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Abstract v

Abstract.

This thesis applies rearrangement and optimal mass transfer theory to weather forecast

error decomposition. Errors in weather forecasting are often due to displacement of

key features; conventional error scores do not necessarily favour good forecasts, nor

are they descriptive of how the forecast failed. We study forecast error decomposition,

where error is split into an error due to displacement and an error due to differences in

qualitative features. In its simple formulation, we seek rearrangements of the forecast

which are a best fit to the actual data, and then find the “least kinetic energy” of

a notional velocity transporting the forecast to a best fit. In mathematical terms,

we are characterising those elements of a set of rearrangements which are closest (in

the sense of L2) to a prescribed square integrable function, and seeking the least 2-

Wasserstein distance squared between the forecast and the closest displaced forecasts.

We demonstrate that there are closest rearrangements, and characterise this set; the

best fitting rearrangements are determined up to rearrangement on the level sets of

positive size of the prescribed function.

Displacement error is calculated by finding the minimum value of an optimal mass

transfer problem; we review previous work, demonstrating the connection with transport

of the forecast to the best fit. A problem with the simple formulation of forecast error

decomposition is that because the qualitative features error is taken first, an error in

qualitative features may be penalise as a large displacement error. We conclude this

thesis by considering a formulation which minimises both errors simultaneously.
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Chapter 1

Introduction.

1.1 Outline.

How do we measure the difference between two quantities? We describe a measure of

error which is split into two parts: difference in qualitative features and displacement

error. This thesis is concerned with the theoretical underpinning of this idea.

Weather forecast error decomposition measures the difference between the data which

is forecasted and the data which is observed. Errors in weather forecasts are often

displacements in significant features, either in space or time. This thesis will consider

how to apply rearrangements of functions and optimal mass transfer theory to weather

forecast error decomposition: splitting the error into a component due to differences in

qualitative features and a component due to displacement.

This chapter begins by illustrating the problems which exist in the current forecast

error decomposition in section 1.2. The section starts with a discussion of what meteo-

rologists perceive to be a good forecast, which in turn we will use to define our forecast

error decomposition. To illustrate the problems with the current error scores we consider

1
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some examples.

Having discussed the problems which exist for error scores such as the L2-norm of the

difference in section 1.2, in section 1.3 we suggest a fresh approach. This formulation,

based on work by Hoffman, Liu, Louis and Grassotti [47] is presented via an illustrative

example; we outline the work of Hoffman and his co-workers.

Error decomposition can be applied to other situations where displacement is a

significant contribution to the error; we consider a specific example. Then we build on

the ideas of Douglas [30] to show we can use rearrangements and optimal mass transfer

to describe weather forecast error decomposition. We define the error decomposition

formally and conclude the section by explaining some of the problems which arise with

our simple formulation and possible solutions.

The notion of rearrangements in section 1.4 is introduced with an example illus-

trating the concept, before formalising the definition of rearrangements. Furthermore,

we introduce the important notion of the set of rearrangements before giving a formal

definition; we state some basic properties of the set. With a view to the work which

follows we consider an equivalent definition for rearrangements.

An example of optimal mass transfer is minimising the work done when transferring

mass from a pile of rubble to an excavation; the minimisation is based on a cost function

which is the cost of transporting the mass. We can use optimal mass transfer along with

the notion of rearrangements to define the second part of our forecast error. This is

the content of section 1.5. We begin by introducing the problem as considered by

Monge [59]. We use the iron ore example of McCann [58] for ease of understanding of

this concept. We move onto a discussion regarding the Monge-Kantorovich problem, a

relaxation of the Monge problem, discussing certain classes of cost functions. Solutions
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of the Monge-Kantorovich problem may be of a form which gives solutions of Monge’s

problem.

One of the problems with Monge’s original minimal work problem was the difficulty

in obtaining solutions to the cost function suggested. Section 1.5.1 notes the non-

uniqueness of the solution for Monge’s original cost function while noting that there is

a unique solution for the quadratic cost function. The section on optimal mass transfer

is concluded with an historical review of the problem since it was first stated by Monge

in 1781. We note the recent developments since Brenier’s work in 1987, this illustrated

how the field applied to many different mathematical fields.

Section 1.6 includes all the widely used notation throughout the text. Then section

1.7 outlines what is to come for the remainder of the thesis. Finally, section 1.8 is a

literature survey on the practical applications of both rearrangements of functions and

optimal mass transfer problems.

1.2 Limitations of conventional error scores.

A current hot topic in the field of meteorology is how best to measure the error in

weather forecasting. This has applications in rainfall verification (see Douglas [30]),

global drought prediction (see Begueria et al. [7]) and many other areas. We consider

the question:

What is a good forecast?

The key to successful weather forecast error evaluation is to find a measure of error which

agrees with what a meteorologist would say about the forecast. The error decomposition

provides us with two things; firstly, how good the forecast is, and secondly, where and
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how the forecast failed.

We begin with the conventional methods used within weather forecast error de-

compoistion, of which there are several. For reasons which will become apparent, we

concentrate on the L2-norm of the difference:

‖q1 − q2‖2 =

{∫

Ω
(q1 − q2)

2

} 1
2

, (1.1)

where in this case q1 is actual rainfall and q2 is forecasted rainfall and Ω is the domain

on which the forecast error is being carried out. We use rainfall as our primary example,

however it could be any other important quantity in weather forecasting, either scalar

valued (like rainfall) or vector valued (such as wind velocity). In our error score we

consider scalar valued quantities.

If the error is primarily one of displacement, conventional error scores are likely to give

a misleading impression of how good the forecast is. We illustrate with an example.

(1)

(2)

(3)

(a)

(1)

(2)

(3)

(b)

Figure 1.1: An illustration of the (a) Forecasted Data (b) Observed Data for rainfall on
a given day
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There are three main features in the forecast:

(1) Some heavy rain forecasted to the west of Scotland around the Stirling area;

(2) A band of rain is forecast in Newcastle, with the heaviest of the rain taking place

just south of Newcastle;

(3) Light rain is forecast in the south, in between London and Norwich.

By considering the observed data Figure 1.1(b) we note the forecast has erred with all

three main features, albeit in different ways:

(1) The heavy rain forecasted for Stirling actually occurs over Edinburgh, keeping

similar qualitative features to the forecast;

(2) The band of rain which was due to occur over Newcastle has moved south and

takes place over York, but again has similar features to those forecasted;

(3) The light rain which was forecasted above London does not materialise, hence

there are very different qualitative features.

Features (1) & (2) would be considered by meteorologists to be well forecast. Although

the features are not forecast in the correct place, they are simply displaced a little. The

conventional error score would penalise the misplaced rain twice; once for having no

rain where there should be rain, and once for forecasting rain where there should be

none. However a forecast of no rain would only get penalised once, therefore giving us

a better error score. It is not only the meteorologists who would consider this to be a

worse forecast. The general public would prefer to know when and if these is rainfall in

their region.
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We conclude from the above that the error in both (1) and (2) is due to a small

displacement and (3) is a difference in qualitative features. Our simple formulation of

weather forecast error decomposition describes the error in this form and hence is more

descriptive of how the forecast fails. The next subsection describes the mathematical

formulation of this idea.

1.3 Mathematical formulation.

A key idea in our formulation is that of a best fitting forecast. Unlike the conventional

error score, we search for a best fit of the forecasted data. We move the forecast onto the

actual data to get a best fit of the actual data; this is illustrated by figure (1.2(c)). The

best fitting data provides two things for us. Firstly, it provides a clear indication of the

displacement between the forecasted and the actual data. Secondly, the superimposition

of the forecasted data onto the best fitting data allows us to compare how similar the

qualitative features are on the forecasted and the actual data.

(a) (b) (c)

Figure 1.2: An illustration of the (a) Forecasted Data; (b) Observed Data; (c) Best
Fitting Data to show the need for a displacement error
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Similarly to figures (1.1(a)) and (1.1(b)) the error in figures (1.2(a)) and (1.2(b)) is

primarily one of displacement. Figure (1.2(c)) illustrates the similarities in qualitative

features. The forecasted data can only be moved in a space of allowable displacements,

in our case a set of rearrangements, which we define formally in the next section.

From this idea of a best fitting forecast we can develop our definitions of the dis-

placement and qualitative features errors. The qualitative features error measures the

difference in features between the actual data and the best fit. The displacement error

measures something similar to the kinetic energy of a notional velocity which transports

the forecast to the best fit which is used to rearrange the forecast onto the best fit. To

think of the displacement error in another form: it gives us a way of measuring how far

we’ve had to move the forecast onto the actual to get the best fit.

Hoffman et al [47] suggested a solution to some of the problems which have arisen

with the conventional error score:

“Better descriptions of forecast error are often given in terms of displace-

ment.”

Hoffman’s paper decomposes the error score into three sections.

1. Displacement Error

2. Qualitative Features Error(or Amplitude Error)

3. Residual Error

The displacement error measures how much of the forecast error can be accounted for

by moving the forecast to best fit the analysis. The qualitative features error measures

how much of the forecast error can be accounted for by changing the amplitude of the
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displaced forecast to best fit the analysis. The distortion error is defined to be the sum

of the displacement error and the qualitative features error. The residual error is the

part of the forecast error which is not accounted for by the distortion error. In this case

the best fits are local translations.

While we base our decomposition on this model we believe the error score need

only be decomposed into the displacement error and the qualitative features error. It

is our belief that the residual error should be zero if the mathematical formulation of

the concept is correct; it should only be non-zero for numerical implementation. If the

aim is to express the error as a combination of displacement and difference in features,

residual error is a measure of the extent to which one has failed in this aim. If the

definitions of “displacement” and “difference in features” do not describe all the error

these definitions need to be changed. Therefore, our formulation does not consider

the residual error further. Our total error is a weighted sum of the displacement and

qualitative features error. Our definitions of these terms are inspired by Hoffman [47],

but based on different mathematical methods.

One of the advantages of considering the new error score is that it is more descriptive

of how the forecast has failed, i.e. how much error is due to differences in features and

how much is due to displacement. This sentiment is supported by the following quote

[47]:

“The distortion representation of forecast errors should prove useful for de-

scribing forecast skill.”

While in this thesis error decomposition has been applied to weather forecasting, the

concept can be applied to any problem where there is significant error due to displace-
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ment. As an illustration we consider the problem of readings taken from an oscilloscope.

We consider the following figures:

0 π
2

π 3π
2

2π−π
2

−π
x

sinx

(a)

0 π
2

π 3π
2

2π−π
2

−π
x

m.cosx

(b)

Figure 1.3: An illustration of (a) the sine curve and (b) a multiple m of the cosine curve,
where 1≤m≤ 1 + ǫ

It is not appropriate to calculate the error associated with figure 1.3(b) with the L2-norm

given that the error is primarily one of displacement, and L2-norm would not describe

this well. Therefore, some sort of displacement error is required. The error is due to

the phase of the wave and/or the amplification with the phase (which corresponds to

the displacement in our case) being of greater significance. This idea is analogous to

that of Hoffman et al. [47]. However, both the phase and amplification can change.

Our formulation describes these changes and would be descriptive of the big error due

to displacement and small error due to change of amplitude. (Note this example is

simplified because of the periodicity; this feature will not be present in general.)

Before giving a mathematical description of the forecast error decomposition, we

define rearrangements and the set of rearrangements. Two functions are rearrangements

if any given set of values are taken on sets of the same size, but the values may be taken

in different places. Therefore, the set of rearrangements is the set which contains all such

functions; for a function f the set of rearrangements is denoted R(f). A good example
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of rearrangement is a Lagrangian conserved quantity in an incompressible fluid; values

are fixed on particles, but the particles are free to move as long as they do not change

size.

We give a mathematical description of forecast error decomposition. Let q denote

an important quantity in weather forecasting. Let the actual distribution be q1 and the

forecasted distribution be q2. We note that q : Ω→R
d and the domain Ω ⊂ R

n. From

Douglas [30, Section 4.1] we split the forecast error up in the following manner:

(i) Find q̂ ∈ R(q2) such that q̂ attains

inf
q∈R(q2)

‖q1 − q‖2. (1.2)

(ii) Calculate the ‘length of the shortest path’ between q2 and q̂ in R(q2). Denote the

shortest length by dist(q2, q̂) where dist(q2, q̂) is the “kinetic energy” required to

move the forecasted distribution onto the best fit to the actual distribution, the

extent to which q̂ is displaced from q2.

The value of (1.2) is the qualitative features error. The total error is

TE(q1, q2) = (1 − θ) inf
q∈R(q2)

‖q1 − q‖2 + θ inf
q̂∈M

dist(q̂, q2), (1.3)

where 0 ≤ θ ≤ 1 and M denotes the set of q ∈ R(q2) which attains the infimum in (1.2).

(One of the main results of this thesis is a characterisation of M; it is non-empty.) θ is
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chosen so that neither component of (1.3) dominates the other. (A suitable value of θ

could be determined by running a number of test cases.) We note that the first half of

the error, (1 − θ) infq∈R(q2) ‖q1 − q‖2 is the qualitative features part of the error. The

second half of the error, θ inf q̂∈M dist(q̂, q2) is the displacement error.

While we’ve addressed some problems with our simple formulation of the weather

forecast error, there are new problems to consider. We begin by finding the qualita-

tive features error, then search through all the best fitting rearrangements to see which

minimises the kinetic energy to yield the displacement error. Therefore, the qualitative

features error is taken without anticipating the impact on the displacement error. Con-

sider figures (1.1(a)) and (1.1(b)). In the forecast there are scattered showers forecast for

between Norwich and London. With the current formulation, for the best fit, rain could

be taken down from Scotland to make up for the lack of the scattered showers without

consideration for the displacement error. The result would be an error in qualitative

features being penalised as though it were a large displacement error.

One approach would be to minimise forecast and displacement errors simultaneously.

This is the content of Chapter 5; similarly to the simple formulation we consider this as

a rearrangement problem.

There is a simpler solution to our problem. The idea would be to restrict the area

on which we carry out an error decomposition; we would only seek “local best fits”.

Something like figure 1.4 could be used:
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(a) (b)

Figure 1.4: An illustration of (a) the forecasted data; and (b) the actual data broken
into several sections with in which the weather features must remain

This would be a straightforward of way combating the large displacement accrued from

moving the rainfall in the manner discussed previously. However, the choice of the re-

gions could possibly pose problems; one would not want heavy rainfall near the bound-

aries. However, if we seek advice from meteorologists along with the use of common

sense when choosing the regions this should minimise any problems. Different choices

of regions could yield different answers and this is another reason to utilise insight from

meteorologists when selecting the regions.

1.4 Rearrangements of functions.

The notion of rearrangements of functions is central to forecast error decomposition. We

introduce the concept via an illustrative example. Consider the following real valued

functions f and g on the domain x∈ [0, 1], defined by f(x) = x and g(x) = |1 − 2x|. We

will show that
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∫ 1

0
(f(x) − α)+ dx =

∫ 1

0
(g(x) − α)+ dx, (1.4)

for every real number α, where the + denotes the positive part of the function, i.e.

h+ (x) = max {h (x) , 0}. Fix 0 < α < 1

0 1

α

f(x) = x

︸︷︷︸
{x : f(x)≥α}

(a)

0 1

α

g(x) = |1 − 2x|

︸︷︷︸︸︷︷︸{x : g (x) ≥α}
(b)

Figure 1.5: An illustration of the following functions (a) f = f(x) and (b) g = g(x)
with the line y = α intersecting the graph of the function.

We consider the area trapped between y = α and the graph of the function. This is

illustrated in figures 1.5(a) and 1.5(b). We compare the blue area to the red areas.

They are in fact equal; moreover for whichever α we choose this will still be true. For

0 < α < 1 we have

∫ 1

0
(f(x) − α)+ dx =

1

2
(1 − α)2 =

∫ 1

0
(g(x) − α)+ dx. (1.5)

If α ≥ 1 then y = α lies above the graphs of the functions, hence:
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∫ 1

0
(f(x) − α)+dx = 0 =

∫ 1

0
(g(x) − α)+dx. (1.6)

Furthermore, if α ≤ 0 then y=α lies below the graphs. We have that

∫ 1

0
(f(x) − α)+dx = −α+

∫ 1

0
f(x)dx

= −α+

∫ 1

0
g(x)dx =

∫ 1

0
(g(x) − α)+dx. (1.7)

When f and g satisfy (1.4) for every α∈R we will say that they are rearrangements.

Before generalising this definition we define the measure spaces we use in the work that

follows. Here µ is a positive measure on Ω, i.e. a function that assigns “size” to subsets

of Ω. We assume µ(Ω) < ∞, that is (Ω, µ) is a finite measure space. We denote n-

dimensional Lebesgue measure by λn; for n = 1 , 2 or 3 this corresponds to length, area

or volume respectively. We say that a measure µ is absolutely continuous with respect

to a measure ν if for every ν-measurable set A satisfying ν (A) = 0 then µ (A) = 0

as well. Typically we will work on a measure space (Ω⊂R
n , µ) where µ is absolutely

continuous with respect to λn.

Definition 1.4.1. Let Ω⊂R be a bounded set and let µ be a measure as above. Let

f, g : Ω → R be two integrable functions(i.e.
∫
Ω |f |,

∫
Ω |g| <∞). f is a rearrangement

of g if



Introduction 15

∫

Ω
(f(x) − α)+dµ(x) =

∫

Ω
(g(x) − α)+dµ(x), (1.8)

for all real α.

To anticipate a discussion on several equivalent definitions for rearrangements we note

that f and g satisfying the following:

λ1 {x : f (x) ≥α} = λ1 {x : g (x) ≥α} , (1.9)

where λ1 is a 1-dimensional Lebesgue measure, for every α∈R, are rearrangements. As

before we intersect the graphs of the functions f and g with the line y = α. But, in

this case we consider the length of the line where the graph of the function lies above

the line y = α. If this length is equal for two functions, f and g, we can say that f and

g are rearrangements. For the functions as considered in figure 1.5 we’ve illustrated the

process for a specific α. For both functions the length of the line is 0 when α≥ 1, 1 − α

for 0≤α≤ 1 and 1 for α< 0.

In general a function has many rearrangements. We have that f and g are rear-

rangements of each other on [0 , 1]; another rearrangement is h(x) = 1 − x because

the area above y = α (for all real α) and below the graph of h is 1
2 (1 − α)2. This is

illustrated below:
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0 1

α

h(x) = 1 − x

︸︷︷︸
{x :h(x)≥α}

Figure 1.6: The function h = h(x) with the line y = α intersecting the graph of the
function

We note that h is a rearrangement of both f and g; it is easily seen that rearrangement is

an equivalence relation. Let Ω be a bounded subset of R
n and µ is absolutely continuous

with respect to the n-dimensional Lebesgue measure λn. We define an equivalence class,

or the set of rearrangements as follows:

Definition 1.4.2. For a given non-negative square integrable f : Ω→R the set of

rearrangements is characterised in the following manner:

R(f0) =

{
f ≥ 0 :

∫

Ω
(f − α)+ dµ =

∫

Ω
(f0 − α)+ dµ ∀α> 0

}
, (1.10)

where + denotes the non-negative part of the function.

An important point to note is that all elements from the set of rearrangements have the

same Lp norm. For functions f and g rearrangements we have that
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‖f‖p = ‖g‖p for 1≤ p≤∞, where ‖f‖p =

(∫

Ω
|f |p∞ dµ

) 1
p

and ‖f‖∞ = ess sup {|f (x)| : x∈Ω} . (1.11)

Finally, for non-trivial f0, the set of rearrangements is closed but non-convex and not

compact.

1.5 Optimal Mass Transfer.

Optimal mass transfer theory has been a topic of recent interest in many fields. The

theory is used to define the displacement error in our forecast error score using a result

by Brenier and Benamou [10]. The problem of optimal mass transfer is to transfer

mass from one set to another set in such a way as to minimise cost. The optimal

strategy minimises the cost amongst allowable strategies (which will be defined later).

The archetypal optimal mass transfer problem is how to minimise cost when transferring

mass from a set U to a set V of equal (finite) size. Optimality is measured against a cost

function c = c(x , y), where c(x , y) represents the cost per unit mass of transporting

material from x∈U to y ∈V ; we have a set of possible strategies, S, with the optimal

one (if such exists) minimising the total cost. Optimal mass transfer problems were

introduced by Monge [59]; the problem was to minimise the work done when filling in

trenches with rubble/soil.
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U

V

s∈S

U , V⊂R
n have

the same “size”

Figure 1.7: Monge’s mass transportation problem [71]

Monge’s suggestion was that the two equal volumes should be split into infinitesimal

particles. Each location in U has a destination in V ; the sum of the path lengths

multiplied by the volumes of the particles is minimised. Given that Monge was looking

to minimise the work done the cost function was chosen to be c(x, y) = |x− y|, where

| · | denotes the Euclidean distance. Therefore, for this choice of the cost function the

work done is proportional to the distance moved.

Optimal mass transfer problems occur naturally in many applications, particularly

in economics [39]. A specific example is described by McCann [58]. McCann’s problem

is how to supply iron ore to factories in order to minimise the cost of transporting the

iron ore. The iron mines are defined to be the domain U and the destination of the

iron mine, the factories, is V . We need to hire lorries to transport the iron ore, which

is at a cost of c = c (x , y) to transport a ton of iron ore from the mine, x, to the

factory, y. The amount of iron ore we can extract and the amount of iron ore the

factories can receive are fixed, whence the strategies about how to transport the iron

ore must be size-preserving. In the problem as considered in [58] the cost function is

c (x , y) = h (|x − y|) given by a strictly concave function h≥ 0.

Allowable strategies are constrained by the requirement that “sets of equal size are

mapped to each other” for Monge’s problem. More formally we define S to be a set of

measure-preserving mappings s : U→V . (We give precise definitions later.)
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Before defining Monge’s problem mathematically, we define the cost associated with

s∈S. The cost function is as follows

C(s) =

∫
c (x , s(x)) dµ(x), (1.12)

where x is a point in the domain and µ is the measure of the mass being transferred.

We write

inf
s∈S

∫

U
c(x , s(x)) dµ(x) = inf

s∈S
C(s). (1.13)

An optimiser ŝ satisfies C(ŝ) = infs∈SC(s). The quantity infs∈SC(s) is itself of interest

and can be thought of as measuring distance between the domain and co-domain and

their measure of size. (See Wasserstein distance later.)

The interest in optimal mass transfer theory surrounds the cost function, in par-

ticular the choice of the cost function and the uniqueness of the solution of the cost

function.

There are cost functions for which

(i) there are many minimisers (non-uniqueness);

(ii) there is a unique minimiser;

(iii) there is no minimiser; forward reference the reader to section 4.5.

Given the choice of cost function for Monge’s original work problem we consider the five
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book problem in section 1.5.1; this will illustrate the non-uniqueness of the solution for

Monge’s original cost function.

There are three major difficulties with Monge’s problem. Firstly, the set S, defined

above, is neither convex nor compact (this problem is discussed at the end of the Chapter

2). Secondly, Monge’s problem is a nonlinear problem. The Monge-Kantorovich problem

generalises to a linear problem but has more possible solutions. Given that the cost

function is non-negative, Monge’s original minimal work problem has a lower bound

and thus an infimum exists; a minimiser need not exist. Therefore for specific cost

functions with undesirable properties, e.g. not being smooth, a minimiser need not

exist. A further difficulty of Monge’s problem is that there aren’t simple conditions on

the cost function such that a minimiser exists.

The next big development in the area dealt with the lack of convexity and com-

pactness. Kantorovich’s problem also stated specific properties required from the cost

function to yield a solution to the new problem. This work would be published by Kan-

torovich in 1942 [50]. Kantorovich [50] made such significant developments in the field

that the problem became the Monge-Kantorovich problem. Gangbo [38] stated “We

write the Monge-Kantorovich problem as a relaxation of the Monge problem”. The re-

laxed problem implies that Kantorovich’s infimum encompasses a larger class of objects

than that of Monge.

Kantorovich’s relaxed problem made the optimal mass transfer problem an easier one

to solve. Given the link between the work, Kantorovich had provided a simpler method

to obtain solutions for Monge’s problem. Firstly, solutions would need to satisfy the

Monge-Kantorovich problem then the solution would need to have specific properties.

Another advantage of the Monge-Kantorovich problem is the dual problem associ-



Introduction 21

ated with it. Villani [71] noted that a linear minimization problem with convex con-

straints, such as the Monge-Kantorovich problem, has a dual formulation. Gangbo

and McCann [39] state that duality “has been the principal tool for investigating the

Monge-Kantorovich problem”. The duality problem was utilised to obtain solutions to

the Monge-Kantorovich problem; this was considered to be a simpler problem to obtain

solutions for than the original Monge-Kantorovich problem.

In the 1980s, for the quadratic cost function, c(x , y) = |x − y|2/2, several authors

made significant advances in the field. Brenier [13], Knott and Smith [53] made devel-

opments about the uniqueness of minimisers for certain costs; the quadratic cost being

the archetypal example. We will consider both Monge’s cost function and the quadratic

cost function in the next subsection. The quadratic cost function is an example where

we have a unique minimiser. We forward reference the reader to section 4.3 for further

details on the Monge-Kantorovich problem.

1.5.1 Five Book Problem.

The five book problem is an illustrative optimal mass transfer problem which demon-

strates how different costs yield different outcomes.
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1

2

3

4

5

6

x

(a)

1

2

3

4

5

6

y

(b)

Figure 1.8: An illustration of the five book problem (a) original position of the five
books and (b) the final position of the five books

The five book problem is a discrete problem. The optimal mass transfer problem as it

has been considered thus far consists of an infinitesimal continuum of particles thus an

extremiser need not exist. However, the discrete problem considered here has a finite

number of strategies, therefore an extremiser must exist.

As the problem has been defined previously the pile of sand is the original position

for the books; the final position of the books is the excavation which the sand must

fill. The problem has six positions in which the books can lie, as numbered in figure

1.8; U = {1 , 2 , 3 , 4 , 5} and V = {2 , 3 , 4 , 5 , 6}. The five books are identical and

indistinguishable. We consider two options to transfer the books from U to V :

1. Move each book one place to the right(i.e. 1 → 2 , 2 → 3 , · · ·); denote this strategy

1.

2. Move the first book to the final position, i.e 1 → 6, with the positions of the other
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books remaining unchanged; denote this strategy 2.

We have that x∈U and that y ∈V . In this discrete case the strategies are permu-

tations and the integral in equation (1.13) is replaced by a finite sum, so C1 (x , y) =

∑5
i=1c1 (x , y). Each of the five movements from strategy one contributes one to the cost

hence for the first strategy, C1(x , y) = 1 + 1 + 1 + 1 + 1 = 5. For the second strategy

we have one movement and again C2 (x , y) = 5 + 0 + 0 + 0 + 0 = 5. Whence for

both strategies the cost function equals 5. In fact these strategies are minimisers. This

illustrates the non-uniqueness of the solution for the cost function of Monge’s original

minimal work problem.

We consider the same strategies for the quadratic cost function. When moving five

books one position there is a contribution of c1(x , y) = |1− 2|2
2 from each book yielding

C1(x , y) = 5
2 . For the other strategy the quadratic cost function gives us C2 (x , y) =

25
2 . In fact the first strategy is the unique minimiser relative to the quadratic cost. This

simple example illustrates the difficulty surrounding Monge’s original minimal work

problem and the more desirable qualities associated with the quadratic cost function.

1.5.2 The History of the Optimal Mass Transfer Problem.

The first individual to extend Monge’s work was Charles Dupin [33]. Following the

extensions of Dupin a prize was offered by the Academy of Paris in 1884 [28]. This prize

was taken a few years later by Appell [5] in 1887. Rachev and Ruschendorf [62] stated

that the prize was claimed by Appell as he “established some geometric properties of

optimal maps in the plane and in R
3”. However, it was apparent that the problem was an

involved one and neither Dupin [33] or Appell [5] did anything to aid the understanding of

(1.13). Villani [72] noted that the arguments used, by current mathematical standards,
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were flawed. However, Appell made attempts to simplify the work [6]1.

Just over twenty years later came the biggest development since the statement of the

original problem. Kantorovich in the 1940’s, [50; 51], had such an impact on the problem

that it is now known as the Monge-Kantorovich problem. Moreover, Kantorovich along

with T.C. Koopmans, received the Nobel Prize in Economics, [66]. One important point

that Rachev and Ruschendorf noted [62] was that when Kantorovich presented his first

paper on optimal mass transfer he did so completely unaware of Monge’s work of the

eighteenth century. Kantorovich only learnt of Monge’s work later, and linked his work

to that of Monge [59] in his second paper, [51].

The next advance in this problem was presented by Sudakov [67]. In this paper,

which was almost 200 years after the original statement of the problem, Sudakov claimed

to have shown that a solution existed for Monge’s original minimal work problem. From

previous work it was apparent that this map wasn’t to be unique, given the issue of

non-linearisation. But, while the outline of the proof was there, there were significant

gaps in the proof as presented by Sudakov [67], especially when n≥ 3.

Ambrosio [2] dealt with the gaps in the proof of Sudakov and finally proved that an

optimal map existed for the Monge original minimal work problem. While Ambrosio was

proving the problem outlined by Sudakov, many researchers [24; 35; 70] were proving

that an optimal map existed using alternative methods.

The progress in solving optimal mass transfer problems had been slow for several

years, but, towards the end of the twentieth century there was a surge of interest in

the subject as researchers realised the importance of optimal mass transfer to their own

subject. Villani [71] gave the “birthdate for this revival” as Yann Brenier’s paper, [13],

1For a review of Appell’s work [35]
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with Brenier bringing the subject to the attention of many around him. Brenier’s paper

ran parallel with another group of authors who used a more probabilistic approach, [53,

Theorem 2.1] to prove that for the quadratic cost function that a map existed and it

was unique.
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1.6 Notation.

Notation. Description. First Appears.

q1 Actual rainfall. Chapter 1.

q2 Forecasted rainfall. Chapter 1.

R (f) Set of rearrangements of f . Chapter 1.

c = c (x , y) Cost function associated with Chapter 1

the optimal mass transfer problem.

S Set of measure-preserving mappings. Chapter 1.

s#µ Push forward of µ through s. Chapter 1.

λn n-dimensional Lebesgue measure. Chapter 2.

B Borel Set. Chapter 2.

1A (x) Characteristic/Indicator function of the set A. Chapter 2.

f∗ (x) Monotone increasing rearrangement of f , Chapter 2.

for f a scalar valued function.

f∆ (x) Monotone decreasing rearrangement of f , Chapter 2.

for f a scalar valued function.

f# (x) Monotone rearrangement of f , Chapter 2.

where f is a vector valued function.

convR(f) Closed convex hull of the set of rearrangements of f . Chapter 2.
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One final point to note is the Theorem numbering system. Results used from literature

are numbered in the the following way Theorem 3.2.1; which is the first theorem of

section 3.2. Results proven in the thesis have a single number, e.g. Nealers Theorem,

which is the first result of this thesis.

1.7 Outline of Thesis.

The thesis will be laid out in the following way. In Chapter 2 we define several equiv-

alent definitions for rearrangements of functions; this is done for both the scalar and

vector valued cases in sections 2.2 and 2.3. A specific type of rearrangement, the mono-

tone rearrangement, is defined for both the vector and scalar valued cases in section

2.4. Monotone rearrangements are used extensively when considering rearrangement

inequalities. The section on rearrangement inequalities is motivated by section 2.5.1

where we consider an equivalent extremisation problem (i.e. same set of extremisers) to

that in (1.2). Then we state the rearrangement inequalities which will be used to prove

our main Theorem in Chapter 3.

Another notion which will be extensively used will be measure-preserving mappings,

therefore we illustrate its importance noting its relation to rearrangements and push-

forward measures. We use measure-preserving mappings to define the concept of polar

factorisation (see Ryff [65, Proposition 3]); extending the notion for vector valued rear-

rangements (see Brenier [13; 14]. We finish by considering the problem of extremising

over sets of rearrangements, giving special consideration to the idea of convexity.

The way in which the simple formulation was defined in (1.3) leaves some questions

unanswered, particularly the classification of the set of best fitting rearrangements.

We answer this question in Chapter 3. The chapter begins by using the methods of
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rearrangement inequalities from Burton [17] to prove that a minimiser exists in (1.2)

and establishes exact conditions for when the minimiser is unique. The remainder

of the chapter establishes when the minimiser is unique. Level sets having positive

measure play a major role in these arguments. The concept of level sets is explained

and illustrated and the problems surrounding level sets are explained. The main theorem

in the thesis is then explained via an illustrative example before breaking the problem

down into a series of propositions and lemmas brought together to prove the theorem.

Having briefly introduced the problem in the first chapter the idea of optimal mass

transfer is discussed in greater depth in Chapter 4. We begin by introducing the meth-

ods which are central to optimal mass transfer theory when considering the Monge-

Kantorovich problem. Having defined the methods of optimal mass transfer we consider

the problems addressed by Kantorovich’s formulation. We then define formally both

the Monge-Kantorovich problem and its dual problem. We conclude the chapter by

surveying the literature to summarise the results which exist for different cost functions.

For the majority of the thesis we consider error scores for scalar valued rearrange-

ments; it is a natural progression to consider vector valued rearrangements problem as

well. In section 5.2 we illustrate that the closest rearrangements problem need not be

satisfied for vector valued rearrangements.

In the introduction we alluded to some problems which might arise from our forecast

error decomposition. The remainder of Chapter 5 is how we deal with these problems.

We begin the chapter by defining the displacement error; we use results from Brenier

and Benamou [11]. Further work by Brenier and Benamou [10] contains a possible so-

lution for the problem; they suggest a specific cost function. This cost function is for a

time continuous formulation and thus we need to adapt this idea. We state the problem
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as a rearrangements problem ensuring that both the qualitative features error and the

displacement error are taken at the same time. This rearrangements problem can also

be formulated as a partial differential equations problem or an optimal mass transfer

problem. Through the work of Haker [73] we consider some of the limitations of the

partial differential equations problem. The more sophisticated formulation, in the same

manner as the closest rearrangements problem of the simple formulation, has an equiva-

lent formulation; this is the content of Theorem 8. The more sophisticated formulation

should have fewer extremisers, Proposition 9 shows some of these extremisers.

With a view to illustrating an extremiser exists for the more sophisticated formula-

tion we also consider a relaxed version of this formulation. The relaxed formulation is

considered over the closed convex hull as opposed to the set of rearrangements. Theorem

10 shows the equivalent maximisation problem. Section 5.5 shows via an example the

differences between the simple formulation and the more sophisticated formulation.

Chapter 5 is drawn to a close by showing that the relaxed more sophisticated for-

mulation has an extremiser; this result is contained in Theorem 11. The next result

of Theorem 11, (iii), shows that for specific values of θ the value of the more sophis-

ticated formulation is larger than that of the value of the relaxed more sophisticated

formulation. This means that we cannot generalise the relaxed formulation result to the

more sophisticated version. The final result of the Theorem shows that the equivalent

maximisation problems are the formulations to consider. An example showing specific

values of θ where Theorem 11(iii) is satisfied concludes the chapter.

We summarise the achievements of the thesis in the final chapter, and discuss fu-

ture directions for forecast error decomposition. One future direction is the numerical

implementation of the ideas of the thesis. We finish the thesis with a discussion of the
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open problems of the thesis.

1.8 Applications of rearrangements and optimal mass trans-

fer.

The semigeostrophic equations are a model for slowly varying flows which are constrained

by both rotation and stratification; this system has been used to model weather fronts

forming and moving. The f-plane (constant rotation) semigeostrophic equations are as

follows:

DX

Dt
= fJ (X − x) , (1.14)

X = ∇P, (1.15)

∇·u = 0, (1.16)

where

J =




0 −1 0

1 0 0

0 0 0



.

There are some things to note: X = (X , Y , Z), u = (u , v , w) is the velocity field, D
Dt

is the Lagrangian derivative, P is a pressure variable and f is the Coriolis parameter,

assumed constant in this simplified model. Equations (1.14), (1.15) and (1.16) are solved
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on an open, bounded and connected Ω⊂R
3 for the boundary condition u ·n = 0 on

δΩ. We solve the set of equations for X , u and P .

An extra constraint on these equations is the Cullen-Norbury-Purser minimum en-

ergy principle(see Cullen [27]). At each time t values of X (t , ·) are considered to be fixed

on particles. The principle states that at each time particles arrange themselves to min-

imise the geostrophic energy E = E (X). This yields a vector-valued rearrangements

minimisation problem:

find those X attaining

inf
X∈R(Xt)

E (X) . (1.17)

It was shown by Douglas [32] that the infimum is uniquely attained by X#
t = ∇ψt,

where ψt is a convex function. (This is an example of a Brenier map, a concept that will

be defined later.) We identify P (t , ·) with ψt at each time t. Tracking the singularities

of P (t , ·) as time evolves is thought of as tracking weather fronts forming and moving.

Convex functions (on R
3) fail to be differentiable on a set of dimension at most 2 which

corresponds with the idea that a weather front is “thin”.

There is a second rearrangements problem associated with this system. When the

mapping X (t , ·) is invertible (almost everywhere) the equations can be rewritten in

X variables as a coupled Monge-Ampère/transport equation system (See for example,

Douglas [30] for details). There is a rearrangement conserved quantity and an associ-

ated scalar-valued rearrangement minimisation problem. Cullen and Douglas [26] have

demonstrated some results for nonlinearly stable flows in a simplified case.
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An example related to the second rearrangements problem described above is that

of energy extremisation for 2-D ideal fluid flow; the theory is much more developed in

this case.

The vorticity/stream function formulation of a two dimensional incompressible inviscid

flow

−∆ψ = ω in Ω , ψ = 0 on ∂Ω, (1.18)

Dω

Dt
= 0, (1.19)

u =

(
∂ψ

∂y
, −∂ψ

∂x

)
, (1.20)

where Ω is a planar region bounded by a simple closed curve ∂Ω, ψ denotes the stream

function, ω the vorticity, u the velocity, and D (·) /Dt = ∂ (·) /∂t + u .∇ (·), the time

derivative following the flow. For a given square integrable function ω we can find (a

unique) ψ which satisfies (1.18) in the weak sense; call this “inverse for −∆ with zero

Dirichlet boundary conditions” Kω. Kinetic energy E satisfies

E =
1

2

∫

Ω
|u|2 dλ2 =

1

2

∫

Ω
|∇ψ|2 dλ2 =

1

2

∫

Ω
ωKω dλ2, (1.21)

and from (1.19) and (1.20) we have that vorticity is preserved on particles in an incom-

pressible flow, that is vorticity is rearrangement preserved. We maximise kinetic energy

over a family of flows whose vorticities are rearrangements of a prescribed function;

there is a principle that a maximiser should yield a steady stable flow, the fluid being
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“trapped” in the top energy state. The origins of this idea can be found in Kelvin [69];

the formulation in terms of rearrangements of functions was proposed by Benjamin [12]

in the context of steady vortex rings in three-dimensional axisymmetric ideal fluid flow.

This principle has been justified to some extent. Suppose that ω0 ∈L2 (Ω). Then

Burton [17; 19] yields that there exists ω̄ ∈R (ω0) such that E (ω̄) ≥E (ω) for each

ω ∈R (ω0) and

−∆ψ̄ = φ ◦ ψ̄, (1.22)

for some increasing function φ, where ψ̄ = Kω̄. Now (1.22) is the equation for the

stream function of a steady flow. For non-negative ω0 ∈L2 (Ω) solutions to (1.18)-(1.20)

with ω (0 , ·) = ω0 conserves energy. Suppose that ω̄ is the unique maximiser of E

relative to R (ω0). Then Burton [20] demonstrates that the solution associated with

ω (t , ·) = ω̄ for all time t is nonlinearly stable, that is for every ǫ> 0 we can choose

δ > 0 such that for any solution of (1.18), (1.19) and (1.20) with ‖ω (0 , ·) − ω̄‖2 <δ we

have ‖ω (t , ·) − ω̄‖2 <ǫ for all t> 0.

Practical applications of optimal mass transfer can be found in Benamou and Bre-

nier [11]. This states we can use the Monge-Kantorovich theory in “various fields of

applications such as shape recognition in image processing, computer vision and sig-

nal treatment, data assimilation in meteorology and oceanography, quantum chemistry,

etc”, see [40; 48; 49]. Geman and Geman [41] was an illustration of this. The paper uses

the Gibbs Sampler method to restore images such as photographs which are blurred or

include nonlinear deformations. We have a photo as it should appear, the photo as it is
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and the photo after it has been restored. From our work on forecast error decomposition

the forecasted data is the photo as it should appear; the actual data is the degraded

image and the best fit is the restored image. The problem has also be studied by Haker

et al. [44; 73]. We discuss their results in Chapters 4, 5 and 6.

A further use of optimal mass transfer is shape recognition as considered by Gangbo

and McCann [40]. The idea is based on an algorithm suggested by Fry [36] which

uses computers to identify leaves from New England using the outline of the leaf. The

algorithm compares the outline of the unknown leaf to several known leaves. In the

same way that our forecast error decomposition used the best fit this algorithm uses the

best fit to decide which well known leaf the original outline is.

Plakhov [60; 61] used the Monge-Kantorovich problem to examine the problem of

how air passed over convex and concave bodies. Of interest in this problem was a cost

function which included both a convex and concave function. Furthermore Plakhov

found, surprisingly, better results for concave bodies and this led to the study of the

way particles interact with golf balls. We forward reference the reader to section 4.5 for

the formal outline of the problem.

Another application is probability and statistics, more specifically game theory and

hypothesis testing which are reviewed by Rachev and Rüschendorf [63]. From Kan-

torovich’s work an obvious application would be mathematical economics [55]. There

are too many applications to mention them all and to this end we refer the reader to

Rachev and Rüschendorf [62, Preface] where an extensive list is provided.



Chapter 2

Rearrangements.

2.1 Introduction.

The idea of rearrangements of functions is central to this thesis. Section 2.2 formalises

the ideas of section 1.4. Section 2.2.1 states four formulations and shows they are equiv-

alent, drawing an analogy to Casimir integrals or conserved quantities for dynamical

systems. Measure spaces of infinite size introduce new complications; we discuss the

definition of rearrangement with reference to a specific example.

Vector-valued rearrangements are relevant to optimal mass transfer: the content of

section 2.3. We begin by noting by formalising the idea of vector valued rearrangements

in definition 2.3.1. Then we note the differences between the vector valued and scalar

valued case. As was the case with the scalar valued case there are several equivalent

definitions for vector valued rearrangements. In section 2.3.1 we state the definitions,

showing they are equivalent, comparing them to the scalar valued versions.

Special types of rearrangements give rise to important inequalities; we discuss these

in section 2.4. We consider scalar valued monotone rearrangements linking these rear-

35
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rangements to the functions considered in section 1.4. From the methods of, for example

Douglas [30], we illustrate how to construct a decreasing or increasing rearrangement.

Then we consider monotone rearrangements of vector valued functions.

Rearrangements inequalities involving monotone rearrangements have extensive use

throughout the thesis. We begin section 2.5 by considering an equivalent problem to

the closest rearrangements problem. Following the methods of Burton [17] we state the

rearrangement inequalities in question.

A measure interval is a measure space with the same measure theoretic structure

as an interval on the real line with Lebesgue measure; we define this in section 2.6. In

section 2.6.1 we define the concept of push-forward measures in definition 2.6.5 before

comparing measure-preserving mappings, rearrangements and push forward measures.

Increasing, or decreasing, scalar valued rearrangements along with measure-preserving

mappings will give rise to a notion known as polar factorisation; we consider this in

section 2.6.2. We conclude section 2.6.2 by extending the notion of polar factorisation

from scalar valued functions to vector valued functions.

When extremising a functional over a set of rearrangements the non-convexity and

non-compactness of the set of rearrangements can be problematic; this is discussed in

section 2.7. In section 2.7.1 we recall the idea of convexity. We define a superset of the

set of rearrangements in 2.7.2 which is (weakly sequentially) compact. We finish the

chapter by considering another theorem of Burton [17, Theorem1] which will be central

in the proof of the main theorem of the thesis.
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2.2 Scalar Valued Rearrangements.

2.2.1 Equivalent definitions of scalar valued rearrangements.

There are alternative definitions for the rearrangement of a scalar valued function. We

consider four such definitions used by different authors (see, for example [30, Theorem

1]).

Theorem 2.2.1. Let Ω ⊂ R
n be a bounded set and let µ be a measure, which is absolutely

continuous with respect to n-dimensional Lebesgue measure.

Let f, g : Ω → R be integrable functions. The following are equivalent:

(i) f is a rearrangement of g(as in definition 1.8);

(ii) For every real α,

µ ({x : f(x) ≥ α}) = µ ({x : g(x) ≥ α}) . (2.1)

(iii) For every Borel set B ⊂ R,

µ ({x : f(x) ∈ B}) = µ ({x : g(x) ∈ B}) . (2.2)
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(iv) For F ∈C (R) with |F (y)| ≤ const (1 + |y|p) for some 1≤ p<∞,

∫

Ω
F (f(x)) dµ(x) =

∫

Ω
F (g(x)) dµ(x). (2.3)

(Equation (2.3) holds in the sense that if one of the integrals is finite, so is the other

and they are equal.)

Proof: Follows by the methods of, for example Douglas [32, Section 2.4].

The role of the growth constraint on F , |F (y)| ≤ const (1 + |y|p) in definition (iv), is

to ensure that the integrals are finite when f , g ∈Lp. Generally, (2.3) will also hold for

an F which is the (pointwise) limit of continuous functions. One such type of function

is the characteristic or the indicator function which is defined as follows:

Definition 2.2.2. For A ⊂ X, 1A : X→R, the indicator function of A is defined by

1A(x) =





1, if x ∈ A

0, if x /∈ A.

(2.4)

The four equivalent statements, for different classes of functions F can be written in

the form of (iv). For instance, to obtain (1.8) we choose F (y) = (y − α)+. We choose

F (y) = 1B to give (2.2), for B⊂R where B is a Borel set. Moreover, by choosing

F = 1[α ,∞ ) we have (2.1).

We note that (2.3) reduces to (1.11) for the specific choice of F (y) = |y|p which

illustrates that rearrangements preserve the Lp-norm.
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Let ω be a rearrangement conserved quantity, such as vorticity in 2-dimensional ideal

fluid flow. We can express definition (iv) from Theorem (2.2.1) in the following way,

that is the infinite family of Casimir integrals:

CF =

∫

Ω
F (ω) dλ2, (2.5)

are conserved for all ω ∈R (ω0), where F is an arbitrary function that can be approxi-

mated by continuous functions.

Rearrangements of functions still makes sense on measure spaces with infinite size.

However, the properties in Theorem 2.2.1 are no longer equivalent. We consider the

following example(from Douglas [29]):

l

α

Figure 2.1: The same function separated by a block of zero’s.

From figure 2.1, if we denote the function with the blue area by f then the function

with the red area, denoted g, is defined as follows:
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g(x) =





0, on [0 , l] ,

f (x − l) , on (l , ∞) .

(2.6)

The specific counterexample B = {0} does not satisfy Theorem 2.2.1 (iii) but satisfies

definition 1.4.1. With F = 1B for this choice of Borel set has that Theorem 2.2.1 (iv)

is not satisfied; Theorem 2.2.1 (i) and (ii) are both defined. We consider the following

definition from Douglas [30] which states when function are rearrangements on an infinite

measure space:

Definition 2.2.3. Let Ω be an unbounded subset of R
n of infinite size, that is λn (Ω) =

∞ where λn denotes n-dimensional Lebesgue measure. Two non-negative integrable

functions f , g : Ω→R are rearrangements if

λn ({x : f (x) ≥α}) = λn ({x : g (x) ≥α}) , (2.7)

for every α> 0.

An assumption we should make about the functions we are rearranging is that they

vanish at infinity, i.e. that λn ({x : f (x) ≥α}) <∞ for each α> 0, see Lieb and Loss

for more information [56, Section 3.2].
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2.3 Vector Valued Rearrangements.

Definition 2.3.1. Let Ω be a bounded set in R
n, let µ be absolutely continuous with re-

spect to n-dimensional Lebesgue measure, and let f , g : Ω→R
d be integrable functions.

f and g are rearrangements if

µ ({x : f (x) ∈B}) = µ ({x : g (x) ∈B}) , (2.8)

for every Borel subset B of R
d.

Definition 2.3.1 is a vector valued extension of the Theorem 2.2.1 (iii) with d = 1.

A vector valued function can be defined in terms of its components, we use these compo-

nents to illustrate the differences between the vector and scalar valued cases. The compo-

nents of a vector valued function, f : Ω→R
d, are fi : Ω→R where fi = (f1 , . . . , fd).

From the definition of vector valued rearrangements we have the following:

f ∈R(g) ⇒ fi ∈R(gi). (2.9)

Hence, for vector valued rearrangements we require the components of the vector valued

functions also to be scalar valued rearrangements. However, the converse to (2.9) is not

always true, for a specific counterexample see Douglas [30].



42

2.3.1 Equivalent definitions of vector valued rearrangements.

Theorem 2.3.2. Let Ω ⊂ R
n be a bounded set and let µ be absolutely continuous with

respect to n-dimensional Lebesgue measure. Let f, g : Ω→R
d be integrable functions.

The following are equivalent

(i) f is a rearrangement of g.

(ii) for each F ∈C
(
R
d
)
,

∫

Ω
F (f(x)) dµ(x) =

∫

Ω
F (g(x)) dµ(x), (2.10)

such that |F (ξ)| ≤K (1 + |ξ|p), where each K is a constant.

(Equation (2.10) holds when one of the integrals is finite.)

(iii) For each c∈R
d,

µ ({x : f(x)≥ c}) = µ ({x : g(x)≥ c}) . (2.11)

where the inequalities are calculated component by component on R
d (Partial or-

dering).
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(iv) For each σ ∈R
d, α> 0,

∫

Ω
(|f − σ|∞ − α)+ dµ =

∫

Ω
(|g − σ|∞ − α)+ dµ, (2.12)

where |·|∞ denotes the infinity norm on R
d.

Proof: Follow the methods of Douglas [32, Theorem4].

We note that f being a rearrangement of g in the form of (i) is the same as definition

(2.8).

Definition (ii) can be thought of in the sense that if one of the integrals is finite

then the other integral is also finite. To this end, Brenier [14] restricted the integral to

a subclass of C(Rd) which guarantees that the integrals in equation (2.10) are finite,

moreover, if f , g ∈Lp then the integrals in (2.10) are finite. Definition (ii) is a vector

valued extension of definition (iv) from theorem 2.2.1. As was the case with the scalar

valued case this definition can unify the other definitions.

The inequalities in definition (iii) were introduced by Cullen, Norbury and Purser

[27] and is a direct extension of definition (ii) in Theorem 2.2.1. Finally, property (iv)

is an extension of definition 1.4.1.

2.4 Monotone Rearrangements.

Recalling the functions defined on the unit interval in the opening chapter, f (x) = x,

g (x) = |1 − 2x| and h (x) = 1 − x, where f , g and h are rearrangements of each other.

Both f and g are special types of rearrangements which is the content of this section.

From figure 1.5(a), f is a monotonic increasing function and h is a monotonic de-
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creasing function (figure 1.6). It is of interest whether f is the unique increasing function,

which is a rearrangement of g and whether h the unique decreasing function, which is

a rearrangement of g. From the methods of Burton [17, Lemma 1] we have that both

the increasing and decreasing rearrangements are essentially unique. They are unique

except possibly at points of discontinuity. There are only countably many of these for

a monotonic function. Furthermore, we use the methods of Burton [17, Lemma 1] to

define the monotone rearrangements for functions defined on a general measure space

(Ω , µ).

From any function f0 : Ω⊂R
n→R, where (Ω , µ) is a measure space satisfying

µ (Ω) = 1 for µ absolutely continuous with respect to Lebesgue measure we can con-

struct a monotone increasing rearrangement. We can construct the increasing function

f∗0 on [0 , 1] by replacing every set {x : f0 (x) ≥α} by [1 − λ1 ({x : f0 ≥α}) , 1]; hence

defining the value of f∗0 (α) on an interval of the same size extending leftwards from 1.

2.4.1 Monotone rearrangements of vector valued functions.

We can extend the notion of montone rearrangement to the vector valued functions.

Unfortunately, R
d is not totally well-ordered for d≥ 2 thus the notion of increasing

does not make sense. However, we have an increasing scalar valued function which

is the gradient of a convex function; an idea we can generalise to the vector valued

case. Brenier [14, Theorem 1.1] defined the monotone rearrangement for a vector valued

function f to be f# = ∇Ψ, where Ψ is convex and is known in some literature as the

Brenier map. He demonstrated its existence and (essential) uniqueness. The Brenier

map has been utilised in optimal mass transfer theory. We illustrate with the following

example. Let f , defined on the unit square, be defined as follows:



Rearrangements 45

f (x = (x , y)) =





(1 , 1), if x∈
[

1
2 , 1

]
×
[

1
2 , 1

]
,

(0 , 0), otherwise.

(2.13)

This is illustrated by the following diagram:

(0 , 0)

(1 , 1)

Figure 2.2: The function f as defined in (2.13)

We define the the monotone rearrangement to be f# : [0 , 1]2 →R
2:

f# (x = (x , y)) =





(1 , 1), if x + y≥ 2 − 1√
2
,

(0 , 0), otherwise.

(2.14)

The convex function Ψ is:

Ψ (x = (x , y)) =





x + y −
(
2 − 1√

2

)
, if x + y≥ 2 − 1√

2
,

0, otherwise.

(2.15)
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We illustrate the monotone rearrangement in the following figure:

(0 , 0)

(1 , 1)

Figure 2.3: The function f#, an example of a Brenier map

We can see easily from figures 2.3 and 2.2 that f# ∈R(f). Recall that a convex function

f is said to be proper if its epigraph(forward reference to section 2.7.1 for definition)

is non-empty and contains no vertical lines, i.e. if f (x) <+∞ for at least one x and

f (x) >−∞ for every x. (See, for example, Rockafellar [64].) We define lower and upper

semi continuity:

Definition 2.4.1. A function f (X), defined in a metric space X, is said to be lower

semi continuous if for any point x∈X

lim inf
y→x

f (y) ≥ f (x) . (2.16)

Definition 2.4.2. A function f (X), defined in a metric space X, is said to be upper

semi continuous if for any point x∈X

lim sup
y→x

f (y) ≤ f (x) . (2.17)
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While we do not formally define the idea of the measure-interval until later we consider

the following until the definition: some measure theoretic properties as an interval of

the same size equipped with one-dimensional Lebesgue measure. We define monotone

rearrangements for vector valued function formally from Douglas [31]

Definition 2.4.3. Let u∈L1 (X , µ , R
n), where (X , µ) is a measure-interval. Let

Lebesgue measurable Y ⊂R
n be such that λn (Y ) = µ (X). The monotone rearrange-

ment of u on Y is the unique function u# : Y →R
n that is a rearrangement of u and

satisfies u# = ∇ψ almost everywhere in Y for some proper lower semi continuous

convex function ψ : R
n→R.

In the above setting uniqueness almost everywhere of the monotone rearrangement (or

Brenier map) follows from the main theorem of McCann [57]. The convex potential Ψ

is not unique; if Y is connected, Ψ is defined up to additive constant(see Gangbo [37]).

2.5 Rearrangement inequalities.

2.5.1 Closest rearrangements - an equivalent problem.

When we expand the square of the 2-norm in (1.2) we have

‖q1 − q‖2
2 =

∫
(q1 − q)2

=

∫
q21 − 2

∫
q1q +

∫
q2. (2.18)

q1 is a constant hence the first term of (2.18) is a constant. Also, given that ‖q‖2 = ‖q2‖2

for every q∈R(q2) the final term is also a constant. We are left with the second term
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and we minimise (1.2). Given the negative sign in (2.18) we are now maximising,

sup
q ∈R(q2)

∫

Ω
q q1 dµ. (2.19)

The problem is equivalent in the sense that the minimisers of (1.2) are the maximisers

of (2.19) and vice versa.

2.5.2 Maximising pairs of rearrangements.

We consider f∈R(f0) and g∈R(g0). We pose the question:

Which pairs of functions maximise
∫
fg?

The answer to this question includes the corresponding pairs of monotonic rearrange-

ments. What happens is that the monotonic rearrangement pairs arrange themselves

so that the larger values of f0 and the larger values of g0 are multiplying each other;

similarly the smaller values of f0 and g0 arrange themselves so they are multiplying each

other. In other words

∫

Ω
fgdµ ≤

∫ µ(Ω)

0
f∗0 g

∗
0dλ1 =

∫ µ(Ω)

0
f∆
0 g

∆
0 dλ1, (2.20)

where Ω⊂R and µ follow above definitions.
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Lemma 2.5.1. Let (Ω, µ) be a finite measure space, where λ1 is a one-dimensional

Lebesgue measure defined as before. Let g : Ω→R be a square integrable function and

U⊂Ω and let α = µ(U). Then

∫

U
g dµ≤

∫ α

0
g∆ dλ1 (x) . (2.21)

Proof: Burton [17, Lemma 2].

Theorem 2.5.2. Let (Ω, µ) be a finite measure space, where λ1 is a one-dimensional

Lebesgue measure defined as before. Let f0, g0 : Ω→R be square integrable functions and

let ω = µ(Ω). Then for all rearrangements f of f0 and g of g0 on Ω we have

∫

Ω
fg dµ≤

∫ ω

0
f∆
0 g

∆
0 dλ (x) .

Proof: Burton [17, Theorem 1].

The fact that the L2-norm is preserved under rearrangement leads to many researchers

studying equality in Hardy-Littlewood type inequalities; that is for which q ∈R (q2) does

∫
q1q =

∫
q∆1 q

∆
2 ? Crandall [25] stated (2.20) in the general case, where J incorporates

functions such as the L2-norm:

∫ µ(Ω)

0
J
(
f∆ (x) − g∆ (x)

)
dλ (x) ≤

∫

Ω
J (f (x) − g (x)) dµ (x) , (2.22)
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where J : R→R is a non-negative convex function satisfying J (0) = 0. Burchard

and Hajaiej [16; 43] make use of (2.22) with various applications in mathematics, see

Hajaiej [43]. There are parallels between the work in this thesis and the work presented

by Burchard and Hajaiej. The problems are to find pairs of functions f and g which

achieve equality in (2.22). Moreover, results exist when f is fixed to be f∆ and again

seek pairs which achieve equality in (2.22).

2.6 Measure-Preserving Mappings.

For an incompressible planar flow in a bounded domain the trajectory mapping of the

fluid particles at each time t is area-preserving. For a subset of the plane the set of

points that were mapped to that set has the same area. We recall the definition of

inverse image [68]

Definition 2.6.1. Let f : X→Y be any map and let C be a subset of Y . The inverse

image f−1(C) of C under f is the subset of X given by {x∈X : f(x)∈C}.

We define measure-preserving mappings and invertible measure-preserving mappings

which map measurable sets to measurable sets; we call the latter measure-preserving

transformations, [32, Section 2.2]:

Definition 2.6.2. A measure-preserving mapping from a finite measure space (U , µ)

to a measure space (V , ν) with µ(U) = ν(V ) is a mapping s : U → V such that for

each ν-measurable set A ⊂ V , µ(s−1 (A)) = ν(A).

Moreover, s : X→Y is a measure-preserving transformation if

(i) s : X \L→Y \M is a bijection, where L and M are some sets of zero (respectively

µ and ν) measure; and
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(ii) s and s−1 are measure-preserving mappings.

Under mild hypotheses measure-preserving mappings are surjective, but need not be

smooth nor injective. We give an example of the latter in the next section. Before

defining a measure interval we define the isomorphism of measure spaces:

Definition 2.6.3. Two finite measure spaces (U , µ) and (V , ν) are isomorphic if there

exists a measure-preserving transformation T : U→V .

We will state our results on measure intervals, although some could be generalised to

finite non-atomic measure spaces. The definition follows the methods of Burton and

Douglas [21]:

Definition 2.6.4. A finite measure space (U , µ) is a measure interval if it is isomorphic

to [0 , µ (U)] with Lebesgue measure.

We have an equivalent definition to definition 2.6.2 from Halmos [45] which states that

s : U→V (where (U , µ) and (V , ν) are measure spaces) is a measure-preserving

mapping if:

∫

U
f◦sdµ =

∫

V
fdν, (2.23)

for every ν-integrable function f .1. We will make extensive use of this form of the

definition in our work on optimal mass transfer.

1For an explanation of the terms ν-measurable and ν-integrable see, for example Halmos [45]
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2.6.1 Relationship between measure-preserving mappings, push-forward

measures and rearrangements.

Sets of rearrangements can always be written as sets of measure-preserving mappings.

Sets of measure-preserving mappings can sometimes be written as a set of rearrange-

ments. We show the connections between measure-preserving mappings and rearrange-

ments. We define S to be the set of measure-preserving mappings from (U , µ) to

(V , ν). We recall definition (2.2) for rearrangements. Let (U , µ) be a measure interval

and suppose f , g ∈L1 (U , µ , R
n). Then f and g are rearrangements if

µ
(
f−1(B)

)
= µ

(
g−1(B)

)
, (2.24)

for every Borel set B⊂R
n. Define a measure ν on the Borel field of R

n by

ν(B) = µ
(
f−1(B)

)
. (2.25)

Now, for g ∈R(f) we have that

ν(B) = µ
(
g−1(B)

)
= µ

(
f−1 (B)

)
. (2.26)

Hence, we deduce that g is a measure-preserving mapping from (U , µ) → (V ≡R
n , ν).

it follows that S and R (f) are the same set. Conversely, we can characterise the set

of measure-preserving mappings as a set of rearrangements in certain circumstances.
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Let U ⊂R
n, µ a measure on the Borel field of R

n. Let s : (U , µ) → (U , µ) be a

measure-preserving mapping and let B⊂U be a Borel set.

µ
(
s−1(B)

)
= µ (B) = µ

(
(id)−1(B)

)
. (2.27)

Now, we note that s∈S, where S is the set of measure-preserving mappings from

(U , µ) → (U , µ) if and only if s∈R(id). In particular we deduce that all members

of S have the same Lp-norms.

From what we’ve shown about measure-preserving mappings being rearrangements

of the identity function we can compare this to three functions considered in section 1.4,

f (x) = x, g (x) = |1 − 2x| and h (x) = 1 − x. Given that g , h∈R (f) and f is the

identity function on [0 , 1], then g , h : [0 , 1] → [0 , 1] are measure-preserving mappings.

Furthermore, we note that g is not an injective mapping and thus the measure-preserving

mappings need not be injective. However, on measure spaces as defined in definition

2.6.4 the measure-preserving mapping is essentially surjective.

We define push-forward measures as follows:

Definition 2.6.5. For a mapping s : U→V we define for (measurable) A⊂V

s#µ(A) = µ(s−1(A)) , (2.28)

= µ({x : s(x)∈A}). (2.29)

s#µ is known as the push forward of µ through s or alternatively it can be said that s
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pushes µ forward to s#µ. It is evident from definition 2.6.2 the similarities to definition

2.6.5. It is immediate that s is a measure-preserving mapping from (U , µ) to (V , ν) if

s pushes µ forward to ν, that is s#µ = ν. From (2.25) we have that ν = f#µ and for

a measure-preserving mapping from (U , µ) to (Rn , f#µ) the set S and R (f) are the

same set.

If we now define the left hand side to be a measure, i.e. ν(B) = µ
(
f−1(B)

)
, we

have that any push forwards from µ to ν are rearrangements of f . Given that the

set of rearrangements is an equivalence class we can pick any element of the set of

rearrangements to yield the push-forward measure.

We show that both measure-preserving mappings and transformations preserve re-

arrangements. Let bounded sets Ω⊂R
n, Ω′⊂R

d satisfy µ(Ω) = ν(Ω′). Furthermore,

we let f , g : Ω→R be integrable functions such that f ∈R(g) and let s : Ω′→Ω be a

measure-preserving mapping. We use the notation from definition 2.6.1 for the inverse

image. Now, for each Borel set B⊂R we have

ν
(
(f ◦ s)−1(B)

)
= ν

(
s−1 ◦ f−1(B)

)
= µ

(
f−1(B)

)

= µ
(
g−1(B)

)
= ν

(
s−1 ◦ g−1(B)

)
= ν

(
(g ◦ s)−1(B)

)
.

Therefore, given f ∈R(g) we have f ◦ s∈R(g ◦ s). Further to this if we have that s is a

measure-preserving transformation then the opposite argument holds.

We previously discussed a constructive approach to defining monotone rearrange-

ments; using measure-preserving mappings, if (Ω , µ) is a measure-interval and s :

(Ω , µ) → ([0 , µ (Ω)] , λ1) a measure-preserving mapping, we have that the increasing
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rearrangement of f0 : Ω→R is given by (f0 ◦ s)∗.

Similarly to the set of rearrangements, the set of measure-preserving mappings is

closed in L2 but it is not convex nor compact(in general).

2.6.2 Polar Factorisation.

From work by Ryff [65, Proposition 3] we have that any real integrable function on a

bounded interval can be expressed as the composition of its increasing rearrangement

and a measure-preserving mapping. For an integrable function f there exists a measure-

preserving mapping s : Ω → [0, µ(Ω)] such that f = f∗ ◦ s, where f∗ is an increasing

rearrangement, f∗ : [0, µ(Ω)] → R. This notion is known as polar factorisation. To give

a simple example we consider (1.6). If we let f (x) = 1−x our increasing rearrangement

is f∗ (x) = x; where µ (Ω) = 1. Moreover, h (x) = 1 − x is measure-preserving. We

have that f = id ◦h. As a direct result of polar factorisation we have the following

theorem; we defer the proof until Theorem 3.2.1 (i).

Proposition 2.6.6. Let Ω ⊂ R
n be a bounded set and let µ be a measure as described

in 2.2.1. Let f , g : Ω → R be square integrable functions. Then there exists f̂ ∈R(f)

such that

∫

Ω
f̂(x)g(x)dµ(x) =

∫ µ(Ω)

0
f∗(x)g∗(x)dλ1(x). (2.30)

From this result we have that supf̃ ∈R(f)

∫
Ωf̄g, is attained by f̂ . The importance of the

specific equality (2.30) will become apparent when considering our characterisation of

the minimiser in the qualitative features error in the chapter that follows.
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Polar Factorisation of Vector Valued Rearrangements.

Brenier [13; 14] extended the polar factorisation of Ryff [65] to vector valued functions.

Douglas [31] stated that “A vector valued function has a polar factorisation if it can

be written as the composition of its monotone rearrangement which is equal almost

everywhere to the gradient of a convex function, with a measure-preserving mapping.”

More precisely

Definition 2.6.7. Let u∈L1 (X , µ , R
n) where (X , µ) is a measure interval. Let

Lebesgue measurable Y ⊂R
n be such that λn (Y ) = µ (X) and let u# denote the mono-

tone rearrangement of u on Y . We say u has a polar factorisation through Y if there

exists a measure-preserving mapping s from (X , µ) to (Y , λn) such that u = u# ◦ s

almost everywhere.

Burton and Douglas [21; 22] have established exact conditions (on the monotone rear-

rangement) for unique existence of a polar factorisation and a sharp theorem of general

existence. They also established non-existence results(extended by Douglas [31]) which

we will make use of in Chapter 6.

Theorem 2.6.8. Let integrable u# : Y →R
n be the restriction of the gradient of a

proper lower semi continuous convex function to a set Y ⊂R
n of finite positive Lebesgue

measure and suppose that u# restricted to the complement of its level sets of positive mea-

sure is not almost injective. Let (X , µ) be a measure interval satisfying µ (X) = λn (Y ).

Then u# has a rearrangement u : X→R
n which does not have a polar factorisation

through Y .
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2.7 Properties of the set of rearrangements.

2.7.1 Convexity.

When minimising a functional over some set a key property that the set may possess is

convexity. We recall the concept of convexity for a subset of R
n.

x

y

(a)

x y

(b)

Figure 2.4: An illustration of a (a) convex set (b) non-convex set

A set is convex if you can pick two points anywhere in the set and the line segment

that connects the two points remains within the set. The equation for the line joining

the two points is given by (1 − λ)x+ λy, where λ ∈ [0, 1] is a parameter. Unlike figure

(2.4(a)) the line which joins the two points in figure (2.4(b)) doesn’t remain in the set.

We extend the notion of convexity to functions by considering:

The epigraph of a function is the region above or on the graph of the function f . We say

that the function f is convex if and only if its epigraph is convex(in the sense described

above). We formalise this idea with the following definition:

Definition 2.7.1. Let V be a vector space. A function f : V →R is convex if for

x, y ∈V and λ ∈ [0, 1]
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Figure 2.5: An epigraph of a function, denoted epi (f) for a given function f , where
epi (f) = {(x, y) : y ≥ f(x)}

f ((1 − λ)x+ λy) ≤ (1 − λ)f(x) + λf(y), (2.31)

where the right hand side is defined.

The set of rearrangements is non-convex in general; we consider a specific counterex-

ample. For f(x) = x as illustrated in figure 1.5(a), where a(x) = f∗ and b(x) =

f∆ = 1 − x, illustrated by figures 1.5(a) and 1.6 and λ = 1
2 , our linear sum gives us

the constant function 1
2 . However 1/2 /∈R (f). In fact R (f) is only convex when f is

constant (and R (f) = {f}).

To overcome non-convexity we consider the closed convex hull of a set. The convex

hull of a set D, which we denote convD, is the smallest convex set which contains

D. It is the intersection of all convex sets that contains D. When D is the set of

rearrangements there is a characterisation of the closed convex hull that is of great

utility in extremisation problems. We discuss this in the next section.
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2.7.2 Do extremisers exist in sets of rearrangements?

In later sections we will be interested in extremising some functional over a set of re-

arrangements. A classical approach would be to pick a maximising sequence, extract a

convergent subsequence and show that the limit it converges to is a maximiser of the

functional. The latter claim depends on (some form of) continuity of the functional;

we concentrate on extracting a convergent subsequence, a property of compactness.

However, we note that R(f0) is not weakly compact; for a specific counterexample see

Douglas [30, Section 2.4].

The solution is to work with the weak closure of the set of rearrangements as it

contains the weak limits, hence, possible extremisers over the set of rearrangements.

The weak closure of the set of rearrangements is the smallest weakly closed set that

contains the set of rearrangements, denoted R(f0) for a function f0. We define the weak

closure as follows:

Definition 2.7.2. A set D∈L2 (Ω , µ) is weakly(or sequentially) closed if the weak limit

of every weakly convergent sequence in D belongs to D.

In fact for a square integrable non-negative function f we have that the weak closure of

the set of rearrangements is equal to the closed convex hull of the set of rearrangements,

see Ryff [65]; this set is weakly compact. For a non-negative square integrable function

f0, the following characterisation of the closed convex hull of the set of rearrangements,

denoted convR(f0), is due to Douglas [29, Theorem 2.1]:

convR(f0) =

{
f ≥ 0 :

∫

Ω
(f − α)+dµ ≤

∫

Ω
(f0 − α)+dµ ∀α > 0,

∫

Ω
fdµ =

∫

Ω
f0dµ

}
,(2.32)
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where, + denotes the positive part of the function. The difference between the closed

convex hull of the set of rearrangements and the set of rearrangements is the inequality

‖f‖p≤‖f0‖p; the inequality allows us to include the weak limits. Therefore, the Lp-norm

is no longer preserved under the closed convex hull of the set of rearrangements. Note

that for our earlier example, 1/2∈ convR(f0) \R (f).

We finish this chapter with an important theorem for the work that follows:

Theorem 2.7.3. Let (Ω, µ) be a measure interval. Let f , g : Ω→R be square integrable

functions. Suppose there is an increasing function ϕ such that f∗ = ϕ ◦ g ∈R(f0). Then

f∗ is the unique maximiser of the functional 〈· , g〉 relative to convR(f0).

Proof: Burton [17, Theorem 3].



Chapter 3

Closest Rearrangements.

3.1 Introduction.

Our approach to weather forecast error decomposition uses the concept of “best fitting”

rearrangements of the forecast; the closest rearrangements problem characterises the set

of best fits. The chapter studies the problem of characterising those elements of a set of

rearrangements which are closest (in the L2 space) to a given square integrable function

q1; that is characterise those q ∈R (q2) which attain

inf
q ∈R(q2)

‖q − q1‖2 .

Noting that L2 norms are preserved by rearrangement we deduce that

61
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inf
q ∈R(q2)

‖q1 − q‖2 =
∥∥q∆1 − q∆2

∥∥
2

= ‖q∗1 − q∗2‖2 , (3.1)

=

{
‖q1‖2

2 + ‖q2‖2
2 − 2

∫ µ(Ω)

0
q∆1 q

∆
2 dλ1

}1/2

. (3.2)

For a practical application of forecast error decomposition we would have to calculate

this quantity: we consider possible numerical schemes in Chapter 6.

We saw in section 2.5.1 that an equivalent problem (i.e. same extremisers) is to find

q ∈R (q2) which attain

sup
q ∈R(q2)

∫

Ω
qq1 dµ (x) . (3.3)

From equation 3.3 we are lead to the study of equality in Hardy-Littlewood type inequal-

ities which happen as a result of Hardy et al. [46, Theorems 368-370 & Theorem 378].

The study of Hardy-Littlewood inequalities ask for which q ∈R (q2) does
∫
q1q =

∫
q∆1 q

∆
2

(we refer the reader to Lieb and Loss [56] for more details on these inequalities)? Gen-

erally, the work on such inequalities have considered them for a strictly decreasing

q1 = q∆1 ; for generalisations of the Hardy-Littlewood inequalities, for example see Ha-

jaiej [15; 43]. Comparatively to the work of Hajaiej and Burchard amongst others the

difficulty with our problem revolves around the fact that q1 has level sets of positive

measure, moreover, that not every element of R (f) is of the form f = f∆ ◦T , where

T is a measure-preserving transformation, that is a bijection T where both T and T−1

are measure-preserving mappings.
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In the study of (3.3) we could utilise a result from Burchard and Hajaiej [15, Theorem

1]. But, the idea of the closest rearrangement problem is to get information about the

maximiser q on the level set having positive measure of q1; Burchard and Hajaiej does

not provide any further insight into our problem.

We define the set of all minimisers:

Definition 3.1.1. M =
{
All q∈R(q2) attaining infq ∈R(q2) ‖q − q1‖2

}
.

As discussed previously, M is equally the set of all maximisers of (3.3).

In section 3.2 we use the methods of Douglas [30, Proposition 2] to show that M

is non-empty and gives a precise condition for when M is singleton. We repeat the

methods of Douglas [30, Proposition 2] for convenience and for ease of understanding in

what follows. The content of Proposition 2 is to provide a sufficient, but not necessary

condition for when M is singleton; this is the content of section 3.3. The major result

in this section is a characterisation of M. Before stating this characterisation we define

notation integral to the main theorem:

Notation. For a function q1 : Ω→R let α∈R and denote the level set of q1 corre-

sponding to α by L (α) = {x∈Ω : q1 (x) = α}.

Notation. Let non-negative q1 ∈L2 (Ω , µ), where (Ω , µ) is a measure interval. For

n∈ I write Ln to denote the level sets of q1 which have positive measure. Then I is

countable and

Ln = {x∈Ω : q1(x) = ln} , (3.4)

for some (ln)n∈ I ⊂R. We suppose that (ln)n∈ I are decreasing. Write L =
⋃
n∈ I Ln,
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the union of all level sets of q1 having positive measure.

Nealers Theorem. Let non-negative q1 , q2 ∈L2 (Ω , µ), where (Ω , µ) is a measure

interval. Suppose q̂∈M. Then q∈M if and only if q = q̂ on Ω \L and q |Ln
∈R

(
q̂ |Ln

)

for each n∈ I. We assume that (ln) can be written as a decreasing sequence.

We explain the final assumption of Nealers Theorem. There is no difficulty writing (ln)

as a decreasing sequence if the index set I is finite, which would be the case for any

practical application of rainfall error forecast decomposition. However I is countable

in general. If (ln) can be arranged as an increasing sequence, analogous arguments

demonstrate the result.

We let q̂ ∈M. We let (⋆), which we define formally later, be the condition that

maximisers are unique up to level sets of positive measure of q1 and rearrangements on

the level sets of positive measure. Nealers Theorem is an if and only if condition which

states that q ∈M⇔ q satisfies (⋆).

The remainder of the chapter discusses Nealers Theorem. We begin in section 3.3.1

illustrating the difficulties with the theorem via an example. Nealers Theorem reduces

to the problem of when we have q ∈R (q2) which satisfy

∫

Ω
q q1 dµ (x) =

∫ µ(Ω)

0
q∆2 q∆1 dλ1 (x) . (3.5)

We disintegrate the difference between the right hand and left hand side of (3.5) using a

layer cake principle (as discussed in Villani [71], for example.). We denote the integrand

after the application of the layer cake principle by Gq. Lemma 3 and Proposition 4

establish properties of Gq; section 3.4.1 proves both Lemma 3 and Proposition 4.
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Using these properties the problem in Nealers Theorem changes from considering

q ∈M which we show is equivalent to showing λ1

(
G−1
q (0 , ∞)

)
= 0; this is proved in

Lemma 5 and is the content of section 3.4.2.

We are now in a position to prove Nealers Theorem. We begin by proving for

q ∈ (⋆) ⇒ q ∈M, using the fact that L1-norms are preserved by rearrangement. Section

3.5 begins with this argument, which is Proposition 6.

The difficulty in proving Nealers Theorem comes from showing that q ∈M implies

q ∈ (⋆). We reduce this problem to working on level sets having positive measure of q1

and “non-level” sets between values corresponding to level sets of q1 of positive measure;

we generalise the result using induction. However, there is no priori reason why two

elements of M should be maximisers for the reduced problems nor that they should be

rearrangements when restricted to these sets. Completing the proof of Nealers Theorem

concludes section 3.5 (and the chapter).

We finish the introduction illustrating what is meant by Nealers Theorem with the

following example from Douglas [30] that the minimisers need not be unique. We let

q1 , q2 , q3 : [−1 , 1]2 →R, where

q1(x) =





3, if x2 + y2 ≤ 1/16,

2, if 1/16<x2 + y2 ≤ 9/16,

0, otherwise.

(3.6)

q2(x) =





3, if x2 + y2 ≤ 1/4

0, otherwise,

(3.7)
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q3(x) =





3, if x2 + y2 ≤ 1/16 or 6/16≤x2 + y2 ≤ 9/16,

0, otherwise,

(3.8)

These functions are illustrated with the following figures:

x

y

r = 3
4

r = 1
4

2

3

0

(a)

x

y

r = 1
23

0

(b)

x

y

r = 1
4

r =
√

6
4

r = 3
4

3

3
0

0

(c)

Figure 3.1: An illustration of (a) q1 = q1 (x , y) (b) q2 = q2 (x , y) (c) q3 = q3 (x , y)
as defined by (3.6), (3.7) and (3.8), to show that M need not be singleton.

It is easily seen that we have the following:

‖q1 − q2‖2 = ‖q1 − q3‖2 = inf
q ∈R(q2)

‖q1 − q‖2 , (3.9)

illustrating that the minimiser need not be unique. In this case elements of M must

be equal to 3 in the inner disc of radius 1/4, zero outside the disc of radius 3/4, and

rearrangements in the annulus where the radius varies between 1/4 and 3/4.
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3.2 The well posedness of the Closest Rearrangements prob-

lem.

The closest rearrangements problem gives rise to two questions;

(1) Do maximisers exist such that (3.3) is satisfied?

(2) If maximisers exist, are they unique?

For the displacement error we “minimise the kinetic energy of moving all best fits”. To

do this we must all the best fits are. For our error score to be defined it was essential

that (3.3) attained its bound; this is the content of this section. When maximisers exist

they need not be unique; we illustrate the necessary and sufficient conditions which give

us a unique maximiser. We repeat the arguments of Burton [17] for completeness.

Theorem 3.2.1. Let q1, q2: Ω→R be non-negative square integrable functions, where

Ω⊂R
n is bounded. Then

(i) there exists q̂ ∈R(q2) such that q̂ attains supq∈R(q2)

∫
Ωqq1 dµ.

(ii) q̂ is the unique maximiser of
∫
Ωqq1 dµ over q∈R(q2) if and only if

q̂= ϕ ◦ q1 for some increasing function ϕ.

Proof: (i) We repeat a standard argument from the literature (see, for example,

Alvino, Trombetti and Lions [1]). Ryff [65] showed that there exists a measure-

preserving mapping s : Ω→[0, λn(Ω)] such that q1 = q∗1 ◦ s, where q∗1 is the in-

creasing rearrangement of q1. For q ∈R (q2)
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∫

Ω
qq1dλn ≤

∫ λn(Ω)

0
q∗2q

∗
1dµ (3.10)

=

∫

Ω
(q∗2◦s) (q∗1◦s) dµ, (3.11)

=

∫

Ω
(q∗2◦s) q1dµ.

By way of explanation equation (2.20) gives us (3.10). From the definition of a

measure-preserving mapping the value of the integral is preserved (see (2.23)); we

have (3.11). Moreover, q∗2 ◦ s∈R (q2). Therefore, q̂ = q∗2 ◦ s is one maximiser for

supq∈R(q2)

∫
Ωqq1 but this need not be the only maximiser.

(ii) From part (i) we have that q̂ attains supq∈R(q2)

∫
Ωqq1dλ2 if and only if

∫

Ω
q1q̂dµ =

∫ λn(Ω)

0
q∗1q

∗
2dλ1. (3.12)

From Theorem 2.7.3 we have that if q̂ = ϕ◦ q1 ∈R(q2) then q̂ is the unique element

of R(q2) where equality holds in (3.12). The only if condition is a result of work by

Burton [17, Theorem 5]. This states that if q̂ is a unique element where equality

holds in (3.12) then there is an increasing function ϕ such that q̂ = ϕ ◦ q1 almost

everywhere. This completes the proof.
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3.3 When are the maximisers unique?

The necessary and sufficient conditions required for a unique maximiser in Theorem 3.2.1

is a difficult condition to verify. We establish a sufficient (but not necessary) condition

for the maximiser to be unique. It is a special case of Nealers Theorem. In this section

and for the remainder of the chapter we will answer question as to when maximisers are

unique. We begin by illustrating the definition of the level set in figure (3.2); the level

set is section circled in red which would give us a level set of positive measure.

1

2

1
4

3
4

q1

L(1)

Figure 3.2: The definition of a level set for q1 = q1 (x) as defined in equation (3.14)

Given the importance of this notion we consider when there are no level sets having

positive measure of q1.
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Proposition 2. Let q1 and q2 be defined as in Nealers Theorem. Suppose q1 has no

level sets having positive measure. Then there exists an increasing function, ϕ, such

that:

ϕ◦q1 ∈R(q2). (3.13)

Moreover, ϕ ◦ q1 is the unique maximiser of
∫
Ωqq1 dµ over q ∈R (q1).

Proof: From the proof of Theorem 3.2.1 we have that (2.19) is achieved by q̂ = q∗2 ◦ s.

Also, q1 has a polar factorisation q1 = q∗1◦s. As there are no level sets of q∗1, q
∗
1 has no

intervals of constancy and is increasing, therefore it is injective. We note that q1 and q∗1

are rearrangements; we can delete a set of zero measure from Ω and assume the range

of q1 lies in the range of q∗1. Given q1 = q∗1 ◦ s we have s = (q∗1)
−1 ◦ q1.

q̂ = q∗2◦ (q∗1)
−1 ◦q1 where ϕ = q∗2◦ (q∗1)

−1 .

For q̂ we have an increasing function composed with the inverse of an increasing function

composed with q1. The inverse of an increasing function is also increasing; therefore ϕ

is an increasing function. From Theorem 3.2.1 (ii) we have a unique minimiser and this

completes the proof.

3.3.1 Example.

We illustrate what is being described in Nealers Theorem with the following example.

Consider the following functions
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q1(x) =





4x, for 0≤x≤1
4

1, for 1
4≤x≤3

4

4x − 2, for 3
4≤x≤1.

(3.14)

q2(x) = 2x (3.15)
q2(x) =





2x, for 0≤x≤1
4

2 (1 − x) , for 1
4≤x≤3

4

2x for3
4≤x≤1,

(3.16)

where (3.15) and (3.16) are illustrated below. Now, q2 and q2 are maximisers of
∫ 1
0 q1q

over q ∈R (q2).

 

1
4

3
4

q1

q2

2

1

(a)

 

1
4

3
4

q1

q2

2

1

(b)

Figure 3.3: An illustration of (a) q2, (b) q2, maximisers of
∫
q1q over q ∈R (q2). See

definitions (3.14),(3.15) and (3.16)

(3.14) has a level set of positive measure between 1
4 ≤x≤ 3

4 ; this is illustrated in fig-

ure (3.3). Nealers Theorem states that the maximisers, (3.15) and (3.16), are equal on

[0 , 1/4]
⋃

[3/4 , 1] and maximisers (3.15) and (3.16) are rearrangements on [1/4 , 3/4].
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However, on the level set of q1 of positive measure there can be infinitely many max-

imisers all belonging to the set of rearrangements of q1. From the above we can note

the following

∫ 3
4

1
4

1 · q∗2 dx =

∫ 3
4

1
4

1 ·h dx for any h∈R
(
q2|[ 1

4
, 3
4 ]

)
. (3.17)

3.4 Preliminaries to Nealers Theorem.

3.4.1 A layer-cake principle.

Following the methods of Burton [17, Proof of Theorem 1] and the use of the layer-cake

principle in Lieb and Loss [56] we consider (3.3) in a different form. Firstly, we define

for s∈ [ 0 , ∞)

Z (s) = {x∈Ω : q1(x)≥ s} . (3.18)

Moreover, we define σ by σ (s) = µ (Z (s)). Now:

∫ µ(Ω)

0
q∆2 q

∆
1 dλ1 (x) −

∫

Ω
qq1 dµ (x)

=

∫ ∞

0

(∫ σ(s)

0
q∆2 (x) dλ1(x) −

∫

Z(s)
q (x) dµ(x)

)
dλ1 (s) (3.19)

=

∫ ∞

0
Gq (s) dλ1 (s) , (3.20)

where Gq (s) =
∫ σ(s)
0 q∆2 (x) dλ1 (x) −

∫
Z(s)q (x) dµ (x). We note that we get (3.19)
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from the methods of Lemma 2.5.1. The first integral of Gq (s) is:

s→
∫ σ(s)

0
q∆2 (x) dλ1 (x) . (3.21)

The question of whether (3.21) is continuous can be broken into whether the following

two mappings are continuous

1. s→σ(s)

2. t→
∫ t
0q

∆
2 (x) dλ1(x).

If we can prove that both the above mappings are continuous we can deduce that

the composition is continuous [52]. Lemma 3 proves when the mapping s→σ(s) is

continuous.

Lemma 3. Let q1 be defined as in Nealers Theorem and Z(s) as before. We define

σ(s) : [ 0 , ∞ ) →R by σ(s) = µ (Z (s)).

Then σ is non-increasing (decreasing), upper semi continuous and continuous except at

those s corresponding to level sets of q1 having positive measure.

Preamble to proof of Lemma 3. To map s to σ(s) we build up our graph by

considering the size of Z (s) for each s. As an example we consider s = 0 and suppose

(Ω , µ) is ([0 , 1] , λ1). Now, σ(0) = µ{x∈Ω : q1(x)≥0} = λ1 ([0 , 1]), so σ (0) = 1.

The set for which q1(x)≥ 0 is the whole of the domain; as s increases µ (σ (s)) will

decrease. Therefore, σ(s) is a decreasing function. For a q1 that doesn’t have a level set

of positive measure our σ(s) is a continuous function. Even with jumps σ(s) is upper

semi continuous and is continuous apart from the finite jumps. But, the continuity of
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σ(s) fails when there are level sets of q1 of positive measure. This is illustrated with the

following example:

0

1

1

q1 = q1(x)

x

α

(a)

0

1

1

σ = σ(s)

s
α

(b)

Figure 3.4: An illustration of (a) an example of q1 (b) σ derived from q1; equation (3.14)

We consider figure 3.4(b) and where the continuity of σ (s) fails. We note that σ (s) is

left continuous, but the continuity of σ (s) fails when we consider the continuity from the

right. Definitions 2.4.1 and 2.4.2, which follow, generalises this idea of one sidedness. We

note for σ = σ (s) as shown in figure 3.4(b) that the function is upper semi continuous,

but not lower semi continuous.

We finish this preamble by considering a simple example to illustrate the more formal

proof later. So, what we are trying to show is σ (α) ≥ lim supn→∞ σ (αn) for every

sequence αn→α. We illustrate this by considering two sequences
(
α − 1

n

)
and

(
α + 1

n

)
,

one tending to α from the left and the other tending to α from the right.

⋂

n∈N

{
x : q1(x)≥α − 1

n

}
= {x : q1(x)≥α} , (3.22)

which implies from the nested interval theorem that
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µ

(⋂

n∈N

{
x : q1(x)≥α − 1

n

})
= lim

n→∞
µ

({
x : q1(x)≥α − 1

n

})
, (3.23)

= µ ({x : q1(x)≥α}) .

Similarly,

⋃

n∈N

{
x : q1(x)≥α +

1

n

}
= {x : q1(x)>α} , (3.24)

which implies that

µ

(⋃

n∈N

{
x : q1(x)≥α +

1

n

})
= lim

n→∞
µ

({
x : q1(x)≥α +

1

n

})
, (3.25)

= µ ({x : q1(x)>α}) .

Given that the problems occur around the level set we consider the functions as they

tend to the level set from above and below. From equation (3.23) we have

σ

(
α − 1

n

)
→σ(α) as n→∞. (3.26)

From equation (3.24) we have
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σ

(
α +

1

n

)
→σ(α) − |{x : q1(x) = α}| . (3.27)

For this specific example we have that the upper semi continuity condition is satisfied

from equation (3.26). However, as we alluded to previously the definition of lower semi

continuity is dependent on whether q1 has a level set of positive measure or not. If

|{x : q1(x) = α}| = 0 then the lower semi continuity definition is satisfied and the

mapping is continuous as required for the proof of the lemma. One final point to note

is that for the argument which follows we split the sequence (αn)n∈ I into three parts:

1. one tending towards α from the left,

2. one of constant α’s,

3. one tending to α from the right.

If either or both of the subsequences described by (1) and (3) have infinite cardinality,

we can pass to monotonic subsequences. We can then obtain analogous results to (3.26)

and (3.27).

Proof of Lemma 3: Given the definition of σ(s) we have that q1(x) is fixed and de-

creasing, hence it is immediate that σ is non-increasing. Fix α≥ 0. Let (αn) be a

sequence such that αn→α as n→∞. We consider what happens around α, therefore

we split the sequences into three subsequences and define

I1 = {n : αn<α} , I2 = {n : αn =α} , I3 = {n : αn>α} . (3.28)
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Given that n→∞ at least one of I1, I2 and I3 must have infinite cardinality1. Trivially,

for the index set I2 as αn = α it is again immediate that σ(αn)→σ(α); we concentrate

on the index sets I1 and I3.

Given the definition of convergence and that we have already supposed that αn→α;

if either or both of I1 and I3 have infinite cardinality we can extract a monotone sub-

sequence from (αn)n∈I1
(
and/or (αn)n∈I3

)
converging to α. Writing I4 and I5 for the

new index sets let:

I4 = (nk)
∞
k=1 , I5 = (mk)

∞
k=1 . (3.29)

We have

∞⋂

k=1

{x : q1 ≥αnk
} = {x : q1(x)≥α} , (3.30)

and

∞⋃

r=1

{x : q1 ≥αmk
} = {x : q1(x)>α} , (3.31)

= {x : q1(x)≥α} \ {x : q1(x) = α} . (3.32)

The left hand side of equation (3.30) is an intersection of decreasing sets, and the left

hand side of equation (3.31) is a union of increasing sets. For a decreasing sequence En

1where cardinality is the number of elements in the set.
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of measurable we have the following

µ
(⋂

En

)
= lim

n→∞
µ (En) . (3.33)

Furthermore, for an increasing sequence of measurable sets En we have the following

µ
(⋃

En

)
= lim

n→∞
µ (En) . (3.34)

Using equations (3.30) and (3.33) we have that

σ (αnk
) →σ (α) as k→∞, (3.35)

and furthermore using equations (3.31) and (3.34) we have that

σ (αmk
) →σ (α) − µ ({x : q1(x) = α}) as r→∞. (3.36)

We deduce from equation (3.35) that

σ(α)≥ lim sup
n→∞

σ(αn), (3.37)

and conclude that σ is upper semi continuous.
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If µ ({x : q1(x) = α}) = 0 then σ(αmk
)→σ(α) as r→∞. Therefore, the lower semi

continuity depends on whether q1 contains level sets having positive measure. Combining

the above it follows that σ is continuous when there are no level sets of q1 having positive

measure. This completes the proof.

The first integral in the definition of Gq is a composition of functions; we have examined

the continuity of σ in Lemma 3 and Proposition 4 shows when t→
∫ t
0q

∆
2 (x) dλ1(x) is

continuous.

Proposition 4. Let q2 be defined as before. If we define H(t) : [0 , ∞)→R by

H(t) =

∫ t

0
q∆2 , (3.38)

then H is continuous.

Proof of Proposition 4: Applying the Cauchy-Schwarz inequality for s< t

|H(t) − H(s)| =

∣∣∣∣
∫ t

s
q∆2

∣∣∣∣ ≤
∥∥1(s , t)

∥∥
2

∥∥q∆2
∥∥

2
= (t − s)

1
2 . ‖q2‖2 , (3.39)

where 1(s , t) denotes the characteristic function of the interval (s , t). We note that

∥∥1(s , t)

∥∥
2
→ 0 as s→ t and

∥∥q∆2
∥∥

2
is a constant and this yields that the mapping is

continuous.
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3.4.2 Properties of Gq.

We have made use of Lemma 3 and Proposition 4 to illustrate when (3.21) is continuous.

We note that µ (Z (s)) = σ (s), therefore when we establish the properties of σ we can

apply similar arguments to the second integral of Gq (s). Combining these results we’ve

shown when Gq is continuous. Lemma 5 establishes when we have a maximiser, utilising

Lemma 3 and Proposition 4 in the proof.

Lemma 5. Let q1 , q2 and M be defined as before. Suppose that q ∈R (q2). We define

Gq (s) : [ 0 , ∞ ) → R by

Gq (s) =

∫ σ(s)

0
q∆2 (x) dλ1 (x) −

∫

Z(s)
q (x) dµ (x) , (3.40)

where σ (s) and Z (s) are as defined in Lemma 3. Then Gq (s) ≥ 0 for every s∈ [ 0 , ∞ )

G−1
q (0 , ∞) is measurable and q ∈M if and only if λ1

(
G−1
q (0 , ∞)

)
= 0. Moreover,

Gq is continuous at each s where σ is continuous.

Preamble to proof of Lemma 5. Using the methods of Burton [17, Theorem 2] we

will demonstrate that q ∈M if and only if
∫∞
0 Gq (s) ds = 0. From Burton [17, Lemma

2] we have that Gq (s) ≥ 0 for each s. To complete the proof we show:

1. if λ1

(
G−1
q (0 , ∞)

)
= 0 then q ∈M

2. if λ1

(
G−1
q (0 , ∞)

)
> 0 then q /∈M

We use the nested interval theorem to show that if λ1

(
G−1
q (0 , ∞)

)
> 0 then

∫
Gq (s) >

0 and then show that q /∈M. To this end we select a decreasing sequence which tends

towards zero, but never reaches zero. The obvious choice is 1
n . Now,
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{s : Gq (s) > 0} =
⋃

n∈N

{
s : Gq (s) >

1

n

}
. (3.41)

Equation (3.41) follows because if Gq (s) > 0 for some s then Gq (s) > 1/n if we choose

n∈N sufficiently large. We make use of the nested interval theorem to yield

λ1

(⋃

n∈N

{s : Gq (s) > 0}
)

= λ1

(⋃

n∈N

{
s : Gq (s) >

1

n

})
, (3.42)

= lim
n→∞

λ1

({
s : Gq (s) >

1

n

})
. (3.43)

It follows that λ1 ({s : Gq (s) > 1/n}) > 0 for some n∈N; define β = λ1

({
s : Gq (s) > 1

n

})
.

This leads us to the following calculation

∫ ∞

0
Gq (s) ds≥β · 1

n
> 0.

Therefore, we can conclude that λ1

(
G−1
q (0 , ∞)

)
> 0, then q /∈M. We finish the pream-

ble by considering the mapping:

s→
∫

Z(s)
q (x) dµ (x) , (3.44)

which we will show is continuous except at those s corresponding to a level set of positive

measure of q1. It is also monotone decreasing and hence we deduce, from work which
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will follow, that it is measurable. Combining with Lemma 3 and Proposition 4 this

verifies our claims about Gq.

Proof of Lemma 5: The methods of Burton [17, Lemma 2] yield that Gq (s) ≥ 0 for

every s. The first integral of Gq is the composition of an upper semi continuous mapping

(see Lemma 3) with a continuous mapping (see Proposition 4). Moreover σ is continuous

except at those s corresponding to level sets of q1 having positive measure. It follows

that s,→
∫ σ(s)

q∆2 (x) dλ1 (x) is continuous except at those s corresponding to level sets

of q1 having positive measure.

The methods of Lieb and Loss [56] show that upper semi continuous function are Borel

measurable functions. It follows immediately that continuous functions are Borel mea-

surable. We deduce that s→
∫ σ(s)
0 q∆2 (x) dλ1 (x) is the composite of Borel measurable

functions therefore measurable.

Noting that σ (s) = µ (Z (s)) we look to prove that (3.44) is continuous except at

those s corresponding to a level set of positive measure of q1. We consider the following

if sn→ s, where µ {x : q1 (x) = s} = 0.

∫

Z(sn)
q (x) dµ (x) −

∫

Z(s)
q (x) dµ (x) ,

=

∫

Z(sn) \Z(s)
q (x) dµ (x) −

∫

Z(s) \Z(sn)
q (x) dµ (x) . (3.45)

We have that µ (Z (sn) \Z (s)) → 0 as sn→ s. Now, the Dominated Convergence The-

orem yields that s→
∫
Z(s) q is continuous at points of continuity of σ. The mapping is

monotone decreasing. The inverse image of [ α , ∞ ), some α∈R, will be an interval

which is a Borel set whence the mapping is measurable. Now, from the definition of Gq
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we have the sum of two integrals, both of which are measurable and continuous at each

s where σ is continuous; therefore, we can deduce that Gq is continuous at each s where

σ is continuous and measurable. In particular G−1
q (0 , ∞) is a measurable set.

Write Q = {(x , s) : 0≤ s≤ q1(x)} and let 1Q denote the characteristic function of Q.

Using the methods of Burton [17, Theorem 2] we have that:

∫

Ω
qq1 dµ =

∫

Ω

∫ q1(x)

0
q(x) dλ1(s) dµ(x), (3.46)

=

∫

Ω

∫ ∞

0
q (x) 1Q(x , s) dλ1(s) dµ(x), (3.47)

=

∫ ∞

0

∫

Ω
1Q(x , s)q (x) dµ(x) dλ1(s), (3.48)

=

∫ ∞

0

∫

Z(s)
q (x) dµ(x) dλ1(s), (3.49)

≤
∫ ∞

0

∫ σ(s)

0
q∆2 dλ1 (x) dλ1 (s) , (3.50)

=

∫ µ(Ω)

0
q∆1 (x) q∆2 (x) dλ1 (x) . (3.51)

By way of explanation equation (3.48) follows by Fubini’s theorem and equation (3.49)

by noting that for fixed s≥ 0:

{
x : q∆1 (x)≥ s

}
= [0 , σ(s)] .

Equation (3.50) holds by Burton [17, Lemma 2]. To obtain equation (3.51) we reverse the

process of equations (3.46)-(3.49). Noting (3.49) (and an analogous result for
∫
q∆1 q

∆
2 )

we have
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∫ ∞

0
Gq (s) dλ1 (s) =

∫ µ(Ω)

0
q∆1 (x) q∆2 (x) dλ1 (x) −

∫

Ω
q (x) q1 (x) dµ (x) . (3.52)

From the proof of Theorem 3.2.1 we have that q ∈M if and only if
∫∞
0 Gq = 0. Given

Burton’s result [17, Lemma 2] which states that Gq (s) ≥ 0 for each s, therefore it follows

that q ∈M if and only if λ1

(
G−1
q (0 , ∞)

)
= 0. To conclude the proof we consider what

happens when

λ1

(
G−1
q (0 , ∞)

)
> 0 given that Gq ≥ 0. From the methods discussed in the preamble

there must exist some β > 0 such that λ1

(
G−1
q [ β , ∞ )

)
> 0. For this we get the fol-

lowing

∫ ∞

0
Gq (s) dλ1 (s) >λ1

(
G−1
q [ β , ∞ )

)
. β > 0, (3.53)

thus when λ1

(
G−1
q (0 , ∞)

)
> 0 we have that q /∈M. This finishes the proof.

3.5 Characterisation of M.

Before moving onto the proof of Nealers Theorem we formalise (⋆) introduced earlier in

the chapter.
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Definition 3.5.1. Given q̂∈M we can say that q ∈R (q2) satisfies (⋆) if

(⋆) =





q = q̂ on Ω\L,

(q|Lα
)∈R (q̂|Lα

) .

(3.54)

In order to prove Nealers Theorem we split the proof into two parts.

1. If a function satisfies (⋆) does it belong to M?

2. Are all elements of M maximisers of the form (⋆)?

Proposition 6 deals with the proof of the former case.

Proposition 6. Let q1 , q2 , M , L and Ln for n∈ I be as in the statement of Nealers

Theorem. Let q̂ ∈M. Suppose that for q ∈R (q2) satisfies q = q̂ on Ω \L and that

q |Ln
∈R

(
q̂ |Ln

)
for every n∈ I. Then q∈M.

Proof of Proposition 6: Let q̂∈M. Suppose that q∈R(q2) satisfies q = q̂ on Ω\L

and q|Lα
∈R(q̂|Lα

) for every α∈I. Then

∫

Ω
qq1 =

∫

Ω\L
qq1 +

∫

L
qq1, (3.55)

=

∫

Ω\L
q̂q1 +

∑

α∈I

∫

Lα

lαq, (3.56)

=

∫

Ω\L
q̂q1 +

∑

α∈I

∫

Lα

lαq̂, (3.57)

=

∫

Ω
q̂q1. (3.58)

We split the integral into the parts where there are level sets of q1 having positive measure

and where there are no level sets of q1 having positive measure then use definition 3.5.1.
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On Ω \L we have q = q̂ to give the first integral in (3.56). On Lα we have q1 = Lα

gives us the second integral in (3.56). q̂ |Lα
and q |Lα

are rearrangements and thus have

the same L1-norm and this gives us the second integral in (3.57). We use definition 3.5.1

to get (3.58) and this completes the proof.

We conclude the chapter with the proof of Nealers Theorem.

Preamble to proof of Nealers Theorem. In this proof we prove that elements of

M are of the form of (⋆). We split this proof up further by considering the cases:

1. there is exactly one level set of q∆1 having positive measure.

2. there are countably many level sets of q∆1 having positive measure.

Therefore, we look to prove the result for only one level set having positive measure be-

fore generalising to countably many level sets having positive measure doing so through

proof by induction. We illustrate our problem below:

l1

l2

l3

q∆1

U1 L1 U2 L2 U3 L3 Û

x

Figure 3.5: A function q∆1 with three level sets having positive measure.

We introduce some notation for the “non-level sets” of q1, i.e. those elements of the

domain corresponding to values of q1 between two level sets having positive measure of

q1.
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U1 = {x : q1(x) > l1} , (3.59)

Un = {x : ln < q1(x) < ln−1} for n∈N , n≥2, (3.60)

Û = Ω \
(⋃

n∈ I
Ln
⋃ ⋃

n∈ I
Un

)
. (3.61)

We note that some of these sets may have zero size; and possibly may be empty.

The formal definition of the mathematical induction problem is as follows:

Induction Problem. Let P(n) be the statement that for some n∈ I

1. q = q̂ on U1 , · · · , Un.

2. (q|Li
)∈R(q̂|Li

) for i = 1 , · · · , n.

The rest of this proof will go as follows. We will prove P (1); then we demonstrate

P (n + 1) given that P (n) holds; we will use the methods we used to prove P (1) to

prove P (n + 1). From this we will generalise the result via mathematical induction for

every n∈ I. Finally, we will need to demonstrate that q = q̂ on Û to finish the proof.

One point to note that if Û or Un for any n∈ I has zero size then it is immediate that

q̂ = q(almost everywhere) on that set. In the arguments that follow we will assume

that these sets have positive size.

In the latter parts of the proof of Nealers Theorem we make extensive use of the def-

inition of the decreasing rearrangements. The definition of the monotone rearrangement

and Lemma 2.5.1(Burton [17, Lemma 2]) gives us the following equation:
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∫

U1

(q − α)+ ≤
∫

U∆
1

(
q∆2 − α

)
+

for each α> 0. (3.62)

We look to prove equality in (3.62) and hence show that q∆2 |U∆
1

and q |U1
are rearrange-

ments from definition 1.4.1 (When stating q∆2 |U∆
1

and q |U1
are rearrangements we mean

q∆2 |U∆
1

◦T and q |U1
are rearrangements, where T : U1 →U∆

1 is a measure-preserving

transformation.). Unfortunately, we are unable to prove this directly. However, we are

able to show that
∫
U1
q =

∫
U∆

1
q∆2 and noting (3.62) we deduce q belongs to the closed

convex hull of q∆2 |U∆
1

◦T . Similar statements apply to q̂ and we can show that both q

and q̂ are maximisers of
∫
U1
fq1 relative to the closed convex hull of q∆2 |U∆

1
◦T . As q1 |U1

has no level sets having positive measure a result of Burton yields that the maximiser

is unique, so q = q̂ on U1. Having achieved this result we can deduce that (3.62) holds

with U1 replaced with L1 , U
∆
1 with L∆

1 . To prove that q∆2 |L∆
1

and q |L1
are rearrange-

ments we show equality for each α> 0. We illustrate a key step in our methods with

the following figure:

a b

q∆2

q
α̂

Figure 3.6: An illustration of q∆2 and q for α = α̂ on the set L∆
1 .

Let L∆
1 = [a , b] and write α̂ = q∆2 (b). We are considering the area under the graph
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of the function q∆2 and looking to express the area in terms of (3.62). We have the

following

∫

L∆
1

q∆2 =

∫

L∆
1

(
q∆2 − α̂

)
+

+ α̂ (b − a) . (3.63)

The integral on the right hand side is the area between the line y = α̂ (shown in green

in figure 3.6) and the graph of q∆2 . The second half of the right hand side is rectangular

area. For simplicity suppose L1 = [a , b] and q is as shown in figure 3.6. Now,

∫

L1

(q − α̂)+ + α̂ (b − a) ≥
∫

L1

q, (3.64)

as the value of the right hand side of the inequality does not include the area of the shaded

triangle. Now, if
∫
L∆

1

(
q∆2 − α̂

)
+
>
∫
L1

(q − α)+ then
∫
L∆

1
q∆2 >

∫
L1
q which contradicts

∫
L∆

1
q∆2 =

∫
L1

. This argument is valid for α≤ α̂ and a different approach deals with

α> α̂.

Proof of Nealers Theorem: Let M be as defined in Definition 3.1.1, and let L, Ln

be as described in the notation at the beginning of chapter 3. Suppose that q ∈R (q2)

satisfies q = q̂ on Ω \L, and that q |Ln
∈R

(
q̂ |Ln

)
for every n∈ I. Then Proposition 6

yields that q ∈M.

From the proof of Theorem 3.2.1 we have that
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∫ µ(Ω)

0
q∆1 q∆2 =

∫

Ω
q1q̂, (3.65)

For the converse, suppose q ∈M. Let U1, Un, Û be defined as in (3.59), (3.60) and

(3.61); let P (n) be the statement of the Induction Problem.

We begin by establishing P(1). P(1) is defined as follows:

1. q = q̂ on U1.

2. (q|L1
)∈R(q̂|L1

)

We define sets L∆
n , L∆, U∆

n , Û∆ on [0 , µ (Ω)] by replacing q1 with q∆1 in the definition

of Ln, L, Un and Û respectively. We show q = q̂ on U1. On U1, q1 has no level sets of

positive measure and from Lemma 3 σ(s) is continuous on (l1 , ∞). Furthermore, from

Lemma 5 the continuity of σ(s) implies that Gq (s) is continuous on (l1 , ∞) also. It

must now be the case, given that Gq (s) is continuous, that Gq (s) = 0 otherwise we

would be contradicting λ1

(
G−1
q (0 , ∞)

)
= 0; we show why this is the case. If G (ŝ) > 0

for ŝ∈ (l1 , ∞) then given the continuity of Gq (s) on (l1 , ∞) we have that Gq (s) > 0

for s∈ (ŝ − ǫ , ŝ + ǫ) for ǫ> 0. We conclude that q /∈M for G(s)> 0 by Lemma 5 and

this illustrates why Gq (s) = 0 for s∈ (l1 , ∞).

Now, for s> l1 we have the following

∫ ∞

s
Gq (s) dλ1 (s) = 0 (3.66)

We consider the first integral of
∫∞
s Gq (s) dλ1 (s), i.e.

∫ σ(s)
0 q∆2 (x) q∆1 (x) dλ1 (x). We
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note that λ1

(
U∆

1 \ [0 , σ (s)]
)
→ 0 as s→ l1 +. Using this and the Dominated Conver-

gence Theorem we deduce that

∫ σ(s)

0
q∆2 (x) q∆1 (x) dλ1 (x) →

∫

U∆
1

q∆2 (x) q∆1 (x) dλ1 (x) . (3.67)

Similarly, for the second integral of Gq (s) we note that µ (U1 \Z (s)) → 0 as s→ l1 +

then we make further use of the Dominated Convergence Theorem to yield

∫

Z(s)
q (x) q1 (x) dµ (x) →

∫

U1

q (x) q1 (x) dµ (x) . (3.68)

Using (3.67) and (3.68) the definition of Gq, and (3.66), gives us the following

∫

U∆
1

q∆2 q∆1 −
∫

U1

q q1 = 0. (3.69)

Considering Gq (s) = 0 for s> l1 similar arguments to the above give us

∫

U∆
1

q∆2 −
∫

U1

q = 0. (3.70)

Using the definition of the decreasing rearrangement, and Lemma 2.5.1 yields (3.62).

From equations (3.70) and (3.62) we have that our maximiser is an element of the

following set, which is the closed convex hull of a set of rearrangements. To this end we
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have:

q ∈
{
f ≥ 0 :

∫

U1

(f − α)+ ≤
∫

U∆
1

(
q∆2 − α

)
+

for each α> 0,

∫

U1

f =

∫

U∆
1

q∆2

}
.(3.71)

Let T : U1 →U∆
1 be a measure-preserving transformation. Now, from the characteri-

sation of the closed convex hull of the set of rearrangements by Douglas [29, Theorem

2.1] we have that q ∈ conv
(
R
(
q∆2 |U∆

1
◦T
))

. Therefore, from equation (3.69) q is a

maximiser of
∫
U1
fq1 relative to conv

(
R
(
q∆2 |U∆

1
◦T
))

. Moreover, so is q̂. Given that

q ∈ conv
(
R
(
q∆2 |U1

◦T
))

and from the methods of Burton [17, Theorem3] there is a

unique maximiser over conv
(
R
(
q∆2 |U1

◦T
))

, whence q = q̂ on U1. We’ve proven the

first half of P (1), we move onto the second half of P (1).

We already know the following:

∫ ∞

l1

Gq (s) dλ1 (s) =

∫

U∆
1

⋃
L∆

1

q∆2 q∆1 −
∫

U1

⋃
L1

q q1 = 0. (3.72)

Given the equality on U1 between q and q∆2 on U1 equation (3.72) reduces to the following

∫

L∆
1

q∆2 q∆1 =

∫

L1

q q1. (3.73)

From the definitions of L1 and L∆
1 , we have that on the level set the following holds:
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l1

∫

L∆
1

q∆2 = l1

∫

L1

q. (3.74)

We have two options, either
∫
L∆

1
q∆2 =

∫
L1
q or we have that l1 = 0. If l1 = 0 then

Ω = U1
⋃
L1. Now, q ∈R (q2) and we have that q |U1

= q̂ |U1
so q |L1

∈R
(
q̂ |L1

)
. For

this special case this is Nealers Theorem.

Write α̂ = q∆2
(
λ1

(
U∆

1

⋃
L∆

1

))
. Let α∈ ( 0 , α̂ ]. Suppose for a contradiction that

∫

L∆
1

(
q∆2 − α

)
+
>

∫

L1

(q − α)+ , (3.75)

then we have:

∫

L∆
1

q∆2 =

∫

L∆
1

(
q∆2 − α

)
+

+ αλ1

(
L∆

1

)
, (3.76)

>

∫

L1

(q − α)+ + αµ (L1) , (3.77)

≥
∫

L1

q. (3.78)

Equation (3.76) comes by finding the area of the green function from figure 3.6. Inequal-

ity (3.77) comes as a result of equation (3.75). From equation (3.74), equation (3.78)

yields a contradiction, whence for α∈ [0 , α̂] we have equality in (3.62). We now look

to show the following inequality
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∫

L∆
1

(
q∆2 − α

)
+
>

∫

L1

(q − α)+ , (3.79)

for α≥ α̂. The methods of Douglas [29, Lemma 2.4] yield that the functions W1 , W2 :

[ 0 , ∞ ) →R defined by:

W1 (α) =

∫

L1

(q − α)+ , W2 (α) =

∫

L∆
1

(
q∆2 − α

)
+
, (3.80)

are convex and continuous on the interiors of their effective domains, namely (0 , ∞).

It follows that the set

Θ(α) = {α : W2 (α) >W1 (α)} , (3.81)

is open in (0 , ∞), whence it is a countable union of disjoint open intervals. Take

a (possibly unbounded) connected component of Θ, denoted (α0 , α1) where α1 may

be ∞. Now W1 (α0) = W2 (α0), and α0 ≥ α̂. Moreover W2 (α) >W1 (α) for every

α∈ (α0 , α1). If for every Borel set B⊂ (α0 , ∞) we have

µ ({x∈L1 : q (x) ∈B}) ≤λ1

({
x∈L∆

1 : q∆2 (x) ∈B
})
, (3.82)

then W2 (α) >W1 (α) for α∈ (α0 , α1) implies that W2 (α0) >W1 (α0). The point is
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that W
′

1 (α) = −λ1 ({x | q (x) >α}) for almost every α (and the same is true for W2,

so (3.82) would imply W
′

1 (α) ≥W
′

2 (α) if W1 (α0) ≥W2 (α0). This contradiction yields

a Borel set B⊂ (0 , ∞) such that

µ ({x∈L1 : q (x) ∈B}) >λ1

({
x∈L∆

1 : q∆2 (x) ∈B
})
. (3.83)

Now:

µ ({x∈Ω : q (x) ∈B}) ≥ µ
({
x∈U1

⋃
L1 : q (x) ∈B

})
(3.84)

> λ1

({
x∈U∆

1

⋃
L∆

1 : q∆2 (x) ∈B
})

(3.85)

= λ1

({
x∈ [0 , µ (Ω)] : q∆2 (x) ∈B

})
, (3.86)

which contradicts q ∈R (q2). By way of explanation, we note that the strict inequality

in (3.85) follows because q |U1
and q∆2 |U∆

1
are rearrangements and (3.83) holds, and the

equality in (3.86) follows because:

λ1

({
x∈ [0 , µ (Ω)] \

(
U∆

1

⋃
L∆

1

)
: q∆2 (x) > α̂

})
= 0. (3.87)

It follows that the set Θ is empty, that is (3.62) holds with equality for each α> 0. We

deduce that q |L1
and q∆2 |L∆

1
are rearrangements. Similar statements are true for q̂, so

q |L1
∈R

(
q̂ |L1

)
, verifying P (1)(ii). Combining the above, P (1) holds.

Having proved the first inductive step we move onto the main inductive hypothesis.
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So, we assume that P(n) holds for n∈ I; we look to prove that P(n + 1) holds. Writing

Y =
⋃n
i=1 (Ui

⋃
Li), P (n) implies that q |Ω \Y ∈R

(
q̂ |Ω \Y

)
and q̂, q restricted to

Ω \Y are maximisers of
∫
Ω \Y fq1 relative to f ∈R

(
q̂ |Ω \Y

)
. P (n + 1) holds from

arguments used in the first inductive step. It follows by induction that P (n) holds

for every n∈ I. Finally, noting that q̂, q restricted to Û are both maximisers of
∫
Ûfq1

relative to f ∈R
(
q̂ |Û

)
and that q1 restricted to Û has no level sets of positive measure,

Theorem 3.2.1 and Proposition 2 yield that q = q̂ on Û . This completes the proof.



Chapter 4

Optimal Mass Transfer Problems.

4.1 Introduction.

We begin in section 4.2 by considering the methods which are integral to the concept of

optimal mass transfer. In section 4.2.1 we introduce the concept of allowable strategies

and transference plans, moving onto discuss admissible allowable strategies.

One of the major advances in optimal mass transfer theory is that of the Monge-

Kantorovich problem; this is the content of section 4.3. The ‘ problem is a linear

minimisation with convex constraints (or maximisation if you consider the dual problem)

ensuring Kantorovich addressed the issues of Monge’s problem. We define the Monge-

Kantorovich problem formally before stating which properties yield optimal solutions to

the Monge-Kantorovich problem.

One of the major advantages of the Monge-Kantorovich problem is the duality as-

sociated with the problem. In section 4.4 we discuss the dual formulation and define it

formally. We demonstrate some of the advantages of both the relaxed methods and the

dual comparatively to the original problem of Monge. Furthermore, we note methods

97
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that have been used to solve the dual problem. We conclude section 4.4 by defining

the notions of c-transforms, c-cyclically monotone and conjugate convex functions. The

chapter is brought to a close by considering the results which exist for the various cost

functions in section 4.5.

4.2 Methods of Optimal Mass Transfer.

We recall that the Monge problem is how to transfer mass from a set U to a set V

of equal size, minimising cost. Let (U , µ) and (V , ν) be finite measure spaces with

µ (U) = ν (V ).

4.2.1 Allowable Strategies.

Allowable strategies is a size-preserving way of mapping elements U to elements V . We

write S for the set of allowable strategies. Equivalently, we can say that S is the set of

measure-preserving mappings from U to V .

If we denote the transference plans by π this is a probability measure on the product

space U×V . π measures how much of the mass has been transferred from location x to

location y. Allowable strategies can be though of as a particle being split up into several

possible destinations. Roughly speaking points are mapped to probability distributions.

We restrict to measures on U ×V that have µ and ν as their marginals, thus the following

is satisfied:
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π[X ×V ] = µ[X] π[U ×Y ] = ν[Y ], (4.1)

for all measurable subsets X of U and Y of V .

Definition 4.2.1. The set of all measure-preserving plans is given by

Π(µ, ν) = {π∈P (U×V ); (4.1) holds for all measurable X ⊂U, Y ⊂V }, (4.2)

where µ (U) = ν (V ) = 1.

N.B. Villani [71] states that the set is always nonempty as the tensor product µ⊗ν (A×B) =

µ (A) ν (B), where A⊂V , B⊂V lies in Π(µ, ν).

Ambrosio [2, Proposition 2.1] illustrates the difference between measure-preserving plans

and measure-preserving maps. This also provides insight into the form required to

show that solutions to the Monge-Kantorovich problem are also solutions to the Monge

problem. Knowing that the support of a measure is the smallest closed set with measure

equal to that of the whole space we illustrate the connection between measure-preserving

plans and maps.
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Proposition 4.2.2. Any Borel measure-preserving map s : (U , µ) → (V , ν) induces

a measure-preserving plan γs ∈Π(µ , ν) defined by

γs := (id× s)# µ. (4.3)

Conversely, a measure-preserving plan γ is induced by a measure-preserving map if γ is

concentrated on a measurable graph Γ.

Proof: Follow the methods of Ambrosio [2].

We illustrate what we mean in Proposition 4.2.2 via the example that follows. If we

consider a set [0 , 1] × [0 , 1], where λ1

∣∣
[0 , 1] are the marginals. Measure-preserving

mappings given by s : ([0 , 1] , λ1) → ([0 , 1] , λ1) generate measure-preserving plans

through (id× s)# λ1 = π., where (id× s (x)) = (x , s (x)). We can represent this

graphically in the following way:

Gr (s)

0

1

1

Figure 4.1: The graph of the function s1 = s1 (x)

In this case the support of π is a graph. Thus a measure-preserving mapping s generates

a measure-preserving plan (id× s)# λ1. We now consider an example which illustrates
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that a measure-preserving plan need not be of the form (id× s)# λ1.

support(γ)

0

1

1
1/2 weight

1/2 weight

Figure 4.2: A measure-preserving plan which is not supported on a graph.

It is apparent that this is not a graph of a function. For all values, apart from x = 1/2,

it is not possible to represent s1 (x) as a function of just one x. Whence a particle is

sent to x with probability 1/2 and to 1 − x with probability 1/2. We note that this s

is a measure-preserving plan, however, is not of the form (id× s1)# λ1.

Finally, for the work that follows we must consider the definition of c-concavity, where

c (x , y) is a given cost function.

Definition 4.2.3. A function ϕ : R
n→R∪{−∞} is c-concave if there exists some

function η : R
n→R∪{−∞} for which

ϕ(x) = inf
y∈Rn

c(x, y) − η(y). (4.4)

For the cost function c (x , y) = |x − y|2 /2 the c-concavity of ϕ is equivalent to the

concavity of ϕ (x) − |x|2 /2 or convexity of ψ (x) = |x|2 /2 − ϕ (x) and not to the

concavity of ϕ. We demonstrate this, showing that the Brenier map is a special case of
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what Gangbo and McCann proved for strictly convex cost functions. For the quadratic

cost function we have that ∇h = id, h (x) = |x|2 /2, and the map becomes s(x) =

∇ψ(x). From the c-concavity of ϕ we have that ψ becomes

ψ (x) = |x|2 /2 − ϕ(x) = |x|2 /2 − inf
y ∈Rn

(
|x − y|2 /2 − η (y)

)
(4.5)

= |x|2 /2 − inf
y ∈Rn

(
|x|2 /2 + |y|2 /2 − x · y − η (y)

)
(4.6)

= sup
y∈Rn

x · y + η(y) − |y|2
2
, (4.7)

For fixed y ∈R, x→x · y + η(y) − |y|2
2 is the sum of a continuous linear function and a

constant, thus an affine continuous function and 4.7 Ekeland and Témam [34, Proposi-

tion 3.1.] yields that |x|2 /2 − ϕ(x) is both convex and lower semi continuous. Thus the

potential ψ of the Brenier map has the required properties. We can think of c-concavity

as an adaption of the notion of convexity(or concavity) to the cost function c.

4.3 Monge-Kantorovich Problem.

We define the Monge-Kantorovich problem:

Definition 4.3.1. Let (U, µ) and (V, ν) be finite Borel measure spaces with µ(U) =

ν(V ). Let π∈P (U×V ), then π∈Π(µ, ν) if (4.1) is satisfied. The Monge-Kantorovich

optimal transfer problem is

inf
π∈Π(µ,ν)

∫

U×V
c(x, y) dπ(x, y)≡ inf

π∈Π(µ,ν)
I(π). (4.8)
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We note that if a solution to equation (4.8) is of the form (id× s)# µ, then s minimises

equation (1.13) and therefore we have a solution to the Monge problem. Further to

this, if the minimiser to the Monge-Kantorovich problem is unique and is of the form

(id× s)# µ then the minimiser for Monge’s problem is also unique.

Relaxation in this sense means that the infimum that Kantorovich’s problem encom-

passes a larger class of objects than the infimum from equation (1.13). If s : U→V is

a measure-preserving mapping and (id× s)# µ = π, we have:

∫

U×V
c(x , y) d(id×s)#µ =

∫

U
c(x , s(x)) dµ. (4.9)

Instead of minimising the cost functions over the set of push forward measures(or

measure-preserving mappings) we minimise over probability measures on U×V with

prescribed marginals µ and ν or measure-preserving plans. We can use the above infor-

mation to form an upper bound for the Monge problem, as follows:

min
π ∈Π

∫

U ×V
c(x , y) dπ(x , y)≤ inf

s∈S

∫

U
c (x , s(x)) dµ(x). (4.10)

We have the following result by Gangbo and McCann [39, Proposition 2.1] which justifies

the use of minimum in (4.10) for non-negative lower semi continuous c:

Proposition 4.3.2. If c (x , y) ≥ 0 is lower semi continuous on U ×V and measures

µ∈P (U) and ν ∈P (V ) then there is at least one optimal measure γ ∈P (U ×V ) with

marginals µ and ν.
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4.4 The duality of the Monge-Kantorovich Problem.

We define the Kantorovich duality problem:

Definition 4.4.1. Let φ∈L1(U, µ), ψ∈L1(V, ν). We define

J(ϕ,ψ) =

∫

U
ϕ dµ +

∫

V
ψ dν. (4.11)

Let Φc be the set of all measurable functions (ϕ,ψ)∈L1(U, µ)×L1(V, ν), where ϕ and ψ

are integrable pairs satisfying

ϕ(x) + ψ(y)≤ c(x, y), (4.12)

for µ almost every x∈U , ν almost every y∈V . Then, the Monge-Kantorovich dual

problem is

sup
(ϕ,ψ)∈Φc

J(ϕ,ψ). (4.13)

The importance of the dual problem to optimal mass transfer is that it gives us a simpler

way to find solutions. To this end we have the following duality theorem:
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Duality Theorem. c : U ×V →R+
⋃ {∞} be a lower semi continuous cost function.

Then, the duality theorem states that

inf
π ∈Π(µ , ν)

I [π] = sup
(ϕ ,ψ)∈Φc

J (ϕ , ψ) , (4.14)

where Φc is as defined in Definition 4.4.1.

Proof: See, for example, Villani [71, Section 1.1.7].

A key concept in the study of the dual problem is the c-transform of a function:

Definition 4.4.2. For ϕ : U→R
⋃ {−∞} we define the c-transform of ϕ by

ϕc (y) = inf
x∈U

c (x , y) − ϕ (x) . (4.15)

We can rearrange equation (4.15) to show the following

ϕ (x) + ϕc (y) ≤ c (x , y) , (4.16)

which we can see satisfies equation (4.12) and therefore we have that (ϕ , ϕc) ∈Φc which

provides us with information on how to solve the Monge-Kantorovich problem. More-

over, the functions ϕ and ϕc are known as c-conjugate. Furthermore, we have ψc = ψccc

from Villani [71] and ψcc = ψ if and only if ψ is c-concave. We note that ψc is c-concave

by its definition.
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If an optimal solution exists, we have for any c that: for (x , y) and (x′ , y′) from

c (x , y) + c
(
x′ , y′

)
≤ c
(
x , y′

)
+ c

(
x′ , y

)
, (4.17)

if this was not the case it would be more efficient to pair x with y′ and x′ with y and the

optimality would be compromised. For an optimiser, from Gangbo and McCann [39],

we use (4.17) to deduce c-cyclic monotonicity; as stated by Villani in [72] “a c-cyclically

monotone plan is a plan that cannot be improved” .

Definition 4.4.3. A subset Γ⊂U ×V is said to be c-cyclically monotone if, for any

N ∈N, and any family (x1 , y1) , . . . , (xN , yN ) of points in Γ, holds the following in-

equality

N∑

i=1

c (xi , yi) ≤
N∑

i= 1

c (xi , yi+ 1) . (4.18)

where yN + 1 = y1

To solve the dual problem we need to show that problem (4.13) has a solution in the form

of c-concave conjugate functions (ϕ , ψ), i.e. ϕc = ψ, with ψ c-concave. To then show

that the solution of the dual problem generalises to the original Monge-Kantorovich

problem we must show that a minimiser π is concentrated on the set

{(x , y) ∈U ×V : ϕ (x) + ψ (y) = c (x , y)} . (4.19)
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Villani notes [71] that for the quadratic cost the support of minimiser π is cyclically

monotone. We again call on Villani [71] to formalise the process of yielding a solution

for the dual Monge-Kantorovich problem. We introduce the following notation:

Definition 4.4.4. Φ̃ is the set of all pairs (ϕ , ψ) in L1 ( dµ) ×L1 ( dν) (with values in

R
⋃ {+∞}) such that all x, y,

x · y≤ϕ (x) + ψ (y) . (4.20)

We get (4.20) by unwrapping |x − y|2 /2 and by utilising (4.12) and (4.16). We use

definition 4.4.4 in illustrating how to solve the dual Monge-Kantorovich problem.

Theorem 4.4.5. Let µ , ν be two probability measures on R
n with finite second order

moments. Let Φ̃ be defined as in definition 4.4.4. Then there exists a pair (ϕ , ϕ∗) of

lower semi continuous proper conjugate convex functions on R
n, such that

inf
Φ̃
J = J (ϕ , ϕ∗) . (4.21)

Now the question is whether (4.19) (or (4.20) with equality) defines a graph? For the

quadratic cost the answer is yes.

4.5 Existence of results for specific cost functions.

The first result comes from Sudakov [67] who stated that for Monge’s original minimal

problem there was an optimal map which existed. It was apparent that the solution of
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the cost function would not be unique and while other researchers, such as Trudinger,

Wang, Evans and Gangbo [35; 70], used other methods to make Sudakov’s work [67]

more rigorous; there was a limit to what could be proved. Sudakov used probability

theory to prove that the dual problem of the Monge-Kantorovich problem had a solution

for the cost function chosen by Monge. Furthermore, Brenier [14], stated the solution

took the form, for a cost function of the form c (x , y) = |x − y|r for a given r > 0 and

for a solution γ, dγ = δ (y − s(x)) dµ(x) where s is a one-to-one measure-preserving

mapping. This implies that it can be generalised from the dual problem to the Monge

problem and we have existence of a solution. The claim by Sudakov was that he had a

solution for any distance cost function. However, Ambrosio [4] noted we have that one of

the important parts of the proof was not true in general. The approach was to decompose

R
n into regions and then solve the optimal mass transfer problem in any one of these

regions. The map would be obtained by joining these regions together. However, this

work was dependent on the measure in the original set X, µ being absolutely continuous

and this was not the case. This problem was dealt with by Ambrosio [4, Theorem 6.5]

and Monge’s problem now had a solution.

The cost function c(x , y) = |x − y|2 /2 was the first where a unique minimiser

was proven; there was a surge of interest after Sudakov’s original work. Kantorovich’s

relaxed formulation allowed researchers to give more precise detail on the quadratic cost

function. Furthermore, work by Brenier [13] and Knott and Smith [53, Theorem 2.1]

characterised the mapping as the gradient of a convex function. Brenier’s work came

when he was studying incompressible fluid mechanics; the link between the topics lead

to links between optimal mass transfer and other topics.

The two approaches when proving results about the quadratic cost functions can be
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decomposed into those that use Kantorovich’s duality theorem and those that do not.

We concentrate on the use of Kantorovich’s duality theorem. To this end we state the

work proved by Brenier, Knott & Smith [71, Theorem 2.12]:

Theorem 4.5.1. Let µ , ν be probability measures on R
n, with finite second order mo-

ments in the sense of Villani [71]. We consider the Monge-Kantorovich transportation

problem with a quadratic cost function c(x , y) = |x − y|2. Then,

1. (Knott-Smith optimality criterion) π ∈Π(µ , ν) is optimal if and only if there

exists a convex lower semi continuous function ϕ such that

Supp(π)⊂Graph(∂ϕ). (4.22)

2. (Brenier’s theorem) If µ does not give mass to small sets then there is a unique

optimal π, which is

dπ(x , y) = dµ(x) δ [y = ∇ϕ(x)] , (4.23)

where δ is the Dirac mass.

We now see from section 2.4.1 why the gradient of a convex function is known as Brenier’s

map. Moreover, from section 2.4.1 we see its applications to vector valued rearrange-

ments, specifically to the monotone rearrangements of vector valued functions. We cite

the same section for an example of a Brenier map.
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One corollary of Theorem 4.5.1 is that, given the form of the solution in equation

(4.23), ∇ϕ is also the unique solution of the Monge transportation problem (for the

quadratic cost).

Moving forward it is now pertinent to consider whether there are specific features

of cost functions which yield existence and optimality of the solution. To this end we

consider both strictly convex and strictly concave cost functions. We begin with a cost

function of the form c(x , y) = h(x − y) where h is strictly convex.

We use definition 2.7.1 and the methods of Ekeland and Témam [34, Definition 2.1] to

define strict convexity:

Definition 4.5.2. For ϕ , x , y and λ as defined in definition 2.7.1, ϕ is said to be

strictly convex when we have strict inequality in equation (2.31), i.e.

ϕ (λx + (1 − λ)y) <λϕ(x) + (1 − λ)ϕ(y), (4.24)

for 0<λ< 1 and for x 6= y, where the right hand side is defined.

We need to consider another definition from work by De Lellis [54, Definition 4.1]

Definition 4.5.3. A k-dimensional Borel set E⊂R
n is called rectifiable if there exists

a countable family {Γi}i of k-dimensional Lipschitz graphs such that Hk (E\⋃Γi) = 0,

where Hk is a k-dimensional Hausdorff measure.

We state a result parallel to Theorem 4.5.1 from Gangbo and McCann [39, Theorem

1.2]:
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Theorem 4.5.4. Fix c(x , y) = h(x − y) with h satisfying the following from Gangbo

and McCann [39]

(H1) h : R
d→ [ 0 , ∞ ) is strictly convex.

To handle measures with unbounded support, we also assume that the cost grows

superlinearly at large |x| while the curvature of its level sets decays:

(H2) given height r >∞ and angle θ∈ (0 , π): whenever p∈R
d is far enough from the

origin, one can find a cone

K (r , θ , ẑ , p) =
{
x∈R

d : |x − p| |z| cos (θ/2) ≤ 〈z , x − p〉 ≤ r |z|
}

with vertex at p (and z∈R
d \ {0}) on which h (x) assumes its maximum at p;

(H3) limh (x) / |x| = +∞ as |x| →∞,

and Borel probability measures µ and ν on R
d. If µ is absolutely continuous with respect

to a d-dimensional Lebesgue measure then

1. there is a c-concave function ϕ on R
d for which the map s := id − (∇h)−1 ◦∇ϕ

pushes forward µ to ν;

2. this map s(x) is uniquely determined (µ-almost everywhere) by 1.;

3. the joint measure γ := (id× s)# µ is optimal;

4. γ is the only optimal measure in Γ(µ , ν) - (except trivially when C(γ) = ∞).

If µ fails to be absolutely continuous with respect to Lebesgue but vanishes on rectifiable

sets of dimension d − 1, then (1)-(4) continue to hold provided h∈C1 , 1
loc

(
R
d
)
.
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Theorem 4.5.4 states that γ is both an optimal and unique solution to the Monge-

Kantorovich problem. Furthermore, the optimal solution takes the form as noted in

(4.23), whence the Monge problem has a solution. The map s depends on (∇h)−1 which

illustrates that strict convexity is essential for the uniqueness of the map.

Gangbo and McCann [39] stated that “concave functions of the distance |x − y|

form the most interesting class of costs”; the concavity ensures the invertibility of ∇h.

Unfortunately, there are some distinct differences between the result proven for strictly

convex and strictly concave cost functions.

The strictly concave cost functions take the form c(x , y) = l (|x − y|) where l≥ 0

and is strictly concave. Gangbo and McCann [39] noted that we have that optimal

maps will not be smooth and the optimal maps will have an intricate and unexpected

structure, where McCann [58] explores this structure on the line. The setting provides a

model for applications where paths don’t cross, e.g. a railway route. McCann [58] notes

that the concavity “reflects a shipping tariff that increases with the distance, even while

the cost per mile shipped goes down”. Hence, the concavity prefers a long trip and a

short trip over two trips of average length.

We consider the following result for strictly concave cost functions [39, Theorem 1.4]:

Theorem 4.5.5. Use l : [0 , ∞)→ [0 , ∞) strictly concave to define c(x , y) := l (|x − y|).

Let µ and ν be Borel probability measures on R
d and define µ0 := [µ − ν]+ (where [ · ]+

denotes the positive part of the measure) and ν0 := [ν − µ]+. If µ0 vanishes on spt ν0

and on rectifiable sets of dimension d − 1 then

1. the c-transform ψ : R
d→R of some function on spt ν0 induces a map s := id −

(∇h)−1 ◦∇ψ which pushes µ0 forward to ν0;
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2. the map s(x) is uniquely determined µ0-almost everywhere by 1.

3. there is a unique optimal measure γ in Γ (µ , ν) - except where C(γ) = ∞

4. the restriction of γ to the diagonal is given by γd = (id× id)# (µ − µ0);

5. the off diagonal part of γ = γd + γ0 is given by γ0 = (id× s)# µ0.

The one major difference between Theorem 4.5.4 and 4.5.5 is that for the strictly concave

cost function the solution of the Monge-Kantorovich problem does not generalise as a

solution for the Monge problem. For us to have a solution to the Monge problem we

require, from Villani [71] that the mass which is common between µ and ν has to stay

in the same place. However, as we consider the Monge-Kantorovich problem , this does

not concern us; for our work we always generalise a solution to Monge’s problem.

Plakhov [61] reduces the various problems of minimal and maximal resistance bodies

to a special one-dimensional Monge-Kantorovich problem. The problem is of a body

which is bounded by a curve which comprises convex parts and cavities, which are

concave. Any particle hitting the body either reflects once only from the convex part

of the curve or reflects into the cavity before leaving the body forever. The angles in

and out of any cavity are defined to be ϕ and ϕ+ respectively. Assigned to any given

cavity is a measure defined by the in and out angles, it is this measure which defines

the resistance in the problems of minimal and maximal resistance.

Let B⊂R
2 be a compact, connected subset of Euclidean space R

2 with piecewise

smooth boundary. We consider a billard in R
2 \B and a particle of the billiard with a

trajectory which intersects the convex hull of B, denoted convB. Initially the particle

moves freely in R
2 \B with a unit velocity v. We let the point of the first intersection of

the particle with ∂ (convB) be x and denote the unit outer normal vector to ∂ (convB)
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by nx and denote the angle between nx and −v by ϕ∈ [−π/2 , π/2]. For each particle

motion a value will be assigned, (x , ϕ) ∈ ∂ (conv B) × [−π/2 , π/2].

After intersecting ∂ (convB), the particle moves inside convB \B, elastically reflect-

ing off the boundary ∂B, then intersects ∂ (convB) again and moves freely afterwards.

The particle can make an infinite number of reflections. We let x+ = x+
B (x , ϕ) be

the point of the second intersection. Denote the angle between the normal nx+ and the

velocity of final free motion v+ by ϕ+ = ϕ+
B (x , ϕ) ∈ [−π/2 , π/2].

The characterisation of the resistance is how the Monge-Kantorovich problem is

defined. The mean resistance for a generally non-convex body B is as follows:

R (B) = |∂ (convB)| ·F (νB) , (4.25)

with

F (ν) =

∫ ∫ (
1 + cos

(
ϕ − ϕ+

))
dν
(
ϕ , ϕ+

)
. (4.26)

The mean resistance can be thought of as the impulses per unit of time on the bodies.

Therefore, the Monge-Kantorovich problem is

inf
ν ∈M

F (ν) , (4.27)

where M = Π(ϕ , ϕ+) and the cost function being used is c (ϕ , ϕ+) = 1 + cos (ϕ − ϕ+).
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The existence results are not straight forward. For d = 2, 3 we have existence of so-

lutions for the Monge-Kantorovich problem. However, for d = 2 the optimiser isn’t

the form (id× s)# µ and therefore we cannot generalise to a Monge minimiser. To the

contrary, for d = 3 the optimiser is in the form (id× s)# µ.

We conclude this chapter by showing that cost functions exist which do not yield

solutions to the Monge-Kantorovich problem. We consider the work of Beiglböck et

al. [8]. Consider the measure spaces ([ 0 , 1 ) , λ1) and ([ 1 , 2 ) , λ1). Define ŝ :

[ 0 , 1 ) → [ 1 , 2 ) by ŝ (x) = x + 1 = ∇
((
x2/2

)
+ x

)
, the Brenier map between

([ 0 , 1 ) , λ1) and ([ 1 , 2 ) , λ1). Then ŝ is the unique solution of the Monge problem

with respect to the cost function c1 (x , y) = (x − y)2 /2, (id× ŝ)# λ1. If we modify

the cost function to penalise shifts by 1, that is define

c2 (x , y) =





1, if y = x + 1

(x − y)2 /2, otherwise,

(4.28)

it can be shown that

inf
π ∈Π(λ1 , λ1)

∫

([ 0 , 1 ) , λ1)× ([ 1 , 2 ) , λ1)
c2 (x , y) dΠ (x , y) =

1

2
. (4.29)

By way of explanation define sǫ to be the mapping that shifts [ 0 , 1 − ǫ ) to [ 1 + ǫ , 2 )

and [ 1 − ǫ , 1 ) to [ 1 , 1 + ǫ ) for a given ǫ> 0. Then (id× sǫ)# λ1 ∈Π(λ1 , λ1) and
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∫

([ 0 , 1 ) , λ1)× ([ 1 , 2 ) , λ1)
c2 (x , y) d (id× sǫ)# λ1 (x , y) → 1

2
as ǫ→ 0. (4.30)

However, the infimum in (4.29) is not attained by any π ∈Π(λ1 , λ1): the Monge-

Kantorovich problem has no solution.



Chapter 5

Displacement error and a more

sophisticated formulation.

5.1 Introduction.

Up to this point in the thesis we have considered our error formulations for scalar

valued rearrangements. However, it could be natural to consider errors in vector valued

quantities, such as wind velocity. In contrast to the scalar valued case we show in section

5.2 that it need not be the case that a minimiser of the best fit problem exists; this is

the content of Proposition 7.

Having considered the methods of optimal mass transfer in the previous chapter we

move on to link the displacement error to optimal mass transfer. We use the methods of

Brenier and Benamou [10] to show that the definition of the displacement error, i.e the

square of 2-Wasserstein distance to be introduced shortly, is equivalent to the Action

Integral of transferring the mass between two distributions.

117
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A problem with the simple formulation is that the qualitative features error is taken

first with the displacement error minimised over best fits of the qualitative features

error. Error in qualitative features could be penalised as a large displacement error.

Brenier and Benamou [10] outline how minimising both errors simultaneously could be

formulated as an optimal mass transfer problem. However, the cost function is in the

setting of the time continuous formulation; they also insist that
∫
q1 =

∫
q2, which is

not a realistic assumption for our application.

In section 5.4 we formulate a rearrangements problem for minimising the displace-

ment and qualitative features error at the same time. We do not require that q1 and q2

have the same 1-norm. In the case of the simple formulation we considered an equivalent

maximisation problem to the original minimisation problem. Theorem 8 formulates an

equivalent maximisation problem for the more sophisticated problem. One would expect

“fewer” extremisers for the more sophisticated problem; we demonstrate in Proposition

9 that if the forecast is a best fit of the original problem, it is the unique extremiser of

the more sophisticated version.

It can be difficult to prove that extremisers exist for the more sophisticated formu-

lation directly, therefore we consider a different approach. Section 5.4.1 considers the

relaxed more sophisticated formulation which is the more sophisticated formulation func-

tional extremised over the closed convex hull of the set of rearrangements; this deals with

the problem of the lack of convexity and compactness of the set of rearrangements. We

state the minimisation problem before formulating an equivalent maximisation problem;

this is the content of Theorem 10.

Before progressing to the main results of the chapter we consider specific examples

which illustrate the main differences between the simple formulation and the more so-
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phisticated formulation in section 5.5. Following this are the main results of the chapter.

Theorem 11 shows that the relaxed more sophisticated formulation is attained, but that

it cannot be generalised to the more sophisticated formulation in the way that we’d

hoped for all functions. The theorem finishes by considering the maximisation prob-

lem (5.16). Section 5.6 concludes by considering some properties of the maximisation

problem. The chapter concludes by consider specific values of θ where the minimiser is

bigger for the more sophisticated formulation than the relaxed version.

5.2 Error Decomposition for vector valued functions.

Having proved that the simple formulation is well posed for scalar valued rearrange-

ments, it is a natural progression to ask whether forecast error decomposition can be

generalised to vector-valued mappings. An example of a vector-valued extension would

be to consider an error in wind velocity.

Suppose q1 , q2 ∈L2 (Ω , µ , R
n) where (Ω , µ) is a measure interval. For the simple

formulation of error decomposition to be well posed we need to show that

infq ∈R(q2) ‖q1 − q‖2 is attained by some q̂ ∈R (q2). Let Lebesgue measurable Y ⊂R
n

satisfy λn (Y ) = µ (Ω) and write q#1 , q#2 : Y →R
n for the monotone rearrangements (or

Brenier maps) of q1 , q2 respectively. We can view the Brenier map as the appropriate

generalisation to vector valued mappings of the increasing rearrangement. However,

inequalities satisfied by the increasing rearrangement do not necessarily hold for the

Brenier map:
∫
Y q

#
1 · q#2 ≥

∫
Ω q1 · q2 is not true in general(See Brenier [14]).

We give an example to show that the infimum in infq ∈R(q2) ‖q1 − q‖2 is not neces-

sarily attained. As per Burton and Douglas [21, Section 3] let D1 ⊂R
2 denote the open

disc of the radius 1 centered at the origin and let u : D1 →R
2 be defined by
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u (x) =





x/|x|, if x 6= 0,

0, if x = 0.

(5.1)

Now u (x) = ∇ (|x|) for almost every x∈D1 : u = u#. Burton and Douglas [21,

Lemma 3] gives the existence of an almost injective rearrangement û of u# , û : D1 →R
2.

Choose q1 = û , q2 equal to the identity mapping on D1. Now R (q2) is the same set as

S, the set of measure-preserving mappings from (D1 , λ2) to (D1 , λ2).

inf
q ∈R(q2)

‖q1 − q‖2 = inf
s∈S

‖û − s‖2 . (5.2)

The right hand side of (5.2) is the projection problem of polar factorisation; Burton

and Douglas [22, Corollary 1] yields that s attains the infimum in (5.2) if and only if

û = u# ◦ s, that is û has a polar factorisation through D1. However, the methods of the

proof of Theorem 2 of Burton and Douglas [22] yield that û has no polar factorisation

through D1. It follows that there is no closest rearrangement in this case.

In the above example the level sets of u are the radii of D1(and the origin). It follows

that u is a monotone rearrangement which is not almost injective: no matter what set

of zero size is ignored, the remaining mapping will not be injective. Furthermore its

level sets all have zero area. We generalise this counterexample in Proposition 7. Before

stating this result we need some preliminary definitions.
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Definitions. A mapping f : U→V , where (U , µ) is a finite positive measure space, is

almost countable to 1 if there exists a set U0 of full measure such that the intersection

of any level set of f with U0 is countable. For m∈N we say that f is almost m to 1 if

there exists a set U0 of full measure such that the intersection of any level set of f with

U0 (whenever it is non-empty) has exactly m elements. In this notation almost injective

functions are called almost 1 to 1.

Proposition 7. Let square integrable u# : Y →R
n be the restriction of the gradient

of a proper lower semi continuous convex function to a set Y ⊂R
n of finite positive

Lebesgue measure and suppose that u# restricted to the complement of its level sets of

positive measure is not almost injective. Let (Ω , µ) be a measure interval satisfying

µ (Ω) = λn (Y ). Suppose that q1 : Ω→R
n is a rearrangement of u# which is almost

countable to 1 on the complement of its level sets of positive measure and that q2 : Ω→Y

is a measure-preserving mapping. Then

inf
q ∈R(q2)

‖q1 − q‖2 , (5.3)

is not attained by any q ∈R (q2).

Proof: We begin by noting that almost m to 1 rearrangements of u# exist by the

construction of Douglas [31, Proposition 1]. Now, R (q2) and S are equal, where S is

the set of measure-preserving mappings from (Ω , µ) to (Y , λn). It follows that

inf
q ∈R(q2)

‖q1 − q‖2 = inf
s∈S

‖q1 − s‖2 . (5.4)
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Now, the right hand side of (5.4) is the projection problem of polar factorisation; Burton

and Douglas [22, Corollary 1] yields that s∈S attains the infimum in (5.4) if and only

if q1 = u# ◦ s, that is q1 has a polar factorisation through Y . However, Douglas [31,

Theorem 1] proves that q1 does not have a polar factorisation through Y . We deduce

that the infimum in the left hand side of (5.4) is not attained

Recall (see Ryff [65], Burton and Douglas [21, Section 3] for a summary) that there is

always a polar factorisation in the scalar-valued case; our earlier results are not contra-

dicted.

5.3 Formulation of the displacement error.

The concept of Wasserstein distance is central to our definition of the displacement

error. The optimal value corresponding to the quadratic cost function is defined to be

the quadratic Wasserstein distance. We define the Wasserstein distance formally and

explain its relation to the Monge problem; then we consider the specific Wasserstein

distance that we require.

Definition 5.3.1. Let Ω⊂R
n be a bounded domain where (Ω , λn) is a measure inter-

val. µ is absolutely continuous with respect to n-dimensional Lebesgue measure. The

Wasserstein distance between two density functions q (x) ≥ 0 and q2 (x) ≥ 0 satisfying

∫
Ωq =

∫
Ωq2 is

Wp(q , q2)
p = inf

s∈Y

∫
| s(x) − x |pq(x) dx, (5.5)
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where p≥1 is fixed, |·| denotes the Euclidean norm and Y is the set of measure-preserving

mappings from (Ω , qλn) to (Ω , q2λn).

The measures in definition 5.3.1 are qλn and q2λn, where qµ (A) =
∫
Aq (x) dµ (x) and

q2µ (A) =
∫
Aq2 (x) dµ (x). In this sense q and q2 are weights (or densities); alternatively

they are known as Radon-Nikodym derivatives. We introduce the notation of ∇ϕq which

is the Brenier map dependent on q between (Ω , qµ) and (Ω , q2µ). For the quadratic

cost we consider p = 2 in definition 5.5.

Using the work of Benamou and Brenier [10; 11] we explain the link to the displace-

ment error; this was made rigorous for our assumption of non-negative square integrable

q2 by Guittet [42]. Suppose Ω⊂R
n is a set of finite Lebesgue measure, i.e. λn (Ω) <∞.

We assume the following:

∫

Ω
|x|4 dλn<∞, (5.6)

which would certainly be the case if Ω is bounded. Assumption (5.6) allows us to assume

that, by use of the Cauchy-Schwarz inequality, that the following is true

∫

Ω

|x|2
2

q2 (x) dλn (x) ,

∫

Ω

|x|2
2

q (x) dλn (x) <∞. (5.7)

We say that q2λn and qλn have finite second moments.

Condition (5.7) ensures that W 2
2 (q2) is finite. For the work in this chapter it is sufficient

that Ω⊂R
n, µ (Ω) <∞, where µ is absolutely continuous with respect to Lebesgue
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measure λn. Furthermore, for our problem we assume that q1 , q2 ≥ 0, as do Brenier and

Benamou [11], Guittet [42] and Ambrosio et al. [3]. Another point to note from Brenier

and Benamou’s work is that they assume that q1 and q2 are bounded, merely square

integrable; and thus q1 , q2 ∈L∞ (Ω). However, in our work, we do not assume that q1

and q2 are bounded, this is where we make use of work by Guittet [42] and Ambrosio

et al. [3]. Under these assumptions Definition 5.5 is still true and we will see later that

Proposition 5.3.2 remains true also.

From the optimal mass transfer problem the initial mass must equal the whole where

the mass is being transferred to. Therefore, if the initial domain is taken to be Ω and

the final domain is taken to be Ω′, it must be the case that µ (Ω) = ν (Ω′). To ensure

that this holds for our functions, q ∈R (q2), it must be the case that
∫
q =

∫
q2.

Benamou and Brenier [10; 11] provide a reformulation of the mass transfer problem.

They use a continuous time variable t∈ [0 , 1], where the time interval is arbitrarily

chosen and fixed. We state the following transport equation for smooth, time dependent,

density and velocity fields, ρ = ρ (t , x), v = v (t , x) ∈R
d,

∂ρ

∂t
+ ∇ · (ρv) = 0 with ∇· v = 0, (5.8)

for 0<t< 1 and x∈R
d, subject to the initial and final conditions,

ρ(0 , ·) = q, ρ(1 , ·) = q2. (5.9)

As we are considering W 2
2 (q̂ , q2) we are transporting best fits q̂ to q2(equivalently we
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could consider W 2
2 (q2 , q̂)). (ρ , v) defines a path if it is a solution of (5.8) and (5.9).

What we are doing here is transporting q to q2 with velocity fields. These are transported

over “possible paths” and the problem is to minimise the kinetic energy over these

“possible paths”. The following result from Brenier and Benamou [11] shows us that

this is equivalent to the 2-Wasserstein distance.

Proposition 5.3.2. The square of the L2 Wasserstein distance is equal to the infimum

of

∫

Rd

∫ 1

0
ρ (t , x) |v (t , x)|2 dxdt, (5.10)

among all (ρ , v) satisfying (5.8) and (5.9), where ρ∈L2 (Ω).

(5.10) is known as the action integral and is denoted A(ρ , v). There are several possible

definitions for the action integral; we consider two of these definitions.

A1(ρ, v) =

∫

Rd

∫ 1

0
|v(t, x)|2 dx dt, (5.11)

A2(ρ, v) =

∫

Rd

∫ 1

0
ρ(t, x)|v(t, x)|2 dx dt. (5.12)

The choice of the action integral is dependent on what we are looking to penalise.

A1(ρ, v) will penalise the magnitude of the velocity which transports best fits to the

forecasted distribution. Thinking of ρ(t,·) as a density it is evident that A2(ρ, v) will

penalise the kinetic energy during transportation from the forecasted to the best fitting

distribution; by way of explanation, the integrand (5.12) integrated with respect to x
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gives “kinetic energy” at time t. Our choice from Proposition 5.3.2, is (5.12). While

(5.11) is another possible choice, it is not known to be directly related to an optimal

mass transfer problem. This is an open question and could be part of our further work.

Brenier and Benamou stated that the time-continuous formulation was “implicitly

contained” in the original problem of Monge [59]. In this problem eliminating the time

variable was a way to reduce the dimension of the problem. Benamou and Brenier

[10] present several reasons as to why the time-continuous formulation should be kept.

One reason is that it leads to the numerical scheme suggested in Benamou and Brenier

[10]. Of major significance to us is the section on “Interpolation of the L2 and the

Wasserstein distance”. They note in some situations that it is natural to consider

both the Wasserstein distance and the L2 distances at the same time, especially in

data assimilation for meteorological forecasting. Therefore, for practical applications it

might be desirable to have a weighted combination of the L2 and Wasserstein distances

between q and q2 for θ∈ [0 , 1]. The cost function becomes

∫

Rd

∫ 1

0

[
(1 − θ) ρ (t , x) |v (t , x)|2 + θ

(
∂ρ

∂t
(t , x)

)2
]

dxdt. (5.13)

This is the content of the next section as we seek a more sophisticated forecast error de-

composition where the errors are taken simultaneously; solving the problem of a forecast

with an error in qualitative features being penalised as if it was a displacement error.

One of the major problems is that Brenier and Benamou’s problem had the assumption

that
∫
q =

∫
q2 which is fine for q ∈R (q2). However, there is no reason to assume that

∫
q1 =

∫
q2 and in general, for our applications to weather forecasting, this need not
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be the case. This is not appropriate for the more sophisticated formulation and some

adaptations need to be made. This is the content of the next section.

5.4 More sophisticated formulation of the weather forecast

error.

From the introductory chapter we have that while the simple formulation addressed

problems from the conventional error scores there are new problems to consider. Given

that the displacement error is minimised over the minimisers of the qualitative features

error, the qualitative features error is minimised without consideration for the displace-

ment error. One suggestion to address this problem, based on (5.13), is as follows:

inf
q ∈R(q2)

(1 − θ) ‖q1 − q‖2 + θW 2
2 (q , q2) . (5.14)

From the definition of the Wasserstein distance, specifically for p = 2, we have to take

the square root of the minimiser hence we square the whole function to counteract this.

In the same manner and given the square root which comes from the definition of the

L2-norm, it might be more appropriate to consider the following

inf
q ∈R(q2)

(1 − θ) ‖q1 − q‖2
2 + θW 2

2 (q , q2) . (5.15)

(5.15) is the natural generalisation of the work of Brenier and Benamou [10].



128

Remark: Whilst the simple formulation of E (q1 , q2) is not well defined in general for

vector-valued mappings, it is an open question whether the more sophisticated version

makes sense. One would need to define W 2
2 (q , q2) appropriately for q ∈R (q2).

There are three methods which could be used to tackle this problem. We could study

the rearrangements problem. Alternatively we could use the similarities between push-

forward measures, rearrangements and measure-preserving mappings from section 2.6.1

to turn the problem into an optimal mass transfer problem, for a suitable cost function.

Finally, we could consider the problem as a partial differential equations problem.

The partial differential equations problem has been considered by Haker, Zhu, Tan-

nenbaum and Angenent [44, Section 3.4]; we note the similarities to (5.15). However,

for the partial differential equations problem to work Haker and his co-workers as-

sume smoothness and invertibility of the measure-preserving mapping to ensure that

the derivatives exist. Unlike Haker [44], in our problem there is no need to assume that

the measure-preserving mapping is invertible. Therefore, there are obvious limitations

to how much we can use this numerical scheme. Haker et al’s numerical scheme for cal-

culating Brenier maps for the Wasserstein distance converges to an optimal map. But,

in the L2 and Wasserstein distance problem, it is only conjecture that the numerical

scheme converges to an optimal map. In fact there may be multiple solutions. Fur-

thermore, in the same way as Brenier and Benamou’s problem, Haker’s problem also

assumes that
∫
q1 =

∫
q2 which is an unrealistic assumption for our application. These

problems are the reasons we do not consider the more sophisticated formulation as a

partial differential equations problem.

Having established the assumptions of the problem we reformulate (5.15) as a max-

imisation problem.
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Theorem 8. Let Ω⊂R
n be a set of finite n-dimensional Lebesgue measure, and sup-

pose that
∫
Ω |x|4 dλn (x) <∞. Let non-negative q1 , q2 ∈L2 (Ω , λn). Then (5.15) is

equivalent to

sup
q ∈R(q2)

∫

Ω

(
2 (1 − θ) q1 (x) + θx .∇φq − θ

2
|x|2
)
q (x) dλn (x) , (5.16)

where ∇φq denotes the Brenier map between (Ω , qλn) and (Ω , q2λn). The problems are

equivalent in the sense that minimisers attaining the infimum in (5.15) are maximisers

of the supremum in (5.16) and vice versa.

Proof: We begin by noting that
∫
Ω |x|2 q2 (x) dλn (x) ,

∫
Ω |x|2 q (x) dλn (x) <∞ (by

the Cauchy-Schwarz inequality).

Let ∇φq denote the Brenier map between (Ω , qλn) and (Ω , q2λn). Then the definition

of 2-Wasserstein distance (see definition 5.3.1) yields:

θW 2
2 (q , q2) =

θ

2

∫

Ω
|x − ∇φq|2 q (x) dλn (x) . (5.17)
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For q ∈R (q2),

(1 − θ) ‖q1 − q‖2
2 + θW 2

2 (q , q2)

= (1 − θ)

∫

Ω

(
q21 (x) − 2q1 (x) q (x) + q2 (x)

)
dλn (x)

+
θ

2

∫

Ω

(
|x|2 − 2x·∇φq (x) + |∇φq (x)|2

)
q (x) dλn (x) , (5.18)

= (1 − θ)

∫

Ω
q21 (x) − 2q1 (x) q (x) + q22 (x) dλn (x) ,

+
θ

2

∫

Ω

(
|x|2 − 2x·∇φq (x)

)
q (x) dλn (x) ,

+
θ

2

∫

Ω
|x|2 q2 (x) dλn (x) . (5.19)

=

∫

Ω

(
(1 − θ)

(
q21 (x) + q22 (x)

)
+ θ |x|2 q2 (x)

)
dλn (x)

+

∫

Ω

(
−2 (1 − θ) q1 (x) +

θ

2
|x|2 − θx·∇φq (x)

)
q (x) dλn (x) . (5.20)

By way of explanation the first integral in (5.19) follows by noting that rearrangement

preserves L2-norms and that (5.18) holds. We achieve the last integral in (5.19) by

noting that ∇φq : (Ω , qλn) → (Ω , q2λn) is measure-preserving. Now, the first integral

in (5.20) is constant; the result follows.

The modified functional we are extremising penalises the movement of qualitative

features; we would expect “smaller” sets of extremisers compared with the original

formulation. The following proposition demonstrates that if the forecast is a best fit

of the original formulation, then it is the unique extremiser of the more sophisticated

version.

Proposition 9. If q2 ∈M, then q2 is the unique minimiser/maximiser of (5.15)/(5.16)

for 0<θ≤ 1.
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Proof: Suppose q ∈R (q2) is a minimiser of (5.15). Then

θW 2
2 (q , q2) ≤ (1 − θ) ‖q2 − q1‖2

2 − (1 − θ) ‖q − q1‖2
2 + θW 2

2 (q2 , q2) ≤ 0,

where we have used the fact that q2 ∈M to obtain the second inequality. We deduce

that W 2
2 (q , q2) = 0 and that qλn and q2λn are equal (as measures). Noting that q , q2

are square integrable, almost every point of Ω is a Lebesgue point of q and q2. We

deduce q = q2. The result follows.

Superficially Theorem 8 appears similar to the “best fits” problem of Nealers Theorem.

However, the dependence of the Brenier map ∇φq on q ∈R (q2) makes (5.16) more

challenging to study. We conclude this section by noting that if we define ν = q2#µ,

S, the set of measure-preserving mappings from (Ω , µ) to (R , ν), is R (q2). Writing

(5.15) as a Monge problem, that is determining the cost function, is however a more

challenging problem to formulate.

5.4.1 The relaxed more sophisticated problem.

We consider the more sophisticated problem over the weak closure of the set of rear-

rangements, known as the relaxed more sophisticated problem. Through considering

the problem over the weak closure we hope to generalise this result over the set of re-

arrangements. As stated in section 2.7 the weak closure of the set of rearrangements

is equivalent to the closed convex hull of the set of rearrangements and thus solves the

problem of the set of rearrangements not being weakly compact.
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From Theorem 8 we have that the more sophisticated formulation, equation (5.15),

is equivalent to problem (5.16). To this end we consider the maximisation problem

over the closed convex hull of the set of rearrangements. We begin by considering the

minimisiation problem over the weak closure of the set of rearrangements which is as

follows:

inf
q ∈ conv(R(q2))

(1 − θ) ‖q1 − q‖2
2 + θW 2

2 (q , q2) (5.21)

From the reformulation of the more sophisticated formulation it was evident that part

of the result was dependent on the fact that rearrangement preserves the L2-norm. This

no longer holds for the closed convex hull of the set of rearrangement, thus, there are

additional terms to be considered in the relaxed more sophisticated formulation. The

reformulation of (5.21) into a maximisation problem is the content of the next theorem.

Theorem 10. Let Ω⊂R
n be a set of finite n-dimensional Lebesgue measure and suppose

that
∫
Ω |x|4 dλn (x) <∞. Let non-negative q1 q2 ∈L2 (Ω , λn). Then (5.21) is equivalent

to:

sup
q ∈ conv(R(q2))

∫

Ω
( 2(1 − θ)q1 (x) + θx · ∇φq (x)

− θ

2
|x|2 − (1 − θ) q (x) ) q (x) dλn (x) (5.22)
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Proof: Following the methods of the proof of Theorem 8 we omit some detail and refer

the reader to the proof of Theorem 8 for this detail. For q ∈ conv (R (q2)),

(1 − θ) ‖q1 − q‖2
2 + θW 2

2 (q , q2)

= (1 − θ)

∫

Ω

(
q21 (x) − 2q1 (x) q (x) + q2 (x)

)
dλn (x)

+
θ

2

∫

Ω

(
|x|2 − 2x ·∇φq (x) + |∇φq (x)|2

)
q (x) dλn (x) (5.23)

= (1 − θ)

∫

Ω
q21 (x) dλn (x) +

θ

2

∫

Ω
|x|2 q2 (x) dλn (x)

+ (1 − θ)

∫

Ω

(
q2 (x) − 2q1 (x) q (x)

)
dλn (x)

+
θ

2

∫

Ω

(
|x|2 − 2x·∇φq (x)

)
q (x) dλn (x) (5.24)

We note that as we are extremising over the closed convex hull of the set of rearrange-

ments, that rearrangement no longer preserves the L2-norm. The first two integrals of

(5.24) are constant, and the result follows.

5.5 The More Sophisticated Problem - An example.

Before we prove results about the more sophisticated formulation we consider the fol-

lowing example which illustrates the differences between the simple and the more so-

phisticated formulation. We work on the measure space
(
[0 , 1]2 , λ2

)
where R1 =

[0 , 1/2] × [0 , 1] and R2 = [1/2 , 1] × [0 , 1]. We let q1 be the actual data and q2 , q3

and q4 be all the possible forecasts. We evaluate the error, E (q1 , qi) for i = 2 , 3 and

4. We define q1 = 2× 1R2
, q2 = 1R2

, q3 = 1R1
and q4 = 2× 1R1

as illustrated in the

following figure:
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q1

0 2

︸︷︷︸
R1

︸︷︷︸
R2(a)

q2

0 1

(b)

q3

1 0

(c)

q4

2 0

(d)

Figure 5.1: An illustration of the (a) outcome q1 and three cases of forecast q2 , q3 and
q4 corresponding to (b) Case 1 (c) Case 2 and (d) Case 3

We consider cases 1 and 2. The set of rearrangements is as follows

R (q2) =
{
q = 1A : A⊂R

2 such that λ2 (A) = 1/2
}
. Let q = 1A for some A⊂R

2.

The set of measure-preserving mappings from
(
[0 , 1]2 , qλ2

)
→
(
[0 , 1]2 , q2λ2

)
is (al-

most everywhere) the set of measure-preserving mappings (A , λ2) to (R2 , λ2). The

Brenier map from
(
[0 , 1]2 , q3λ2

)
to
(
[0 , 1]2 , q2λ2

)
is

(x , y) + (1/2 , 0) = ∇
(
|x|2
2

+
1

2
x

)
where x = (x , y) . (5.25)

For case one we treat the error as a purely qualitative features error. Therefore, we have

the following:

inf
q ∈R(q2)

‖q1 − q‖2 = ‖q1 − q2‖2 = ‖2× 1R2
− 1R2

‖2 = 1/
√

2. (5.26)

(q2 is the unique minimiser - see Nealers Theorem.) The purely qualitative features is

illustrated with W 2
2 (q2 , q2) = 0.

In case 2 we have that both the qualitative features and displacement errors con-

tribute to the overall error. The error is as follows:
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inf
q ∈R(q3)

‖q1 − q‖2 = ‖2× 1R2
− 1R2

‖2 = 1/
√

2. (5.27)

inf
q ∈M

W 2
2 (q , q3) = W 2

2 (1R2
, 1R1

)

=

∫

R2

|x + (1/2 , 0) − x|2 dλ2 (x) = 1/8. (5.28)

Again q2 is the unique minimiser. For the simple formulation we finish with the third

case where the error could be formulated as a displacement error only, as shown below:

inf
q ∈R(q4)

‖q1 − q‖2 = ‖q1 − q1‖2 = 0. (5.29)

inf
q ∈M

W 2
2 (q , q4) = W 2

2 (2× 1R2
, 2× 1R1

)

= 2 .

∫

R2

|x + (1/2 , 0) − x|2 dλ2 (x) = 1/4. (5.30)

But, when we consider the more sophisticated formulation the errors compete against

each other. However, for case 1 the formulations are similar. They are not equal given

that the more sophisticated formulation considers the square of the L2 norm. But, it is

the same rearrangement which yields the unique minimiser.

We consider the error associated with the three cases for the more sophisticated

formulation. We begin with case 1:

E (q1 , q2) = (1 − θ) ‖q1 − q2‖2
2 + θW 2

2 (q2 , q2)

= (1 − θ) /2. (5.31)
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q2 is the unique minimiser (over q ∈R (q2)). Before moving on to case 2 we consider the

following figure:

001 1

1/21/2 − t 1/2 + t

(a)

002 2

1/21/2 − s 1/2 + s

(b)

Figure 5.2: An illustration of possible error formulations for (a) case 2, which we denote
by qt and (b) case 3, which we denote by pt.

qt is a rearrangement of q3. We consider the following:

W 2
2 (qt , q3) = W 2

2 (q3 , qt) = inf
s∈S

∫
|s (x) − x|2 q3

≤
∫

|ŝ (x) − x|2 q3 for a particular ŝ

=

∫

R1

|ŝ (x) − x|2

=

∫

R3

t2 = t3.

The first equality happens given that q3 and qt are rearrangements of each other. Given

that it is the infimum over all s, for a particular ŝ we yield the inequality. Now, for fixed

θ (θ close to 1 when the displacement error is dominant), for some 0≤ t< 1/2,
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(1 − θ) ‖q1 − qt‖2
2 + θW 2

2 (qt , q3)

≤ (1 − θ)

(
5

2
− 4t

)
+ θt3

< (1 − θ) /2 + θ/8 for appropriate choices of θ , t.

= (1 − θ) ‖q1 − q2‖2
2 + θW 2

2 (q2 , q3) (5.32)

So, q2 is not a minimiser. (We are not claiming that qt is necessarily a minimiser.) Case

3 is similar to case 2. From the simple formulation we have that the error is entirely

displacement error with q1 being the unique minimiser. For the more sophisticated

formulation we let the function from figure 5.2(b) be denoted by qs. qs will score better

than q1 for some θ and s. For the more sophisticated formulation, E (q1 , q4) will have

non-zero contributions from the qualitative features and displacement terms. So, the

error is no longer considered to be purely displacement. It is not now beneficial to move

the whole block, in both cases, and is more beneficial to move parts of the level set.

5.6 Well-posedness of the more sophisticated formulation.

To illustrate that the relaxed more sophisticated formulation is well posed we follow

a classic approach; this is to pick an extremising sequence and show that the limit it

converges to is a maximiser of the functional. For this we require some form of continuity

of the functional. Therefore, we must firstly show some continuity results for both the

qualitative features and the displacement error parts of the more sophisticated problem.

We state the following theorem from [71], which we will make use of later in this

section:
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Theorem 5.6.1 (Partial.). Let p∈ (0 , ∞), let (µk)k∈K
be a sequence of probability

measures in Pp (X), the set of probability measures on X with finite pth moments. Then,

the following two statements are equivalent:

(i) Wp (µk , µ)→ 0 as k→∞.

(ii) Whenever a continuous function ϕ on X satisfies the growth condition

|ϕ (x)| ≤C [1 + d (x0 , x)
p] for some x0 ∈X, C ∈R, then

∫
ϕ dµk→

∫
ϕ dµ as k→∞. (5.33)

It would be sufficient to prove the well posedness of the problem that q→ ‖q1 − q‖2
2 is

weakly sequentially lower semi continuous(see definition 2.4.1) and that q→W 2
2 (q , q2)

is weakly sequentially continuous. The following theorem illustrates continuity of the

Wasserstein distance, using this fact to show that relaxed more sophisticated formulation

has a minimiser. From this further results are proved about the relationship between

the relaxed more sophisticated formulation and the more sophisticated formulation.

Theorem 11. Let q1 , q2 : Ω→R be as above, where Ω⊂R
n is such that

∫
Ω |x|4 dx<∞.

Then:

(i) If qn⇀q̂, where ⇀ denotes weak convergence, for a sequence (qn) ⊂ conv (R (q2)),

then W 2
2 (qn , q2) →W 2

2 (q̂ , q2).

(ii) (5.21) is attained by some q ∈ conv (R (q2)).

(iii) Suppose that q2 ∈M and that q1 ∈ conv (R (q2)) \R (q2). Choose 0<θ< 1 such

that:
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θW 2
2 (q1 , q2) < (1 − θ) ‖q1 − q2‖2

2 . (5.34)

Then we have the value of (5.21)< the value of (5.15).

(iv) (5.16) is attained by some q̃ ∈ conv (R (q2)). Moreover, the value of (5.16) is the

same for q ∈R (q2) and q ∈ conv (R (q2)).

Remarks:

(i) From the definition of the closed convex hull, we note that
∫
Ωq dµ =

∫
Ωq2 dµ.

It follows that (Ω , qλn) and (Ω , q2λn) are measure spaces of the same size, so

W 2
2 (q , q2) is well-defined.

(ii) Part (iii) represents a case where qualitative features error is emphasised over the

displacement error. One would choose θ sufficiently small.

Proof: (i) Suppose that (qn) ⊂ conv (R (q2)) is such that qn⇀q̂ as n→∞ for some

q̂ ∈ conv (R (q2)). Let ϕ : Ω→R be continuous and satisfy

|ϕ (x)| ≤C
(
1 + |x0 − x|2

)
for some x0 ∈Ω, C ∈R. Now,

∫
Ω |x|4 dx<∞, thus

we have that ϕ∈L2 (Ω , λn). The definition of weak convergence yields:

∫

Ω
ϕqn→

∫

Ω
ϕq̂ as n→∞ (5.35)

This proves statement (iv) of Theorem 5.6.1 and therefore given the equivalence

of the four statements we can use statement (i) to state the following:
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W2 (qnλn , q̂λn) → 0 as n→∞. (5.36)

From the triangle inequality we have that

|W2 (qn , q2) − W2 (q̂ , q2)| ≤W2 (qn , q̂) , (5.37)

as the quadratic Wasserstein distance is a metric on Borel measures with µ (Ω) =

∫
Ωq2 dλn. From this we can deduce that

W 2
2 (qn , q2) →W 2

2 (q̂ , q2) as n→∞. (5.38)

This illustrates the weak continuity of the Wasserstein distance; this result will be

used extensively in the work that follows.

(ii) We deal with the case of q2 = 0 separately. In this case we have that conv (R (q2)) =

{0} and the result follows immediately.

The definition of weak convergence yields that

∫
qn

q̂

‖q̂‖2

→
∫
q̂

q̂

‖q̂‖2

as n→∞ (5.39)
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We have from (5.39) that

(∫
qn

q̂

‖q̂‖2

)2

→
(∫

q̂
q̂

‖q̂‖2

)2

=
1

‖q̂‖2
2

(∫
q̂2
)2

=
‖q̂‖4

2

‖q̂‖2
2

= ‖q̂‖2
2 (5.40)

Making use of the Cauchy-Schwarz inequality we manipulate the left hand side of

equation (5.39)

∫
qn

q̂

‖q̂‖2

≤ ‖qn‖2

∥∥∥∥
q̂

‖q̂‖2

∥∥∥∥
2

= ‖qn‖2 (5.41)

noting
∥∥∥ q̂
‖q̂‖2

∥∥∥
2

= 1. From (5.40) and (5.41) we can deduce that

‖q̂‖2
2 ≤ lim inf

n→∞
‖qn‖2

2 (5.42)

Given that qn⇀q̂ as n→∞ we note that

∫
qnq1 →

∫
q̂q1 as n→∞ (5.43)

We deduce that



142

‖q̂ − q1‖2
2 ≤ lim inf

n→∞
‖qn − q1 ‖2

2 (5.44)

From definition 2.4.1 we have that the qualitative features part of the more so-

phisticated formulation is weakly sequentially lower semi continuous. Utilising this

and the continuity of the Wasserstein distance we have the following:

(1 − θ) ‖q1 − q̂‖2
2 + θW 2

2 (q̂ , q2)

≤ lim inf
n→∞

(1 − θ) ‖q1 − qn‖2
2 + lim

n→∞
θW 2

2 (qn , q2) (5.45)

≤ lim inf
n→∞

(
(1 − θ) ‖q1 − qn‖2

2 + θW 2
2 (qn , q2)

)
(5.46)

≤ inf
q ∈ conv(R(q2))

(1 − θ) ‖q1 − q‖2
2 + θW 2

2 (q , q2) . (5.47)

The first part of the right hand side of (5.45) is due to (5.44). Inequality (5.47)

follows given that (qn) is a minimising sequence.

(iii) We have that:
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inf
q ∈ conv(R(q2))

(1 − θ) ‖q1 − q‖2
2 + θW 2

2 (q , q2) (5.48)

≤ θW 2
2 (q1 , q2) (5.49)

< (1 − θ) ‖q1 − q2‖2
2 (5.50)

= inf
q ∈R(q2)

(1 − θ) ‖q1 − q‖2
2 (5.51)

≤ inf
q ∈R(q2)

(1 − θ) ‖q1 − q‖2
2 + θW 2

2 (q , q2) . (5.52)

We explain the steps above. If we choose q = q1 in the functional of (5.48) the

qualitative features error is zero and hence we obtain inequality (5.49). Inequality

(5.34) yields inequality (5.50). Noting that q2 ∈M yields (5.51). Finally, we are

adding the displacement error to the qualitative features error, hence we yield the

final inequality (5.52). This illustrates that the relaxed problem has a lower error

score.

(iv) We choose a maximising sequence, (qn) ⊂R (q2) (or conv (R (q2))). We expand

the following:

W 2
2 (qn , q2) = min

s#qλd = q2λd

∫

Ω

|x − s (x)|2
2

q (x) dλd (x)

= min
s#qλd = q2λd

∫

Ω

(
|x|2
2

− x·s (x)

)
q (x) dλd (x) +

∫

Ω

|y|2
2
q2 (y) dλd (y)

=

∫

Ω

|x|2
2
q (x) dλd (x) +

∫

Ω

|y|2
2
q2 (y) dλd (y)

− max
s#qλd = qλd

∫

Ω
x·s (x) q (x) dλd (x) .
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Noting (5.38) and |x|2
2 , q (x) ∈L2 (Ω), from our assumption that

∫
Ω |x|4 dλd (x) <∞,

then we have the following:

q→
∫

Ω

|x|2
2
q (x) dλd (x)

is weakly continuous. Thus the following mapping is weakly continuous

q→ max
s#qλd = q2λd

∫

Ω
x·s (x) q (x) dλd (x) =

∫

Ω
x · ∇φq (x) q (x) dλd (x) ,

where ∇φq denotes the Brenier map between (Ω , qλd) and (Ω , q2λd). (By way of

explanation we have used weak continuity of q→W2 (q , q2).) It follows that for

q ∈ conv (R (q2)), the mapping:

q→
∫

Ω

(
2 (1 − θ) q1 (x) + 2θx·∇φq − θ |x|2

)
q (x) dλd (x)

is also weakly continuous. Let (qn) be a maximising sequence for (5.16). Passing

to a subsequence if necessary, qn⇀q̃ say as n→∞, for some q̃ ∈ conv (R (q2)).

Now
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sup
q ∈R(q2)

∫

Ω

(
2 (1 − θ) q1 (x) + 2θx·∇φq − θ |x|2

)
q (x) dλd (x)

=

∫

Ω

(
2 (1 − θ) q1 (x) + 2θx·∇φq̃ − θ |x|2

)
q̃ (x) dλd (x) .

Moreover, R (q2) is weakly sequentially dense in conv (R (q2)) so the supremum is

the same if we consider the larger constraint set conv (R (q2)).

There are a few points to note. Firstly, having proved that a minimiser exists for the

relaxed more sophisticated formulation it would have been our hope to show existence

of minimisers for the rearrangements problem. However, the next part of the theorem

illustrates that for a class of functions, the value of the infimum of the more sophisti-

cated formulation is greater than that of the value for a minimiser of the relaxed more

sophisticated formulation. Minimisers of the relaxed version cannot be rearrangements.

Thus we must consider a different approach and that is the content of the final section.

As discussed previously the difference between the formulations is that ‖q‖2
2 ≤ ‖q2‖2

2 for

q ∈ conv (R (q2)), whereas for R (q2) there is equality. Noting that:

sup
q ∈ conv(R(q2))

∫

Ω

(
2 (1 − θ) q1 (x) + θx .∇φq − θ

2
|x|2
)
q (x) dλn (x)

= sup
q ∈R(q2)

∫

Ω

(
2 (1 − θ) q1 (x) + θx .∇φq − θ

2
|x|2
)
q (x) dλn (x) (5.53)

(5.16) seems the more tractable version of the problem: maximisers of the relaxed

problem may yield maximisers of (5.16). Suppose q̃ ∈ conv (R (q2)) attains the supremum
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on the left hand side of (5.53). Our wish is to find q̂ ∈R (q2) which attains the supremum

on the right-hand side of (5.53). Noting that
(
2 (1 − θ) q1 (x) − θ |x|2

)
∈L2 (Ω), and

making use of the results in Chapter 2 and properties of conv (R (q2)), we can choose

q̂ ∈R (q2) such that

∫

Ω

(
2 (1 − θ) q1 (x) − θ |x|2

)
q̂ (x) dλn (x)

≥
∫

Ω

(
2 (1 − θ) q1 (x) − θ |x|2

)
q̃ (x) dλn (x) (5.54)

Using this we get the following:

∫

Ω

(
2 (1 − θ) q1 (x) + 2θx·∇φq̂ − θ |x|2

)
q̂ (x) dλn (x)

≤
∫

Ω

(
2 (1 − θ) q1 (x) + 2θx·∇φq̃ − θ |x|2

)
q̃ (x) dλn (x) (5.55)

≤
∫

Ω

(
2 (1 − θ) q1 (x) − θ |x|2

)
q̂ (x) dλn (x) +

∫

Ω
(2θx·∇φq̃) q̃ (x) dλn (x) (5.56)

By way of explanation, the first inequality in (5.55) follows because q̂ ∈ conv (R (q2)) and

q̃ attains the supremum on the left hand side of (5.53), and the second from (5.54). From

Theorem 11 we know that the mapping q→
∫
Ω (2θx ·∇φq) q (x) is weakly continuous;

one needs to establish further properties to make progress.

5.6.1 Example.

Given the hypotheses of Theorem 11 (iii) we have specific values of θ for which the value

of (5.21)< the value of (5.15). Our original hope was to use the classical approach of
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considering the problem over the closed convex hull, before extracting minimisers of the

rearrangements problem; this is not possible for this class of examples. We demonstrate

this class is non-empty, and exhibit a value of θ. Define the following:

q1(x) =
1

2
for x∈ [0 , 1] (5.57) q2(x) = x for x∈ [0 , 1](5.58)

which are illustrated below:

0

1

1

q1 (x)1
2

(a)

0

1

1

q2 (x)

(b)

Figure 5.3: An illustration of the (a) q1 (x); (b) q2 (x).

For both functions we consider the qualitative features error and the displacement error

for both examples. Example 1 considers functions q1 (x) = 1
2 and q2 (x) = x. The

qualitative features error is as follows:

‖q1 − q2‖2
2 =

∫ 1

0

(
1

2
− x

)2

dx =
1

12

In order to evaluate the displacement error we must ascertain what the Brenier map is. In

this example we’re considering the Brenier map between
(
[0 , 1] , λ1

2

)
and ([0 , 1] , xdλ1 (x)).
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We define the “length of [0 , r]” functions:

ϕ (r) =

∫ r

0

1

2
dλ1 (x) =

r

2
; (5.59)

ψ (r) =

∫ r

0
x dλ1 (x) =

r2

2
. (5.60)

Noting that a measure-preserving mapping s :
(
[0 , 1] , λ1

2

)
→ ([0 , 1] , xdλ1 (x)) sat-

isfies 1
2λ1

(
s−1 (A)

)
= xdλ1 (A), we want ϕ (r) = ψ (g (r)), so s (r) =

√
r. Therefore,

the displacement error is:

W 2
2 (q1λ1 , q2λ2) =

1

4

∫ 1

0

∣∣√x − x
∣∣2 =

1

4

∫ 1

0

(
x − 2x3/2 + x2

)
dλ1 (x)

=
1

4

[
x2

2
− 4x5/2

5
+
x3

3

]1

0

=
1

120

We use this example to illustrate specific occurrences when inequality (5.34) is satisfied.

We seek θ such that θW 2
2 (q1 , q2) < (1 − θ) ‖q1 − q2‖2

2 that is:

θ

120
<

1 − θ

12

θ <
10

11
.



Chapter 6

Conclusions.

6.1 Summary.

This thesis has considered the decomposition of weather forecast error. In the opening

chapter we discussed the problems with using conventional error scores. Noting that

such forecast errors are not descriptive of how a forecast failed and may unduly penalise

displacement errors, we consider a new formulation. Based on work by Hoffman, Liu,

Louis and Grassotti we suggest a simple formulation which we split into two parts; an

error due to qualitative features and an error due to displacement, noted in (1.3). The

simple formulation is more descriptive of how the forecast fails.

The qualitative features error is defined to be the differences between the actual and

best fitting data measured by L2-norm over the set of rearrangements of the forecasted

data. The displacement error is defined to be the Wasserstein distance between the fore-

casted and best fitting data; it is minimised over the set of extremisers of the qualitative

features error. Given that best fitting rearrangements are calculated first, problems can

arise where an error in qualitative features can be penalised as a large displacement

149
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error. Solutions to these problems are outlined in section 1.3 and considered in Chapter

5. One solution would be to split the forecast into a series of regions, therefore not

allowing features to move large distances. Another solution which was considered later

in the thesis was to minimise the errors simultaneously.

The early part of the thesis is concerned with the theory behind the simple formula-

tion. From the definition of the error of our simple formulation some questions were left

unanswered. In the closest rearrangements chapter we show that the problem is well

posed. From Douglas [30] we have that a maximiser (or minimiser) exists and we give

a precise condition for when the maximiser is unique; this is the content of Theorem

3.2.1. The precise condition is not easy to verify; we give a sufficient condition. The

main theorem of this thesis, Nealers Theorem, is the characterisation of the set of closest

rearrangements, M. Nealers Theorem characterises the set M in the following way:

Maximisers (or minimisers) are unique up to level sets having positive mea-

sure of q1. On such level sets having positive measure the maximisers are

rearrangements of each other.

Therefore, we note the importance of level sets having positive measure and prove the

uniqueness on the complement of the level sets having positive measure in Proposition

2. The proof of Nealers Theorem is split into various lemmas and propositions. Nealers

Theorem can be written as those q ∈R (q2) which satisfies (3.5). We use the layer cake

principle, as used by Villani [71], to disintegrate in the way shown in (3.19) and (3.20),

which allows us to define Gq.

Lemma 3 and Proposition 4 establishes properties about Gq, more specifically about

the continuity of Gq. We use these properties in Lemma 5 to simplify the problem in
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Nealers Theorem. Using the simplified problem we now break down Nealers Theorem

into an if and only if condition. We let (⋆) be the condition that maximisers are unique

up to level sets having positive measure and are rearrangements on level sets having

positive measure. Proposition 6 deals with one side of this argument, i.e. given an

element of (⋆) do we have a maximiser? Nealers Theorem uses this and proves the other

side of the if and only if condition.

We then consider the theory of optimal mass transfer defining the Monge-Kantorovich

problem before moving onto its dual formulation. Having defined these we consider the

results for specific cost functions. This leads us directly into our final chapter. As we

discussed previously to solve one of the problems of the simple formulation we turn

the simple formulation into an optimal mass transfer problem to ensure that both the

qualitative features and displacement errors are taken simultaneously. This was based

on methods considered by Brenier and Benamou [10] who suggested turning the whole

error into an optimal mass transfer problem with a suitable choice for the cost function.

Using this work we turn the problem into a rearrangements problem. However, we can

turn the problem into an optimal mass transfer problem or a projection problem as

considered by Burton & Douglas [22]. The new error score is known as the more so-

phisticated formulation. This problem can also be reformulated as a partial differential

equations problem or an optimal mass transfer problem. We use Haker’s work [73] to

show the limitations to that problem.

Before considering the more sophisticated formulation we make the natural progres-

sion from the scalar version of the simple formulation to consider the vector version of

the simple formulation. While its scalar counterpart was well posed, the vector version

need not be. We show via an example before generalising the example in Proposition 7
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which illustrates that the closest rearrangement problem need not be attained for vector

valued functions.

We progress to consider the more sophisticated formulation where the qualitative

features error and the displacement are taken at the same time; a problem highlighted

in Chapter 1. For the simple formulation it was beneficial to consider an equivalent

maximisation problem to the original minimisation problem. We do this for the more

sophisticated formulation and this is the content of Theorem 8.

We would expect the new formulation to have less extremisers and we begin to

illustrate this in Proposition 9, where it is illustrated that if the forecast is a best fit of

the simple formulation it is the unique extremiser of the more sophisticated formulation.

In Chapter 3 we prove that the simple formulation is well posed and we characterise

the extremisers. The aim of Chapter 5 was to prove similar results for the more sophis-

ticated formulation. From section 2.7.2 it is a classical approach to consider the problem

over the closed convex hull of the set of rearrangements before generalising back to the

set of rearrangements. This deals with the lack of compactness and convexity which

exist for the set of rearrangements. Thus in section 5.4.1 we consider the relaxed more

sophisticated problem, which is the more sophisticated problem over the closed convex

hull. Again we consider an equivalent maximisation for this formulation, this is the con-

tent of Theorem 10. The difference between the maximisation problems of the relaxed

more sophisticated problem and the more sophisticated formulation is that in the closed

convex hull rearrangement no longer preserves the L2-norm. While we prove that an

extremiser attains the relaxed more sophisticated formulation in Theorem 11 (ii) the

next part of the theorem illustrates that we cannot generalise in the way in which we

had hoped. We finish the theorem and the chapter by showing that the maximisation
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problems of Theorem 8 and 10 are the most likely to yield results regarding the more

sophisticated formulation.

6.2 Future Work.

6.2.1 Numerical Implementation.

An obvious practical question is how to implement the theoretical ideas of this thesis

numerically. For the simple formulation the qualitative features error is given by:

inf
q ∈R(q2)

‖q1 − q‖2 = ‖q∗1 − q∗2‖2 =
∥∥q∆1 − q∆2

∥∥
2
, (6.1)

=

{
‖q1‖2

2 − 2

∫
q∗1q

∗
2 + ‖q2‖2

2

}1/2

, (6.2)

= ‖q1 − q∗2 ◦ s‖2 , (6.3)

where s is a polar factor of q1, that is a measure-preserving mapping satisfying q1 =

q∗1 ◦ s. Computing increasing (or decreasing) rearrangements should be straightforward,

then one would calculate ‖q∗1 − q∗2‖2 or
∫
q∗1q

∗
2 according to preference. Alternatively,

one could calculate a polar factorisation of q1 and find q∗2. Benamou [9] described a

scheme for calculating monotone rearrangements and polar factorisations.

The work of Benamou and Brenier [10; 11] gives a numerical scheme for calculating

W 2
2 (q , q2) and carries out some numerical experiments. The challenge here would be to

find an efficient way to optimise over the “closest rearrangements” as characterised in

Nealers Theorem. It appears that the numerical calculation of the simple formulation

could be carried out with existing methods.
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We consider stochastic effects. Our primary motivating example has been the distri-

bution of rainfall; the rainfall data has been obtained from a satellite and treated to deal

with any stochastic effects. However, one might want to carry out error decomposition

for a quantity with random noise. In this case the residual error of Hoffman et al. [47]

makes more sense.

As we have alluded to previously Haker et al. [44] discusses numerical schemes

for the more sophisticated formulation. However, Haker and his co-workers made the

assumption that
∫
q1 =

∫
q2; this need not be the case in our work. Therefore, we would

need to modify this numerical scheme to use it in our case. Moreover, to utilise this

numerical scheme, we would need to use the Monge formulation of the more sophisticated

error; this is an open question of this thesis.

6.2.2 Open questions.

The questions left unanswered from Chapter 5 surround illustrating that the more so-

phisticated formulation is attained and how to characterise the extremisers. After The-

orem 11 we are left with (5.53). From this we have established that a maximiser attains

the bound of the more sophisticated formulation over the closed convex hull of the set of

rearrangements. From (5.53) we know that the value of the supremum over the closed

convex hull is equal to the value of the supremum over the set of rearrangements. The

question left unanswered is whether a maximiser exists for maximisation problem of the

more sophisticated formulation over the set of rearrangements.

We discussed the study of energy extremising isovortical planar ideal fluids flows

in Chapter 1 (see also Burton [23]). There may be similarities to the maximisation

problem of the more sophisticated formulation. In Burton’s problem, he was able to
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demonstrate the existence of an energy maximiser relative to the weak closure of the

set of rearrangements by standard methods and then used rearrangement inequalities

to find a rearrangement with at least the same energy. This demonstrates the existence

of energy maximisers relative to the set of rearrangements. It is our hope to be able to

utilise these methods for our work. We can split (5.16) on the following way:

sup
q ∈R(q2)

[∫

Ω

(
2 (1 − θ) q1 (x) − θ

2
|x|2
)
q (x) dλn (x) +

∫

Ω
(θx .∇φq) q (x) dλn (x)

]
(6.4)

The first integral is linear and weakly continuous. For this integral we have already

proven that a rearrangement does just as well as the maximiser with respect to the weak

closure, (5.54). However, the Brenier map which is dependent on q adds extra complexity

to our problem, and while we have that the second integral is weakly continuous we

require further properties to make use of the arguments of Burton [18]. Something like

convexity would be sufficient. Even if we could show a property such as this, it might

still be difficult to work with both integrals simultaneously; the way in which we deal

with the coupling of the integrals could be central to solving the problem.

Numerical implementation, as we’ve described above, is a natural next step. Given

this, Haker’s work is important to us and to use Haker’s work, we require a formu-

lation of the more sophisticated problem as a Monge problem over a set of measure-

preserving mappings. The cost function involves a Brenier map dependent on the

measure-preserving mapping and seems challenging to manipulate.

Finally we wish to remove the assumption in Nealers Theorem that the values taken

by the level set of positive measure of q1 can be written as a decreasing sequence.
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Whilst unlikely to be of practical importance to forecast error decomposition, it would

be a better theoretical result.
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