1)

D2(x1)

 = F

√
2

πa

1

0

 . (5.100)

Figures 5.2 and 5.3 show a comparison between the derived results and

the equivalent results using finite element computations in COMSOL Multi-

physics. The materials used above and below the crack were Barium Titanate
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Figure 5.3: Electric potential jump for symmetric mechanical loading. The

green dots represent values obtained from COMSOL Multiphysics.

and PZT respectively. The material parameters are quoted in Table 5.1, with

those for Barium titanate obtained from Geis et al. (2004) and those for PZT

taken from Liu and Hsia (2003).

Material C44(GPa) e15(CM2) ω11(C2/Nm2)

Barium Titanate 44 11.4 9.87 x 10−9

PZT 24.5 14.0 1.51 x 10−8

Table 5.1: Material properties

Asymmetric mechanical loading

The second example considered has point loadings at a distance a acting

on the upper and lower crack faces. However, for this asymmetric example

it is said that they both act in the same direction. Mathematically this is
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presented as:

〈p〉(x1) = 0, JpK(x1) =

−2Fδ(x1 + a)

0

 . (5.101)

The resultant singular integral equation is given by

S(s)∂JuK(−)

∂x1

= −1

2
WJpK. (5.102)

Using the same method as was used for the symmetric loading previously

considered it is shown thatJu3K

JφK

 =
2F

π
arctanh

√
−x1

a

δ3H33

γH34

 , for − a < x1 < 0, (5.103)

Ju3K

JφK

 =
2F

π
arctanh

√
− a

x1

δ3H33

γH34

 , for x1 < −a. (5.104)

Making use of equation (5.73) it is possible to obtain the expression for

the extended traction vector, t, along the interface:

t(+)(x1) = −H−1

π

∫ 0

−∞

1

x1 − η
∂JuK
∂η

dη,

=
F

π

√
a

x1

1

x1 + a
H−1

δ3H33

γH34

 ,

=
F

π

√
a

x1

1

x1 + a

1

H33H44 −H2
34

δ3H33H44 − γH2
34

(γ − δ3)H33H34

 . (5.105)

It is now possible to use (5.105) to obtain expressions for the stress intensity

factor, K3, and the electric intensity factor, K4:K3

K4

 = lim
x1→0

√
2πx1

 t3(x1)

D2(x1)

 = F

√
2

πa

1

H33H44 −H2
34

δ3H33H44 − γH2
34

(γ − δ3)H33H34

 .

(5.106)
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Symmetric electrical loading

We consider a symmetric system of electrical point loads on the crack faces

at a distance a behind the crack tip. Mathematically the Dirac delta dis-

tribution is once again used in order to represent the charges on the crack

faces:

〈p〉(x1) =

 0

−Gδ(x1 + a)

 , JpK = 0. (5.107)

Making use of equation (5.72) and the method previously used for me-

chanical loading gives

∂JuK(−)

∂x1

= −G
π

√
− a

x1

1

x1 + a

H34

H44

 . (5.108)

When integrated, this givesJu3K

JφK

 =
2G

π
arctanh

√
−x1

a

H34

H44

 , for − a < x1 < 0, (5.109)

Ju3K

JφK

 =
2G

π
arctanh

√
− a

x1

H34

H44

 , for x1 < −a. (5.110)

The resulting expressions for the extended traction vector is therefore

t(+)(x1) = −H−1

π

∫ 0

−∞

1

x1 − η
∂JuK(−)

∂η
dη =

G

π

√
a

x1

1

x1 + a

0

1

 . (5.111)

The stress intensity factors are then given byK3

K4

 = lim
x1→0

√
2πx1t

(+)(x1) = G

√
2

πa

0

1

 . (5.112)
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Asymmetric electrical loading

Here we consider electrical loading acting in the same direction on the top

and bottom crack faces at a distance a behind the crack tip. This loading

can be written as

〈p〉(x1)− 0, JpK(x1) =

 0

−2Gδ(x1 + a)

 . (5.113)

The resulting fields obtained using equations (5.72) and (5.73) are:

∂JuK(−)

∂x1

= −G
π

√
− a

x1

1

x1 + a

γH34

δ4H44

 , (5.114)

Ju3K

JφK

 =
2G

π
arctanh

√
−x1

a

γH34

δ4H44

 , for − a < x1 < 0, (5.115)

Ju3K

JφK

 =
2G

π
arctanh

√
− a

x1

γH34

δ4H44

 , for x1 < −a. (5.116)

t(+)(x1) =
G

π

√
a

x1

1

(x1 + a)(H33H44 −H2
34)

 (γ − δ4)H34H44

δ4H33H44 − γH2
34

 . (5.117)

The stress intensity factor and electric intensity factor obtained are thereforeK3

K4

 = lim
x1→0

√
2πx1t

(+)(x1) = G

√
2

πa

1

H33H44 −H2
34

 (γ − δ4)H34H44

δ4H33H44 − γH2
34

 .

(5.118)

Now that solutions have been found for the individual examples of sym-

metric and asymmetric loading for both mechanical and electrical loading it

is possible to use these results if a combination of the loads was used. This

ability to combine the solutions is caused by the linearity of the problem

being considered.
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5.6 Conclusions

A general approach for the derivation of the symmetric and skew-symmetric

weight functions for plane interfacial cracks in anisotropic piezoelectric bi-

materials has been developed. Further to this, explicit weight function ma-

trices are obtained for an interfacial crack between two transversely isotropic

piezoelectric materials, considering both the case where the poling direction

of the two materials is perpendicular and coincident to the crack front. Since

many poled ceramics that are commonly used in industrial applications pos-

sess transversely isotropic symmetry, this class of piezoelectric materials has

a practical significance, and the derived weight functions can be used for

computing the stress intensity factors corresponding to any arbitrary non-

symmetric mechanical and electrostatic load acting on the crack faces.

Using symmetric and skew-symmetric weight functions we have derived

integral equations relating the applied load on the crack faces to the result-

ing interfacial tractions and crack opening. The proposed method avoids the

need of the use of Green’s functions and therefore the consequent numerical

procedures associated with such methods are not required (Gao and Wang,

2001). The integral identities have been derived under the plane strain and

short circuit conditions for the cases when the material poling direction is

either perpendicular or coincident to the crack front. Examples of the ap-

plication of the integral equations when point forces and charges are applied

to the crack faces have been given with expressions for both the extended

interfacial tractions, crack opening and jump in potential over the crack faces

given. For one of the examples given a comparison has been made between

the analytic results obtained from the integral equations and similar com-
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putations using finite element simulations in COMSOL Multiphysics. The

results for both the crack opening displacement and difference in potential

over the crack faces show good agreement between the analytical expressions

we have derived and the finite element results.
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Chapter 6

Conclusions

This thesis has considered a number of problems involving semi-infinite cracks

along an interface in both anisotropic and piezoelectric bimaterials. The

variety of conditions include material properties, crack propagation speed

and the extent of imperfection of the bonded portion of the interface.

The first original problem seen involved a dynamic crack along a perfect

interface in an anisotropic bimaterial. Making use of a steady-state formu-

lation along with weight functions and the Betti identity we derived general

integral expressions for the asymptotic coefficients of the in-plane traction

and displacements at the crack tip. The method developed can be applied

to a general asymmetric loading system applied to the crack faces. The ex-

amples considered show that the most energetically beneficial system is that

with a symmetric load with an increase in the extent of load asymmetry and

crack speed both leading to a rise in ERR. A sub-Rayleigh velocity at which

one component of the stress intensity factor changes sign was also found for

certain bimaterials. This velocity, which would result in a change in propa-

gation behaviour, corresponds to the disappearance of the oscillatory effects
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at the crack tip and therefore is not present for every bimaterial.

We then analysed a static crack with a thin layer of soft adhesive now

bonding the two materials. This bonding agent was replaced by suitable

imperfect interface transmission conditions: continuity of tractions but dis-

continuity of displacements. Singular integral equations relating the applied

loading to the crack faces with the unknown interfacial tractions and crack

displacement jump for both the in-plane and out-of-plane problems were

found. These were solved numerically for both cases and the results ob-

tained agree with the expected results from the literature, in particular the

now bounded traction at the crack tip. For the out-of-plane example the

results were also computed using finite element simulations in COMSOL and

good agreement was seen. However, in order to compute the same results in

COMSOL an unrealistically thick layer of adhesive was used in the model as

the small mesh in a typical layer was computationally inefficient. Therefore

the singular integral equations derived are both a viable and efficient way of

computing the desired results.

The final problem considered was a perfect interface in a piezoelectric

bimaterial. Making use of the extended Stroh formalism we found explicit

expressions for the general weight functions for piezoelectric materials. Ex-

plicit expressions for weight functions for transversely isotropic bimaterials

were also found. We also made use of these weight functions, along with the

reciprocal identity, to derive singular integral equations relating both physi-

cal and electrical loadings to the mechanical and electrical fields. All of the

results were derived for two different poling directions of the bimaterials. It

was seen that the poling direction has a great impact on the results, in par-
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ticular whether the electrical effects couple with the in-plane or out-of-plane

fields. For the example where the electric fields are coupled with the out-of-

plane displacements and tractions we once again performed simulations in

COMSOL for the same problem which had good agreement with the results

obtained from our integral formulations.

Future work

Although a number of problems have been seen in the thesis there are still a

number of ways in which the field of research can be furthered. The simplest

way to progress would be to consider different subclasses of anisotropic ma-

terials to those seen here. An example of this would be monoclinic materials

which result in more complicated Stroh matrices as they only have one plane

of symmetry.

It is also possible to extend the work on piezoelectric materials to involve

an imperfect interface. Once this has been done it would be possible to use

the transmission conditions of a thin metal layer along the interface to model

piezoelectric actuators. It would then be possible to use the near-tip fields

to see how the ends of electrodes are damaged as an actuator is used which

could be used to predict and prevent failure.

Another field of wide interest involving fracture is hydrofracturing. In

recent years hydrofracturing has become a more common technique of ex-

tracting natural oils and gases. The mathematical models involved in such

problems are highly non-linear and usually require the use of complicated

numerical algorithms to get efficient results.

139



Bibliography

Antipov, Y. A., Avila-Pozos, O., Kolaczkowski, S. T., Movchan, A. B., 2001.

Mathematical model of delamination cracks on imperfect interfaces. Int.

J. Solids Struct. 38(36-37), 6665–6697.

Atkinson, C., 1977. On stress singularities and interfaces in linear elastic

fracture mechanics. Int. J. Fracture 13, 807–820.

Bassani, J. L., Qu, J., 1989. Finite crack on bimaterial and bicrystal inter-

faces. J. Mech. Phys. Solids 37, 435–453.

Benveniste, Y., 2006. A general interface model for a three-dimensional

curved thin anisotropic interphase between two anisotropic media. J. Mech.

Phys. Solids 54(4), 708–734.

Benveniste, Y., Miloh, T., 2001. Imperfect soft and stiff interfaces in two-

dimensional elasticity. Mech. Materials 33, 309–323.

Bercial-Velez, J. P., Antipov, Y. A., Movchan, A. B., 2005. High-order asymp-

totics and perturbation problems for 3d interfacial cracks. J. Mech. Phys.

Solids 53, 1128–1162.

140



Bower, A. F., 2009. Applied mechanics of solids, 1st Edition. CRC Press,

Boca Raton, Florida.

Bueckner, H. F., 1970. A novel principle for the computation of stress inten-

sity factors. Zeit. Angew. Math. Mech. 50, 529–546.

Bueckner, H. F., 1985. Weight functions and fundamental fields for the

penny-shaped and the half plane crack in three-space. Int. J. Solids Struct.

23, 57–93.

Cherepanov, G. P., 1967. The propagation of cracks in continuous medium.

Journal of Applied Mathematics and Mechanics 31(3), 503–512.

Cottrell, A. H., 1962. Theoretical aspects of radiation damage and brittle

fracture in steel pressure vessels. Iron Steel Institute Special Report 69,

281–296.

Duduchava, R., 1979. Integral equations with fixed singularities. Teubner,

Leipzig.

Eshelby, J. D., Read, W. T., Shockley, W., 1953. Anisotropic elasticity with

applications to dislocation theory. Acta Metallurgica 1(3), 251–259.

Fett, T., Diegele, E., Munz, D., Rizzi, G., 1996. Weight functions for edge

cracks in thin surface layers. Int. J. Fract. 81 (3), 205–215.

Fett, T., Munz, D., 1997. Stress intensity factors and weight functions. Com-

putational Mechanics Publications, Southampton.

Gao, C.-F., Wang, M.-Z., 2001. Green’s functions for an interfacial crack

141



between two dissimilar piezoelectric media. Int. J. Solids Struct. 38, 5323–

5334.

Geis, W., Mishuris, G., Sandig, A., 2004. Asymptotic models for piezoelectric

stack actuators with thin metal inclusions. Preprint 2004/001, Univeristy

of Stuttgart, http://preprints.ians.uni-stuttgart.de.

Glinka, G., Shen, G., 1991. Universal features of weight functions for cracks

in mode I. Eng. Frac. Mech. 40, 1135–1146.

Gohberg, I. C., Krein, M. G., 1960. Systems of integral equations on a half

line with kernels depending on the difference of arguments (english trans-

lation). Amer. Math. Soc. Transl. 14, 217–287.

Griffith, A. A., 1920. The phenomenon of rupture and flow in solids. Philo-

sophical Transactions of the Royal Society (London) 221, 163–198.

Hadjesfandiari, A. R., 2013. Size-dependent piezoelectricity. Int. J. Solids.

Struct. 50, 2781–2791.

Hoenig, A., 1982. Near-tip behavior of a crack in a plane of anisotropic elastic

body. Eng. Frac. Mech. 16(3), 393–403.

Hwu, C., 1993. Explicit solutions for collinear interface crack problems. Int.

J. Solid Structures 30, 301–312.

Hwu, C., 2008. Some explicit expressions of extended stroh formalism for

two-dimensional piezoelectric anisotropic elasticity. Int. J. Solids Struct.

45, 4460–4473.

142



Inglis, C. E., 1913. Stresses in a plate due to the presence of cracks and sharp

corners. Transactions of the institute of naval architects 55, 219–241.

Irwin, G. R., 1957. Analysis of stresses and strains near the end of a crack

traversing a plate. J. Appl. Mech 24, 361–364.

Itskov, M., Aksel, N., 2002. Elastic constants and their admissable values

for incompressible and slightly compressible anisotropic materials. Acta

Mechanica 157, 81–96.

Kanninen, M. F., Rybicki, E. F., Stonesifer, R. B., Broek, D., Rosenfiels,

A. R., Marschall, C. W., Hahn, G. T., 1979. Elastic-plastic fracture me-

chanics for two dimensional stable crack growth and instability problems.

Elastic-Plastic Fracture ASTM STP 668, 121–150.

Kassir, M. K., Sih, G. C., 1973. Application of papkovich-neuber potentials

to a crack problem. Int. J. Solids Struct. 9, 643–654.

Kuo, C. M., Barnett, D. M., 1991. Stress singularities of interfacial cracks in

bonded piezoelectric half-spaces. Modern Theory of Anisotropic Elasticity

and Applications ed J J Wu et al. 33-50. Philadelphia: SIAM.

Lekhnitskii, S. G., 1963. Theory of Elasticity of an Anisotropic Body. MIR,

Moscow.

Lenci, S., 2001. Analysis of a crack at a weak interface. Int. J. Fract. 108,

275–290.

Liu, M., Hsia, K. J., 2003. Interfacial cracks between piezoelectric and elastic

materials under in-plane electric loading. J. Mech. Phys. Solids 51, 921–

944.

143



Mishuris, G., 2001. Interface crack and nonideal interface concept (mode iii).

Int. J. Fract. 107(3), 279–296.

Mishuris, G., Kuhn, G., 2001. Asymptotic behaviour of the elastic solution

near the tip of a crack situated at a nonideal interface. Zeitschrift fur

Angewandte Mathematik und Mechanik 81(12), 811–826.

Mishuris, G., Piccolroaz, A., Vellender, A., 2013. Boundary integral formu-

lation for cracks at imperfect interfaces. Q. J. Mech. Appl. Math. 67 (3),

363–387.

Mishuris, G. S., 1997a. 2-d boundary value problems of thermoelasticity in

a multi-wedge – multi-layered region. part 1. sweep method. Arch. Mech.

49(6), 1103–1134.

Mishuris, G. S., 1997b. 2-d boundary value problems of thermoelasticity in a

multi-wedge – multi-layered region. part 2. systems of integral equations.

Arch. Mech. 49(6), 1135–1165.

Morini, L., Piccolroaz, A., Mishuris, G., Radi, E., 2013a. Integral identities

for a semi-infinite interfacial crack in anisotropic elastic bimaterials. Int.

J. Solids Struct. 50, 1437–1448.

Morini, L., Radi, E., Movchan, A. B., Movchan, N. V., 2013b. Stroh for-

malism in analysis of skew-symmetric and symmetric weight functions for

interfacial cracks. Math. Mech. Solids 18, 135–152.

Mott, N. F., 1948. Brittle fracture in mild steel plates. Engineering 165,

16–18.

144



Muskhelishvili, N. I., 1963. Some Basic Problems of the Mathematical Theory

of Elasticity. Groningen: P.Noordhoff, Netherlands.

Obrezanova, O., Willis, J. R., Movchan, A. B., 2002a. Dynamic stability of

a propagating crack. J. Mech. Phys. Solids 50, 2637–2668.

Obrezanova, O., Willis, J. R., Movchan, A. B., 2002b. Stability of an ad-

vancing crack to small perturbation of its path. J. Mech. Phys. Solids 50,

57–80.

Ou, Z. C., Wu, X., 2003. On the crack-tip stress singularity of interfacial

cracks in transversely isotropic materials. Int. J. Solids Struct. 40, 7499–

7511.

Pak, Y. E., 1990. Crack extension force in a piezoelectric material. J. Appl.

Mech. 57, 647–653.

Pan, E., 2003. Some new three-dimensional greens functions in anisotropic

piezoelectric bimaterials. Electron. J. Bound. Elem. 1, 236–269.

Pan, E., Yuan, F. G., 2000. Three-dimensional greens functions in anisotropic

piezoelectric bimaterials. Int. J. Eng. Sci. 38, 1939–1960.

Parton, V. Z., 1976. Fracture mechanics of piezoelectric materials. Acta As-

tronautica 3, 671–683.

Piccolroaz, A., Mishuris, G., 2013. Integral identities for a semi-infinite in-

terfacial crack in 2d and 3d elasticity. J. Elasticity 110, 117–140.

Piccolroaz, A., Mishuris, G., Movchan, A. B., 2007. Evaluation of the lazarus-

145



leblond constants in the asymptotic model for the interfacial wavy crack.

J. Mech. Phys. Solids 55, 1575–1600.

Piccolroaz, A., Mishuris, G., Movchan, A. B., 2009. Symmetric and skew-

symmetric weight functions in 2d perturbation models for semi-infinite

interfacial cracks. J. Mech. Phys. Solids 57, 1657–1682.

Pryce, L., Morini, L., Mishuris, G., 2013. Weight function approach to study

a crack propagating along a bimaterial interface under arbitrary loading

in anisotropic solids. JoMMS 8, 479–500.

Pryce, L., Morini, L., Zagnetko, A., 2015. Interfacial fracture in piezo-

electric bimaterials: Weight functions and singular integral formulation.

http://arxiv.org/abs/1501.02114.

Pryce, L., Vellender, A., Zagnetko, A., 2014. Integral identities for an in-

terfacial crack in an anisotropic bimaterial with an imperfect interface.

http://arxiv.org/abs/1406.4431v3.

Qu, J., Bassani, J. L., 1989. Cracks on bimaterial interfaces. J. Mech. Phys.

Solids 37, 417–433.

Rice, J. R., 1968. A path independent integral and the approximate anal-

ysis of strain concentrations by notches and cracks. Journal of Applied

Mechanics 35, 379–386.

Rice, J. R., Sorenson, E. P., 1978. Continuing crack tip deformation and

fracture for plane strain crack growth in elastic-plastic solids. J. Mech.

Phys. Solids 26, 163–186.

146



Shih, C. F., de Lorenzi, H. G., Andrews, W. R., 1979. Studies on crack

initiation and stable crack growth. Elastic-Plastic Fracture ASTM STP

668, 65–120.

Stroh, A. N., 1958. Dislocations and cracks in anisotropic elasticity. Phil.

Mag. 7, 625–646.

Stroh, A. N., 1962. Steady state problems in anisotropic elasticity. Math.

Phys 41, 77–103.

Suo, Z., 1990. Singularities, interfaces and cracks in dissimilar anisotropic

media. Proc. R. Soc. Lond 427, 331–358.

Suo, Z., Kuo, C. M., Barnett, D. M., Willis, J. R., 1992. Fracture mechanics

for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765.

Ting, T. C. T., 1996. Anisotropic elasticity: theory and applications. Oxford

University Press.

Vellender, A., Mishuris, G. S., 2012. Eigenfrequency correction of bloch-

floquet waves in a thin periodic bi-material strip with cracks lying on

perfect and imperfect interfaces. Wave Motion 49(2), 258–270.

Vellender, A., Mishuris, G. S., Movchan, A. B., 2011. Weight function in a

bimaterial strip containing an interfacial crack and an imperfect interface.

application to a bloch-floquet analysis in a thin inhomogeneous structure

with cracks. Multiscale Model. Simul. 9(4), 1327–1349.

Vellender, A., Mishuris, G. S., Piccolroaz, A., 2013. Perturbation analysis

for an imperfect interface crack problem using weight function techniques.

Int. J. Solids Struct. 50(24), 4098–4107.

147



Wells, A. A., 1961. Unstable crack propagation in metals: Cleavage and

fracture. Proceedings of the crack propagation symposium, Cranfield, 210–

230.

Williams, M. L., 1959. The stresses around a fault or crack in dissimilar

media. Bul. Seismol. Soc. Am. 49, 199–204.

Willis, J. R., 1971. Fracture mechanics of interfacial cracks. J. Mech. Phys.

Solids 19, 353–368.

Willis, J. R., Movchan, A. B., 1995. Dynamic weight function for a moving

crack. I. Mode I loading. J. Mech. Phys. Solids, 319–341.

Wu, X. R., Carlsson, A. J., 1991. Weight functions and stress intensity factor

solutions. Pergamon Press, Oxford.

Yang, W., Suo, Z., Shih, C. F., 1991. Mechanics of dynamic debonding. Proc.

Mathematical and Physical Sciences 433, 679–697.

Yu, H. H., Suo, Z., 2000. Intersonic crack growth on an interface. Proc. R.

Soc. Lond 456, 223–246.

Zheng, X. J., Glinka, G., Dubey, R. N., 1996. Stress intensity factors and

weight functions for a corner crack in a finite thickness plate. Eng. Frac.

Mech. 54(1), 49–61.

148



Appendices

A1: Stroh matrices for orthotropic materials

In this appendix explicit expressions are given for the material matrices ob-

tained through use of the Stroh formalism for orthotropic materials. For the

static case (used in Chapter 4) expressions are given for both the in-plane

and out-of-plane components as both are required. The expressions given

for the dynamic material consider only the in-plane expressions as this is the

case studied in Chapter 3.

Static

The results reported here are found in Morini et al. (2013b). The matrices

H and W have the form

H =


H11 −iβ

√
H11H22 0

iβ
√
H11H22 H22 0

0 0 H33

 , (6.1)

W =


δ1H11 iγ

√
H11H22 0

−iγ
√
H11H22 δ2H22 0

0 0 δ3H33

 . (6.2)
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For orthotropic materials it is possible to obtain explicit expressions for the

these matrices in terms of the components of the material compliance tensors.

The out-of-plane components are given by

H33 =
[√

S44S55

]
I
+
[√

S44S55

]
II
, δ3 =

[√
S44S55

]
I
−
[√
S44S55

]
II

H33

. (6.3)

The in-plane components of H can be found in Morini et al. (2013b) and

are given as

H11 =
[
2nλ1/4

√
S11S22

]
I

+
[
2nλ1/4

√
S11S22

]
II
, (6.4)

H22 =
[
2nλ−1/4

√
S11S22

]
I

+
[
2nλ−1/4

√
S11S22

]
II
, (6.5)

β =

[
S12 +

√
S11S22

]
II
−
[
S12 +

√
S11S22

]
I√

H11H22

, (6.6)

where

λ =
S11

S22

, n =
√

(1 + ρ)/2, ρ =
2S12 + S66

2
√
S11S22

.

The in-plane components of W were also given in Morini et al. (2013b):

δ1 =

[
2nλ1/4

√
S11S22

]
I
−
[
2nλ1/4

√
S11S22

]
II

H11

, (6.7)

δ2 =

[
2nλ−1/4

√
S11S22

]
I
−
[
2nλ−1/4

√
S11S22

]
II

H22

, (6.8)

γ =

[
S12 +

√
S11S22

]
I

+
[
S12 +

√
S11S22

]
II√

H11H22

. (6.9)

Dynamic

For orthotropic materials the matrices Q,R and T are given by

Q =

C11 − ρv2 0

0 C66 − ρv2

 ,R =

 0 C12

C66 0

 ,T =

C66 0

0 C22

 .

(6.10)
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Previously, expressions were found for the Stroh matrices for an orthotropic

bimaterial with a crack propagating at a constant speed, v, in Yang et al.

(1991), where the following parameters were defined

κγβ =
Cγβ
C66

, α1 =

√
1− ρv2

C11

, α2 =

√
1− ρv2

C66

,

ξ = α1α2

√
κ11

κ22

, and s =
α2

2 + κ11κ22α
2
1 − (1 + κ12)2

2α1α2
√
κ11κ22

.

It is seen that the eigenvalues, with positive imaginary part, of equation (3.6)

are given by

µ1,2 =


i
√
ξ
(√

s+1
2
±
√

s−1
2

)
, for s ≥ 1

√
ξ
(
±
√

1−s
2

+ i
√

1+s
2

)
, for − 1 < s < 1.

(6.11)

Using the same normalisation as used in Yang et al. (1991) the matrices A

and L are given by

A =

 1 −λ−1
2

−λ1 1

 , (6.12)

L = C66

 µ1 − λ1 1− µ2λ
−1
2

κ12 − κ22µ1λ1 κ22µ2 − κ12λ
−1
2

 , (6.13)

where

λi =
κ11α

2
1 + µ2

i

(1 + κ12)µi
.

Yang et al. (1991) then found an expression for the Hermitian matrix B

B = iAL−1 =
1

C66R

κ22α
2
2

√
2(1 + s)/ξ i(κ22 − κ12α

2
2/ξ)

−i(κ22 − κ12α
2
2/ξ) κ22

√
2ξ(1 + s)

 , (6.14)

where R is the generalized Rayleigh wave function given by

R = κ22(κ22ξ − 1 + α2
2)− κ2

12α
2
2/ξ.
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The Rayleigh wave speed of a material can be found by solving the equation,

R = 0.

The bimaterial matrix H has the form

H =

 H11 −iβ
√
H11H22

iβ
√
H11H22 H22

 . (6.15)

From (6.14) it is seen that

H11 =

[
κ22α

2
2

√
2(1 + s)/ξ

C66R

]
I

+

[
κ22α

2
2

√
2(1 + s)/ξ

C66R

]
II

,

H22 =

[
κ22

√
2ξ(1 + s)

C66R

]
I

+

[
κ22

√
2ξ(1 + s)

C66R

]
II

,

β
√
H11H22 =

[
κ22 − κ12α

2
2/ξ

C66R

]
II

−
[
κ22 − κ12α

2
2/ξ

C66R

]
I

.

In order to compute the weight functions the eigenvalues and eigenvectors of

(3.8) are required. Using the representation (6.15) it is found that

w =

 − i
2

1
2

√
H11

H22

 , ε =
1

2π
ln

(
1− β
1 + β

)
. (6.16)

Another key component for calculating the weight functions is the bima-

terial matrix W; using (6.14) it is seen that

W =
√
H11H22

δ1

√
H11

H22
iγ

−iγ δ2

√
H22

H11

 , (6.17)

where

γ =

[
κ22−κ12α2

2/ξ

C66R

]
I

+
[
κ22−κ12α2

2/ξ

C66R

]
II√

H11H22

,

δ1 =

[
κ22α2

2

√
2(1+s)/ξ

C66R

]
I

−
[
κ22α2

2

√
2(1+s)/ξ

C66R

]
II

H11

,
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δ2 =

[
κ22
√

2ξ(1+s)

C66R

]
I

−
[
κ22
√

2ξ(1+s)

C66R

]
II

H22

.

A2: Fourier transforms of matrices A(ξ),B(ξ)

and C(ξ)

This appendix describes the method used to derive the inverse Fourier trans-

forms for the in-plane problem seen in Chapter 4.

General procedure

The method outlined in Mishuris et al. (2013) is used in order to perform the

Fourier inversion of the matrices A(ξ), B(ξ) and C(ξ) and is reported here.

The denominator D defined in (4.63) is factorised in the following manner

D = d2(|ξ|+ ξ1)(|ξ|+ ξ2), (6.18)

where

ξ1,2 =
d1 ∓

√
d2

1 − 4d2d0

2d2

> 0, (6.19)

The typical term to invert is of the form

F (ξ) =
FR + F †R|ξ|

D
+ i

FI sign(ξ) + F †I ξ

D
, (6.20)

The function F has the following property

F (−ξ) = F (ξ), (6.21)
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therefore, the Fourier inversion can be obtained as

F−1[F (ξ)] =
1

π
Re

∫ ∞
0

F (ξ)e−ix1ξdξ

=
1

π

∫ ∞
0

Re[F (ξ)] cos(x1ξ)dξ +
1

π

∫ ∞
0

Im[F (ξ)] sin(x1ξ)dξ,

(6.22)

where for ξ > 0

Re[F (ξ)] =
FR + F †Rξ

D
=

2∑
j=1

F
(j)
R

d2(ξ2 − ξ1)(ξ + ξj)
, (6.23)

Im[F (ξ)] =
FI + F †I ξ

D
=

2∑
j=1

F
(j)
I

d2(ξ2 − ξ1)(ξ + ξj)
, (6.24)

and

F
(1)
R,I = FR,I − F †R,Iξ1, F

(2)
R,I = −FR,I + F †R,Iξ2. (6.25)

The following formulae can now be used∫ ∞
0

Re[F (ξ)] cos(x1ξ)dξ =
2∑
j=1

F
(j)
R

d2(ξ2 − ξ1)

∫ ∞
0

cos(x1ξ)

ξ + ξj
dξ

= − 1

d2(ξ2 − ξ1)

2∑
j=1

F
(j)
R Tξj(x1), (6.26)

∫ ∞
0

Im[F (ξ)] sin(x1ξ)dξ =
2∑
j=1

F
(j)
I

d2(ξ2 − ξ1)

∫ ∞
0

sin(x1ξ)

ξ + ξj
dξ

= − 1

d2(ξ2 − ξ1)

2∑
j=1

F
(j)
I Sξj(x), (6.27)

where functions Sξj(x) and Tξj(x) are defined as in (4.33) and (4.34), respec-

tively.

Finally the Fourier inversion of the general term F (ξ) as given as

F−1[F (ξ)] = − 1

πd2(ξ2 − ξ1)

{
2∑
j=1

F
(j)
R Tξj(x1) +

2∑
j=1

F
(j)
I Sξj(x1)

}
. (6.28)
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Fourier inversion of A(ξ).

For ξ > 0, A(ξ) can be written as

A(ξ) =
1

2D
(AR + A†Rξ) +

i

2D
(AI + A†Iξ)

=
1

2d2(ξ2 − ξ1)

{
2∑
j=1

1

ξ + ξj
A

(j)
R + i

2∑
j=1

1

ξ + ξj
A

(j)
I

}
, (6.29)

where

AR = H11H22

δ1 + βγ 0

0 δ2 + βγ

 , A†R =

 δ1H11K22 −δ2H22K12

−δ1H11K12 δ2H22K11

 ,

AI =
√
H11H22

 0 −H22(δ2β + γ)

H11(δ1β + γ) 0

 ,

A†I = γ
√
H11H22

−K12 −K22

K11 K12

 ,

A
(1)
R = AR −A†Rξ1

=

H11(H22(δ1 + βγ)− δ1K22ξ1) δ2H22K12ξ1

δ1H11K12ξ1 H22(H11(δ2 + βγ)− δ2K11ξ1)

 ,

A
(2)
R = −AR + A†Rξ2

=

−H11(H22(δ1 + βγ)− δ1K22ξ2) −δ2H22K12ξ2

−δ1H11K12ξ2 −H22(H11(δ2 + βγ)− δ2K11ξ2)

 ,

A
(1)
I = AI −A†Iξ1

=
√
H11H22

 γK12ξ1 −H22(βδ2 + γ) + γK22ξ1

H11(βδ1 + γ)− γK11ξ1 −γK12ξ1

 ,
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A
(2)
I = −AI + A†Iξ2

=
√
H11H22

 −γK12ξ2 H22(βδ2 + γ)− γK22ξ2

−H11(βδ1 + γ) + γK11ξ2 γK12ξ2

 .

The Fourier inverse of the matrix A(ξ) is given by

F−1[A(ξ)] = − 1

2πd2(ξ2 − ξ1)

{
2∑
j=1

A
(j)
R Tξj(x1) +

2∑
j=1

A
(j)
I Sξj(x1)

}
. (6.30)

Fourier inversion of the matrix B(ξ).

For ξ > 0 B(ξ) can be written as

B(ξ) =
1

D
(BR + B†Rξ) +

i

D
(BI + B†Iξ)

=
1

d2(ξ2 − ξ1)

{
2∑
j=1

1

ξ + ξj
B

(j)
R + i

2∑
j=1

1

ξ + ξj
B

(j)
I

}
, (6.31)

where

BR = β
√
H11H22

0 −1

1 0

 , B†R = 0,

BI =

−H22 0

0 −H11

 , B†I =

−K22 K12

K12 −K11

 ,

B
(1)
R = BR −B†Rξ1 = β

√
H11H22

0 −1

1 0

 ,

B
(2)
R = −BR + B†Rξ2 = β

√
H11H22

 0 1

−1 0

 ,

B
(1)
I = BI −B†Iξ1 =

−H22 +K22ξ1 −K12ξ1

−K12ξ1 −H11 +K11ξ1

 ,

B
(2)
I = −BI + B†Iξ2 =

H22 −K22ξ2 K12ξ2

K12ξ2 H11 −K11ξ2

 .
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The Fourier inverse of the matrix B(ξ) is then

F−1[B(ξ)] = − 1

πd2(ξ2 − ξ1)

{
2∑
j=1

B
(j)
R Tξj(x1) +

2∑
j=1

B
(j)
I Sξj(x1)

}
. (6.32)

Fourier inversion of the matrix C(ξ).

For ξ > 0 C(ξ) can be written as

C(ξ) =
1

D
(CR + C†Rξ) +

i

D
(CI + C†Iξ)

=
1

d2(ξ2 − ξ1)

{
2∑
j=1

1

ξ + ξj
C

(j)
R + i

2∑
j=1

1

ξ + ξj
C

(j)
I

}
, (6.33)

where

CR =

H11H22(1− β2) 0

0 H11H22(1− β2)

 , C†R =

 H11K22 −H22K12

−H11K12 H22K11

 ,

CI = 0, C†I = β
√
H11H22

 K12 K22

−K11 −K12

 ,

C
(1)
R = CR −C†Rξ1

=

H11(H22(1− β2)−K22ξ1) H22K12ξ1

H11K12ξ1 H22(H11(1− β2)−K11ξ1)

 ,

C
(2)
R = −CR + C†Rξ2

=

−H11(H22(1− β2)−K22ξ2) −H22K12ξ2

−H11K12ξ2 −H22(H11(1− β2)−K11ξ2)

 ,

C
(1)
I = CI −C†Iξ1 = β

√
H11H22ξ1

−K12 −K22

K11 K12

 ,
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C
(2)
I = −CI + C†Iξ2 = −β

√
H11H22ξ2

−K12 −K22

K11 K12

 .

The Fourier inverse of the matrix C(ξ) is then

F−1[C(ξ)] = − 1

πd2(ξ2 − ξ1)

{
2∑
j=1

C
(j)
R Tξj(x1) +

2∑
j=1

C
(j)
I Sξj(x1)

}
. (6.34)

A3: Extended Stroh matrices for poling direc-

tion parallel to the x2-axis

Full analytic expressions are given for the matrices obtained through use of

the extended Stroh matrices for a transversely isotropic material with poling

direction parallel to the x2-axis. In such a case the general form of the matrix

B = iAL−1 is

B =


B11 iB12 iB14

−iB12 B22 B24

−iB14 B24 B44

 . (6.35)

The expressions for these components were derived in Hwu (2008).

The following components of the compliance tensor: S, piezoelectric
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strain/voltage tensor: g, and dielectric non-permittivity: β, are introduced:

Ŝ ′11 =
C22

C11C22 − C2
12

− (e21C11 − e22C12)2

C∗[C11C22 − C2
12]

,

Ŝ ′12 = − e21e22[C2
11 − C2

12]

C∗[C11C22 − C2
12]

+
ω22C12

C∗
,

Ŝ ′22 =
e2

21[C2
11 − C2

12]

C∗[C11C22 − C2
12]

+
ω22C11

C∗
,

Ŝ ′66 =
ω11

e2
16 + ω11C44

,

ĝ′21 =
e21C11 − e22C12

C∗
,

ĝ′22 =
e22C11 − e21C12

C∗
,

ĝ′16 =
e16

e2
16 + ω11C44

,

β̂′11 =
C44

e2
16 + ω11C44

,

β̂′22 =
C11C22 − C2

12

C∗
,

where

C∗ = (e2
21 + e2

22)C11 − 2e21e22C12 + ω22[C11C22 − C2
12].

Through using the Lekhnitskii formalism, extended to piezoelectric ma-

terials, Hwu (2008) found that the eigenvalues, µ, are found through the

equation

l4ρ2 −m2
3 = 0, (6.36)

where l4, ρ2 and m3 are functions of µ and are given by

l4 = Ŝ ′11µ
4 + (2Ŝ ′12 + Ŝ ′66)µ2 + Ŝ ′22, m3 = −(ĝ′21 + ĝ′16)µ2 − ĝ′22,

ρ2 = −(β̂′11µ
2 + β̂′22). (6.37)

This sextic equation must be solved numerically but is easily shown to have
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roots of the form

µ2 = α2 + iβ2, µ3 = −α2 + iβ2, µ4 = iβ4. (6.38)

With the eigenvalues known, Hwu (2008) proceeded to find explicit ex-

pressions for the components of B. It was shown that

B11 = 2Ŝ ′11Im{µ2
2η
?
2 + (µ2

4η2 − µ2
2η4)}/λ,

B22 = 2Im{[γ2µ
?
2µ4η4 + (γ2µ

2
4 − γ4µ

2
2)η?2]/µ2µ4}/λ,

B44 = −2β̂′11Im{µ2µ
?
2η2 + µ2µ4(η2 − η4)}/λ,

B24 = 2β̂′11Im{µ2µ
?
2η2η4 + µ2µ4η

?
2(η2 − η4)}/λ,

B12 = Ŝ ′12 + 2Re{[γ2µ4η2 + (γ4µ2η2 − γ2µ4η4)]/µ2µ4}/λ,

B14 = −ĝ′16 + 2β̂′11Re{µ2η2η̄2 − η2η4(µ2 − µ4)}/λ,

where

λ = 2Re{µ?2η2 + (µ4η2 − µ2η4)},

γk = Ŝ ′22 + ĝ′22ηk, ηk =
l4(µk)

m3(µk)
, for k=2,4.

A4: Explicit expressions for matrices M and

N

In this appendix explicit expressions for the matrices M and N are quoted.

They have the form

M =
1

2D
(M′ + isign(ξ)M′′) , (6.39)

N =
|ξ|
D

(N′ + isign(ξ)N′′) , (6.40)
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where

D = H2
14H22 +H2

12H44 +H2
24H11 −H11H22H44 − 2H14H12H24. (6.41)

The matrices M′,M′′,N′ and N′′ have the form

M′ =


M11 0 0

0 M22 M24

0 M42 M44

 , M′′ =


0 M12 M14

M21 0 0

M41 0 0

 , (6.42)

N′ =


N11 0 0

0 N22 N24

0 N24 N44

 , N′′ =


0 N12 N14

−N12 0 0

−N14 0 0

 , (6.43)

where

M11 = W11(H2
24 −H22H44) +W12(H12H44 −H14H24)−W14(H12H24 −H14H22),

M22 = W12(H12H44 −H14H24)−W22(H11H44 −H2
14)−W24(H14H12 −H11H24),

M44 = W14(H14H22 −H12H24)−W24(H14H12 −H11H24)−W44(H11H22 −H2
12),

M24 = W14(H14H24 −H12H44) +W24(H11H44 −H2
14) +W44(H14H12 −H11H24),

M42 = W12(H12H24 −H14H22) +W22(H14H12 −H11H24) +W24(H11H22 −H2
12),

M12 = W12(H22H44 −H2
24)−W22(H12H44 −H14H24) +W24(H12H24 −H14H22),

M14 = W14(H2
24 −H22H44) +W24(H12H44 −H14H24)−W44(H12H24 −H14H22),

M21 = W11(H12H44 −H14H24)−W12(H11H44 −H2
14)−W14(H14H12 −H11H24),

M41 = W11(H12H24 −H14H22) +W12(H14H12 −H11H24) +W14(H11H22 −H2
12),

N11 = H22H44 −H2
24, N22 = H11H44 −H2

14,

N44 = H11H22 −H2
12, N24 = H11H24 −H14H12,

N12 = H12H44 −H14H24, N14 = H12H24 −H14H22.

161


