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Abstract

Classical feedback control and system theory are playing an important role in modelling,

controlling and analysing complex devices in many branches of engineering. Recent devel-

opments like quantum computers and miniaturisation of existing applications and devices are

increasing the importance of the ability to control systems with quantum effects. Efforts have

been made recently to extent the simplicity and power of the language of classical control

theory to quantum mechanical systems. Within this framework of “Quantum Feedback Net-

works” we are investigating two problems.

The first problem concerns the enhancement of squeezed states. It has been observed that

the squeezing effect of squeezing devices can be enhancement by measurement based feed-

back techniques or use of optical cavities. We are investigating the possibility of feedback

enhanced squeezing using coherent feedback control. Considered is a static ideal squeezing

devices interacting with a single mode cavity undergoing coherent feedback using a beam

splitter. We show that the overall squeezing of the output depends on the beam-splitter’s

reflectivity and that we are thus able to enhance the squeezing by choosing an appropriate

configuration of the beam-splitter.

In the second part we investigate the question of compatibility of a rigorous approach to

the adiabatic elimination of some degrees of freedom of a quantum mechanical systems and

instantaneous feed-forward and feedback limits for quantum mechanical networks. The com-

mutativity of both limits is not obvious but frequently assumed in quantum optics. We show

that both limit procedures are instances of Schur complements and prove the commutativity

of both limits by generalising a statement about successive Schur complements.
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1
Introduction

This thesis will investigate two problems, both taking place within the framework of quantum

feedback networks.

The framework or language of quantum feedback networks extends ideas of (classical) con-

trol theory to systems with quantum mechanical components. Classical control theory deals

with the problem of designing a device that controls some dynamical system (usually referred

to as the plant). In order to be able to design such a controller, tools and techniques are re-

quired to model and analyse the system. Linear control theory, which has emerged in the last

century, offers here a rich and useful set of tools and results [11].
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1. Introduction

The notion of input/output systems and the language of block diagrams, which is used to

represent networks of such systems, are very useful. They allow for reduction of bigger,

complex systems to smaller, more easy to handle sub-components. In classical control theory

however, these tools only extend scalar system variables who’s dynamics are described by

ordinary or partial differential equations. In quantum mechanics however, system variables

(observables) are described by operators on Hilbert spaces.

One can establish a notion of quantum input/output systems similar to the classical case of

linear systems and networks of such systems [22, 25, 28, 24]. Here we consider a specific

class of open quantum systems. The dynamics of the joint system are described by quantum

stochastic differential equations [49, 44]. Similarly to the classical case, all information about

a single quantum input/output system can be encoded in some system matrices. One can

build networks of systems by providing the parameter of the individual input/output systems

(blocks) and the rules how the blocks are connected with each other. It has been shown that

many problems in classical control theory can also be generalised or extended to the quantum

case [67, 68, 47, 34, 71, 35, 12].

Due to the highly interdisciplinary background of the topic we will present an overview over

the involved topics and introduce into the main concepts needed to understand the framework

of quantum feedback networks. This will take place in Part I. In Part II we will deal with two

problems. The first problem is an application of quantum coherent feedback which explores

the possibilities of feedback enhanced squeezing.

A squeezed state is a minimum uncertainty state in which the variance in one quadrature is

reduced on the cost of an increase in the other quadrature. There is a specific class of optical

devices which are capable of creating these states. We explore how the squeezing of such an

device can be enhanced by placing the device into a feedback arrangement.

The second problem concerns the compatibility of a procedure called adiabatic elimination

with results about instantaneous feed-forward and feedback limits in quantum feedback net-

9



1. Introduction

works. The adiabatic elimination limit eliminates some degrees of freedom of a specific class

of quantum open systems. The feedback or feed-forward limit reduces internal degrees of

freedom when building networks of quantum components. It is not obvious that both limit

procedures commute, however, this assumption has been made frequently in quantum optics1.

1[37]
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Part I.

Background and Introductory Material
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2
Principles of Quantum Mechanics

2.1. Introduction

In the first chapter we are going to introduce the basic notions and notations of quantum

mechanics.

The theory of quantum mechanics has emerged from the discovery of the probabilistic be-

haviour of subatomic particles at the beginning of the 20th century. Modelling this behaviour

mathematically required a generalisation of the classical probabilistic set-up. This is due to

the fact, that in the classical probability theory, distinct random variables are allowed to as-

sume values of the sample space at the same time. However, one of the principles of quantum

12



2. Principles of Quantum Mechanics

mechanics is the fact that a measurement of a physical quantity of the system will perturb the

system. When measuring certain pairs of physical quantities of quantum systems, represented

by quantum random variables X and Y , the order of measurement will matter. Measuring the

variable X before Y will lead to a different outcome than measuring Y first. A mathematical

representation of this concepts requires a generalisation of Kolmogorov’s probability theory.

In the following sections we are going to introduce the basic principles of the mathematical

theory used to describe quantum mechanics. The content of this chapter is based on and

following standard literature on the topic as for example [19], [56], [40] and [49].

2.2. The Quantum Probability Space

2.2.1. The finite dimensional case

We set the stage for a quantum probabilistic set-up with random variables, assuming a finite

number of possible outcomes by choosing some Hilbert space H with n = dim H < ∞. We

consider the set of projections P(H) on H and call the elements E ∈ P(H) events. Further

we fix a positive operator with unit trace ρ and call ρ a state. The triple (H,P(H), ρ) is then

called a quantum probability space. If ρ is a one dimensional projection, it is called a pure

state, otherwise a mixed state. The set of all states ρ is convex, with the pure states being

the extreme points. Each mixed state can therefore be expressed as a convex combination of

pure states. Let O(H) be the set of self-adjoint operators in H. The elements X ∈ O(H) are

called random variables or observables. Note that the self-adjoint operator O(H) correspond

to Hermitian matrices for dim H < ∞.

We now arrive at the following interpretation for the objects introduced so far. The number

tr {ρE} is interpreted as the probability that the event E, represented as an element of P(H),

occurs for the state ρ. One can show that 0 ≤ tr {ρE} ≤ 1, ∀ E ∈ P(H).

13



2. Principles of Quantum Mechanics

Applying the spectral theorem one can show that any observable X ∈ O(H) assumes a

spectral decomposition X =
∑

j xjEj , where the xj are the eigenvalues of X and Ej is the

projection into the eigenspace associated with xj , which is interpreted as the event that X

takes value xj .

We can compute the quantity

tr {ρX} = tr






ρ
∑

j

xjEj






=
∑

j

xj tr {ρEj} .

This is just the expectation of a random variable taking discrete values xj with probability

pj = tr {ρEj}, consistent with classical probability theory. We can state the k-th moment of

X by tr
{

ρXk
}

and compute the characteristic function of X with tr
{

ρeitX
}

.

2.2.2. The infinite dimensional case

In the previous section we considered random variables assuming a finite number of possible

outcomes. However, simple examples of physical systems will give rise to the need of consid-

ering the general case, i.e. random variables taking an infinite number of outcomes. Following

the set-up introduced in the previous section, this will lead to an infinite dimensional system

space H and previous concepts will have to be generalised.

We will not go into the details and refer to [49] and [55] for further reading. We note that

we will deal in the infinite case with separable Hilbert spaces. The state of the system will

be described by those trace class operators, which are of unit trace and positive. Furthermore,

the Hermitian matrices constituting the random variables of the set-up become the self-adjoint

operators on H.

14



2. Principles of Quantum Mechanics

2.2.3. The Bra-Ket Notation

We adopt the bra-ket notation introduced by Dirac. We denote a vector in H with |ψ〉 and the

write for the linear map 〈φ, ·〉 = 〈φ| such that

〈φ, ψ〉 = 〈φ|ψ〉 .

Given some observable X ∈ O(H) and some pure state ρ = |u〉 〈u| and we see that we can

write the expected value of X in state ρ as

tr {ρX} = 〈u,Xu〉 = 〈u|X |u〉 .

This notation is useful when labelling the vectors in a meaningful manner. Choose for

example some operator X ∈ O(H) with eigenvalues xj and eigenvectors |ψk〉. Using bra-ket

notation we can label the eigenvectors with the associated eigenvalues, i.e. we can write |xj〉

for the eigenvector of X associated with eigenvalue xj such that X |xj〉 = xj |xj〉. Computing

the expected value of X in the state |xj〉 then yields tr {ρX} = 〈xj|X |xj〉 = xj . Given two

state vectors |φ〉 and |ψ〉, the quantity 〈ψ|φ〉 is called the transition amplitude and its square

|〈ψ|φ〉|2 is interpreted as the transition probability from state |ψ〉 to state |φ〉.

2.3. Dynamics

There are three equivalent ways to describe the dynamic evolution of a quantum mechanical

system. The first, called the Schrödinger picture, describes the evolution by a time dependent

state ρt whereas the observables remain time independent. In the Heisenberg picture, the

observables are time dependent X = Xt and the state of the system remains constant. In the

interaction picture, we follow the Schrödinger evolution of the state for a given free dynamics,

but have the Observables evolve according to a perturbation of this dynamics: this is useful if

15



2. Principles of Quantum Mechanics

we wish to examine the dynamics with respect to a fixed reference evolution.

Let t → Ut be a strongly continuous one-parameter group taking values in U(H), then

by Stone’s theorem there exists a unique observable H (called the Hamiltonian) such that

limt→0 t
−1 (Ut − 1)φ = −iHφ for all φ in the domain of H . In the finite dimensional case,

the domain will be all of H, and we have Ut = e−itH . We will also use this notation in the

infinite dimensional case.

2.3.1. The Schrödinger picture

As mentioned before, in the Schrödinger, the state of the system is taken to be time dependent

and the observables remain constant.

For a unitary dynamics Ut = e−itH , the state evolves as ρt = UtρU
†
t , such that the expected

value of the observable X in state ρt is given by tr {ρtX}. The differential equation is the von

Neumann equation
d

dt
ρt = i [ρt, H] .

If ρt is a pure state (a one dimensional projection), it can be expressed at ρt = |Utu(0)〉 〈Utu(0)| =

|u(t)〉 〈u(t)| and we obtain the Schrödinger equation

d

dt
|u(t)〉 = −iH |u(t)〉 . (2.3.1.1)

2.3.2. The Heisenberg picture

In the Heisenberg picture, the observables are taken to be time dependent and the state of the

system is assumed to be fixed. We obtain the corresponding formulation by rearranging the

equations obtained for the Schrödinger picture for some pure state ρt = |u(t)〉 〈u(t)|

tr {ρtX} = 〈Utu(0), XUtu(0)〉 =
〈

u(0),
(

U †
tXUt

)

u(0)
〉

= 〈u(0)|Xt |u(0)〉 .

16



2. Principles of Quantum Mechanics

One can deduce the differential equation for Xt = U †
tXUt

d

dt
Xt = −i [Xt, H] , (2.3.2.1)

with X0 = X .

2.4. Variance and Minimum Uncertainty

We defined the expected value of the observableX in state ρ in the previous section and denote

it and the k-th moment of X with

〈X〉ρ = tr {ρX} ,
〈

Xk
〉

ρ
= tr

{

ρXk
}

.

We can now define the mean-square deviation of X in state ρ by

(∆X)2
ρ =

〈

X2
〉

ρ
− 〈X〉2

ρ .

Let X, Y ∈ O(H), then the variances of X and Y in state ρ obey the following inequality

(∆X)2
u (∆Y )2

u ≥ 1

4
| 〈u|i [X, Y ]u〉 |2 . (2.4.0.2)

This inequality is know as Heisenberg’s minimum uncertainty principle. If the observables X

and Y do not commute we see that the the product of the variances can not be smaller than a

certain minimum.

17



2. Principles of Quantum Mechanics

2.5. The Quantum Harmonic Oscillator

We introduce an important example for the quantum mechanical system, the quantum har-

monic oscillator. We take take the system space Hosc = L2(❘). In Schrödinger representation

we introduce the unbounded operators

(p̂ψ) (x) = x · ψ(x), (2.5.0.3)

(q̂ψ) (x) = −i~ ∂
∂x
ψ(x). (2.5.0.4)

We call p̂ the momentum and q̂ the position operator. By choosing some test function f(x) ∈

L2 (❘), we can compute the cannonical commutation relation of p̂ and q̂, [q̂, p̂] f(x) = i~f(x)

and obtain

[q̂, p̂] = (q̂p̂− p̂q̂) = i~. (2.5.0.5)

The Hamilton operator from Equation (2.3.1.1) and Equation (2.3.2.1) for a particle with

mass m, interacting with some field can be specified by

Ĥ =
1

2m
p̂2 +

1

2
mω2q̂2. (2.5.0.6)

This must be compared with the energy of a classical mass m, interacting with a spring with

spring constant k, E = 1
2
mv2 + 1

2
kx2 = 1

2m
p2 + V (q). The quantum mechanical equivalent

by taking p → p̂ and q → q̂ yields

Ĥ =
1

2m

∂2

∂2q
+ V (q).

One can introduce new operators a and a† by setting

â =
1

2
(q̂ + ip̂) , â† =

1

2
(q̂ − ip̂) , (2.5.0.7)

18



2. Principles of Quantum Mechanics

such that

q̂ = â+ â†, q̂ =
1

i

(

â− â†
)

.

The commutator
[

â, â†
]

can be obtained from Equation (2.5.0.5) and Equation (2.5.0.7)

[

â, â†
]

= 1.

The operators â and â† can be used to reformulate Equation (2.5.0.6) and hence we obtain the

Hamilton operator:

H = ~ω
(

ââ† +
1

2

)

= ~ω
(

N̂ +
1

2

)

,

when defining the operator N̂ = ââ†. We can compute the commutators
[

Ĥ, â
]

= −~ωâ and
[

Ĥ, â†
]

= ~ωâ†.

2.5.1. Number states

We are now going to investigate the eigenvectors and eigenvalues of the Hamiltonian Ĥ . The

operators q̂2 = q̂q̂ and p̂2 = p̂p̂ are positive, whence Ĥ is positive. As mentioned before, Ĥ

can be interpreted as the energy of the system and that motivates us to call the eigenvectors

|E〉 with eigenvalues E the energy vectors and energy eigenvalues. These eigenvectors and

eigenvalues of Ĥ can be investigated by using above commutation relations and computing

Ĥ |E〉 = E |E〉 ,

Ĥâ† |E〉 = â†
(

Ĥ + ~ω
)

|E〉 = (E + ~ω) â† |E〉 ,

Ĥâ |E〉 = â
(

Ĥ − ~ω
)

|E〉 = (E − ~ω) â |E〉 . (2.5.1.1)

This motivates the following set-up. We call the energy eigenstates of N̂ = ââ† (recall that

Ĥ = ~ω
(

N̂ + 1
2

)

) the number states and label them with |n〉. If we denote the energy

eigenstate associated with eigenvector |n〉 by En = ~ω
(

n+ 1
2

)

then we see that Ĥ |n〉 =
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En |n〉 and Ĥâ† |n〉 = Ĥ |n+ 1〉 by above computation. Similarly we see that Ĥâ |n〉 =

Ĥ |n− 1〉 . Since no eigenvalue may become negative (Ĥ is a positive operator), one can

see that the lowest possible n must be n = 0 and that â |0〉 = 0, i.e. â annihilates the vac-

uum. We therefore see that â† |0〉 = |1〉 and the eigenvalues of the number operator are

the whole numbers n = 0, 1, 2, . . .. Similarly the energy eigenvalues E of Ĥ are given by

E = 1
2
~ω, ~ω

(

1 + 1
2

)

, ~ω
(

2 + 1
2

)

, . . ., and we therefore see that the energy of the system

assumes discrete values.

This motivates us to call the operator â the annihilation operator, since it reduces the energy

of the system by one quanta ~ω and to call â† the creation operator since it increases the

systems energy by ~ω. The vectors |n〉 form an orthonormal basis of H. As seen above

they can be deduced iteratively by application of operators â†. To determine an appropriate

normalisation we compute ‖â |n〉‖ 2 = 〈n| â†a |n〉 = n and
∥
∥
∥â† |n〉

∥
∥
∥

2 = 〈n| ââ† |n〉 = n + 1,

and thus we see that

â† |n〉 =
√
n+ 1 |n+ 1〉 , (2.5.1.2)

â |n〉 =







√
n |n− 1〉 if n > 0

0 if n = 0
. (2.5.1.3)

The normalised vectors |n〉 can be computed from the vacuum |0〉 by taking

|n〉 =
â†n

√
n!

|0〉 . (2.5.1.4)

One can show that the number states are orthogonal and complete in H. Let |m〉 and |n〉 be

number states, then we have that

〈m|n〉 = δm,n,
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and the resolution of identity

1 =
∑

n≥0

|n〉 〈n| . (2.5.1.5)

2.5.2. Coherent States

In the previous section we investigated the eigenstates of the operator N̂ = â†â. We are now

investigating the eigenstates of the annihilation operator â

â |α〉 = α |α〉 .

Using the resolution of identity for the number states Equation (2.5.1.5) one can expand the

above equation in terms of the number states |n〉. Normalising the states |α〉 then yields

|α〉 = e− 1
2

|α|2 ∑

n≥0

αn

√
n!

|n〉 = e− 1
2

|α|2 ∑

n≥0

αnâ†n

n!
|0〉 .

These normalised states |α〉 are know as coherent states. These states are not orthogonal, but

complete and we find the resolution of identity in terms of |α〉 with

∫ d2α

π
|α〉 〈α| = 1.

One important property of coherent states is that they are those state for which equality holds

in Equation (2.4.0.2), i.e.

∆q̂ρ∆p̂ρ =
√

1
2

| i [q̂, p̂] |2 = 1
2
~,

where ρ = |α〉 〈α|.

We can compute the characteristic functions of q̂, p̂ and N̂ in state |α〉 using q̂ = â + â†,
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p̂ = 1
i

(

â− â†
)

, 〈α|α〉 = 1, 〈n|m〉 = δn,m and the Baker-Campbell-Hausdorff theorem

〈α| eitq̂ |α〉 = 〈α| eit(â+â†) |α〉 = 〈α| eitâ†

eitâe− t2

2 |α〉 ,

= ei(α+α∗)t− t2

2 , (2.5.2.1)

〈α| eitp̂ |α〉 = e(α−α∗)t− t2

2 , (2.5.2.2)

〈α| eitN̂ |α〉 = 〈n|
( ∞∑

n=0

(α∗)n

√
n!

)

eitN̂

( ∞∑

m=0

(α)m

√
m!

)

|m〉 ,

= 〈n|
( ∞∑

n=0

(α∗)n

√
n!

)( ∞∑

m=0

(αeit)
m

√
m!

)

|m〉 e−|α|2 ,

= e|α|2(eit−1). (2.5.2.3)

Equation (2.5.2.1) and (2.5.2.2) can be compared with the characteristic function of a normal

distribution

φ(t;µ, σ2) = eitµ− 1
2

σ2t2

whereas Equation (2.5.2.3) can be compared with the characteristic function of the Poisson

distribution

φ(t;λ) = eλ(eit−1).

We thus see that p̂ and q̂ in a coherent state |α〉 are Gaussian with mean values 2 Reα and

2 Imα respectively and variance σ2 = 1. The number operator N̂ assumes a Poisson distribu-

tion with intensity λ =| α |2.
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3
Quantum Open Systems

3.1. Introduction

We introduced the basic concepts of quantum mechanics in the last chapter and considered

single, isolated systems. When modelling physical systems however, that system will never

be isolated but always be interacting with its environment. If we focus on certain aspects of a

system it might sometimes be sufficient to take the system to be isolated. For the more general

case however, we consider quantum mechanical systems interacting with its environment, i.e.

open systems. The approach presented in this chapter takes some general quantum mechanical

system, interacting with an environment, modelled by a collection of harmonic oscillators.
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3. Quantum Open Systems

In the following chapter we give some initial motivation and presents the approach by K. R.

Parthasarathy [49].

Quantum stochastic calculus was introduced in 1984 by Hudson and Parthasarathy [31] as

a generalization of Ito’s theory of stochastic integration to processes based on Fock space.

The motivation was to give explicit constructions of unitary dilations of quantum dynamical

semigroups (semigroups of completely positive, identity preserving maps). In this way, con-

crete models of markovian open quantum systems could be built. An alternative formulation

of quantum stochastic calculus was given by Gardiner and Collett [18] based on the scattering

models from quantum field theory. Their approach used input and output processes. While the

input processes gave an equivalent way of describing the noisy dynamics driving the system,

the output processes allowed for a deeper interpretation and application of models. In particu-

lar, the outputs could be fed into a second system as input [17], or measured so as to perform

an indirect measurement of the system [4].

Stochastic integrals of adapted processes with respect to the fundamental Fock space mar-

tingale processes of creation, annihilation and conservation, were defined by Hudson and

Parthasarathy, and a quantum Ito formula established. The most relevant constructions for

quantum physics are the unitary adapted processes. This was again originally investigated in

[31] for the case of bounded coefficients, with subsequent extension to the unbounded case

due to Chebotarev, Fagnola and Frigerio [8], and Fagnola [13]. For more information, see the

monograph of Holevo [29].

3.2. Classical Itō Calculus

3.2.1. Stochastic Processes

Before introducing the quantum stochastic calculus, we have a look at the Itō calculus for

classical stochastic processes.
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Definition 3.1 (Stochastic Process) A family of random variables taking values in (❘t)t∈I

for some index set I , on probability space (Ω,F ,P) is called a real stochastic process.

Given a real-valued stochastic process W (.), we can compute the finite dimensional distri-

butions Prob (W (t1) ∈ A1,W (t2) ∈ A2, . . . ,Wtn
∈ An). An important example, the Wiener

(Brownian motion) process, is given by t1, . . . , tn > 0 and Borel subsets of ❘, A1, . . . , An,

Prob (W (t1) ∈ A1,W (t2) ∈ A2, . . . ,Wtn
∈ An)

=
∫

An

. . .
∫

A1

dxn . . . dx1ρ(xn, tn|xn−1, tn−1) . . . ρ(x2, t2|x1, t1)ρ(x1, t1|0, 0)

where we take 0 < t1 < t2 < . . . < tn, see Fig. 3.1 and we have

ρ (x2, t2|x1, t1) =
1

√

2π (t2 − t1)
e

− 1
2

(x2−x1)2

(t2−t1) .

This is a Markov process, starting at the origin, with ρ as a transition mechanism.

The transition mechanism ρ is Gaussian. We note that the process enjoys the following

properties [48]

• W (0) = 0, almost surely

t

W (t)

t1 t2 t3 t4 tn

A1 A2 A3 A4 An

Figure 3.1.: A sample path of the Wiener process W (t) over time t. What is the probability
that the process at time ti takes values in interval Ai, where i = 1, ..., n?
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x1

√
t
2 −

t
1

t1 t

W (t)

t2

Figure 3.2.: Distribution of the increment ∆W (t) is a normal distribution with expectation
zero and standard deviation

√
t2 − t1.

• Independent increments:

For t1 < t2 < t3 < t4 the increments Wt4 −Wt3 and Wt2 −Wt1 are independent

• Increments are stationary and Gaussian

Wt2 −Wt1 ∼ N (0, t2 − t1)

• W (.) almost surely continuous in time

Since W (t) ∼ N (0, t2 − t1) we find that the first two moments of ∆W (t) = W (t+ ∆t) −

W (t) are given by

❊ [∆W (t)] = 0, ❊
[

(∆W (t))2
]

= ∆t.

We note that for 0 < s ≤ t, ∆W (t) is independent of W (s). Thus, we have similarly for some

function g(W (t)) due to independence of W (t) and ∆W (t)

❊ [g(W (t))∆W (t)] = ❊ [g(W (t))]❊ [∆W (t)] = 0,

and

❊

[

g(W (t)) (∆W (t))2
]

= ❊ [g(W (t))]❊
[

(∆W (t))2
]

= ❊ [g(W (t))] ∆t.

We recall the notion of a σ-algebra F(X) generated by a random variable X , this is the
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smallest σ-algebra containing all the sets of the form {ω ∈ Ω | X(ω) ∈ A} for A a Borel

subset of ❘. More generally the σ-algebra generated by a collection of random variables is the

smallest σ-algebra containing the σ-algebras generated by each of the random variables.

For the Wiener process W (.), let Ft] be the σ-algebra generated by {W (s) | 0 ≤ s ≤ t}.

We have the nested property for t0 < t1 < t2 < · · · ,

Ft0] ⊂ Ft1] ⊂ . . . ⊂ Ftn].

The family (Ft])t≥0 is called a Wiener filtration.

We say that a process X(.) is adapted to the filtration
(

Ft]

)

t≥0
if X(t) is Ft] measurable for

each t ≥ 0.

One can show that given some finite-mean processX(.) adapted to the Wiener filtration, we

have

❊ [Xt∆W (t)] = ❊ [Xt]❊ [∆W (t)] = 0

and

❊

[

Xt(∆W (t))2
]

= ❊ [Xt] ∆t.

3.2.2. The Wiener Itō Integral

We note L2(Ω,F ,P) is a Hilbert space with inner product

〈X, Y 〉 =
∫

Ω
X∗(ω)Y (ω)P(ω) = ❊ [X∗Y ] .

We define an integral of the form

∫ T

S
X(t)dW (t)
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which we take as being approximated by finite sums

In
[S,T ] =

∑

n

Xtn
· (W (tn+1) −W (tn))

where S < t1 < t2 < . . . < tn = T . If
∫ T

S ❊ [X(t)2] dt < ∞ and X is adapted then we can

show that this sum converges as n → ∞ in the L2 sense, that is, there exists I[s,T ] such that

lim
n→∞

❊

[(

In
[S,T ] − I[S,T ]

)2
]

= 0.

One can show that due to arguments similarly to the ones presented before, we have that

❊

[
∫ T

S
XtdW (t)

]

= 0, ❊





(
∫ T

S
XtdW (t)

)2


 =
∫ T

S
❊

[

X2
t

]

dt.

3.3. Quantum Stochastic Calculus

3.3.1. The Fock Space

Let H be a separable Hilbert space. We denote by

H⊗n := ⊗n
i=1H = H ⊗ H ⊗ . . .⊗ H

︸ ︷︷ ︸

n times

the n-fold tensor product of H. Similarly for a sequence of vectors uj , j = 1, . . . , n we define

n⊗

j=0

uj = u1 ⊗ . . .⊗ un

and if ∀j, u = uj we denote the n-fold tensor product of the vector u by

u⊗n = u⊗ . . .⊗ u
︸ ︷︷ ︸

n times

.
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Let Sn be the group of all permutations of the set {1, . . . , n}, and define for all σ ∈ Sn, Uσ by

Uσ (u1 ⊗ u2 ⊗ . . .⊗ un) = uσ−1(1) ⊗ uσ−1(2) ⊗ . . .⊗ uσ−1(n).

We then introduce the symmetric and anti-symmetric tensor products of H by

Hsn =
{

u ∈ H⊗n|Uσu = u ∀σ ∈ Sn

}

H a©n =
{

u ∈ H⊗n|Uσu = sig (σ)u ∀σ ∈ Sn

}

with sig (σ)) = ±1 depending on whether the permutation σ is even or odd.

We can then define the following Fock spaces [49]

Γfree(H) =
∞⊕

n=0

H⊗n,

Γsym(H) =
∞⊕

n=0

Hsn,

Γanti(H) =
∞⊕

n=0

H a©n.

Here H⊗0 is identified with the 1-dimensional Hilbert space ❈. Physically, the symmetric

case corresponds to boson systems and the anti-symmetric case to fermion systems. The n’th

term in the direct sum corresponds to the n-particle space, i.e. the space describing a system

with n-particles where the case n = 0 corresponds to the vacuum space, i.e. absence of any

particles. We denote the vacuum vector with Ω = 1 ⊕ 0 ⊕ 0 ⊕ . . .. The respective n-particle

spaces are taken to be orthogonal.

We shall from now on deal only with the case of the symmetric Fock space for boson

systems.
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3.3.2. Exponential Vectors

We are now going to introduce the Fock space equivalent to coherent vectors as for the quan-

tised harmonic oscillator, that is, exponential vectors. Let u, v ∈ H and u⊗0 = 1, then the

exponential vector ε(u) ∈ Γsym(H) with test function u is given by

ε(u) =
∞⊕

n=0

1√
n!
u⊗n.

The vacuum vector Ω = 1 ⊗ 0 ⊗ 0 ⊗ . . . is then given by ε(0). Especially we note the identity

〈ε (u) , ε (v)〉 = e〈u,v〉.

We note that the subspace generated by exponential vectors with test functions in a dense

subset of H is dense in Γsym(H).

3.3.3. The Weyl Operator

Let H be some separable Hilbert space. Consider an affine mapping of some element v ∈ H

for w ∈ H and some unitary operator U ∈ U(H) of the form

v 7→ Uv + w.

The map is parameterised by pairs (w,U) ∈ H ×U(H). The space H ×U(H) is an Euclidean

group with group action

(v2, U2) ◦ (v1, U1) = (U2v1 + v2, U2U1).
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We can define an operator W(v, U) : H × U(H) 7→ Γsym (H) by the action

W(v, U)ε (f) = e− 1
2

||a||2−〈v,Uf〉ε (Uf + v) .

W(v, U) is called they Weyl operator associated with the pair (v, U) ∈ H × U(H). For

u1, u2 ∈ H and U1, U2 ∈ U(H) we have

W(u1, U1)W(u2, U2) = e−i Im 〈u1,U1u2〉W((u1, U1) ◦ (u2, U2)). (3.3.3.1)

Note the special cases U = 1 and v = 0, i.e. W(v, 1) and W(0, U) corresponding to pure

translation and rotation respectively. We set

W (u) := W(u, 0), Γ(U) := W(0, U),

where Γ(U) is called the second quantisation of U . Using Eq. 3.3.3.1 we see that for u ∈ H,

U, V ∈ U(H) and s, t ∈ ❘ we have

Γ(U)Γ(V ) = Γ(UV ),

W (su)W (tu) = W ((t+ s)u).

The first relation shows that for any one parameter unitary semi-group Ut = e−itH in H there

exists a corresponding one-parameter group {Γ(Ut) | t ∈ ❘} in Γsym (H). The second relation

shows that for every element u ∈ H we obtain a one-parameter group {W (tu) | t ∈ ❘} in

Γsym (H). In both cases, together with the fact that the Weyl operator is strongly continuous in

its arguments, Stone’s theorem shows that there exist unique self-adjoint operators p(u) and
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λ(H) such that

W (tu) = e−itp(u),

Γ(e−itH) = e−itλ(H).

By setting q(u) = −ip(u) we can define the operators

a(u) =
1

2
(q(u) + ip(u)) , a†(u) =

1

2
(q(u) − ip(u)) .

The properties of these operators will be presented in the next section.

Further one can write for any bounded operator H ∈ B(H)

λ(H) = λ
(

1
2

(

H +H†
))

+ iλ
(

1
2i

(

H −H†
))

, λ(H†) = λ(H)†.

λ(H) is called the differential second quantisation of H .

3.3.4. The Creation and Annihilation Operators

In the previous section we obtained operators a(u), a†(u) and λ(H) for u ∈ H, H ∈ B(H).

We show that a(u) and a†(u) admit properties that justify calling them annihilation and cre-

ation operators respectively.

Let H be some Hilbert space and Γsym (H) the symmetric Fock space over H. For vectors

u, v ∈ Γsym (H) one can show that a†(u) maps a†(u) : Hsn → Hsn+1 by

a†(u)v⊗n =
√
n+ 1

n∑

j=0

v⊗r ⊗ u⊗ v⊗n−r.

The action of the creator is therefore taking some element from the n particle space H⊗n and

mapping into the n+ 1 particle space where the sum produces again a completely symmetric
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vector. Similarly we have for the annihilation operator a(h) : H⊗n → H⊗n−1

a(u)v⊗n =
√
n 〈u, v〉 v⊗n−1.

The annihilation operator maps a vector of the n particle space into the n − 1 particle space

and produces again a completely symmetric vector.

As a direct consequence of this definition we see that

a(u)ε (0) = 0,

as in the case for the single quantised harmonic oscillator.

The action of the creation and annihilation operator on an exponential vector ε (f) with

u, v ∈ H are given by

a†(u)ε (v) =
d

dt
ε (v + tu)

∣
∣
∣
∣
∣
t=0

,

a(u)ε (v) = 〈u, v〉 ε (v) .

The canonical commutation relation reads as

[

a(u), a†(v)
]

= 〈u, v〉 ·1,

[a(u), a(v)] =
[

a†(u), a†(v)
]

= 0.

3.3.5. Filtrations & Adapted Processes

In the following section we are going to investigate the notion of filtrations and adapted pro-

cesses on Fock spaces, as seen in the previous section for the classical Itō calculus .

Let in the following h = L2(0,∞) the Hilbert space of square integrable functions f(t)

taking arguments in t ∈ [0,∞) and let hsn be the n-fold symmetric tensor product of h.
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We consider a decomposition of h of the form L2(0,∞) = L2(0, t′) ⊕ L2(t′,∞). One way

to visualise this decomposition is Fig. 3.3, i.e.

f(t) = f(0,t′)(t) ⊕ 0 + 0 ⊕ f(t′,∞)(t)

with f(a,b)(t) being the restriction of f to the interval (a, b). We then have f(0,t′)(t) ∈ L2(0, t′)

∞ =

f(t)

0 ∞t′
+

f(t)

0 ∞
t′

f(t)

0

Figure 3.3.: Decomposition of a square-integrable function on [0,∞) into parts concentrated
on [0, t′) and [t′,∞).

and f(t′,∞)(t) ∈ L2(t′,∞). The L2-norm of f(t) can then be expressed as

∫ ∞

0
| f(t) |2 dt =

∫ t′

0
| f(0,t′)(t) |2 dt+

∫ ∞

t′
| f(t′,∞)(t) |2 dt

since cross terms vanish, in other words we see directly that this also shows that every element

of L2(0, t′) is orthogonal to every element in L2(t′,∞).

This decomposition into past and future spaces L2(0, t′) and L2(t′,∞) extends to Fock

spaces by noting that for two Hilbert spaces H1 and H2 we have that

Γ (H1 ⊕ H2) = Γ (H1) ⊗ Γ (H2) .

Let 0 < t1 < t2 < . . . < tn < ∞ and set Ht] = L2(0, t), H[s,t] = L2(s, t) and H[t = L2(t,∞).
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Similarly as above we can yield a partition of H = Γsym (L2(0,∞)) of the form

H = Ht1] ⊕ H[t2,t3] ⊕ . . .⊕ H[tn
.

Let h0 = Hsys be a complex separable Hilbert space and define

H = h0 ⊗ F .

We identify for 0 < s < t

H0] = h0, Ht] = h0 ⊗ Ft], H[t = F[t, F[s,t] = Γsym

(

H[s,t]

)

.

Due to the factorisation property of the Fock space we have

H = Ht1] ⊗ H[t2,t3] ⊗ . . .⊗ H[tn
.

Let Bt] be the set of all linear bounded operators that act trivially on the space H[t, i.e.

Bt] =
{

X ⊗ ✶[t | X ∈ B(Ht]), ✶[t is the identity in H[t

}

.

h0 is called the initial space and plays in the physical interpretation of the mathematical

set-up the role of the Hilbert space representing the system which is driven by quantum noises

living on the Fock space Γsym (H). {Bt]}t≥0 is then an increasing family of non-commutative

von Neumann algebras and plays the role of the filtration as encountered before.

Loosely speaking, a family of observables {Xt}t≥0 ∈ B (H) is then an adapted process if,

for each t ≥ 0, Xt acts trivially on the future space H[t.
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Denote with
(

f✶[0,t]

)

(s), f ∈ H the function

(

f✶[0,t]

)

(s) =







f(s) if s ∈ [0, t]

0 if s /∈ [0, t]
,

and introduce the operator

Π[0,t] : [0,∞) → B(H)

Π[0,t] : f 7→ f✶[0,t].

Consider the creation, annihilation and differential quantisation operator a†(u), a(u) and λ(H)

for u ∈ H = L2(0,∞), H ∈ B(H). We introduce as three important examples of adapted

processes the creation-, annihilation and conservation process B†(t), B(t) and Λ(t) by setting

u(s) = ✶[0,t], H = Π[0,t] and obtain

B†(t) = a†(✶[0,t]) =
∫ t

0
b†(s)ds,

B(t) = a(✶[0,t]) =
∫ t

0
b(s)ds,

Λ(t) = λ(Π[0,t]) =
∫ t

0
b†(s)b(s)ds = Λ∗(t).

Here, b†(s) and b(s) are the formal derivatives of B†(s) and B(s) with singular canonical

commutation relation
[

b(t), b†(s)
]

= δ(t− s).

The action of B†(t) and B(t) on exponential vectors ε (u), u ∈ H are given by

B(t)ε (u) =
(∫ t

0
u(s)ds

)

ε (u) ,

B†(t)ε (u) =
∂

∂x
ε
(

u+ x✶[0,t]

)

|x=0,
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and we see that ε (v) is an eigenvector of B(t) with eigenvalue
∫ t

0 v(s)ds.

We can compute the expectations with respect to the exponential vectors ε (u) and ε (v) and

these are given by

〈ε (f) |B(t)ε (g)〉 =
(∫ t

0
g(s)ds

)

〈ε (f) |ε (g)〉 ,
〈

ε (f) |B†(t)ε (g)
〉

=
(∫ t

0
f ∗(s)ds

)

〈ε (f) |ε (g)〉 ,

〈ε (f) |Λ(t)ε (g)〉 =
(∫ t

0
f ∗(s)g(s)ds

)

〈ε (f) |ε (g)〉 .

The canonical commutation relations for the integrated processes B(t), B†(t) and Λ(t)

translate into

[B(s), B(t)] =
[

B†(s), B†(t)
]

= [Λ(s),Λ(t)] = 0, ∀ s, t
[

B(s), B†(t)
]

= s ∧ t,

[B(s),Λ(t)] = B(s ∧ t),

[

Λ(s), B†(t)
]

= B†(s ∧ t),

where s ∧ t = min(s, t).

3.3.6. Integration of Stochastic Processes

The stage is now set to introduce integrals of adapted quantum stochastic processes.

Let E,F,G,H be adapted locally square-integrable processes on h0 ⊗ F . Define finite

future pointing differentials for a partition of time 0 ≤ t1 < t2 < . . . ≤ tN = t of the form

∆B(tn) = B(tn+1) −B(tn),

∆B†(tn) = B†(tn+1) −B†(tn),

∆Λ(tn) = Λ(tn+1) − Λ(tn).
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For a partition of H = h0 ⊗ F of the form H = Htn] ⊗ H[tn,tn+1] ⊗ H[tn+1 we obviously

have due to adaptedness of P (tn) ∈ {E(tn), F (tn), G(tn), H(tn) that M(tn)} acts only non-

trivially on Htn] whereas ∆D(tn) ∈ {∆B(tn),∆B†(tn),∆Λ(tn)} acts only non-trivially on

H[tn,tn+1]. As a consequence we have

[P (tn),∆D(tn)] = 0

∀ tn and every of the processes and differentials P (tn) and ∆D(tn). By similar arguments we

can see that

[

∆B†(tn),∆B(tm)
]

= [∆B(tn),∆B(tm)] =
[

∆B†(tn),∆B†(tm)
]

= 0

∀ m 6= n.

We now consider as an approximation for a stochastic integral the following finite sum

M(N)(t) =
N∑

n=1

{

E(tn)∆Λ(tn) + F (tn)∆B(tn) +G(tn)∆B†(tn) +H(tn)∆tn
}

,

where ∆tn = tn+1 − tn and E(t), F (t), G(t) and H(t) are assumed to be simple processes,

that is there exists an increasing sequence tn, t0 = 0 with tn → ∞ such that each of the

processes are of the form

F =
∞∑

n=0

Fn✶[tn,tn+1].

One can show that MN(t) converges as N → ∞ (with minn | tn+1 − tn |→ 0) to a quantum

Itō integral

M(t) =
∫ t

0

{

E(s)dΛ(s) + F (s)dB(s) +G(s)dB†(s) +H(s)ds
}

,
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that is

lim
N→∞

‖{MN(t) −M(t)}u⊗ ε (f)‖2 = 0.

We are now demonstrate the basic properties of the quantum Itō integral. Let

MN(t) =
∑

n

F (tn)∆B(tn), M̃N(t) =
∑

n

G̃(tn)∆B†(tn)

such that in the limit N → ∞, MN(t) → ∫ t
0 F (s)dB(s) and M̃N(t) → ∫ t

0 G̃(s)dB†(s). We

consider the product MN(t)M̃N(t)

MN(t)M̃N(t) =
∑

n,m

F (tn)∆B(tn)G̃(tm)∆B†(tm).

By splitting up the sum into the cases m > n, n > m and m = n and evaluating the average

in a state u⊗ ε (f) one can show that

MN(t)M̃N(t) =
∑

n

{

F (tn)M̃N(tn)∆B(tn) +MN(tn)G̃(tn)∆B†(tn) + F (tn)G̃(tn)∆tn
}

,

or, in the limit N → ∞,

M(t)M̃(t) =
∫ t

0
F (s)M̃(s)dB(s) +

∫ t

0
M(s)G̃(s)dB†(s) +

∫ t

0
F (s)G̃(s)ds.

Equivalently we can write

d
[

M(t)M̃(t)
]

= dM(t)M̃(t) +M(t)dM̃(t) + dM(t)dM̃(t),

using dM(t) = F (t)dB(t), dM̃(t) = G̃(t)dB†(t) and obtaining the product rule for Itō

differentials dB(t)dB†(t) = dt. By similar means we can compute the rules for other pairs of

differentials and obtain the Itō product table
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dB dΛ dB† dt
dB 0 dB dt 0
dΛ 0 dΛ dB† 0
dB† 0 0 0 0
dt 0 0 0 0

Table 3.1.: Itō Table 1

3.3.7. The Hudson & Parthasarathy Quantum Stochastic

Differential Equation

We obtain a special class of Quantum Stochastic Differential Equation by the following theo-

rem:

Theorem 3.2 (Hudson & Parthasarathy QSDE) Let L, S,H be bounded operators in h0

where S is unitary andH is self-adjoint. Then there exists a unique unitary operator valued

adapted regular process U = {U(t) | t ≥ 0} satisfying

dU = U
{

LdB† + (S − 1) dΛ − L∗SdB −
(

1

2
L∗L+ iH

)

dt
}

, U(0) = 1 (3.3.7.1)

Using the solutionU(t) to Eq. 3.3.7.1 we can describe the evolution of operatorsX ∈ B(h0)

in the Heisenberg picture by defining

jt(X) := U(t)∗ (X ⊗ I)U(t), t ≥ 0.

{jt(X) | t ≥ 0} is then an adapted regular process satisfying the Heisenberg-Langevin equa-

tion

djt(X) = jt(S
∗ [X,L])dB† + jt (S∗XS −X) dΛ + jt ([L∗, X]S) dB

+jt(i [H,X])dt− 1
2

{L∗L+XL∗L− 2L∗XL} dt.
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3.3.8. Squeezing

Let us introduce the operators

Σ̂ = â2, Σ̂∗ = (â∗)2. (3.3.8.1)

We find that

[â, Σ̂∗] = 2â∗, [Σ̂, â∗] = 2â (3.3.8.2)

and

[Σ̂, Σ̂∗] = 4N̂ + 2,

[N̂ , Σ̂∗] = 2Σ̂∗,

[Σ̂, N̂ ] = 2Σ̂. (3.3.8.3)

In particular, the set consisting of linear combinations of I, N̂ , Σ̂ and Σ̂∗ is a Lie algebra with

commutator as bracket.

Definition 3.3 For complex ε, we define the squeezing operator by

Ŝ (ε) = exp
{

1

2
εΣ̂∗ − 1

2
ε∗Σ̂

}

. (3.3.8.4)

This is a unitary family and we note that

Ŝ (ε)−1 = Ŝ (ε)∗ = S (−ε) .

Lemma 3.4 Let ε have the polar form reiθ, then

Ŝ (ε)∗ âŜ (ε) = cosh (r) â+ sinh (r) eiθâ∗. (3.3.8.5)

41



3. Quantum Open Systems

Proof:

Let â (u) = Ŝ (uε)∗ âŜ (uε) for real u, then

d

du
â (u) = εâ (u)∗ ,

and so d2

du2 â (u) = r2â (u). This is a simple 2nd order ODE with operator-valued initial

conditions â (0) = â and d
du
â (u) |u=0 = εâ∗ yielding the solution (3.3.8.5).

�

Definition 3.5 The transformation â → cosh (r) â+sinh (r) eiθâ∗ preserves the canonical

commutation relations and is referred to as a Bogoliubov transformation.

Lemma 3.6 Let ε have the polar form reiθ, then the squeezing operator may be placed in

the following Wick ordered form

Ŝ (ε) = ζΣ̂∗

(cosh r)−N̂+ 1
2 (ζ∗)−Σ̂ , (3.3.8.6)

where ζ = exp
{

1
2
eiθ tanh r

}

.

3.4. Preliminary Results

3.4.1. A Trotter-Kato Theorem

The following results by Bouten et al. [6] are concerning convergence of QSDEs for a singular

perturbation under certain conditions on the parametrisation of the QSDE. Their proof of the
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result regarding singular perturbation makes use of a modified version of the Trotter-Kato

theorem, proved as well in [6]. We shall quote both. The results presented in this section will

be needed in the Chapter on Adiabatic Elimination.

The system under consideration is modelled by a sequence of QSDEs, parametrised by

some scaling constant k

dU
(k)
t = U

(k)
t







n∑

jl=1

(

N
(k)
jl − δjl

)

dΛjl
t +

n∑

j=1

M
(k)
j dBj†

t +
n∑

j=1

L
(k)
j dBj

t +K(k)dt






. (3.4.1.1)

We are interested in the limit regime as k → ∞ and ask if there exists a limit QSDE of the

form

dUt = Ut







n∑

jk=1

(Njk − δjk) dΛjk
t +

n∑

j=1

MjdB
j†
t +

n∑

j=1

LjdB
j
t +Kdt






. (3.4.1.2)

Lemma 3.7 For α, β ∈ ❈
n define T

(α,β)
t : H0 → H0 such that

〈

u, T
(α,β)
t v

〉

= e−(|α|2+|β|2) t
2

〈

u⊗ ε(α✶[0,t]), U(t)v ⊗ ε(β✶[0,t])
〉

, ∀u, v ∈ H0, t ≥ 0.

Then T
(α,β)
t is a strongly continuous contraction semigroup on H0, and the generator L(α,β)

of this semigroup satisfies Dom(L(α,β)) ⊃ D0 such that for u ∈ D0

L(α,β)u =

(

α∗
jNjkβk + α∗

jMj + Ljβj +K − | α |2 + | β |2
2

)

u.

The same results holds for T
(k;α,β)
t : H → H and L(k;α,β), defined by replacing Ut by U

(k)
t

and making the obvious modifications. In particular Dom(L(k;α,β)) ⊃ D.
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Theorem 3.8 (Trotter-Kato) Let H be a Hilbert space and let H0 ⊂ H be a closed sub-

space. For each k ∈ ◆, let T
(k)
t be a strongly continuous contraction semi-group on H with

generator L(k). Moreover, let Tt be strongly continuous contraction semi-group on H0 with

generator L. Let D0 be a core for L. The following conditions are equivalent:

i) For all Ψ ∈ D0 there exists Ψ(k) ∈ Dom L(k) such that

Ψ(k) k→∞−→ Ψ, L(k)Ψ(k) k→∞−→ LΨ

ii) For all T < ∞ and ψ ∈ H0

lim
k→∞

sup
0≤t≤T

∥
∥
∥T

(k)
t ψ − Ttψ

∥
∥
∥ = 0

The following quantum version of the Trotter-Kato theorem allows for making a link be-

tween convergence of the solution of the QSDE U
(k)
t and convergence of the generator of the

unitary evolution L(k;αβ) which in turn is determined by the parametrisation of the QSDE.

Theorem 3.9 (QSDE Trotter-Kato, [6]) The following conditions are equivalent

a) For every α, β ∈ ❈
n and u ∈ D0 there exists u(k) ∈ Dom(L(k;α,β)) such that

u(k) k→∞−→ u, L(k;α,β)u(k) k→∞−→ L(α,β)u

b) For all T < ∞ and Ψ ∈ H0

lim
k→∞

sup
0≤t≤T

∥
∥
∥U

∗(k)
t Ψ − U∗

t Ψ
∥
∥
∥

2
= 0.

Moreover, if D is a core for all L(k;α,β), k ∈ ◆, then we can always choose {u(k)} ⊂ D
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In order to archive convergence for the singular perturbation problem further assumptions

on the parameter of the QSDE parameter must be imposed:

Assumtions:

1) There exists operators Y, Y †, A,A†, B,B†, Fi, F
†
i , Gi, G

†
i ,Wij,W

†
ij with common invariant

domain D such that

K(k) = k2Y +kA+B, L
(k)
i = kFi +Gi, N

(k)
ij = Wij, ∀k ∈ ◆, 1 ≤ i, j ≤ n. (3.4.1.3)

2) There is a closed subspace H0 ⊂ H such that:

a) P0D ⊂ D

b) Y P0 = 0 on D

c) There exist Ỹ , Ỹ † with common invariant domain D, such that Ỹ Y = Y Ỹ = P1

d) F †
j P0 = 0 on D, ∀1 ≤ j ≤ n

e) P0AP0 = 0 on D

where P0 and P1 are the orthogonal projections onto H0 and H⊥
0 respectively and with

choice of the dense domain D0 = P0D in H0.

3) (Limit coefficients) Define operators on H0

K = P0(B − AỸ A)P0,

Li = P0(Gi − AỸ Fi)P0,

Mk = −
∑

l=1

P0Wkl(G
†
j − F †

j Ỹ A)P0,

Nkl =
∑

j=1

P0Wkj(F
†
j Ỹ Fl + δjl)P0.
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We are now ready to present the main result of [6]:

Theorem 3.10 Under the assumptions as above, the singular perturbed equations (3.4.1.1)

converge to the limit equations (Equation 3.4.1.2) on H0

lim
k→∞

sup
0≤t≤T

∥
∥
∥U

(k)∗
t ψ − U∗

t ψ
∥
∥
∥ = 0, ∀ψ ∈ H0 ⊗ F .

3.4.2. QSDEs with Unbounded Operators

The quantum stochastic calculus presented so far allowed for integration of operator processes

with the condition that the operators have to be bounded. However, in practice and physical

examples important operators such as the creation and annihilation operators are in fact un-

bounded.

For these cases the results of Fagnola [13, 14, 15, 16] are of help. We quote [6] for a version

of the results :

Consider the initial space H and a fixed dense domain D0 ⊂ H. Suppose that ∀ u ∈ D0, l ∈

◆ there exists a constant c(u, l) such that

1. ∀u ∈ D0 and for some ǫ > 0 independent of u

∞∑

l=1

c(u, l)ǫl < ∞

2. ∀l ∈ ◆ and all choices of X(1), . . . , X(l), where X(.) is one of K,K†, Li, L
†
i ,Mi,M

†
i ,

Njk, N
†
jk (as encountered in the previous subsection), we have ∀u ∈ D0

‖X(1) . . . X(l)‖ ≤ c(u, l)
√

(l +m)!,
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where m is the number of occurrences of K or K† in the squence X(1) . . . X(l).

Then there exists a unique operator valued cocycle {Ut | t ≥ 0} which satisfies the QSDE Eq.

(3.3.7.1).
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4
Classical Control Theory

4.1. Introduction

The topic of interest for this work, Quantum Feedback Control, combines elements of Quan-

tum Mechanics with elements of Control Theory, a branch of engineering.

To prepare the ground for this interdisciplinary subject we provide a quick introduction into

classical control theory in the following chapter.

Control theory is concerned with the control of some dynamical system, in literature usually

called the plant or the system.
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If we think of a dynamical system, for example a room equipped with a radiator and a

thermometer (see Figure 4.1), we see that we can influence the system’s state (room tempera-

ture) by adjusting the valve of the radiator and we get some output by reading off the current

temperature of the thermometer.

C

Control variable

Output variable

Figure 4.1.: Example for a dynamical system. A room heated by a radiator, with some con-
trol input adjusting the valve of the radiator and some output, i.e. the current
temperature.

Clearly changing the input, i.e. adjusting the valve, changes the output, i.e. the temperature.

But this will not happen instantaneously, there will be some dynamical behaviour.

If we want the output to exhibit a specific behaviour, for example we could want to room

temperature to be always at exactly 20◦ Celsius, we will have to adjust the actuator, the valve,

in a very specific manner.

One strategy to chose the specific valve setting might be to assemble a table, pairing a valve

setting with a resulting room temperature.This table might be assembled using a mathematical

model of the system. But the accuracy of this approach will be quite limited. On the one hand

the mathematical model used to compute the pairs of the table will not be exact but only be an

approximatio and errors have to be expected. On the other hand the system will be influenced

by it’s environment. In the given example, a specific valve setting will result in very different
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room temperatures depending on how warm it is outside, i.e. the form of pertubation of the

system by it’s evrionment will heavily influence the accuracy of this kind of control.

Above described strategy is called feedforward control. In general we have some dynamical

system with some inputs u(t), some disturbance signal w(t), some outputs y(t) and a system

state x(t) with some law for the dynamical evolution of the state ẋ(t) = f(u(t), x(t)), see Fig.

4.2. The output will then be given by some law y(t) = g(x(t), u(t)).

Plant
x(t)

disturbance signal w(t)

output value y(t)input signal u(t)

Controller

set value r(t)

Figure 4.2.: Block diagram for a plant, controlled by a feedforward controller. We chose some
set value or reference value r(t), i.e. the value we want the output to assume.
The controller computes a corresponding input signal or actuating value for the
system. In reality the plant will be disturbed by it’s environment such that there
will be some final fixed error between set value and output value.

One could try to reduce the fixed error between reference value and output value for the

set-up described above by providing the controller with knowledge about the current error! In

this case we take the output value, compare it to the reference value and use result as an input

for the controller. By this approach the controller will be able to react to a fixed error due to

some disturbance or perturbation of the system by it’s environment or due to some errors in

the underlying mathematical model.

Under the assumption that the systems are linear, we can evaluate the difference between

both control strategies quantitatively by computing the transfer functions (see Section 4.3 ) for

both cases.
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Plant
x(t)

disturbance signal w(t)

output value y(t)input signal u(t)

Controller

set value r(t)

-
+

error e(t)

Figure 4.3.: Block diagram for a plant, controlled by a feedback controller. The output value
is compared to the set value e(t) = r(t) − y(t). The current error e(t) is used as
an input for the controller which computes an appropriate input signal u(t) for the
system.

4.1.1. Feedforward Control

We assume that the plant is described by a transfer function (obtained by taking the Laplace

transform of ODE describing the model) G(s) such that the ratio of the (Laplace transformed)

output to input ratio is given by
YG(s)

UG(s)
= G(s).

We consider an overall output Y (s) of the form signal + perturbation W (s), Y (s) = YG(s) +

W (s). The input signal is computed by some controller with control law U(s) = K(s)R(s)

where R(s) is the reference signal. We thus obtain

Y (s) = G(s)U(s) +W (s) = G(s)K(s)R(s) +W (s),

where the error between reference and output signal is given by

E(s) = (1 −G(s)K(s))R(s) +W (s).
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The steady state error when taking limt→∞ is given by

e(∞) = lim
s→0

s · [(1 −G(s)K(s))R(s) +W (s)] .

We can readily see that we are able to minimize by an appropriate choice of K(s) the error

due to the reference signal R(s) but not the error due to the disturbance W (s).

4.1.2. Feedback Control

We repeat the same calculation as above, this time for an feedback arrangement as in Fig.

4.3. The plant is again described by the transfer function G(s), the output is given by Y (s) =

G(s)U(s) +W (s) but this time the control law is given by

U(s) = K(s) (R(s) − Y (s)) ,

which corresponds to the set-up described in Fig. 4.3 such that

Y (s) = G(s)K(s)R(s) −G(s)K(s)Y (s) +W (s),

Y (s) =
G(s)

1 +G(s)K(s)
R(s) +

1

1 +G(s)K(s)
W (s).

The output error will be given by

E(s) =

(

1 − G(s)

1 +G(s)K(s)

)

R(s) +
1

1 +G(s)K(s)
W (s),

and we see that the choice of controller K(s) influences the error contribution by both the

reference value and disturbance signal, i.e. we are able to minimize the contribution of both

the reference signal and the disturbance signal to the output error by an appropriate controller.
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4.1.3. Linear and Non-Linear Control Theory

The basis for many techniques of design of the controller is the mathematical model of the sys-

tem being subject to the control. The derived model can be given, depending on the underly-

ing physics, in different mathematical forms as for example as ordinary differential equations

(ODEs), partial differential equations (PDEs) or stochastic differential equations (SDEs).

Furthermore these differential equations can be linear or non-linear.

Control problems involving non-linear differential equations are in general difficult to solve

and a ’general theory’ for such systems doesn’t exist.

The most rich and general theory has been developed for linear, time invariant systems

described by linear ODEs with constant coefficients and it is this class of systems we are

going to discuss in this chapter.

4.2. The State Space Representation

There are two standard ways to represent and work with linear time-invariant (LTI) systems.

The state space and the transfer function. In the following we are going to discuss the state

space representation of a dynamical system.

If we consider a mathematical description of the system given by n linear, in general not

homogeneous ODEs with constant coefficients

ẋ1(t) = a11x1(t) + a12x2(t) + . . .+ a1nxn(t) + b11u1(t) + b12u2(t) + . . .+ b1nun(t),

...

ẋn(t) = an1x1(t) + an2x2(t) + . . .+ annxn(t) + bn1u1(t) + bn2u2(t) + . . .+ bnnun(t),

we can collect the coefficients into matrices A and B and collect the variables xj(t), their
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derivatives ẋj(t) and the inputs uk(t) into vectors ẋ(t), x(t), u(t) and arrive at the following

form

ẋ(t) = Ax(t) + Bu(t).

Note that it is sufficient to consider first order derivatives since higher order derivatives can be

reduced by introducing new variables x(n) = yn, x
(n−1) = yn−1, . . . such that

x(n)(t) = b1x
(n−1)(t) + b2x

(n−2)(t) + b3x
(n−3)(t) + . . .+ bn−1x

(1)bnx(t)

turns into

ẏ(t) = b1yn−1(t) + b2yn−2(t) + . . . bny0(t).

If, in addition, we allow for some output y(t) given by a linear combination of the variables

xj(t) and inputs uk(t), we result in a model description

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t). (4.2.0.1)

The state of of system is now given as a vector in ❘n (or more general in ❈n).

As we can see in Equation (4.2.0.1) the system is completely described by providing the

matrices A, B, C and D. Since the entire information about the intrinsic dynamics of the is

encoded in the matrix A this matrix is often called the system matrix.

The solution to the ODE Equation (4.2.0.1) is given by

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ)dτ, (4.2.0.2)
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where eA is the matrix exponential

eA =
∞∑

k=0

1

k!
Ak. (4.2.0.3)

4.2.1. Stability of the System

We can see that the solution splits up into an autonomous part, describing the evolution of

the initial state x(0) and a contribution due to the input signal u(t). We consider now the

autonomous case where u(t) = 0 such that we are left with

x(t) = eAtx(0).

If A ∈ ❈
n×n is diagonalizable, the Jordan normal form of the matrix A will be a diagonal

matrix with each element on the diagonal being an eigenvalue of A,

A =















λ1 0 0 0

0 λ2
...

...
. . . 0

0 0 . . . λn















.

The matrix exponential eAt will then be given by

eAt =















eλ1t 0 0 0

0 eλ2t ...
...

. . . 0

0 0 . . . eλnt















.

If we consider the limit limt→∞ x(t) = limt→∞ eAtx(0) for the autonomous system we see

that this will converge against 0 if all of the eigenvalues λ1, . . . , λn have a real part smaller
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than 0, i.e.

Reλj < 0 ∀j = 1, . . . , n ⇒ lim
t→∞















eλ1t 0 0 0

0 eλ2t ...
...

. . . 0

0 0 . . . eλnt















x(0) = 0, ∀ x(0) ∈ ❈
n.

If on the other side any of the eigenvalues has a positive real part, the corresponding entry

of the matrix exponential will diverge and so will the systems state. This arguments extent to

general matrices A and this kind of concept of stability is called Hurwitz stability.

Definition 4.1 (Hurwitz Matrix) We call a matrix A a Hurwitz matrix if for all eigenval-

ues λj of A we have that

Reλj < 0.

If a system’s system matrix is a Hurwitz matrix the system will be internally stable.

4.2.2. Controllability

Another important concept is the concept of controllability. The idea behind this concept is

the question if for any given initial state x(0) and time 0 < t′, there exists some integrable

input signal u(t) such that

eAt′

x(0) +
∫ t′

0
eA(t′−τ)Bu(τ)dτ = x(t′) = xtarget.

We define the set of reachable states by the set

Rt = {ξ ∈ ❘
n : ∃ u(t) such that x(t) = ξ} .
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The answer to above question can be given in terms of the controllability matrix

R(A,B) =
[

A, A2B, . . . , An−1B
]

.

Theorem 4.2 ([11]) For each time 0 < t the set equality

Rt = ImR(A,B)

holds.

We can see that the set of reachable states will be equal to ❘n if and only if ImR(A,B) has

dimension n which will be true if and only if R(A,B) has full rank n. Furthermore we note

that R(A,B) is independent of time. We can therefore see that, if the conditions are meet,

there will exist an input signal u(t) for any time 0 < t such that xtarg = x(t).

Corrollary 4.3 The system ẋ(t) = Ax(t) +Bu(t), x(t) ∈ ❘
n is controllable if and only if

the matrix

R(A,B) =
[

A, A2B, . . . , An−1B
]

has full rank n.

Definition 4.4 We call the pair (A,B) a controllable pair if the dynamical system ẋ(t) =

Ax(t) +Bu(t) is controllable.

In order to get some intuition for this relation, we assume the case were x(0) and have a

look at

x(t) =
∫ t′

0
eA(t′−τ)Bu(τ)dτ, (4.2.2.1)
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were we require that x(t) ∈ Rt, i.e. x(t) is in the set of reachable elements.

Using the Cayley-Hamilton theorem (stating that every square matrix A satisfies it’s own

characteristic polynomial charA (A) = 0) it can be shown that every square matrix of dimen-

sion n can be written as

Ak = an−1A
n−1 + . . .+ a0I, (4.2.2.2)

for k > n. Using this with the definition of the matrix exponential Equation (4.2.0.3) one can

show that there exist scalar functions φ0(t), . . . , φn−1(t) for all t > 0 such that

eAt = φ0I + φ1(t)A+ . . .+ φn−1(t)A
n−1,

by expending every term k > n of the series Equation (4.2.0.3) using Equation (4.2.2.2).

Applying this to Equation (4.2.2.1) we can write

x(t) =
∫ t

0

[

φ0(t− τ)I + . . .+ φn−1(t− τ)An−1
]

Bu(τ)dτ (4.2.2.3)

=
[

B, AB, . . . , An−1B
]















∫ t
0 φ0(t− τ)dτ

∫ t
0 φ1(t− τ)dτ

...
∫ t

0 φn−1(t− τ)dτ















, (4.2.2.4)

where we can readily see that x(t) will be in the image of the controllability matrix and for

x(t) ∈ ❘
n we require that ❘n ⊆ ImR(A,B) which in turn requires that the controllability

matrix has full rank n.1

1[11]
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4.2.3. Observability

In the previous section we have seen how the relation between the input signal and the set of

reachable states is encoded in the matrices A and B and how one can determine if every state

in the system space ❘n is reachable by some appropriate input signal u(t).

Consider the autonomous system with u(t) = 0,

ẋ(t) = Ax(t),

y(t) = Cx(t), (4.2.3.1)

with solution

y(t) = CeAtx0.

One could ask about the relation between the initial state x0 and the output y(t), i.e. if we

observe the output y(t) over some finite time interval 0 ≤ t ≤ T , will we be able to deduce

the system’s initial state x0?

Similarly to the previous section one can show how the information about this relation is

encoded in the matrices A,C.

If one is able to deduce the initial state of the system by observing the output over some time

interval, the system is called observable and this property is called observability. As before,

the answer to this question is given in terms of a matrix, in this case the observability matrix

given by

P (A,C) =















C

CA

...

CAn−1















.
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Theorem 4.5 ([11]) The dynamical system with matrices A, B, C and D is observable if

the matrix

P (A,C)

has full column rank.

4.3. Transfer Functions

4.3.1. The Transfer Function

The second standard representation of linear time-invariant linear systems is the transfer func-

tion. Consider again a system as before, with2

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t). (4.3.1.1)

We chose an input of the form u(t) = est, s ∈ ❈. Substituting this in the general solution to

the ODE will yield

x(t) = eAtx0 +
∫ t

0
eA(t−τ)Besτ dτ, (4.3.1.2)

= eAtx0 + eAt
∫ t

0
e(sI−A)τ Bdτ. (4.3.1.3)

If we assume s /∈ spec (A) we have that (sI − A) is invertible and we can solve the integral

with

x(t) = eAtx0 +
[

(sI − A)−1 e(sI−A)τ B
]t

0
. (4.3.1.4)

2[1], [11]
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Substituting this into Equation (4.3.1.1), we obtain

y(t) = CeAt
(

x0 − (sI − A)−1 B
)

+
(

C (sI − A)−1
B + D

)

est.

If the system is stable we will have that eAt → 0 as t → ∞ and so will the first term of above

equation. The second term is proportional to the input u(t) = est and the term

G(s) = C (sI − A)−1
B + D (4.3.1.5)

can be interpreted as an input-output map, mapping the input u(t) to the output y(t). G(s) is

called the transfer function of the system.

A second way to arrive at Equation (4.3.1.5) is given in terms of the Laplace transform

F (s) =
∫ ∞

0
e−stf(t)dt := L [f(t)]

for some integrable function f(t). One can show that taking the Laplace transform of the

derivative of an function corresponds to multiplication by s, i.e.

L
[

d

dt
f(t)

]

= s · F (s) + f(0).

Applying this relation to Equation (4.3.1.1), one can solve algebraically for Y (s) and arrives

under the condition that x(0) = u(0) = 0 at

Y (s) =
(

C (sI − A)−1
B
)

U(s), (4.3.1.6)

this time for general input functions u(t).

The transfer function is a very useful tool and many important properties of the system are

encoded in it.
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If we consider some rational transfer function of the form

G(s) =
a(s)

b(s)
,

then we call all the roots of the polynomial b(s) the poles of G(s) and the roots of the polyno-

mial a(s) the zeroes of G(s). One can show that the poles of G(s) are equal to the eigenvalues

of the corresponding system matrix A.

As we can see, G(s) will be unbounded if s is a pole of G(s). If s is a zero of the system

then, for example for an input as above with u(t) = est, we will obtain a zero output y(t) = 0

since G(s) = 0.

4.3.2. Networks of linear Systems

It is particularly convenient to compute networks of linear dynamical systems using the trans-

fer function representation of the system. Here we consider a collection of linear systems,

parametrized by matrices (Aj, Bj, Cj, Dj) with transfer functions Gj(s) for j = 1, . . . n.

The Series Product

The first basic network operation to consider is the series product, corresponding to taking

systems G1(s) and G2(s) in series, see Fig. (4.4).

System 1 System 2

Figure 4.4.: Two systems in series, obtained by feeding the output of system 1 into the input
of system 2.

The corresponding input-output function for the overall network is easily computed by writ-
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ing

Y1(s) = G1(s)U1(s),

Y2(s) = G2(s)U2(s),

and setting U2(s) = Y1(s). We obtain the overall transfer function

Y2(s)

U1(s)
= G2(s)G1(s),

and more generally
Yn(s)

U1(s)
=

n∏

j=1

Gj(s)

for the series product of n-systems.

Parallel Systems

The second basic network operation is obtained by taking two systems parallel, see Fig. (4.5).

The corresponding transfer function is obtained from the transfer functions of system 1 and 2

G1(s) and G2(s) by
Y (s)

U(s)
= G1(s) +G2(s)

or in general by
Y (s)

U(s)
=

n∑

j=1

Gj(s).

Systems in Loop

The third network operation is given by the system in loop, see Fig. (4.6). This is also the

set-up considered in Section 4.1.2. The transfer function is given by

Gcl(s) =
Y (s)

U(s)
=

G1(s)

1 +G1(s)G2(s)
.
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System 1

System 2

+

Figure 4.5.: Two parallel systems.

System 1

System 2

-

Figure 4.6.: Two systems in a feedback
arrangement.

This can be stated explicitly in terms of the matricesA,B,C andD if the consider a closed-

loop set-up as above with system 1 given by (A,B,C,D) and system 2 given by (0, 0, 0, I).

We can take the Laplace transform of Equation (4.3.1.1) and solve for y(t). In this case one

obtains

Gcl(s) =
Y (s)

U(s)
= C (sI − A)−1 B +D.

The transfer function associated with the system matricesA,B,C andD is sometimes denoted

with

G(s) =







A B

C D







(s) = C (sI − A)−1 B +D.

The transfer function is well defined if (sI − A)−1 exists.
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5.1. Introduction

In classical control theory, the notion of an input-output system plays a key role. Bigger

systems can often be thought of as a network of simpler input-output components. If one

knows the rules to deduce the dynamics of the overall system from the dynamics of the in-

dividual blocks the network consists of, system design, simulation and control can become

considerably easier. For classical systems this theory is well developed. We are interested in

establishing a similar theory for quantum mechanical systems.

In the following we shall introduce a quantum counterpart of the notion of input-output
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systems as developed in [19, Gardiner and Zoller], [22, Gough, Gohm and Yanagisawa], [25,

Gough and James], [24, Gough and James] and present the rules deducible for networks of

such general input-output systems.

5.2. Quantum Single-Input, Single-Output Systems

In section 3.3.7 we introduced the quantum stochastic calculus for the evolution of some quan-

tum system under the influence of quantum noise. Theorem 3.3.7.1 guarantees existence of a

solution for a quantum stochastic differential equation (QSDE) of the form

dU =
{

LdB†(t) + (S − 1) dΛ(t) − L∗SdB(t) +
(

1

2
L∗L+ iH

)

dt
}

U(t) ≡ dG(t)U(t), U(0) = 1,

or equivalently if we define the complex dampening K by

K = −1

2
L†L− iH,

we can write

dU(t) =
{

LdB†(t) + (S − 1) dΛ(t) − L∗SdB(t) +Kdt
}

U ≡ dG(t)U(t), U(0) = 1.

Note that we use here the right hand side Hudson & Parthasarathy equation, that is the

solution U(t) appearing on the right hand side, rather on the left hand side as before. In

general we have the left hand QSDE of the form dV = V (dH) and the right hand QSDE

dU = (dG)U . If we let V = U †, then both QSDEs are equivalent if dH = (dG)†. When

dealing with physical systems the right hand side QSDE is usually preferred. The left hand

QSDE has it’s advantages when dealing with unbounded operator.

The unitary evolution of the system under the influence of the quantum noises dB(t), dB†(t)
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and dΛ(t) is given by the solution of the QSDE, U(t), whereas this solution describes the

evolution of both the field and the system. This allows us to perform measurements on the

output field after interaction with the system, and leads to a quantum equivalent of the notion

of an input-output system from classical control and system theory.

System

dBin(t)dBout(t)

Figure 5.1.: Quantum input-output system under the influence of the input noise dB(t) =
dBin(t) with output field dBout(t).

Given some observableX on the initial space h0, its evolution in interaction picture is given

by

X(t) = U(t)†[X ⊗ I]U(t)

where the systems outputs dBout(t) are given by

Bout(t) = U(t)†[I ⊗Bin(t)]U(t),

Λout(t) = U(t)†[I ⊗ Λin(t)]U(t),

and obey the QSDEs

dBout(t) = S(t)dBin(t) + L(t)dt,

dΛout(t) = S†(t)dΛin(t)S(t) + dB†
in(t)S

†(t)L(t) + L†(t)S(t)dBin(t) + L†(t)L(t)dt.
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5.2.1. Multi-Channel Systems

So far we have considered a set-up allowing for system with one degree of freedom under

the influence of some quantum noise due to some bosonic environment. We wish to extend

this to allow for systems with multiple degrees of freedom under the influence of multiple,

independent noise processes. We first of all deal with the generalisation of the model to multi-

channel inputs. We extend the set-up by what is known as the multiplicity or colour space, K

which is taken to be a separable Hilbert space and is usually taken to be K = ❈
n. We denote

L2
K(0,∞) := K ⊗ L2(0,∞),

and obtain overall system Hilbert space h0 ⊗ Γ(L2
K(0,∞)). Let {ei} be a orthonormal basis

for K. We define the for each j, k the independent processes

Bj(t) := a
(

ej ⊗ ✶[0,t]

)

,

Λjk(t) := λ
(

|ej〉 〈ek| ⊗ Π[0,t]

)

.

We interpret n = dimK as the number of input and output channels of the system.

The coupling of the the n input processes to the system are now parameterised by n coupling

operator Lj, j = 1, . . . , n. The scattering between the field channel is described by n2 operator

Sjk ∈ B(h0 ⊗ k) where the matrix S = (Sjk) is to be taken unitary. We can collect these

operators in column vector L and matrix S

L =











L1

...

Ln











, S =











S11 . . . S1n

...
. . .

...

Sn1 . . . Snn











.
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In this case the general form of the QSDE leading to a unitary adapted solution is

dU(t) =
{

K ⊗ dt− L†
jSjk ⊗ dBk(t) + Lj ⊗ dB†

j (t) + (Sjk − δjk) ⊗ dΛjk(t)
}

U(t)

with use of the Einstein sum convention, i.e. summation over repeated indices, and

K = −1

2
L†

iLi − iH.

The outputs are now given by

Bout,i = U †(t)[I ⊗Bi(t)]U(t),

dBout,j = Sjk(t)dBk(t) + Lj(t)dt.

5.3. Networks of Quantum Components

As we have seen, the class of physical models considered so far are parameterized by the triple

(S, L,H) or by making use of the complex dampeningK = −1
2
L†L− iH the triple (S, L,K).

We refer to this triple as the Hudson and Parthasarathy system parameter. We remark that one

can collect this parameter in a single operator called the Itō matrix or Itō generator matrix on

h0 ⊗ (❈⊕ k) by

G =







K −L†S

L S − 1







=







−1
2
L†L− iH −L†S

L S − 1






.
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Equivalently the model can be described by the model matrix V

V := G+







0 0

0 1







=







K −L†S

L S






.

5.3.1. The Concatenation Product

Classical system and control theory allows for thinking of bigger and complex systems as

being composed of multiple, simpler systems. These smaller systems are usually quit easily

modelled. System theory then provides the tools to compute the model for the overall system

given the simpler blocks and the way they are connected with each other.

System 3 System 1

System 2

Figure 5.2.: An example of a general network involving multiple system components with
feedback

The first operation we wish to introduce is the concatenation product. This product takes

two system matrices V1 and V2, describing two blocks of our network with n and m inputs and

outputs respectively and gives a new system matrix describing both systems at once with n+m

inputs and outputs. This concatenation of two blocks does not introduce any interconnection

between the blocks and therefore does not change the input-output dynamics of the channels.

We follow [25] and define the concatenation of two model matrices in the following way:
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Definition 5.1 Let Vj be model matrices with Hilbert space h and colour space kj for

j = 1, 2. The concatenation of these model matrices is denoted by V1 ⊞ V2 describing a

model with Hilbert space h and colour space k1 ⊕ k2 and is defined by

V1 ⊞ V2 =







−1
2
L†

1L1 − iH1 −L†
1S1

L1 S1






⊞







−1
2
L†

2L2 − iH2 −L†
2S2

L2 S2







=











−1
2
L†

1L1 − 1
2
L†

2L2 − i (H1 +H2) −L†
1S1 − L†

2S2

L1

L2

S1 0

0 S2











.

As the authors remark, there is no further assumption on the decomposition of the system.

5.3.2. Network Models

A general network as for example Fig. 5.2 will be described by concatenations of its compo-

nents together with a list of internal edges determining which ports are connected with each

other.

Given a network with n components Vj, j = 1, . . . , n the networks model matrix V is given

by V = ⊞n
j=1Vj and takes for Vj associated with triple (Sj, Lj, Hj) the form



















0 r1 r2 . . . rn

0 −∑n
j=1

(
1
2
L†

jLj + iHj

)

−L†
1S1 −L†

2S2 . . . −L†
nSn

s1 L1 S1 0 . . . 0

s2 L2 0 S2
...

...
...

...
. . . 0

sn Ln 0 . . . 0 Sn


















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with respect to the labels s1, . . . sn, r1, . . . sn, labelling the rows and columns with respect to

the input and output ports. Since each of the Lj is in general a vector with kj entries, where kj

is the number of input and output ports of block Vj , each of the sj, rj is a kj-tupel. We follow

[25] and denote with Pin the set of labels of the input ports and with Pout the set of labels of

the output ports.

We label blocks of the model matrix with respect to this labels by picking some α ∈ Pin ∪

{0} and β ∈ Pout ∪ {0} and denoting Vα,β

The network is then completely described by providing the network’s model matrix and a

list of all internal connections, that is edges e = (sn, rm), where output sn is fed into rm.

5.3.3. Elimination of Internal Edges in the Zero Time Delay Limit

In general a network as shown in Fig. 5.2 will consist of a collection of blocks with a certain

number of ports and a collection of edges of which some describe the inputs and outputs of

the overall network and some which connect an output of a block with an input of another

block and which are therefore internally. If we consider a limit, in which the time signals

take to travel from the output of one block to the input of another block goes against zero, we

can eliminate the additional degrees of freedom provided by the internal edges and result in a

model that only knows external edges, see for example Fig. 5.3.

System 1 System 2 System 1&2

System 3 System 3

Figure 5.3.: Example for elimination of internal edges in a zero time delay limit. The reduced
model consists only of external inputs and outputs.

Formulas for the model reduction such as the series product and the feedback reduction
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formula have been derived in [22, 25, 24]. We are going to introduce as the most general case

a theorem on the elimination of internal edges in a zero time delay limit as proven in [24],

from which the series product and the feedback reduction formula can be deduced as special

cases.

Theorem 5.2 (Gough, James [24]) Let e0 = (r0, s0) be an internal channel with time de-

lay τ0 ≥ 0 in a quantum network N for which 1 − Vs0,r0 is invertible. In the limit τ0 → 0+,

the network reduces to Nred in which the input and output ports are Pin\{r0} and Pout\{s0}

and the edge e0 eliminated. (In the case where r0 and s0 are initially in different compo-

nents then the components merge.) The reduced model matrix V red then has the components

V red
α,β = Vα,β + Vα,r0 (1 − Vs0,r0)−1 Vs0,β, (5.3.3.1)

for β ∈ {0} ∪ Pin\{r0} and α ∈ {0} ∪ Pout\{s0}.

The reduced model matrix can also be computed by reduction formulas for the parameter

triple (S, L,H) → (Sred, Lred, H red).

Lemma 5.3 (Gough, James [24]) Let V be the model matrix determined by the operators

(S, L,H). Then the reduced model matrix V red obtained by eliminating the edge e0 =

(s0, r0) is determined by the operators (Sred, Lred, Hred) where

Sred
sr = Ssr + Ss,r0 (1 − Ss0,r0)−1 Ss0,r,

Lred
s = Ls + Ss,r0 (1 − Ss0,r0)−1 Ls0 ,

Hred = H +
∑

s∈Pout

ImL†
sSs,r0 (1 − Ss0,r0)−1 Ls0 ,

where r ∈ Pin\{r0} and s ∈ Pout\{s0}.
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One can further show that the order in which internal channels are eliminated in the zero

time delay limit doesn’t matter, that is the reduction of two edges e0 and e1 commutes and the

elimination of multiple edges can therefore be performed simultaneously [24, Lemma 17].

This can be archived by expressing S and L with respect to the decomposition of the colour

space k = kint ⊕ kext

S =







Sii Sie

Sei See






, L =







Li

Le






.

Define the unitary adjacency matrix η by

ηsr =







1 if (s, r) is an internal channel

0, otherwise

The feedback reduced model can then be written as [24]

V red = Vα,β + Vα,i (η − Vii)
−1 Vi,β

with α, β ∈ {0, e}. Following Lemma 5.3, the reduced model matrix V red can be determined

from the operator triple (Sred, Lred, H red) given by

Sred = See + Sei (η − Sii)
−1 Sie,

Lred = Le + Sei (η − Sii)
−1 Li,

H red = H +
∑

j=i,e

ImL†
jSji (η − Sii)

−1 Li.

5.4. The Series Product

As a first special case of the network reduction formulas presented in the previous section we

deduce the rule for the series product. The series product describes the network reduction for

two components where the output of the first component is feed into the input of the second
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component, see for example Fig. 5.4. Obviously the series product only makes sense if we

require that dimK1 = dimK2 where Kj, j = 1, 2 is the multiplicity space associated with

model Vj, j = 1, 2, that is, the number of input channels accepted by block 2 matches the

number of output channels of block 1.

System 2 System 1 System 1 & 2
Series Product

r1s1r2s2 r1s2

Figure 5.4.: The series product of two components. In the zero time delay limit both compo-
nents merge into a single component after elimination of the internal edge.

The networks model matrix is given by

V =











0 r1 r2

0 −∑

j=1,2

(
1
2
L†

jLj + iHj

)

−L†
2S1 −L†

2S2

s1 L1 S1 0

s2 L2 0 S2











.

Elimination of the edge e = (s1, r2) gives the reduced model matrix Vseries

Vseries =







−∑

j=1,2

(
1
2
L†

jLj + iHj

)

−L†1S1

L2 0







+







−L†
2S2

S2







(1 − 0)−1 [L1, S1]

=







−∑

j=1,2

(
1
2
L†

jLj + iHj

)

− L†
2S2L1 −L†

1S1 + L†
2S2S1

L2 + S2L1 S2S1






.

We can readily read off the reduced model parameter

Sseries = S2S1,

Lseries = L2 + S2L1,

Hseries = H1 +H2 + Im
{

L†
2S2L1

}

.
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5.5. The Feedback Reduction

Another special case of the elimination of internal edges in the zero time delay limit we want

to introduce is the feedback reduction formula, see Fig. 5.5. We have some 4-port system

and some 2-port system where the 2-port system is located in some internal loop. This kind

of set-up is a basic example for feedback and serves as a general case for common physical

set-ups such as optical components in a feedback loop using beam splitter etc.

System 1

System 2

System 1&2

Feedback Reduction

r1

r2

r3

s1

s2

s3

s1 r1

Figure 5.5.: Elimination of the internal edges: Feedback reduction.

We parametrise system 1, the 4-port component with triple (S1, L1, H1) and colour space

decomposition K1 = Ke ⊕ Ki where

S1 =







S11 S12

S21 S22






, L1 =







L1,e

L1,i






.

System 2 is given by the triple (S2, L2, H2). We can compute the overall system model matrix

V by taking the concatenation V = V1 ⊞ V2

V =















0 r1 r2 r3

0 −∑

j=1,2

(
1
2
L†

jLj + iHj

)

−L†
1,eSie −L†

1,iSei −L†
2S2

s1 L1,e S11 S12 0

s2 L1,i S21 S22 0

s3 L2 0 0 S2















.
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Define the internal and extern sub-matrices by

Sii =







S22 0

0 S2






, Sie =







T21

0






, Sei = (S12, 0) , See = S11, Li =

[

L1,i, L2

]

, Le = L1,e.

The reduced model matrix is then determined by system parameter triple (Sred, Lred, Kred)

given by

Sred = See + Sei (η − Sii)
−1 Sie,

Lred = Le + Sei (η − Sii)
−1 Li,

Kred = H +
∑

j=i,e

Im
(

L†
jSj,i (η − Sii)

−1 Li

)

. (5.5.0.2)
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Quantum Linear Systems

6.1. Introduction

Linear systems play a central role in classical control theory. It’s only for this class of systems

that a general theory of control of dynamical systems becomes available. In the following

chapter we want to introduce a quantum mechanical equivalent for a linear system, that is the

special case of a linear quantum open system as introduced in Chapter 3 and introduce tech-

niques and methods becoming available for quantum linear systems and networks of quantum

linear systems. This class of systems and the algebraic rules for networks of such systems in

the previously introduced framework have been investigated in [22] and for the more general
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case allowing for squeezing components in [26]. The following chapter will be based on this

papers.

6.2. Linear Systems

As we have seen in Chapter 3, the dynamical evolution of a quantum open system is given by

the solution V (t) of the QSDE

d

dt
V (t) =

{

(Sij − δij) dΛ(t) + LidB
†
i (t) − L†

iSijdBj(t) −
(

1
2
L†

iLi − iH
)

dt
}

V (t).

We obtain an unitary evolution of the system leading to linear dynamics by imposing the

following structure of parameters

• Sjk are scalars

• The coupling operators are linear, i.e. of the form Lj =
∑

k = cjkak for some scalars

cjk

• The Hamiltonian H is quadratic, i.e. of the form H =
∑

j,k=1 ωjka
†
jak for some scalars

ωjk.

In this case the Heisenberg-Langevin equations for the annihilators a(t) = V †(t)aV (t) are

given by

d

dt
a(t) = Aa(t) − C†Sbin(t), (6.2.0.1)

bout(t) = Sbin(t) + Ca(t). (6.2.0.2)
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Set B = −C†S and D = S, i.e.

ȧ(t) = Aa(t) +Bbin(t),

bout(t) = Ca(t) +Dbin(t),

and we obtain a description for the system which looks very similar to the structure obtained in

the classical case for the state space representation of linear time invariant systems, although

the mathematical objects involved in both cases are very different in their nature (see Chapter

4).

6.2.1. Transfer Functions

Linear quantum systems allow for the introduction of Laplace transform techniques leading to

input-output map descriptions of the system, that is a relation between incoming and outgoing

fields of the form bout[s] = G[s]bin[s] for some transfer function G[s]. We denote with b[s] the

Laplace transform of the field annihilator b(t) defined by

b[s] =
∫ ∞

0
e−stb(t)dt (6.2.1.1)

for Re s > 0.

Applying the Laplace transform to the Heisenberg-Langevin equations Eq. (6.2.0.1,6.2.0.2)

we obtain the input-output description

bout[s] = Ξ[s]bin[s] + ξ[s]a

with the transfer function

Ξ[s] = S − C(sI − A)−1C†S
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and the contribution of the initial operator a = a(0)

ξ[s] = C(sI − A)−1.

We remark that, as a property of the Laplace transform, we have that

b[s∗]∗ =
(∫ ∞

0
e−s∗tb(t)dt

)∗
=
∫ ∞

0
e−stb∗(t)dt.

One can adopt standard engineering notation from classical control theory and denote the

transfer function by the matrix







A B

C D







(s) = D + C(sI − A)−1B.

Similarly to the Laplace transform, define the transform of the past fields by

b[s]
∆
=
∫ 0

−∞
e−stb(t)dt

such that the Fourier transform of the fields is given by

b̂(ω) =
1√
2π

∫ ∞

−∞
eiωtb(t)dt =

1√
2π
b[0+ − iω] +

1√
2π
b[0− − iω].

The cannonical commutation relations translate into [b̂in,k(ω), b̂in,l(ω
′)] = δklδω−ω′ .

6.2.2. Feedback Reduction

We are now ready to introduce quantum feedback networks. The first set-up under considera-

tion is a form as seen in Fig. 6.1. We consider first the case without an inloop device, that is,

81



6. Quantum Linear Systems

Figure 6.1.: Feedback arrangement of a 4-port system G and some in-loop component K

K = (I, 0, 0). We obtain a partition of the transfer function matrix with respect to the choice

of internal and external channel, that is

bin =







bin,i

bin,e






, bout =







bout,i

bout,e






, C =







Ci

Ce






, S =







Sii Sei

Sie See







with transfer function matrix

Ξ(s) =











A −∑

j C
†
jSij −∑

j C
†
jSje

Ci

Ce

Sii Sie

Sie See











(s) (6.2.2.1)

Define the adjacency matrix η by

ηsr =







1, if (s, r) is an internal channel

0, otherwise
.

Theorem 6.1 Let (η−Sii) be invertible. The feedback system Eq. (6.2.2.1) has input-output

relation bout,e[s] = Ξred(s)bin,e[s] + ξred(s)a and the reduced transfer matrix function

Ξred(s) =







Ared −C†
redSred

Cred Sred






, ξred = Cred

1

s− Ared
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where

Sred = See + Sei(η − Sii)
−1Sie,

Cred = Sei(η − Sii)
−1Ci + Ce,

Ared = A−
∑

j=i,e

C†
jSji(η − Sii)

−1Ci

See [22] for the proof.

6.2.3. The Series Product

Consider an arrangement as in Fig. 6.2, again in a zero time delay regime. We have the

two systems Gi = (Si, Li, Hi), i = 1, 2. Associated with this systems we have the transfer

functions

Ξi(s) =







Ai −C†
i Si

Ci Si






.

We can reformulate this situation before making the connection, by describing the network

components as one block with two inputs and two outputs by the concatenation

Ξ(s) =











A1 + A2 −C†
1S1, C

†
2S2

C1

C2

S1 0

0 S2











.
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Figure 6.2.: The Series Product of two systems with the output of system 1 being feed into the
input of system 2.

We again partition the parameter with respect to the internal and external channel

bin =







bin,i

bin,e







=







bin,2

bin,1






, bout =







bout,i

bout,e







=







bout,1

bout,2






,







Ci

Ce







=







C1

C2






,







Sii Sei

Sie See







=







0 S1

S2 0






.

The adjacency matrix for this case with one internal edge is trivial with η = 1 and we can

compute the series product of the model G2 ⊳ G1 using the formula for the reduced parameter

given in Theorem 6.1 with

Ξseries(s) =







A1 + A2 − C†
2S2C1 −(C†

2S2 + C†
1)S1

C2 + S2C1 S2S1






.

6.2.4. The Redheffer Star Product

One other important network arrangement is the one shown in Fig. 6.3, that is two systems

with 2 inputs and outputs each in an feedback arrangement. This kind of set-up is used for

example to model some system G driven by a noisy controller K.

The two system models can be parameterized byG = (SG, CG,ΩG) andK = (SK , CK ,ΩK)

with

SG =







SG
11 SG

12

SG
21 SG

22






, SK =







SK
33 SK

34

SK
43 SK

44






.

We establish the closed loop model by setting bout,2 = bin,3 and bout,3 = bin,2 We assume that
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G

K

bout1 bin,1

bin,2bout,2

bout,3

bout,4

bin,3

bin,4

Figure 6.3.: The Set-up for the Redheffer Star Product. Two blocks with two inputs and out-
puts in an feedback arrangement.

the system observables of the two blocks live on distinct Hilbert spaces HG and HK , that is,

that the observables of block G and K commute.

One can again archive a partition of the system matrices with respect to the internal and

external channels by

S =







See Sei

Sie Sii







with block components

See =







SG
11 0

0 SK
44






, Sei =







SG
12 0

0 SK
43







Sie =







SG
21 0

0 SK
34






, See =







SG
22 0

0 SK
33






.

The system model parameter after eliminating the internal channels can now be computed

with,

S⋆ = See + Sei (I − Sii)
−1 Sie =







S⋆
11 S⋆

14

S⋆
41 S⋆

44






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with block entries

S⋆
11 = SG

11 + SG
12S

K
33

(

1 − SG
22S

K
33

)−1
SG

21,

S⋆
14 = SG

12

(

1 − SG
22S

K
33

)−1
SK

34,

S⋆
41 = SK

43

(

1 − SG
22S

K
33

)−1
SG

21,

S⋆
41 = SK

44 + SK
43

(

1 − SG
22S

K
33

)−1
SK

34.

The partitioned coupling vectors and the adjacency matrix are

Le =







LG
1

LK
4






, Li =







LG
2

LK
3






, η =







0 1

1 0






.

We compute the coupling vectors after the elimination of the internal channels with

L⋆ = Le + Sei (1 − Sii)
−1 Li =







L⋆
i

L⋆
e







with entries

L⋆
1 =

(

CG
1 + SG

12S
K
33

(

I − SG
22S

K
33

)−1
CG

2

)

aG + SG
12

(

I − SG
22S

K
33

)−1
CK

3 aK

L⋆
2 = SK

43

(

I − SG
22S

K
33

)−1
aG +

(

CK
4 + SK

43S
G
22

(

I − SG
22S

K
33

)−1
CK

3

)

aK

if we denote with aG, and aK denote the system mode annihilators of the systems G and K.

The Hamiltonian of the system H⋆ is given by

H⋆ = a†
G (ΩG + ΛG) aG + a†

K (ΩK + ΛK) aK + a†
KΛKGaG,
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with

ΛG = Im







CG†
2

(

I − SG
22S

K
33

)−1
CG

2

CG†
1 SG

12

(

I − SK
33S

G
22

)−1
SK

33C
G
2






,

ΛK = Im







CK†
3

(

I − SK
33S

G
22

)−1
CK

3

CK†
4 SK

43

(

I − SG
22S

K
33

)−1
SG

22C
K
3






,

ΛGK = Im















CK†
3

(

I − SK
33S

G
22

)

SB
33C

G
2

CK†
4 SK

43

(

I − SG
22S

K
33

)−1
CG

2

CG†
2

(

I − SG
22S

K
33

)−1
SG

22C
K
3

−CA†
1 SG

12

(

I − SK
33S

G
22

)−1
CK

3















.

6.3. Squeezing Components

So far we considered a class of linear system with coupling of the form Lj = Cjaj . The

framework of linear systems can be extended to the case of a coupling not only to the an-

nihilators, but also to the creators, that is a coupling of the form Lj = C−
j aj + C+

j a
†
j , i.e.

the parameter for the stochastic Schrödinger equation are of the following structure for some

scalars C−, C+, ω− and ω+

H =
m∑

α,β=1

(

a∗
αω

−
αβaβ + 1

2
a∗

αa
∗
βω

+
αβ + 1

2
aαaβω

+∗
αβ

)

(6.3.0.1)

Lj =
m∑

α=1

(

C−
jαaα + C+

jαa
∗
α

)

(6.3.0.2)

and S is taken to be unitary where the Sij’s are scalars. At this point it is convenient to

introduced the doubled up notation. Let x = [xT
1 , . . . , x

T
n ]T be a vector with operator entries

of length n. Denote for some matrix X , X♯ = (X∗
jk), where ∗ is the complex conjugate or
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Hilbert space adjoint. We define the doubled up vector of size 2n, x̆ by setting

x̆ = [xT
1 , . . . , x

T
n , x

♯T
1 , . . . , x

♯T
n ]T,

and the doubled up matrix

X̃ = ∆(X−, X+) =







X− X+

X+♯ X−♯






, (6.3.0.3)

such that a relation of the form b = C−a+C−a† can be described by b̆ = ∆(C−, C+)ă = C̃ă.

We define the involution ♭ for a 2n× 2m sized doubled up matrices by

X̃♭ ∆
= JmX

†Jn

where

Jn
∆
=







In 0

0 −In







with the n× n identity matrix In.

We can see that we have an effective change in parameterisation from the triple G =

(S, L,H) to the triple G = (S̃, C̃, Ω̃) with doubled up matrices

C̃ = ∆(C−, C+) =







C− C+

C+♯ C−♯






, (6.3.0.4)

Ω̃ = ∆(Ω−,Ω+) =







Ω− Ω+

Ω+♯ Ω−♯






, (6.3.0.5)

where Ω = (ωij). We can now establish the equations of motion for the system oscillators
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d
dt
a = V ∗(t)ajU(t) and the input-output relation bout(t) = U∗(t)b(t)U(t) in doubled up form

d

dt
ă = Ãă(t) − C̃♭S̃b̆(t) (6.3.0.6)

b̆out = C̃ă(t) + S̃b̆(t) (6.3.0.7)

with Ã = ∆(A−, A+), C̃ = ∆(C−, C+), S̃ = ∆(S) and

A± = −1
2

(

C†
−C∓ − C⊤

+C
♯
±
)

− iΩ±.

We can establish the relations

Ã+ Ã† = −1
2
C̃†C̃, 1

2i
(A− − A†

−) = Ω−,
1
2
(A+ + A⊤

+) = Ω+.

6.3.1. Transfer Functions

The transfer function in case of coupling to both the annihilators and creators takes the form

bout,i[s] = Ξ−
ij(s)bin[s] + Ξ+

ij(s)b
∗
in,j[s].

6.3.2. The Series Product

We consider an arrangement of a type as shown in Fig. (6.2), that is two systems with the

output of one system feed into the input of a second system. We consider a zero time delay

regime, that is, we take the time τ the signal needs to travel from output 1 to input 2 to be

τ = 0.

The systems 1 and 2 are parameterised by G1 = (S1, C1, A1) and G2 = (S2, C2, A2).

We denote the series product of the two systems by G2 ⊳ G1. The model after making the
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connection is given by Gseries = (S̃series, L̃series, H̃series) and parameter

S̃series = S̃2S̃1,

L̃series = C̃2 + S̃2C̃1,

H̃series = Ω̃ + Im♭ C̃
♭
2S̃2C̃1.

As one can show, the series product leads to an factorisation of the form G̃2 ⊳ G̃1 = G̃2 · G̃1,

which is the kind of structure expected from classical control theory, only for the case, where

both systems have no system modes in common. Otherwise the series product for doubled up

systems is non-trivial and given as above.

6.3.3. Feedback Reduction

Consider a set-up of the form Fig. (6.1). We have a 4-port system with an internal loop and

some component K within this loop. We are again interested in a zero time delay regime

and want to deduce a model for the system after the internal channels have been eliminated,

i.e. deduce the input output map for the single input single output system after the internal

connections have been made.

We partition the two port system with respect to the internal and external input and output

channels, that is,

bin =







bin,i

bin,e






, bout =







bout,i

bout,e






, S± =







S±
ii S±

ie

S±
ei S±

ee






, C± =







C±
e

C±
i






.

The input output maps for the field channels are given by

b̆out,j[s] =
∑

k=e,i

Ĝjk[s]b̆k[s],
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where the transfer function of the system is given by

Ĝ(s) =











Ã −[C̃♭
e, C̃

♭
i ]S̃







C̃e

C̃i







S̃











.

The closed loop model after making the connections in the instantaneous feedback limit, that

is as the time the signal needs to travel along the edge τ → 0, under the assumption that

(I − S̃ii) is invertible is given by:

S̃red = S̃ee + S̃ei(I − S̃ii)
−1S̃ie,

C̃red = C̃e + S̃ei(I − S̃ii)
−1C̃i,

Ãred = Ã−
∑

j=e,i

C̃♭
J S̃ij(I − S̃ii)

−1C̃i.
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7
Systems in Loop: Squeezing

7.1. Introduction

An early application of feedback to enhance the squeezing of an (infrared) cavity mode was

given by Wiseman et al. [64]. Here the mode is coupled to a second harmonic (green) mode

which is subjected to a quantum nondemolition measurement. In contrast, we wish to exam-

ine the squeezing of the input noise field by a cavity mode acting as an idealized squeezing

device. Here the feedback is coherent, rather than measurement-based, and we consider a set

up involving a simple beam splitter to introduce the feedback loop. We shall work in the limit

of instantaneous feedback throughout. We shall be interested in the class of linear dynamical
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systems [67], [22],[45], and indeed will study static components wherein the internal degrees

of freedom have been eliminated. The degenerate parametric amplifier (DPA) is a well known

non-linear device capable of squeezing input fields [41], [65], [9]. We follow the treatment

of Gardiner [19]. For a single quantum input field coupled to a single cavity mode a with

coupling strength
√
κ and Hamiltonian

HDPA =
iǫ

2

(

a†2 − a2
)

.

there is an approximate squeezing parameter given by, [19, Section 7.2.9],

rDPA = ln
κ+ ǫ

κ− ǫ
. (7.1.0.1)

Here the amplification is due to the specific choice of the Hamiltonian HDPA. Without feed-

back, the method of obtaining maximal squeezing for a degenerate parametric amplifier is to

try and realize the Hamiltonian for the internal mode with parameter coefficient ε as close to

the threshold value (ε = κ) as possible, see [19, Section 10.2]. As originally noted by Yanag-

isawa and Kimura [67], the value of the reflective damping for an in-loop mode will depend

on the reflectivity value α:

κ(α) =
1 − α

1 + α
κ

Our strategy is to use coherent feedback for a fixed degenerate parametric amplifier (below

threshold, and therefore internally stable [45]) and tune the reflectivity of the beam splitter

so as to select the degree of squeezing. The degenerate parametric amplifier is an idealized

device in which one assumes that κ and ε are large but with fixed ratio. We shall investigate

the situation where both these parameters are finite. Also, we introduce additional quantum

damping into the model to see the effect of loss.

94



7. Systems in Loop: Squeezing

7.2. The Degenerate Parametric Amplifier

7.2.1. The System

A Degenerate Parametric Amplifier (DPA) is a device with a system Hamiltonian [19] of the

form

HDPA =
iǫ

2

(

a†2 − a2
)

.

Let us consider a DPA model with two inputs and outputs, one serving as the signals in- and

output, one playing the role of a loss mechanism. The resulting system is given by the triple

G = (S, L,HDPA) with

S = I2×2, C− =







√
γ

√
κ






, C+ = 0, ω− = 0, ω+ =

ǫ

2

with resulting doubled-up matrices (see Equation 6.3.0.3)

S̃ = I4×4, C̃ = ∆(C−, 0),Ω = ∆(0, ω+).

We can compute the transfer function ΞDPA(s) of the system using

Ã = −1

2
C̃♭C̃ − iΩ̃ = −1

2







κ+ γ ǫ

−ǫ κ+ γ






.

such that

Ξ̃DPA[s] =







Ã C̃

S̃ −C̃♭S̃







(s) = S̃ − C̃
(

sI − Ã
)−1

C̃♭S̃

=







Ξ−[s] Ξ+[s]

Ξ+[s] Ξ−[s]






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with components

Ξ−[s] =
1

P (s)







κ2+γ2−ǫ2

4
+ γs+ s2 −√

κγ
(

s+ κ+γ
2

)

−√
κγ
(

s+ κ+γ
2

)
κ2+γ2−ǫ2

4
+ γs+ s2






, (7.2.1.1)

Ξ+[s] = − ǫ

2P (s)







κ
√
κγ

√
κγ γ






, (7.2.1.2)

where the denominator P (s) is given by

P (s) =

(

s2 +
(
κ+ γ + ǫ

2

)2
)(

s2 +
(
κ+ γ − ǫ

2

)2
)

.

The output of the system is now given by

b̆out[s] = Ξ̃DPA[s]b̆in[s].

We note that the resulting system will be Hurwitz stable, i.e. all eigenvalues of Ã have real

part value strictly smaller then 1, if and only if κ+ γ < ǫ.

7.2.2. The Spectrum of the Output

The DPA is a device that is capable of squeezing. It is able to transform a minimum uncer-

tainty state with equal variances in both quadratures into a minimum uncertainty state with an

increased variance in one and a decreased variance in the other quadrature. In order to analyse

this behaviour in detail we are interested in the spectrum of the output quadratures.

Recall the definition of the transfer function defined in terms of the Laplace transform Eq.

(6.2.1.1)

b[s] =
∫ ∞

0
e−stb(t)dt. (7.2.2.1)
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The Fourier transform of the fields on the other hand is given by

b̂(ω) =
1√
2π

∫ ∞

−∞
eiωtb(t)dt. (7.2.2.2)

Comparing this with the Laplace transform, we can see that the Laplace transform corresponds

to the transform of the future fields, whereas the Fourier transform realises the transform of

the past and future fields. The transfer function (Laplace transform) is for linear networks

explicitly given in terms system matrices or system parameter, see Chapter 6.2.1. We are

therefore interested in formulating the Fourier transform in terms of the transfer function of

the system of interest.

We complete the Laplace transform by added the transformed past fields, i.e.

b̂(ω) =
1√
2π

∫ ∞

−∞
eiωtb(t)d =

1√
2π
b[0+iω] +

1√
2π
c[0− − iω], (7.2.2.3)

where the transform of the past fields is defined by

c[s]
∆
=
∫ 0

−∞
e−stb(t)dt. (7.2.2.4)

The canonical commutation relations in terms of the transformed fields read as

[

b̂∗
j(ω), b̂k(ω′

]

= δjkδ(ω − ω′). (7.2.2.5)

One can evaluate the expectation of b∗[0+ − iω]b∗[0+ − iω] and c∗[0+ − iω]c∗[0+ − iω] in

the vaccum state using Eq. (7.2.2.1), Eq. (7.2.2.4) and the canonical commutation relation of

the input fields to obtain

〈bin,j[0
+ − iω]b∗

in,k[0+ − iω′]〉 = δjkζ+(ω + ω′),

〈cin,j[0
− − iω]c∗

in,k[0− − iω′]〉 = δjkζ−(ω + ω′). (7.2.2.6)
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Here ζ± are the Heitler functions defined by

ζ+(ω) =
∫ ∞

0
eiωtdt, ζ−(ω) =

∫

−∞
eiωtdt,

or

ζ±(ω) = πδ ± PV
1

ω
.

Since in practical applications we deal witht he combination of past plus future fields, we only

accounter combinations of the form ζ− + ζ+ = 2πδ. As a direct result we see that

〈b̂in,j(ω)b̂∗
in,k(ω′)〉 = δjkδ(ω − ω′),

since from Eq. (7.2.2.3) and Eq. (7.2.2.6) we see that we have the sum

1

2π
〈bin,j[0

+ − iω]b∗
in,k[0+ − iω′]〉 +

1

2π
〈cin,j[0

− − iω]c∗
in,k[0− − iω′]〉.

Following the notation for the transfer function of the (future) fields, we can denote an

input-output-map for the past fields

cout,j[s] = Ξ−
jk(s)cin,k[s] + Ξ+

jk(s)c∗
in,k[s].

We can clean up the sign change by introducing the following matrices

S−
jk(ω) = Ξ−

jk(−iω), S+
jk(ω) = Ξ+

jk(−iω),

such that we result with an input-output description of the form

b̂out,j(ω) = S−
jk(ω)b̂in,k(ω) + S+

jk(ω)b̂in,k(−ω)∗.
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We may now determine the correlation functions of the output from the transfer functions as

defined above (in the vacuum state),

〈b̂∗
out,j(ω)b̂out,j(ω

′)〉 = Njk(ω)δ(ω − ω′),

〈b̂out,j(ω)b̂out,j(ω
′)〉 = Mjk(ω)δ(ω + ω′). (7.2.2.7)

where

Njk(ω) = S+
jk(ω)∗S+

jk(ω), Mjk(ω) = S−
jk(ω)S+

jk(−ω).

We also remark the following identities

Njk(ω)∗ = Njk(ω), Mjk(ω)∗ = Mjk(−ω).

Following the introduction of the doubled-up notation for squeezing components in quantum

feedback networks we denote

Ξ̃(ω) = ∆(S−(ω), S+(ω)).

This defined a Bogoliubov matrix for each real ω where it is well defined. It particularly

ensures that the transformation from the inputs to the outputs preserves the canonical commu-

tation relation.

7.2.3. Power spectrum density

We consider a generalised quadrature of the form

qout,j(t, θ) = eiθbout,j(t) + e−iθb†
out,j(t)
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for a fixed phase θ ∈ [0, 2π). If we choose θ = 0 and θ = π
2

we get the usual quadratures

qx
out,j(t, 0) = bout,j(t) + b†

out,j(t),

qy
out,j(t,

π

2
) = −1

i

(

bout,j(t) − b†
out,j(t)

)

.

The integrated processes are given by

dQout,j(t, θ) =
∫ t

0
qout,j(t

′, θ)dt′,

and the Itō increments read as

dQout,j(t, θ)dQout,k(t, θ) = δjkdt. (7.2.3.1)

Following Barchielli and Gregoratti [2], we set

Pjk(ω, θ, T ) =
1

T

〈
∫ T

0
eiωt1qout,j(t1, θ)dt1

∫ T

0
e−iωt2qout,k(t2, θ)dt2

〉

,

Pel
jk(ω, θ, T ) =

1

T

〈
∫ T

0
eiωt1qout,j(t1, θ)dt1

〉〈
∫ T

0
e−iωt2qout,k(t2, θ)dt2

〉

,

and

P inel
jk (ω, θ, T ) = Pjk(ω, θ, T ) − Pel

jk(ω, θ, T ).

This corresponds to the spectrum of the output over a finite time horizon. Whenever the limit

exists, we define the power spectral density matrix by

lim
t→∞

Pjk(ω, θ, T ) = Pkl(ω, θ).

Similarly we define Pel
jk(ω, θ) and P inel

jk (ω, θ).
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Now, Eq. (7.2.3.1) implies

P inel
jk (ω, θ) = δjk.

The Fourier transform of the generalised output quadratures are given by

q̂out,j = eiθb̂out,j(ω) + e−iθb̂out,j(−ω)∗,

and it is readily verified that

〈q̂out,j(ω, θ)q̂out,k(ω′, θ)〉 = Pjk(ω, θ)δ(ω + ω′).

We can state the explicit expression by using Eq. (7.2.2.7) and obtain

P11(ω, θ) = 1 + N11(−ω) + N11(ω) + e2iθM11(ω) + e−2iθM11(−ω)∗

where, after summing over repeated indices and using the system’s transfer functions from the

previous section we have that

Njk(ω) = Ξ+
jl[−iω]∗Ξ+

kl[−iω] =
ǫ2 (κ2 + κγ)

4|P (−iω)|2 ,

Mjk(ω)∗ = Ξ−
jl(−iω)Ξ+

kl(iω) =
κγ
(

ω2 +
(

κ+γ
2

)2
+
(

ǫ
2

)2
)

2|P (−iω)|2 .

In the lossless case, i.e. γ = 0 we reduce the DPA to a single input single output component

and we have identities
∣
∣
∣Ξ−

11(−ω)
∣
∣
∣

2 −
∣
∣
∣Ξ+

11(−ω)
∣
∣
∣

2
= 1 and |M11(ω)|2 = (N11(ω) + 1)N11(ω)

and compute spectrum of the output with

P11(ω, θ) =

(

ω2 +
(

κ2+ǫ2

4

))2
+ κ2ǫ2

4
+ ǫκ

(

ω2 +
(

κ2+ǫ2

4

))

cos 2θ

|P (−iω)|2 . (7.2.3.2)

We see that the spectral power of the output as a function of the phase θ takes a maximum for
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Figure 7.1.: Spectrum of the degenerate
parametric amplifier, lossless
case, open loop with ǫ =
7.35e6 and κ = 7.2e7. The
solid and dashed line corre-
spond to the squeezing and
anti-squeezing respectively.

Figure 7.2.: Spectrum of the degenerate
parametric amplifier, lossless
case, open loop with ǫ =
7.35e6 and κ = 4.2e6. The
solid and dashed line corre-
spond to the squeezing and
anti-squeezing respectively.

Figure 7.3.: Degenerate Parametric Amplifier in a closed loop arrangement. The additional
input and output for the DPA serves as a loss mechanism.

θ = 0 and a minimum for θ = π
2
. In this two cases we are measureing the noise power of the

anti-squeezed and squeezed quadrature respectively.

Fig. (7.1) and Fig. (7.2) shows the power spectrum for the open loop, lossless DPA. The

higher coupling of the field to the DPA via coupling constant κ results in an effective squeezing

over a wider frequency bandwidth.
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7.3. The Degenerate Parametric Amplifier in Loop

Next we consider a set-up as in Fig. (7.3) where the DPA is in a feedback arrangement. The

beamsplitter can be modelled as a four port input output system with parameter GBS = (H =

0, L = 0, SBS) where

SBS =







α β

β −α







with the beamsplitters reflectivity α and reflectivity β. Since SBS has to be unitary, i.e.

detSBS = ±1 we have constrained |α|2 + |β|2 = 1. The input-output relation for the beam-

splitter is given by






bout,1(t)

bout,2(t)







=







α β

β −α













bin,1(t)

bin,2(t)






.

We can use the feedback reduction formula provided in Chapter 6.2.2, i.e.

Sred = Se,e + Se,i (η − Si,i)
−1 Si,e

Lred = Le,e + Se,i (η − Si,i)
−1 Li,e

Hred = H +
∑

j=i,e

ℑ[L†
jSj,i(η − Si,i)

−1Li]

to deduce the closed loop model. With respect to the lables (in1,in2,in3,in4) and (out1,out2,out3,out4)

we have the scattering matrix of the concatenated system

S =















α β 0 0

β −α 0 0

0 0 1 0

0 0 0 1














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and the adjacency and submatrices

η =







0 1

1 0






, Sii =







−α 0

0 1






, Sie = Sie =







β 0

0 0






,

See =







α 0

0 1






, Li =







0

√
κ






a, Le =







√
γ

0






a.

The closed loop system in the instantaneous feedback limit is given by

Lred =







√
1−α
1+α

κ

√
γ






a, Hred = H, Sred = I

with the new closed loop transfer functions as above but with the coupling constant being

replaced by κ → 1−α
1+α

κ. We can compute the frequency dependend squeezing parame-

ter Eq. (7.1.0.1) for the closed loop case by defining |S−(ω)| = cosh rDPA(ω, α) such that

rDPA(ω, α) = 1
2

ln |S−(ω)| − |S+(ω)|, i.e.

rDPA(ω, α) =
1

2
ln
ω2 +

(
κ(α)+ǫ

2

)2

ω2 +
(

κ(α)−ǫ
2

)2 .

7.3.1. Spectrum of the Output

We can now analyse the closed loop set-up and compare the spectral squeezing of the outputs

for the open loop and closed loop case.

The power spectrum of the output is similar as for the open loop case as above but with κ

being substituted by κ(α), i.e.

P11(ω, θ) =

(

ω2 +
(

κ(α)2+ǫ2

4

))2
+ κ(α)2ǫ2

4
+ ǫκ(α)

(

ω2 +
(

κ(α)2+ǫ2

4

))

cos 2θ

|P (−iω, α)|2 , (7.3.1.1)

with κ(α) = 1−α
1+α

κ. As we can see in Fig. 7.4 we find that, by adjusting the beamsplitters
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Figure 7.4.: Normalised Noisepower of the output for the closed loop feedback arrangement
Fig. 7.3 over the reflectivity α of the beamsplitter for various frequencies.

Figure 7.5.: Squeezing and anti-squeezing normalised noisepower for the closed loop set-up
Eq. (7.3.1.1) as in [33] for different values for the beamsplitters reflectivity.
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reflectivity, the squeezing can be significantly enhanced for lower frequencies compared to the

open loop case α = 0 by choosing an appropriate reflectivity. For high frequencies (lines for

250Mhz and 400MHz) the output noisepower ceases to have a minimum within the intervall

0 < α < 1. Hence we will not be able to enhance the squeezing of the output by adjusting the

beamsplitters reflectivity.

The squeezing parameter for the closed loop case (see above) is given by

rDPA(ω, α) =
1

2
ln
ω2 +

(
κ(α)+ǫ

2

)2

ω2 +
(

κ(α)−ǫ
2

)2 .

In order to determine the value for α for which we archive maximum squeezing we solve

drDPA(ω,α)
dα

= 0 for α and find that the maximum of rDPA(ω, α) is achieved at

αmax(ω) =
κ2 + 4ω2 + ǫ2 − 2κ

√
4ω2 + ǫ2

κ2 − 4ω2 − ǫ2
.

As we have seen above rDPA(ω, α) will not always have an maximum for 0 < α < 1 at

high frequencies. We are therefore interested in the maximum frequency for which such a

maximum for 0 < α < 1 exists, i.e. for up to which frequency the closed loop setup will be

able to enhance the squeezing of the output by selection of a suitable reflectivity α. We notice

that αmax < 0 for large frequencies and want to find the maximal frequency ωmax for which

αmax(ω), ω < ωmax is restricted to 0 ≤ αmax ≤ 1. This will be satisfied for

ωmax =
1

2

√
κ2 − ǫ2.

7.4. A static model

Next we consider the DPA in a limit regime where we rescale the system parameter κ, ǫ, γ

by some parameter k, i.e. we result in a sequence of models parameterised by the triple
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(κk, ǫk, γk) and let k → ∞.

Recall, the entrys of the doubled up transfer function were given by

Ξ−[s] =
1

P (s)







κ2+γ2−ǫ2

4
+ γs+ s2 −√

κγ
(

s+ κ+γ
2

)

−√
κγ
(

s+ κ+γ
2

)
κ2+γ2−ǫ2

4
+ γs+ s2






,

Ξ+[s] = − ǫ

2P (s)







κ
√
κγ

√
κγ κ







and as we can see we have that Ξ±
(k)[s] = Ξ±[ s

k
] such that the strong coupling limit is equivalent

to a low frequency limit.

After the limit limk→∞ we have the following limit model

S− = lim
k→∞

Ξ−
(k)[s] =

1

(κ+ γ)2 − ǫ2







γ2 − κ2 − ǫ2 −2
√
κγ (κ+ γ)

−2
√
κγ (κ+ γ) κ2 − γ2 − ǫ2







S+ = lim
k→∞

Ξ+
(k)[s] =

−2ǫ

(κ+ γ)2 − ǫ2







κ
√
κγ

√
κγ γ






.

This limit is again a squeezing device since

(Mjk)(ω) = (Ξ−
jl(−iω)Ξ+

kl(iω)) =
2ǫ((κ+ γ)2 + ǫ2)

(κ+ γ)2 − ǫ2







κ
√
κγ

√
κγ γ







For the single input single output case (γ = 0) we can again compute the squeezing function

r for the static limit model

rDPA =
1

2
ln
[
κ+ ǫ

κ− ǫ

]

.

This coincides with the squeezing parameter given in [19] and is equivalent to the squeezing

parameter as before for the case ω = 0.
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7.5. Squeezing Enhancement in the Static Limit

In the previous section we found that in the closed loop situation the spectral squeezing of the

output is a function of the beam splitter’s reflectivity α. For the lossless DPA in loop we find

that the modified squeezing parameter is given by

rDPA(α) =
1

2
ln

[

κ(α) + ǫ

κ(α) − ǫ

]

,

where κ(α) = 1−α
1+α

κ as before. We observe that the squeezing parameter diverges if κ(α) = ǫ

which is the case for αcrit = κ−ǫ
κ+ǫ

. The dynamic model takes for this choice of α the value

r(ω, αcrit) =
1

2

[

ω2 + ǫ2

ω2

]

which again posseses a singularity at ω = 0 for α = αcrit. Note that the open loop system is

stable for κ > ǫ, which is in the closed loop set up modified to κ(α) > ǫ. For αcrit we have

κ(αcrit) = ǫ and therefore see that for the critial squeezing the system becomes unstable.

So far we investigated the lossless case γ = 0 which allowed for the definition of the

squeezing function. In the lossy case the stability condition modifies to κ(α) + γ > ǫ. Under

the assumation of Hurwitz stability of the system and that the dissipation is smaller then the

pumping (γ < ǫ) we find that for α ∈ (αcrit) the system is again stable and that αcrit is given

by

αcrit =
κ− ǫ+ γ

κ+ ǫ− γ
.

The critical value of κ(α) changes to κ(αcrit) = ǫ − γ and the 1,1 entries of the matrices
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N (ω, α) and M(ω, α) are given by

N11(ω, α) =
ǫ3[ǫ− γ]

4[ω2 + ǫ2]ω2

M11(ω, α) =
ǫ[ǫ− γ][ω2 − ( ǫ

2
)2]

2[ω2 + ǫ2]ω2
.

Both expressions diverge in the limit k → ∞ for a similar limiting procedure as before when

replacing the triple (κ, γ, ǫ) by (kκ, kγ, kǫ).

7.6. A Model with Time Delays

We are now going to present an approach for a model for an in-loop DPA with time delays,

that is an arrangement of the form Fig. 7.6. The beam splitter has the input-output relation

ŭ = αd̆+ βb̆in

b̆out = βd̆− αb̆in.

We denote with the transfer functions G̃(s) and H̃(s) the input output maps G̃ : ŭ → d̆ and

H̃ : c̆in → d̆. The effective time delay in frequency domain is modelled by multiplication with

esτ . The input d̆ is given in terms of the time delays and the transfer functions G̃, H̃ by

d̆ = esτaG̃(s)esτbŭ+ esτaH̃(s)c̃in

= es(τa+τb)G̃(s)
(

αd̆+ βb̆in

)

+ esτaH̃(s)c̆in

= (1 − αes(τa+τb)G̃)−1
[

βes(τa+τb)G̃(s)b̆in + esτbH̃(s)c̆in

]

such that

b̆out =
[

−α+ β2
(

1 − αes(τa+τb)G̃(s)
)−1

es(τa+τb)G̃(s)
]

b̆in+β
(

1 − αes(τa+τb)
)−1

esτbH̃(s)c̆in.
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With the transfer functions G̃(s) and H̃(s) as before

G̃(s) =
1

P (s)







s2 + γs+ γ2−κ2−ǫ2

4
− ǫκ

2

− ǫκ
2

s2 + γs+ γ2−κ2−ǫ2

4






,

H̃(s) =

√
γκ

P (s)







s+ κ+γ
2

ǫ
2

ǫ
2

s+ κ+γ
2






,

P (s) =
(

s+
κ+ γ − ǫ

2

)(

s+
κ+ γ + ǫ

2

)

.

The new transfer functions mapping G̃′(s) : b̆in → b̆out and H̃ ′(s) : c̆in → b̆out are then given

by

G̃′(s) =
1

P ′(s)







A(s) B(s)

B(s) A(s)






,

H̃ ′(s) = esτb

√
γκ

P ′(s)







√
1−α2

1−αχ
s+ γ

2

√
1−α2

1−αχ
+ κ

2

√
1−α2(1+αχ)

(1−αχ)2
ǫ
2

√
1−α2

1−αχ

ǫ
2

√
1−α2

1−αχ

√
1−α2

1−αχ
s+ γ

2

√
1−α2

1−αχ
+ κ

2

√
1−α2(1+αχ)

(1−αχ)2






,

=
1

P ′(s)







C(s) D(s)

D(s) C(s)






,

with

A(s) =
χ− α

1 − αχ(s)
s2 +

[

1 − α

1 − αχ
γ − α(1 − χ2)

(1 − αχ)2
κ

]

s+
γ2

4

(1 − α)

(1 − αχ)
− κ2

4

(χ+ α)(1 + αχ)

(1 − αχ)2

− ǫ2

4

(χ− α)

(1 − αχ)
+

1

2

α(1 − χ2)

(1 − αχ)2
γκ,

B(s) = − ǫ

2

(1 − α2)χ

(1 − αχ)2
κ,

P ′(s) = (s+
γ

2
+

1

2

1 + αχ

1 − αχ
κ+

ǫ

2
)(s+

γ

2
+

1

2

1 + αχ

1 − αχ
κ− ǫ

2
).

and χ = χ(s) = es(τa+τb).
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τa

τb

bin

bout

u

d

coutcin

Figure 7.6.: Network with a DPA in loop and time delays

7.7. Further Research and Citations

The paper1 on the results presented in this chapter, has been cited in various other works since

its publication. These are [72, G. Zhang, H. Joseph Lee, B. Huang and H. Zhang], [33, Iida,

Yukawa, Yonezawa, Yamamoto and Furusawa] and [66, N. Yamamoto].

7.7.1. Experimental Demonstration of Coherent Feedback

Control on Optical Field Squeezing

In [33] the authors present an experimental demonstration of the approach to feedback en-

hanced squeezing as presented in this chapter and [28]. In order to allow for the specific

details of their experimental set up they generalised the models used in [28, 68] by allowing

for an additional loss mechanism and finite time delays within the inner loop of the arrange-

ment. The system’s equation of motion is given by

1J. Gough and S. Wildfeuer [28]
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Figure 7.7.: Generalised Model for the coherent feedback arrangement with an additional loss
mechanism (modelled by the beam splitter) and finite time delays within the loop.

d

dt
a(t) = −iω0a(t) + ǫe−2iω0ta†(t)

− κ+ γ

2
a(t) +

√
κbin,1(t) +

√
γbin,2(t)

with input-output relations

bout,1(t) =
√
κa(t) − bin,1(t).

A time delay of the form bτ (t) = b(t− τ) is modelled in frequency domain by multiplication

by e−sτ such that the inputs bin,1 and bin,3 with respect to time delays τa and τb are given by

bin,1(t) = bout,5(t− τa)eiω0τa

bin,3(t) = bout,1(t− τb)e
iω0τb .

The acquired open loop transfer functions in [33] coincide with Equations (7.2.1.1, 7.2.1.2).

The authors come to the conclusion that the experimental results agree well with the theo-

retical results.
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8
Adiabatic Elimination

8.1. Introduction

In 2008 Luc Bouten, Ramon van Handel and Andrew Silberfarb [6] presented a rigorous ap-

proach to the adiabatic elimination problem by using a version of the Trotter-Kato theorem.

The result extents to the language of quantum feedback networks as discussed in this the-

sis. The methods and procedures providing the rules for building quantum networks however

utilizes other limits to obtain named networks. The instantaneous feed-forward limit for ex-

amples rises from taking the limit τ → 0 where τ is the time needed by the signals to travel

from the output of some system A to the input of another system B. After taking this limit we
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8. Adiabatic Elimination

obtain a single component describing the joint behaviour of both systems in series. Here the

question of commutativity of both limiting procedures arises. The assumption that both limits

commute is frequently used in quantum optics when modelling quantum optical set-ups1. We

therefore study the problem of commutativity of both limits in the following chapter.

We can provide an intuitive naïve equivalent to the adiabatic elimination of components of

a system with the following example. Consider Fig. 8.1.a, i.e. a system driven by some input

uin. The system itself is coupled to the input by some (damped) mechanical spring Y and the

spring is coupled to some system X . The set-up can be described by the equations of motion

Ẋ = f(X, Y, uin),

Ẏ = g(X, Y, uin),

uout = h(X, Y, uin).

We assume that the spring has a spring-constant k and we rescale the spring-constant by some

scaling factor γ, i.e. k → γ · k. We consider the limit γ → ∞ and will observe that the spring

relaxes infinitely fast to the input state. We will be left with a set-up where the spring follows

the input infinitely fast and we can think of the system X as being driven by the input directly.

Mathematically this can be described by setting Ẏ = 0 and solving g(X, Y, uin) = 0. We will

obtain Y = j(X, uin) which can be substituted into the equations for X and uout. We thus

obtain a set of equations of motion which are independent of the spring component Y , hence

where the spring has been eliminated.

1[37]
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Figure 8.1.: a) A system with a slow and an oscillatory component. b) The same system after
elimination of the oscillatory component.

8.2. Adiabatic Elimination in Quantum Feedback

Networks

In order to set the stage for the Adiabatic Elimination, we assume that the system consists of

two distinct parts. One collection of oscillators living on Hilbert space hosc and the remaining

degrees of freedom of the system living on the auxiliary space haux. The overall system Hilbert

space is then given by the tensor product haux ⊗ hosc.

Figure 8.2.: Adiabatic Elimination of the cavity. The set-up consists of a cavity (fast oscillator)
being driven by the input field and some slow degrees of freedom (for example:
slow oscillator). In the Adiabatic Elimination limit the fast oscillator become
increasingly strong coupled to the input field until they become ’enslaved’ to the
input and we are left with the slow components being driven by the input directly.

The Adiabatic Elimination describes the limit where the oscillators get increasingly strong
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coupled to the input field such that, in the limit k → ∞, we are left with the degrees of

freedom of the system living on the auxiliary space haux. The pre- and post-limit models are

described by the QSDEs

dUt(k) =
{

(Sjk(k) − δjk) dΛjk(t) + Lj(k)dBj(t)
† + L

(k)†
j SjkdBk(t) +K(k)dt

}

Ut(k),

and

dUt =
{

(Sjk − δjk) dΛjk(t) + LjdBj(t)
† + L†

jSjkdBk(t) +Kdt
}

Ut,

respectively.

In order to ensure convergence of the solution of the QSDE in the strong coupling limit

we can invoke the results by Bouten et al. [6] as quoted in Section 3.4.1. The convergence

is ensured when the coefficients of the pre-limit QSDE assume a specific structure (Equation

(3.4.1.3)) and satisfy some conditions (see assumptions of Theorem 3.10).

In order to satisfy this assumption on the structure of the pre-limit coefficients we assume

that the QSDE parameter triple (S(k), L(k), K(k)) for the quantum open model takes the

following form:

S(k) = S ⊗ I,

L(k) = k
∑

j

Cj ⊗ aj +G⊗ I,

K(k) = k2
∑

jl

Ajl ⊗ a∗
jal + k

∑

j

Zj ⊗ a∗
j + k

∑

j

Xj ⊗ aj +R ⊗ I. (8.2.1.1)

Here aj and a∗
j are the annihilators and creators for the j’s mode of the oscillators. k > 0

is the scaling parameter, scaling the coupling strength of the oscillators the input field. The

operators S,G,R,Cj, Xj, Zj, Ajl are living on the auxiliary space haux where Ajl is assumed

to have a bounded inverse.
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This parametrisation describes a model with the cavity having m oscillator modes. We may

collect the operators Cj, Xj into the row vectors C = [C1, . . . , Cm], X = [X1, . . . , Xm], the

operators Zj into the column vector Z = [Z1, . . . , Zm]T and the operators Ajl into the matrix

A = (Ajl).

In the limit k → ∞, the oscillators will become increasingly strong coupled to the input

field. In this strong coupling limit we consider the oscillator modes to be permanently relaxed

to the input noise fields state, i.e. the ground state. We denote the ground state of the oscillators

with |0〉osc. In this case, as the degrees of freedom of the oscillators will become eliminated,

we are left with the degrees of freedom of the auxiliary system haux.

We obtain as a special case of Theorem 3.10 the following statement:

Theorem 8.1 Let U(t, k) be the unitary adapted evolution associated with the triple

(S(k), L(k), K(k)) and define the slow space as hs = haux ⊗ {❈ |0〉osc}. If the operator

Y =
∑

jl Ajl ⊗ a∗
jal has kernel space equal to the slow space, then we have the limit

lim
k→∞

sup
0≤t≤T

∥
∥
∥U(t, k)Φ − Û(t)Φ

∥
∥
∥ = 0,

for all T > 0 and Φ ∈ hs ⊗ F, where Û(t) is the unitary adapted evolution associated with

the triple (Ŝ ⊗ |0〉 〈0|osc , L̂⊗ |0〉 〈0|osc , K̂ ⊗ |0〉 〈0|osc) and

Ŝ = (I + CA−1C∗)S,

L̂ = G− CA−1Z,

K̂ = R −XA−1Z.

In favour of an easier notation we will drop the factor of ⊗ |0〉 〈0|osc for the remainder of the

chapter.
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To prove the theorem we have show that Assumptions 1) to 3) of Theorem 3.10 are satisfied.

The structural requirements of Assumption 1) are fulfilled by construction of the pre-limit

coefficients Equation (8.2.1.1).

The operators appearing in Equation (8.2.1.3) and their adjoints are assumed to have a

common invariant domain D ⊂ haux ⊗ hosc. On hosc this domain is given by [13]

span
{

|n〉 :
∑

nj = N |N ∈ ◆
}

. (8.2.1.2)

Assumptions 2) were given by:

i) P0D ⊂ D

ii) α2P0 = 0 on D

iii) There exist α̃2, α̃
†
2 with common invariant domain D, such that α̃2α2 = α2α̃2 = P1

iv) β†
1,jP0 = 0 on D, ∀1 ≤ j ≤ n

v) P0α1P0 = 0 on D

The operators appearing in these assumptions are the operators of the parameter triple

γjk(k) = ǫjk,

βj(k) = kβ1,j + β0,j,

α(k) = k2α2 + kα1 + α0, (8.2.1.3)

as given in the result of Bouten et al. in [6].

This must be compared with the assumed structure of the coefficients according to Theorem
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8.1, i.e.

S(k) = S ⊗ I,

L(k) = k
∑

j

Cj ⊗ aj +G⊗ I,

K(k) = k2
∑

jl

Ajl ⊗ a∗
jal + k

∑

j

Zj ⊗ a∗
j + k

∑

j

Xj ⊗ aj +R ⊗ I. (8.2.1.4)

We have to be careful with the left and right hand formulation of the QSDE, i.e. dV (t) =

V (t)
(

dG̃
)

as used in [6] versus the right hand formulation dU(t) = (dG(t))U(t) as used in

this chapter.

Since Equation (8.2.1.3) and Assumptions 2) are formulated with respect to the left-hand

QSDE and Equation (8.2.1.4) is formulated with respect to the right-hand QSDE we see that

the operators appearing in Assumptions 2) translate therefore to

α2 =




∑

jk

Akl ⊗ a∗
jak





∗

,

β1,j =




∑

j

Cj ⊗ aj





∗

,

α1 =




∑

j

Zj ⊗ a∗
j +Xj ⊗ aj





∗

.

The slow space was defined as hs = haux ⊗ {❈ |0〉osc} and we can readily see that ii) and iv)

of Assumptions 2) will be satisfied since in each case we encounter aj |0〉osc. Assumption v)

will be satisfied for the same reason and the fact that P0a
∗ |0〉osc = 0. i) will be satisfied by the

specific form of the invariant domain in hosc, Equation (8.2.1.2).

We can now continue with the proof of Theorem 8.1:

Proof:
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By Assumption 2), we are left with the verification of the existence of α̃2 and α̃2
† such that

α̃2α2 = α2α̃2 = Pf .

Let us set

MN = haux ⊗ span






|n〉 :

∑

j

nj = N






,

forN = 0, 1, 2, . . .. In particular, we have the direct sum of orthogonal subspaces haux ⊗hosc =

⊕

N≥0 MN . Let P0 = Ps be the orthogonal projection onto the "slow space"

hs = haux ⊗ |0〉osc = M0

and P1 = Pf = I − Ps the projection onto the "fast space"

hf =
∞⊕

n=1

Mn.

The overall space haux ⊗ hosc decomposes then into haux ⊗ hosc = hs ⊕ hf

Recall the hypothesis that Ker(Y ) = hs. We first have the following:

Lemma 8.2 Under the hypothesis Ker(Y ) = hs, the subspaces MN are stable under YN =

Y
∣
∣
∣
MN

, and we have

(PfY Pf )−1 =
⊗

N≥0

Y −1
N .

Moreover, let |δj〉 be the state where the jth mode is in the first excited state and all others

are in the ground state, then (Y1)
−1∑

j φj ⊗ |δj〉 =
∑

jl(A
−1)jlφl ⊗ |δj〉.

Proof:

Consider the decomposition of the system space haux ⊗ hosc = hs ⊕ hf as presented above.

Y is an operator on haux ⊗ hosc and assumes with respect to the decomposition into "fast" and
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"slow" space the following form

Y =







Yss Ysf

Yfs Yff







=







0 0

0 Yff






.

The right-hand-side follows since Y =
∑

jk A
∗
jk ⊗ a∗

kaj acting on some element of φ ∈
⊕∞

n=0 Mn doesn’t change the number of photons and each subspace Mn is therefore stable

under Y whence every off-diagonal element of Y in this representation will be zero, i.e.

Yfs = Ysf = 0 and by direct sum decomposition we see that

Y −1
ff = (PfYNPf )−1 =

⊕

N≥1

Y −1
N .

We also have that KerY = hs implies Yss = 0 and invertibility of Yff = PfY Pf .

The remaining identity is easily checked from Y
∑

j φj ⊗|δj〉 =
∑

jl Ajlφl ⊗|δj〉 and setting

this equal to
∑

j φ̃j ⊗ |δj〉 we deduce that φl = (A−1)jlφ̃j .

�

Lemma 8.2 shows the specific form of α†
2 = Y and we can easily see that if we choose for

example the Moore-Penrose pseudo inverse α̃2
† = Y − with

Y − =







0 0

0 Y −1
ff







we have indeed that Y −Y = Y Y − = Pf . We obtain an equivalent statement for α2 = Y ∗ by

showing that KerY = KerY ∗ = M0 such that above arguments hold mutatis mutandis for

Y ∗.
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Corrollary 8.3 Ker(Y ∗) = M0.

Proof:

By the preceding lemma we have that hf = Pfhaux ⊗ hosc is stable under Y. Therefore, for

any φ ∈ M0 and ψ ∈ haux ⊗ hosc we have that 〈φ|Y ψ〉 = 〈φ|Y Pfψ〉 = 0. It follows that

〈Y ∗φ|ψ〉 = 〈φ|Y ψ〉 = 0 ∀ψ ∈ haux ⊗ hosc, thus Y ∗ψ = 0 for any ψ ∈ M0 and we conclude

that M0 ⊆ Ker(Y ∗). We show the converse, i.e. Ker(Y ∗) ⊆ M0 by contradiction. To do

this, suppose that ∃ ϕ ∈ Pfhaux ⊗ hosc with ϕ 6= 0 such that 〈Y ∗ϕ|ψ〉 = 0 ∀ ψ ∈ haux ⊗ hosc.

It follows that 〈ϕ|Y ψ〉 = 0 and therefore 〈ϕ|Y Pfψ〉 = 0 ∀ ψ ∈ haux ⊗ hosc. But since hf

is stable under Y and Y
∣
∣
∣
hf

is invertiblem, it follows that ϕ ∈ hs. But this contradicts the

hypothesis that ϕ is a nonzero element of hf and therefore we conclude that Ker(Y ∗) ⊆ M0.

This concludes the proof.

�

We now state a sufficient condition for Ker(Y ) = M0 = Ker(Y ∗). Let us first recall the

following definition:

Definition 8.4 (See Chapter 6) A bounded Hilbert space operator A is strictly Hurwitz

stable if

Re 〈ψ|Aψ〉 < 0, ∀ ψ 6= 0.

Lemma 8.5 Let Ajl ∈ B(haux) such that A = (Ajl) ∈ B(haux ⊗ ❈
m) is strictly Hurwitz

stable. The the operator

Y =
∑

jl

Ajl ⊗ a∗
jal

on haux ⊗ hosc has kernel consisting of vectors of the form φ⊗ |0〉osc, where φ ∈ haux.
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Proof:

We see that for ψ ∈ haux ⊗ hosc

〈ψ|Y ψ〉 =
∑

jl

〈ψ| (I ⊗ aj)
∗ (I ⊗ al)ψ〉 =

∑

jl

〈ψj|Ajl ⊗ Iψl〉

where ψj = (I ⊗ bj)ψ. We may decompose ψj =
∑

n ψj(n) ⊗ |n〉, where |n〉 is the orthonor-

mal basis of number states for the oscillators and ψj(n) ∈ haux. Then

〈ψ|Y ψ〉 =
∑

n

∑

jl

〈ψj(n)|Ajlψl(n)〉

and, for each fixed n, we have
∑

jl 〈ψj(n)|Ajlψl(n)〉 ≤ 0 with equality if and only if the

ψj(n) = 0 since (Ajl) is assumed to be strictly Hurwitz. In particular, if we assume that ψ is

in the kernel of Y then we deduce that ψj(n) = 0 for each n and j = 1, . . . ,m. It follows that

ψj = (I ⊗ aj)ψ = 0 for each j = 1, . . . ,m, and this implies that ψ = φ ⊗ |0〉osc for some

φ ∈ haux as required.

�

Note, however, that as we shall see below, for Theorem 8.1 to hold it is enough that Ker(Y ) =

M0.

Next we have to ensure that the post-limit parameter given in Assumption 3) satisfy the

Hudson-Parthasarathy relations, i.e. that Ŝ is unitary and that K̂ + K̂∗ = −L̂∗L̂.

Lemma 8.6 The operator Ŝ is unitary and K̂ + K̂∗ + L̂∗L̂ = 0.

Proof:
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We first show that I + CA−1C∗ is invertible. Suppose that u ∈ Ker(I + CA−1C∗)

u = −CA−1C∗u ⇒ C∗u = −C∗CA−1C∗u ⇒ (I + C∗CA−1)C∗u = 0

⇒ (A+ C∗C)A−1C∗u = 0 ⇒ −A∗AC∗u = 0 ⇒ C∗u = 0

so substitute C∗u = 0 into u = −CA−1C∗u we see that u = 0, therefore Ker(Ŝ) = 0. As S

is unitary, we have that

ŜŜ∗ = (I + C∗A−1C)(I + CA∗−1C∗)

= I + CA−1 (A+ A∗ + C∗C)A∗−1 = I

using A+ A∗ = −C∗C. Similarly Ŝ∗Ŝ. Likewise we use Eq. (8.2.1.10) to show that

K̂ + K̂∗ + L̂∗L̂ = R −XA−1Z +R∗ − Z∗A∗−1X∗ +
(

G∗ − Z∗A∗−1C∗
) (

G− CA−1Z
)

= − (X −G∗C)A−1Z − Z∗A∗−1
(

X∗ − C∗G− C∗CA−1Z
)

= Z∗A−1Z + Z∗A∗−1
(

Z + C∗CA−1Z
)

= Z∗A∗−1 (A+ A∗ + C∗C)A−1Z

= 0.

�

We now verified all assumptions for Theorem 3.10 and are ready to complete the prove of

Theorem 8.1. We first recall both forms of the QSDEs as found in this Chapter and [6].

Let V (t, k) = U(t, k)∗, then V satisfies the left QSED (using summation convention)

dV
(k)

t = V
(k)

t

{

α(k)dt+ β
(k)
l dBl(t) + γ

(k)
j dB∗

j (t) +
(

ǫ
(k)
jl − δjl

)

dΛjl(t)
}

(8.2.1.5)

where α(k) = k2α2 + kα1 + α0 = K(k)∗, β(k)
j = kβ0,j + β0,j = Lj(t)

∗, γ(k)
j = −S∗

jlLl, and
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ǫjl = S∗
jl. As discussed before, the results in [6] are stated for the left QSDE whereas the our

results are stated for the right QSDE

dU
(k)
t =

{(

S
(k)
jl − δjl

)

dΛjl
t + L

(k)†
j S

(k)
jl dBl

t + L
(k)
j dBj†

t +K(k)dt
}

U
(k)
t , (8.2.1.6)

where the operator appearing in Eq. (8.2.1.6) are given by Equation (8.2.1.4).

The limit coefficients in Assumption 3 are then given by

α̂ = Ps (α0 − α1α̃2α1)Ps =
(

R∗ − Z∗A∗−1X∗
)

⊗ |0〉 〈0|osc ≡ K̂∗ ⊗ |0〉 〈0|osc

β̂ = Ps (β0 − α1α̃2β1)Ps =
(

G∗ − Z∗A∗−1C∗
)

⊗ |0〉 〈0|osc ≡ L̂∗ ⊗ |0〉 〈0|osc

ǫ̂ = Psǫ (I + β∗
1 α̃2β

∗
1)Ps = S∗

(

I + C∗A∗−1C∗
)

⊗ |0〉 〈0|osc ≡ Ŝ∗ ⊗ |0〉 〈0|osc

γ̂ = −ǫ̂β̂∗ ≡ −Ŝ∗L̂⊗ |0〉 〈0|osc

with (Ŝ, L̂, K̂) as given in the statement of Theorem 8.1. The action of the Moore-Penrose

inverse α̃2 on some element α1Psφ ⊗ ψ = X∗φ ⊗ |δj〉osc, where |δj〉osc is the state where all

oscillators are in the ground state and the j’th oscillator is in the first excited state, is given by

Lemma 8.2. These coefficients evidently satisfy the requirements of Assumption 3, namely,

to generate a unitary adapted Hudson-Parthasarathy equation on a common invariant domain

in M0, as we established in Lemma 8.6 .

�

Remark 8.2.1.1 We drop for the remainder of the chapter the ⊗ |0〉 〈0|osc, as it is clear that

in the limit the oscillators will be relaxed to the ground state |0〉osc.

After dropping the ⊗ |0〉 〈0|osc and collecting the oscillator creators and annihilators in a
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similar manner as in the previous sections, i.e.

a∗ = [a∗
1, . . . , a

∗
m] , a =











a1

...

am











we can simply write

S(k) = S, L(k) = kCa+G, K(k) = k2a∗Aa+ ka∗Z + kXa+R. (8.2.1.7)

Consider a self-adjoint Hamiltonian of the from by

H(k) = k2a∗Ωa+ ka∗Γ + kΓ∗a+ Θ,

and remember the definition of the complex dampening K(k) = −1
2
L∗(k)L(k) − iH(k).

Using the parameter as given in Equation (8.2.1.7) and comparing both sides of the equation

we see that

A = −1
2
C∗C − iΩ,

Z = −1
2
C∗G− iΓ,

X = −1
2
G∗C − iΓ∗,

R = −1
2
G∗G− iΘ.

We can deduce the following identities when computing K(k) +K∗(k):

A+ A∗ = −C∗C, (8.2.1.8)

X + Z∗ = −G∗C, (8.2.1.9)

R +R∗ = −G∗G. (8.2.1.10)
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8.3. Adiabatic Elimination and Systems in Series

We now wish to verify commutativity of the adiabatic elimination with the instantaneous feed-

forward limit as encountered in Chapter 5.5.4 and Chapter 6.6.2.3.

Figure 8.3.: Illustration of the commutativity of the adiabatic elimination with the series prod-
uct. The question arising is if the order we take the limits changes the resulting
model (lower right corner). a) -> b) Adiabatic Elimination of the oscillator of
both system 1 and 2; a) -> c) Taking the series product of system 1 and 2; b)
-> d) Taking the series product after the adiabatic elimination; c) -> d) Adiabatic
elimination after the series product.

We remind the reader that the series product or instantaneous feedforward limit of models

Gj, j = 1, 2 was denoted by G2 ⊳ G1 and that the adiabatic elimination of model G is denoted

by A (G).

We therefore want to verify that

A (G2 ⊳ G1) = (A (G2)) ⊳ (A (G2)) .

The model under consideration consists of two oscillator modes aj, j = 1, 2, one for each

system 1 and 2, see Fig. 8.3. We collect these oscillators in vector a = [a∗
1, a

∗
2]

† and obtain for

system j = 1, 2 the parameter triples (Sj(k), Lj(k), Kj(k))
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S1(k) = S1,

L1(k) = k[C1, 0]a+G1,

K1(k) = k2a∗







A1 0

0 0







+ ka∗







Z1

0







+ k[X1, 0]a+R1, (8.3.0.11)

and

S2(k) = S2,

L2(k) = k[0, C2]a+G2,

K2(k) = k2a∗







0 0

0 A2







+ ka∗







0

Z2







+ k[0, X2]a+R2. (8.3.0.12)

Lemma 8.7 Let Gj, j = 1, 2 be models with parameter triple (Sj, Lj, Kj). If the Adiabatic

Elimination limits A (Gj) exist, then

A (G2 ⊳ G1) = (A (G2)) ⊳ (A (G2))

Proof:

We compute the resulting models by followings the paths a) -> b) -> d) or a) -> c) -> d) in

Fig. 8.3 and compare the results. Recall the formula for the series product

SSer = S2S1, LSer = L2 + S2L1, KSer = K1 +K2 − L†
2S2L1.

Adiabatic elimination followed by the series product: (A (G2)) ⊳ (A (G1))
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We can now compute the path a) -> c) -> d), that is adiabatic elimination followed by the

instantaneous feedforward limit. The adiabatic elimination of reduces model j = 1, 2 to

Ŝj =
(

I + CjA
−1
j C∗

j

)

Sj,

L̂j = Gj − CjA
−1
j Zj,

K̂j = Rj −XjA
−1
j Zj.

If we compute now the series product, we obtain

SSer = Ŝ2Ŝ1,

LSer = L̂2 + Ŝ2L̂1,

KSer = K̂1 + K̂2 − L̂†
2Ŝ2L̂1. (8.3.0.13)

The series product followed by adiabatic elimination: A (G2 ⊳ G1)

We can compute the model parameter by the converse direction by following path path a)

-> b) -> d) in Fig. 8.3. The series product of models Eq. 8.3.0.11 and 8.3.0.12 gives

SSer(k) = S2S1

LSer(k) = L2(k) + S2(k)L1(k) = k[S2C1, C2]a+G1 + S2G1

KSer(k) = K1(k) +K2(k) − L†
2(k)S2(k)L1(k)

= K2a∗







A1 0

−C∗
2S2C1 A2






a+ ka∗







Z1

Z2 − C∗
2S2G1







+ k[X1 −G∗
2S2C1, X2]a

+ R1 +R2 −G∗
2S2G1
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Performing now the adiabatic elimination results in

ŜSer =






I + [S2C1, C2]







A1 0

−C∗
2S − 2C1 A− 2







−1 





C∗
1S

∗
2

C∗
2












S2S1,

L̂Ser = (G1 + S2G1) − [S2C1, C2]







A1 0

−C∗
2S − 2C1 A− 2







−1 





Z1

Z2 − C∗
2S − 2G1






,

K̂Ser = (R1 +R2 −G∗
2S2G1)

− [X1 −G∗
2S2C1, X2]







A1 0

−C∗
2S − 2C1 A− 2







−1 





Z1

Z2 − C∗
2S − 2G1






. (8.3.0.14)

We are now left with verifying that Eq. 8.3.0.13 and Eq. 8.3.0.14 coincide. In order to

archive this we have to compute the matrix inverse appearing in Eq. 8.3.0.14. A useful tool

to accomplish this is the Banachiewicz inversion formula [70], see Equation A.1.0.2. We

therefore obtain







A1 0

−C∗
2S − 2C1 A2







−1

=







A−1
1 0

A−1
2 C∗

2S2C1A
−1
1 A−1

2






.

We are now able to write out the expressions in Eq. 8.3.0.14 explicitly and obtain for ŜSer

ŜSer =
(

I + S2C1A
−1
1 C∗

1S
∗
2 + C2A

−1
2 C∗

2S2C1A
−1
1 C∗

1S
∗
2 + C2A

−1
2 C∗

2

)

S2S1,

=
(

I + C2A− 2−1C∗
2

)

S2

(

I + C1A
−1
1 C∗

1

)

S1,

= Ŝ2Ŝ1.
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Similarly for the coupling operator L̂Ser

L̂Ser = (G1 + S2G1) − S2C1A
−1
1 Z1 − C2A

−1
2 C∗

2S2A1Z1 − C2A
−1
2 Z2 + C2A

−1
2 C∗

2S2G1,

=
(

G2 − C2A
−1
2 Z2

)

+
(

I + C2A
−1
2 C∗

2

)

S2

(

G1 − C1A
−1
1 Z1

)

,

= L̂2 + Ŝ2L̂1.

If we expand the complex dampening K̂Ser we obtain

K̂Ser = R1 +R2 −X1A
−1
1 Z1 +G∗

2S2C1A
−1
1 Z1 −X2A

−1
2 Z2 +X2A

−1
2 C∗

2S2 (G1 − C1Z1) .

We want to show that K̂Ser as above equals

K̂1 + K̂2 − L̂∗
2Ŝ2L̂1 = R1 +R2 −X1A

−1
1 Z1 −X2A

−1
2 Z2

−
(

G∗
2 − Z∗

2A
−1∗
2 C∗

2

) (

I + C2A
−1
2 C∗

2

)

S2

(

G1 − C1A
−1
1 Z1

)

.

We recall that A2 = −1
2
C∗

2C2 − iΩ2 such that

A2 + C∗
2C2 = +

1

2
C∗

2C2 − iΩ2 = −A∗
2 (8.3.0.15)

and

A−1∗
2 C∗

2

(

I + C2A
−1
2 C2

)

= A−1∗
2

(

I + C∗
2C2A

−1
2

)

C∗
2 ,

= A− 2−1∗ (A2 + C∗
2C2)A− 2−1C∗

2 ,

(8.3.0.15)
= A−1∗

2 (−A∗
2)A

−1∗
2 C∗

2 ,

= −A−1
2 C∗

2 . (8.3.0.16)
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Using this we get

K̂Ser −
(

K̂1 + K̂2 − L̂∗
2Ŝ2L̂1

)

= (X2 +G∗
2C2 + Z∗

2)A−1
2 C∗

2S2 (G1 − C1Z1) .

But now recall relations Eq. (8.2.1.10), i.e. X2 + Z∗
2 = −G∗

2C2 from which we can see that

the right hand side of this equation vanishes.

We therefore can see that model parameter obtained by either performing the adiabatic

elimination or series product first don’t differ and both limits therefore commute

�

8.4. Adiabatic Elimination and Systems in Loop:

Introduction

We now want to verify that the same result as in the previous section also holds for the feed-

back reduction limit, see Fig. 8.4. One could now try to attempt a similar way to verify

System 1

System 2

Figure 8.4.: Adiabatic elimination for systems in loop. System 2 has a fast oscillator compo-
nent and some remaining degrees of freedom.

commutativity with the adiabatic elimination as in the previous chapter, that is, computing the

models obtained by performing both, the adiabatic elimination limit or the feedback reduc-

tion first and compare the results. However, if one tries this procedure with the most general

system models, the algebra becomes quite challenging.
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As a motivating example we compute the resulting models for both orders of taking the

limits for a simpler model.

Here we take the four port model ’System 1’ in Fig. 8.4 to be a beam splitter, that is a model

with parametrisation

S1 =







Sii Sei

Sie See







=







α
√

1 − α2

√
1 − α2 −α






, L = 0, K = 0,

with transmissivity α ∈ [0, 1]. We take the in-loop device to have a single oscillator mode

coupled to the field and no remaining degrees of freedom

S2(k) = S2,

L2(k) = k
√
γa2,

K2(k) = −1

2
k2a∗

2γa2.

In terms of the operators appearing in Theorem 8.1 we get

S2 = S2, A2 = −1
2
γ, C2 =

√
γ, Z2 = X2 = R2 = G2 = 0.

The reduced model after taking the feedback reduction in the zero time delay limit is given in

Section 5.5.5:

Sred = See + SeiS2 (I − SiiS2)
−1 Sie,

Lred = Sei (I − SiiS2)
−1 L2,

Hred = K2 − L∗
2S2 (I − SiiS2)

−1 L2 (8.4.0.17)
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We recall the parameter after the adiabatic elimination as given in Theorem 8.1:

Ŝ = (I + C2A
−1
2 C∗

2)S2 = −S2,

L̂ = G2 − C2A
−1
2 Z2 = 0,

K̂ = R2 −X2A
−1
2 Z2 = 0. (8.4.0.18)

The parameter taking the adiabatic elimination first and taking the feedback reduction limit

are given by

Ŝ = α+
√

1 − α2 (−S2)
1

1 − (−α) (1 − α2)
=

α− S2

1 − αS2

,

L̂ = 0,

K̂ = 0. (8.4.0.19)

Taking the feedback reduction first results in

S̃(k) = α+
(

1 − α2
)

S2
1

1 + αS2

,

L̃(k) = k
√

1 − α2
1

1 + αS2

√
γa0,

K̃(k) = K2(k) − L2(k)∗ S2T22

1 − S2T22

L2(k) = k2a∗
2

(

−1
2
γ + γ

αS2

1 + αS2

)

a2.

We have to compare this with the structure of pre-limit parameter as given with Theorem 8.1

S(k) = S ⊗ I,

L(k) = k
∑

j

Cj ⊗ aj +G⊗ I,

K(k) = k2
∑

jl

Ajl ⊗ a∗
Jal + k

∑

j

Zj ⊗ a∗
j + k

∑

j

Xj ⊗ aj +R ⊗ I. (8.4.0.20)
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and obtain the following parameter for the adiabatic elimination:

A = −γ

2

1 − αS2

1 + αS2

, C =

√
1 − α2√γ
1 + αS2

,

S = α+
(1 − α2)S2

1 + αS2

, G = X = Z = R = 0.

After the adiabatic elimination we therefore obtain L̂ = 0, K̂ = 0 and

Ŝ =

(

1 − (1 − α2) γ

| 1 + αS2 |
2

γ

1 + αS2

1 − αS2

)(

α+
(1 − α2)S2

1 + αS2

)

=
(αS∗

2 − 1) (1 + αS2)

(1 + αS∗
2) (1 − αS2)

(
α+ S2

1 + αS2

)

=
α− S2

1 − αS2

. (8.4.0.21)

And we have indeed that Eq. 8.4.0.19 equals Eq. 8.4.0.21 which shows that for this example

both limits commute.

8.5. The Generalised Schur Complement

The key to understand the relation between Eq. (8.4.0.21) and Eq. (8.4.0.19) is to encode

both, the adiabatic elimination and the feedback reduction as instances of Schur complements

in the model Itō matrix. The properties of the Schur complement as presented in Appendix A

are stated for matrices with complex scalar entries. In order to apply these results in the set-up

of this chapter these statements have to be generalised to operator valued matrices.

Let h be a Hilbert space and consider a decomposition of h of the form h = ⊕j∈Jhj for

some finite index set J. Let M be a bounded invertible operator on h and pick some non-trivial
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subsets A,B ⊂ J and write for ak ∈ A, k = 1, . . . , n, bl ∈ B, l = 1, . . . ,m

MA,B =















Ma1,b1 Ma1,b2 . . . Ma1,bm

...
. . .

...
...

. . .
...

Man,b1 Man,b2 . . . Man,bm















Let A and B be two sets. We denote the relative complement of B in A by A/B.

If we drop the requirement of M being invertible we obtain in the spirit of Definition A.2

the following:

Definition 8.8 (Generalised Schur Complement) Let A and B be non-trivial subsets of

the finite index set J and choose non-trivial subsets C ⊂ A and D ⊂ B. Furthermore take

| A |=| B | and | C |=| D |. Suppose the sub-block MC,D possesses a generalised inverse

(MC,D)−
, then the Schur complement of MA,B relative to MC,D is defined to be

MA,B/MC,D = MA/C,B/D −MA/C,D (MC,D)− MC,B/D.

The generalised Schur complement is well-defined and independent of the choice of gen-

eralised inverse if and only if ImMC,B/D ⊂ ImMC,D and KerMC,D ⊂ KerMA/C,D.

The next result is a generalisation of the quotient rule Eq. (A.1.0.4), [70, Theorem 1.4],[62,

Eq. (4.116)] to operator valued matrices with extension to a statement about commutativity of

the order of taking the Schur complement with respect to indices B and C.

This result is the main technical result needed to prove commutativity of the adiabatic elim-

ination and the feedback reduction.
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Lemma 8.9 Suppose that A,B,C is a partition of the finite index set J then, whenever the

generalised Schur complements are well-defined, we have the rule

M/MB∪C,B∪C = (M/MC,C) / (M/MC,C)B,B ,

= (M/MB,B) / (M/MB,B)C,C . (8.5.0.22)

Proof (Lemma 8.9):

The proof follows by comparison of M/MB∪C,B∪C , (M/MC,C) / (M/MC,C)B,B and

(M/MB,B) / (M/MB,B)C,C .

We compute the first part of Lemma 8.9 M/MB∪C,B∪C with

M/MB∪C,B∪C =











MA,A MA,B MA,C

MB,A MB,B MB,C

MC,A MC,B MC,C











/







MB,B MB,C

MC,B MC,C






,

= MA,A − [MA,B, MA,C ]







MB,B MB,C

MC,B MC,C







− 





MB,A

MC,A






. (8.5.0.23)

The inverse in the last equation can be computed explicitly using Banachiewicz inversion
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formula in Lemma A.4:







MB,B MB,C

MC,B MC,C







−

,

Eq.(A.1.0.10)
=







M−
B,B +M−

B,BMB,CX
−MC,BM

−
B,B −M−

B,BMB,CX
−

−X−MC,BM
−
B,B X−






, (8.5.0.24)

Eq.(A.1.0.11)
=







Y − −Y −MB,CM
−
C,C

−M−
C,CMC,BY

− M−
C,C +M−

C,CMC,BY
−MB,CM

−
C,C






, (8.5.0.25)

where X = MB∪C,B∪C/MB,B , Y = MB∪C,B∪C/MC,C . Using this and multiplying out Eq.

(8.5.0.23) yields

M/MB∪C,B∪C ,

Eq.(8.5.0.24)
= MA,A −MA,BXMB,A +MA,BXMB,CM

−
C,CMC,A +MA,CM

−
C,CMC,BXMB,A

−MA,CM
−
C,CMC,A −MA,CM

−
C,CMC,BXMB,CM

−
C,CMC,A,

Eq.(8.5.0.24)
= MA∪C,A∪C/MC,C −MA∪C,B∪C/MC,C (MB∪C,B∪C/MC,C)− MB∪C,A∪C/MC,C ,

(8.5.0.26)

Eq.(8.5.0.25)
= MA∪B,A∪B/MB,B −MA∪B,B∪C/MB,B (MB∪C,B∪C/MB,B)− MB∪C,A∪B/MB,B.

(8.5.0.27)

Next we compute the right hand side of the first equation in Lemma 8.9, that is
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(M/MC,C) / (M/MC,C)B,B:

N = M/MC,C =











MA,A MA,B MA,C

MB,A MB,B MB,C

MC,A MC,B MC,C











/MC,C ,

=







MA,A MA,B

MB,A MB,B







−







MA,C

MB,C







(MC,C)− [MC,A, MC,B],

=







MA,A −MA,CM
−
C,CMC,A MA,B −MA,CM

−
C,CMC,B

MB,A −MB,CM
−
C,CMC,A MB,B −MB,CM

−
C,CMC,B






,

=







MA∪C,A∪C/MC,C MA∪C,B∪C/MC,C

MB∪C,A∪C/MC,C MB∪C,B∪C/MC,C






.

Performing the second Schur complement N/NB,B = (M/MC,C)/(M/MC,C)B,B results

in:

N/NB,B = MA∪C,A∪C/MC,C −MA∪C,B∪C/MC,C (MB∪C,B∪C/MC,C)− MB∪C,A∪C/MC,C ,

which is identical to Equation (8.5.0.26) as required. The second equality of Lemma 8.9

follows mutatis mutandis from the last calculation when interchanging B and C and comparing

with Eq. (8.5.0.27).

�

Next we establish the conditions we have to impose in order for all Schur complements

appearing in Lemma 8.9 to be well-defined and independent of the choices of generalised

inverses.
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Lemma 8.10 If

Ker







MB,B MB,C

MC,B MC,C







⊆ Ker[MA,B,MA,C ] (8.5.0.28)

Im







MB,A

MC,A







⊆ Im







MB,B MB,C

MC,B MC,C







(8.5.0.29)

KerMC,C ⊆ KerMB,C (8.5.0.30)

ImMC,B ⊆ ImMC,C (8.5.0.31)

KerMB,B ⊆ KerMC,B (8.5.0.32)

ImMB,C ⊆ ImMB,B (8.5.0.33)

then the Schur complements (M/MC,C)/(M/MC,C)B,B and (M/MB,B)/(M/MB,B)C,C are

well-defined and independent of the choice of generalised inverses.

Proof:

Collecting all Schur complements appearing directly in Lemma 8.9, we see that we require

i) M/MB∪C,B∪C ,

ii) M/MC,C ,M/MB,B ,

iii) (M/MC,C)/(M/MC,C)B,B and (M/MB,B)/(M/MB,B)C,C ,

to be well-defined. Additionally, when computing M/MB∪C,B∪C (see proof of Lemma 8.9,

Eq. (8.5.0.26)-(8.5.0.27)) we obtain

M/MB∪C,B∪C ,

=MA∪C,A∪C/MC,C −MA∪C,B∪C/MC,C (MB∪C,B∪C/MC,C)− MB∪C,A∪C/MC,C ,

=MA∪B,A∪B/MB,B −MA∪B,B∪C/MB,B (MB∪C,B∪C/MB,B)− MB∪C,A∪B/MB,B,
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such that we have to add the following Schur complements to the list of complements we

require to be well-defined:

iv) MA∪C,A∪C/MC,C , MA∪C,B∪C/MC,C , MB∪C,A∪C/MC,C , MB∪C,B∪C/MC,C

v) MA∪B,A∪B/MB,B, MA∪B,B∪C/MB,B, MB∪C,B∪C/MB,B, MB∪C,A∪B/MB,B

vi) MA∪C,A∪C/MC,C −MA∪C,B∪C/MC,C (MB∪C,B∪C/MC,C)− MB∪C,A∪C/MC,C

Recall that the requirements on the kernel and image space inclusion for the Schur comple-

ment to be well-defined, Eq. (A.1.0.9). We can think of M assuming the partition

M =











MA,A MA,B MA,C

MB,A MB,B MB,C

MC,A MC,B MC,C











.

Now,

M/MB∪C,B∪C = MA,A − [MA,B,MA,C ]







MB,B MB,C

MC,B MC,C







− 





MB,A

MC,A







is well-defined due to Relation (8.5.0.28) and Relation (8.5.0.29). Similarly

MB∪C,B∪C/MC,C =







MB,B MB,C

MC,B MC,C






/MB,B = MC,C −MC,BM

−
B,BMB,C

is well-defined because of Relation (8.5.0.32) and Relation (8.5.0.33) and

MB∪C,B∪C/MB,B =







MB,B MB,C

MC,B MC,C






/MC,C = MB,B −MB,CM

−
C,CMC,B

is well-defined by of Relation (8.5.0.30) and Relation (8.5.0.31).

To ensure that M/MB,B,M/MC,C ,MA∪C,A∪C/MC,C ,MA∪C,B∪C/MC,C and
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MB∪C,A∪C/MC,C are well-defined we have to require that

KerMB,B ⊆ Ker







MA,B

MC,B






, (8.5.0.34)

Im[MB,A,MB,C ] ⊆ ImMB,B, (8.5.0.35)

KerMC,C ⊆ Ker







MA,C

MB,C






, (8.5.0.36)

Im[MC,A,MC,B] ⊆ ImMC,C . (8.5.0.37)

One can show that relations Eq. (8.5.0.28) - (8.5.0.33) imply Eq. (8.5.0.34) - (8.5.0.37) by the

following:

By Relation (8.5.0.32) we see that MB,Bx = 0 =⇒ MC,Bx = 0 such that together with

Relation (8.5.0.28) MB,Bx = 0 =⇒







MB,B

MC,B






x = 0 =⇒ MA,Bx = 0 and therefore

KerMB,B ⊆ Ker







MA,B

MC,B






,

i.e. Relation (8.5.0.34) holds. Now, by Relation (8.5.0.29) we see that ∀x∃y, z such that







MB,A

MC,A






x =







MB,By +MB,Cz

MC,Bx+MC,Cz






. (8.5.0.38)

Similarly by Relations (8.5.0.31) and (8.5.0.33), ∃v, w such that

MC,By = MC,Cv, (8.5.0.39)

MB,Cz = MB,Bw, (8.5.0.40)

and therefore by combining Relations (8.5.0.38) - (8.5.0.40) we see that ImMB,A ⊆ MB,B
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and ImMC,A ⊆ MC,C . This together with Relation (8.5.0.33) gives

Im[MB,A,MB,C ] ⊆ ImMB,B,

that is Relation (8.5.0.35). By similar arguments we can see that

• Relations (8.5.0.28) and (8.5.0.30) =⇒ (8.5.0.36)

• Relations (8.5.0.29) and (8.5.0.31) =⇒ (8.5.0.37)

• Relations (8.5.0.28), (8.5.0.29), (8.5.0.32) & (8.5.0.33) =⇒ ImMB,A ⊆ ImMB,B, KerMB,B ⊆

KerMA,B =⇒ MA∪B,A∪B/MB,B is well-defined

• Relations (8.5.0.28), (8.5.0.32) & (8.5.0.33) =⇒ ImMB,C ⊆ MB,B, KerMB,B ⊆

KerMA,B =⇒ MA∪B,B∪C/MB,B is well-defined

• Relations (8.5.0.29), (8.5.0.32) & (8.5.0.33) =⇒ ImMB,A ⊆ MB,B, KerMB,B ⊆

KerMC,B =⇒ MB∪C,A∪B/MB,B is well-defined

Next we have to show that Relations (8.5.0.28) - (8.5.0.37) ensure that (M/MC,C)/(M/MC,C)B,B

is well-defined. See Eq. (8.5)

(M/MC,C)/(M/MC,C)B,B

=MA,A −MA,C(MC,C)−MC,A − (MA,B −MA,C(MC,C)−

×MC,B)(MB,B −MB,C(MC,C)−MC,B)−(MB,A −MB,C(MC,C)−MC,A),

and we therefore have to require that

Ker
(

MB,B −MB,C(MC,C)−MC,B

)

⊆ Ker
(

MA,B −MA,C(MC,C)−MC,B

)

,(8.5.0.41)

Im
(

MB,A −MB,C(MC,C)−MC,A

)

⊆ Im
(

MB,B −MB,C(MC,C)−MC,B

)

.(8.5.0.42)
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Now, take v ∈ Im (MB,A −MB,C(MC,C)−MC,A) such that

v =
(

MB,A −MB,C(MC,C)−MC,A

)

w,

= [1, −MB,CM
−
C,C ]







MB,Aw

MC,Aw






.

Relation (8.5.0.29) implies that ∀w ∃ x, y such that







MB,Aw

MC,Aw







=







MB,Bx+MB,Cy

MC,Bx+MC,Cy







and therefore

v = [1, −MB,CM
−
C,C ]







MB,Aw

MC,Aw






,

= [1, −MB,CM
−
C,C ]







MB,Bx+MB,Cy

MC,Bx+MC,Cy






,

= MB,Bx+MB,Cy −MB,CM
−
C,CMC,Cx−MB,CM

−
C,CMC,Cy,

=
(

MB,B −MB,CM
−
C,CMC,B

)

x,

where the last line follows since MB,CM
−
C,CMC,C = MB,C by Relation (8.5.0.30) and Lemma

A.1 and hence we verified Relation (8.5.0.41).

To show Relation (8.5.0.42) we pick some x ∈ Ker
(

MB,B −MB,CM
−
C,CMC,B

)

MB,B −MB,CM
−
C,CMC,Bx = [MB,B, MB,C ]







x

−M−
C,CMC,Bx







= 0
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and therefore 





x

−M−
C,CMC,Bx







∈ Ker[MB,B, MB,C ].

By Relation (8.5.0.37) and Lemma A.1 we have MC,CM
−
C,CMC,B = MC,B and thus

(

MC,B −MC,CM
−
C,CMC,B

)

x = 0

and therefore 





x

−M−
C,CMC,Bx







∈







MB,B MB,C

MC,B MC,C






.

Combine this with Relation (8.5.0.28) and we see that







x

−M−
C,CMC,Bx







∈ Ker[MA,B, MA,C ]

which implies that
(

MA,B −MA,CM
−
C,CMC,B

)

x = 0 and therefore verifies Relation (8.5.0.42).

�

8.6. Adiabatic Elimination and Systems in Loop: The

Main Result

8.6.1. Adiabatic Elimination as a Schur complement

We are now ready to formulate the Adiabatic Elimination limit and the Feedback Reduction

limit as instances of Schur complements. In this section we will formulate the adiabatic elim-

ination limit as a Schur complement. Recall the post-limit system parameter for the Adiabatic
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Elimination limit given in Theorem 8.1,

Ŝ = (I + CA−1C∗)S,

L̂ = G− CA−1Z,

K̂ = R −XA−1Z,

and observe that these parameter have the structure of Schur complements M/A = D −

CA−1B. Consider the pre-limit Itō matrix (as introduced in Chapter 5.3),

G(k) =







K(k) −L(k)∗S

L(k) S − I






,

such that the post-limit system parameter are given by

S(k) = [I, ka∗]







S 0

0 0













I

ka






, (8.6.1.1)

L(k) = [I, ka∗]







G C

0 0













I

ka






, (8.6.1.2)

K(k) = [I, ka∗]







R X

Z A













I

ka






. (8.6.1.3)

The system Itō matrix is given as an operator on h ⊗ (❈ ⊕ K) with initial space h. Now,

remember that the set-up of the Adiabatic Elimination limit assumed a decomposition of the

Hilbert space h of the form h = haux ⊕hfast such that the system Itō matrix can be decomposed

with respect to

h ⊗ (❈⊕ K) = [haux ⊗ (❈⊕ K)] ⊕ [hosc ⊗ (❈⊕ K)]
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with

G(k) = k2a∗gffa+ ka∗gfs + kgsfa+ gss = [I, ka∗]







gss gsf

gfs gff













I

ka






. (8.6.1.4)

One can see that the entries of the Itō system matrix are given by

gss =







R −G∗S

G S − I






, gsf =







X 0

C 0






,

gfs =







Z −C∗S

0 0






, gff =







A 0

0 0






. (8.6.1.5)

We can now observe that

g/gff = gss − gsfg
−
ffgfs =







R −G∗S

G S − I







−







X 0

C 0













A 0

0 0







− 





Z −C∗S

0 0






,

=







R −XA−1Z −G∗S +XA−1C∗S

G− CA−1Z (S + CA−1C∗S) − I






, (8.6.1.6)

where the choice of generalised inverse is the Moore-Penrose inverse







A 0

0 0







−

=







A−1 0

0 0






.

This must be compared to the Itō system matrix Ĝ obtained after taking the adiabatic elimina-

tion limit

Ĝ =







K̂ −L̂∗Ŝ

L̂ Ŝ − I







=







R −XA−1Z −G∗S +XA−1C∗S

G− CA−1Z (I + CA−1C∗)S − I







(8.6.1.7)
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where the right hand side follows from the post-limit parameter given in Theorem 8.1 and the

top-right corner follows from the identity

−L̂∗Ŝ = −
(

G− CA−1Z
)∗ (

I + CA−1C∗
)

S,

= −G∗
(

I + CA−1C∗
)

S + Z∗
(

A−1
)∗
C∗

(

CA−1C∗
)

S,

Eq. (8.3.0.16)
= −G∗

(

I + CA−1C∗
)

S + Z∗A−1C∗S,

= −G∗S − (G∗C + Z∗)A−1C∗S,

Eq. (8.2.1.9)
= −G∗S +XA−1C∗S.

We see that Eq. (8.6.1.6) and Eq. (8.6.1.7) coincide and that the adiabatic elimination limit is

given as an Schur complement in the matrix g =







gss gsf

gfs gff






by

Ĝ = g/gff = gss − gsfg
−
ffgfs.

8.6.2. Feedback reduction as a Schur complement

Recall the representation of networks of quantum components in Chapter 5.3 and the feedback

reduction formula given in Section 5.5. As the most general case of the set-up introduced in

Section 8.4 we assume a set-up of the following form:

We consider a collection j = 1, 2, . . . n components with parameter triple (Sj, Lj, Kj) and

we may as shown in Section 5.5 collect this parameter into a single model (S, L,K) with

S =















S1 0 . . . 0

0 S2 . . . 0

...
. . . 0

0 . . . 0 Sn















, L =















L1

L2

...

Ln















, K =
n∑

j=1

Kj.
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To complete the description of of the network we have to provide a list of internal edges (see

Section 5.3). With this list we can obtain a decomposition of the networks colour space K with

respect to the networks internal and external channels, that is a decomposition K = Ke ⊕ Ki.

The Itō system matrix will then be given as an operator on h ⊗ (❈⊕ K) with h =
⊗n

j=1 hj

where hj is the Hilbert space corresponding to component (Sj, Lj, Kj).

We can now partition the models Itō matrix in a similar way to the previous section with

respect to the internal and external channels

h ⊗ (❈⊕ K) = [h ⊗ (❈⊕ Ke)] ⊕ [h ⊗ Ki] ,

and obtain

G =







Gee Gei

Gie Gii






.

Now the feedback reduction formula as given in Section 5.5 reads as

Sred = See + Sei (η − Sii)
−1 Sie,

Lred = Le + Sei (η − Sii)
−1 Li,

H red = H +
∑

j=i,e

ImL†
jSji (η − Sii)

−1 Li.

This reduction formula is formulated with respect to the model matrix V (see Section 5.3) and

the reduced model matrix after eliminating the internal edges in the zero time delay limit is

given by Theorem 5.2 with

V red
αβ = Vαβ + Vαr0 (1 − Vs0r0)−1 Vs0β, (8.6.2.1)

given that (1 − Vs0r0)−1 exists and with α ∈ {0} ∪ Pout/{s0}, β ∈ {0} ∪ Pin/{r0}.

Denote with F the operation of eliminating the internal edges (in the feedback reduction
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limit) of model G.

Equation (8.6.2.1) has here the structure of a linear fractional transformation which as al-

ready been encountered when computing the transfer functions of linear quantum components,

see Chapter 6. The linear fractional transformation and the Schur complement are closely re-

lated and by formulating the feedback reduction formula in terms of the Itō system matrix G,

that is by substituting S with S − I , the feedback reduction formula assumes the structure of

a Schur complement as desired and we see that,

FG = gee − gei (gii)
−1 gie.

8.6.3. Commutativity of the Limits

Since we encoded both objects of interest, the adiabatic elimination limit and the feedback

reduction in the zero time delay limit as instances of Schur complements in the networks Itō

matrix we are now ready to establish the main statement, i.e. that both limits commute. In

order to archive this we have to partition the networks Itō matrix with respect to the internal

and external channels and the fast and slow part as seen before. That given, we can establish

the commutativity by invoking Lemma 8.9 to ensure that the order of the Schur complements

commutes and thus the order of limits doesn’t change the result.

We quote the structure imposed on the system parameter given in Equation (8.2.1.1)

S(k) = S ⊗ I,

L(k) = k
∑

j

Cj ⊗ aj +G⊗ I,

K(k) = k2
∑

jl

Ajl ⊗ a∗
jal + k

∑

j

Zj ⊗ a∗
j + k

∑

j

Xj ⊗ aj +R ⊗ I. (8.6.3.1)

We are setting the stage by assuming that the system parameter triple (S(k), L(k), K(k))

150



8. Adiabatic Elimination

assume the following partition with respect to the internal and external channels

S =







See Sei

Sie Sii






, C =







Ce

Ci






, G =







Ge

Gi






. (8.6.3.2)

We are now ready to construct the Itō matrix, partitioned with respect to slow, fast, internal

and external components.

Combining the partitioned Itō matrix Equation (8.6.1.4)-(8.6.1.5) with the partitioned oper-

ator entries Equation (8.6.3.2) yields

g(k) =







gss gsf

gfs gff







=























R −G∗Se −G∗Si X 0 0

Ge See − I Sei Ce 0 0

Gi Sie Sii − I Ci 0 0

Z −C∗Se −C∗Si A 0 0

0 0 0 0 0 0

0 0 0 0 0 0























} slow, external

} slow, internal

} fast, external

} fast, internal

, (8.6.3.3)

G(k) = [I, a∗]







gss gsf

gfs gff













I

a







which corresponds to G(k) partitioned with respect to the decomposition

(haux ⊕ hosc)⊗(❈⊕ Ke ⊕ Ki) = [haux ⊗ (❈⊕ Ke)]
︸ ︷︷ ︸

slow,ext.

⊕ [haux ⊗ Ki]
︸ ︷︷ ︸

slow, int.

⊕ [hosc ⊗ (❈⊕ Ke)]
︸ ︷︷ ︸

fast, ext.

⊕ [hosc ⊗ Ki]
︸ ︷︷ ︸

fast, int.

.

The fast components are then assembled in the Itō matrix

gff =











A 0 0

0 0 0

0 0 0










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and the internal components are given by

gii =







Sii − I 0

0 0






.

The adiabatic elimination limit corresponds now to

AG(k) = g(k)/gff ,

and the feedback reduction limit corresponds to

FG(k) = [I, a∗] (g(k)/gii)







I

a






.

We see that the adiabatic elimination limit and feedback reduction limit are both given as

Schur complements in one specific Itō matrix, Equation (8.6.3.3). The commutativity can now

be established by invoking Lemma 8.9:

Theorem 8.11 Let G(k) and FG(k) correspond to strictly Hurwitz stable open quantum

systems (i.e., the A matrix of each system is strictly Hurwitz stable), and suppose that

Sii +CiA
−1C∗Si − I and Sii − I are invertible. Then in the notation established above we

have

AFG(k) = FAG(k).

Proof:

The proof follows from Lemma 8.9. In order to ensure that all Schur complements appearing

in Lemma 8.9 are well-defined and independent of the choice of generalised inverse we can

invoke Lemma 8.10. We are now left with checking that for the Itō matrix Equation (8.6.3.3)

the conditions Equation (8.5.0.28) - (8.5.0.33) of Lemma 8.10 are satisfied.
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We can collect the entries of the Itō matrix Equation (8.6.3.3) in the following way

g(k) =







gss gsf

gfs gff







=















R1 X1 M1 0

G1 Sii − I C1 0

Z1 −C∗Si A 0

0 0 0 0















=















g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44















,

where we have the following correspondence of labels: 1 = slow external, 2 = slow internal, 3

= fast external and 4 = fast internal. We further have the matrices

R1 =







R −G∗Se

Ge See − I






, X1 =







X

Ce






, M1 =







−G∗Si

Sei






, Se =







See

Sie






, Si =







Sei

Sii







G1 =
[

Gi, Sie

]

, Z1 =
[

Z, −C∗Se

]

.

We identify the index sets A,B,C appearing in Lemma 8.10 with A = {1}, B = {2} and

C = {3, 4}. The first relation in Lemma 8.10 reads therefore as

Ker











Sii − I Ci 0

−C∗Si A 0

0 0 0











⊆ Ker
[

M1, X1, 0

]

. (8.6.3.4)

Let (x, y, z)T be an element of

Ker











Sii − I Ci 0

−C∗Si A 0

0 0 0











.
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We now obviously have

−C∗Six+ Ay = 0 =⇒ y = A−1C∗Six,

(Sii − I)x+ Ciy = 0 =⇒ 0 =
(

Sii + CiA
−1C∗Si − I

)

x,

but (Sii + CiA
−1C∗Si − I) is invertible by hypothesis whence x has to be zero which implies

that y = 0 and the kernel space of above matrix consists of vectors of the form (0, 0, z)T, z

arbitrary, which are clearly contained in

Ker
[

M1, X1, 0

]

.

We thus verified Relation (8.6.3.4).

In order to verify the second relation (8.5.0.28) we have to show that ∀ x ∃ y, z such that







G1x

Z1x







=







Sii − I Ci

−C∗Si A













y

z






. (8.6.3.5)

This will be true if the matrix 





Sii − I Ci

−C∗Si A







(8.6.3.6)

is invertible. Recall the Banachiewicz inversion formula for block matrices, i.e.

M =







A B

C D






, M−1 =







A−1 + A−1B (M/A)−1 CA−1 −A−1B (M/A)−1

− (M/A)−1 CA−1 (M/A)−1






.

which shows thatM is invertible if (M/A) andA are invertible. The matrix Equation (8.6.3.6)

is therefore invertible if Sii − I +CiA
−1C∗Si and A are invertible which is true by hypothesis
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whence Relation (8.6.3.5) holds and we have

Im











G1x

Z1x

0











⊆ Im











Sii − I Ci 0

−C∗Si A 0

0 0 0











.

Now, since A is invertible we see directly that

Ker







A 0

0 0







⊆ Ker
[

Ci, 0

]

,

Im







−C∗Si

0







⊆







A 0

0 0






,

which verifies Relations (8.5.0.30) and (8.5.0.31). The remaining Relations (8.5.0.32) and

(8.5.0.33) follow in a similar manner from the invertibility of Sii − I

Ker (Sii − I) ⊆ Ker







−C∗Si

0






,

Im
[

Ci, 0

]

⊆ Im (Sii − I) .

We thus verified the conditions of Lemma 8.10 and hence Lemma 8.9 holds which proves the

theorem.

�

We thus showed that the adiabatic elimination limit and feedback reduction limit commute

given that Sii − I + CiA
−1C∗Si and Sii − I are invertible. This conditions are the conditions

for the existence of the feedback reduction limit, where Sii − I + CiA
−1C∗Si is the internal

component of Ŝ, the scattering matrix after taking the adiabatic elimination limit.

We note that the Hurwitz-Stability is only a sufficient but not a necessary condition. In
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general we must only ensure that the kernel space condition for the operator Y (see Theorem

8.1) is satisfied.

8.7. Conclusion

In the previous sections of this chapter we studied the question of whether the operations of

taking the adiabatic elimination of oscillatory degrees of freedom of a system and taking the

instantaneous feed-forward limit of two such systems commute.

The question of commutativity is interesting from a practical and methodical point of view.

Part of the elegance of the system theory, among other things, is the possibility to reduce the

problem of studying some bigger system to studying its smaller parts. Instead of handling one

big system one can start by modelling easy to handle components of the system and obtain

the overall system at a later stage by using the network rules to connect these components. It

is therefore preferred to model single components and adiabatically eliminate the oscillatory

components on the component level. This enables one to study the behaviour of the reduced,

isolated components. The opposite approach, i.e. building the network first and then eliminat-

ing the oscillatory components would mask the behaviour of the reduced system.

What we found in the course of this chapter is, that under some not too limiting condi-

tions, both limits do commute. The result has been established by showing that both, the

adiabatic elimination limit and the instantaneous feed-forward limit are instances of Schur

complements. By generalising statements about successive Schur complements we were able

to establish the result on an algebraic level.
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Appendix
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A
The Schur Complement

A.1. Introduction

In this Chapter we introduce the Schur complement and present some of its properties. We

follow [70] and [62]. There is a wide variety of results in in linear algebra making use of

the Schur complement. We are going to introduce a couple of results needed for later use in

Chapter 8.
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Let M be a block matrix of the form

M =







A B

C D






. (A.1.0.1)

The Schur complement of A in M , denoted by M/A is defined by

M/A = D − CA−1B.

The first one result is a very useful inversion formula for block matrices of the form Eq.

A.1.0.1, credited to Banachiewicz.

Let M be a block matrix partitioned as in Eq. A.1.0.1 and let A be invertible. The inverse

of M is then given by

M−1 =







A−1 + A−1B (M/A)−1 CA−1 −A−1B (M/A)−1

− (M/A)−1 CA−1 (M/A)−1






. (A.1.0.2)

If we assume instead that D is non-singular then we have parallel to Eq. (A.1.0.2) [70, Page

13] that

M−1 =







(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D−1 +D−1C(M/D)−1BD−1






. (A.1.0.3)

If both A and D are invertible both Eq. (A.1.0.2) and Eq. (A.1.0.3) hold.

Another useful property of the Schur complement is given by the quotient rule . If we
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consider a partition of M of the form

M =











A11 A12 B1

A21 A22 B2

C1 C2 D











and assume that both, A and A11 are invertible, then

M/A = (M/A11) / (A/A11) . (A.1.0.4)

A useful generalisation of the Schur complement is obtained by dropping the requirement

that the matrix A is invertible. This in especially in the application of the Schur complement

in Chapter 8 not given. The solution to this problem is given by generalised inverses.

The generalised inverse of a matrix M ∈ Mn×m is the non-unique matrix M− ∈ Mm×n

such that

MM−M = M. (A.1.0.5)

Lemma A.1 Let N be some matrix, MM− acts like the identity matrix in

MM−N = N, if and only if ImN ⊂ ImM (A.1.0.6)

NM−M = N, if and only if KerM ⊂ KerN (A.1.0.7)

Similary, for some matrices P and Q, the matrix

PM−Q (A.1.0.8)

is independent of the choice of generalised inverse M− if and only if ImQ ⊂ ImM and

KerM ⊂ KerP .
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Proof:

See [70, Chapter 1].

�

In the case the conditions in Lemma A.1 are satisfied, we might choose the well known

Moore-Penrose generalised inverse X with properties

NXN = N, XNX = X, (NX)∗ = NX, (XN)∗ = XN. (A.1.0.9)

Definition A.2 Define for a block matrix M of the form

M =







A B

C D







the generalised Schur complement of A in M by by M/A = D − CA−B.

Lemma A.3 The generalised Schur complement M/A is well defined and independent of

the choice of generalised inverse A− if

ImB ⊂ ImA and KerA ⊂ KerC.

The next result we wish to generalise is the Banachiewicz inversion formula, see Eq. (A.1.0.2)

or [70, Eq. (0.7.2)],[62, Theorem 4.6]
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Lemma A.4 (Generalised Banachiewicz Formula) Let M be partitioned according to

M =







A B

C D






.

Assume that ImB ⊆ ImA and KerA ⊆ KerC whence the Schur complementM/A is well

defined and independent of the choice of generalised inverse A− of A. Then the generalised

inverse of M is given by

M− =







A− + A−B (M/A)− CA− −A−B (M/A)−

− (M/A)− CA− (M/A)−






. (A.1.0.10)

Similarly, if we assume that ImC ⊆ ImD and KerC ⊆ KerB such that M/D is well

defined and independent of the generalized inverse D− of D, then

M− =







(M/D)− −(M/D)−BD−

−D−C(M/D)− D− +D−C(M/D)−BD−






. (A.1.0.11)

Proof:

To prove the first part of the statement we compute the matrix MM−M and verify that this

equals M . Set X = M/A and obtain for the block (MM−M)11:

(

MM−M
)

11
= AA−A+ AA−BX−CA−A−BX−CA−A− AA−BX−C +BX−C,

= AA−A+ AA−BX−C
(

AA− − 1
)

−BX−C
(

AA− − 1
)

,

= AA−A+
(

AA− − 1
)

BX−C
(

AA− − 1
)

,

= A,
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whereAA−A = A by the definition of the generalised inverse Eq. (A.1.0.5) and (AA− − 1)B =

0 by the assumption ImB ⊆ ImA. We next evaluate the block (MM−M)12

(

MM−M
)

12
= B +

(

A−A− 1
)

B +
(

A−A− 1
)

BX−CA−B
(

A−A− 1
)

BX−D,

= B,

where AA−B = B and therefore (AA− − 1)B = 0 since ImB ⊆ ImA see Eq. (A.1.0.6).

(

MM−M
)

21
= C + C

(

A−A− 1
)

+
(

CA−B −D
)

X−C
(

A−A− 1
)

,

= C.

This follows from KerA ⊆ KerC which implies CA−A = C and thus C (A−A− 1) = 0.

Similarly

(

MM−M
)

22
= D −

(

D − CA−B
)

−
(

D − CA−B
)

X−
(

D − CA−B
)

,

= D −X +XX−X,

= D.

because X = M/A = D − CA−B and thus we can see that MM−M = M holds.

For the second part of the statement we compute againMM−M withM− as in Eq. (A.1.0.11).

We obtain:

(MM−M)11 = A(M/D)−(A−BD−C) −BD−C(M/D)−(A−BD−C) +BD−C,

= A−BD−C +BD−C,

= A,
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since (M/D) = A−BD−C and BD−C(M/D)−(M/D) = BD−C.

(MM−M)12 = A(M/D)−B(1 −D−D) +BD−C(M/D)−B(1 −D−D) +BD−D,

= B,

because of BD−D = B and thus B(1 −D−D) = 0.

(MM−M)21 = C(M/D)−(A−BD−C) +D−DC(M/D)−(A−BD−C) +D−DC,

= C,

by D−DC = C and C(M/D)−(M/D) = C. The last element computes as

(MM−M)21 = C(M/D)−B(1 −D−D) −D−DC(M/D)−B(1 −D−D) +D−DD,

= D

since D−DD = D and B(1 − D−D) = 0 as before. We see that MM−M = M holds for

M− as in Eq. (A.1.0.11) which proves the statement.

�
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