
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjde20

International Journal of Digital Earth

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjde20

Monitoring travel patterns in German city regions
with the help of mobile phone network data

Stefan Fina , Jigeeshu Joshi & Dirk Wittowsky

To cite this article: Stefan Fina , Jigeeshu Joshi & Dirk Wittowsky (2020): Monitoring travel
patterns in German city regions with the help of mobile phone network data, International Journal of
Digital Earth, DOI: 10.1080/17538947.2020.1836048

To link to this article:  https://doi.org/10.1080/17538947.2020.1836048

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

View supplementary material 

Published online: 22 Oct 2020.

Submit your article to this journal 

Article views: 218

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjde20
https://www.tandfonline.com/loi/tjde20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17538947.2020.1836048
https://doi.org/10.1080/17538947.2020.1836048
https://www.tandfonline.com/doi/suppl/10.1080/17538947.2020.1836048
https://www.tandfonline.com/doi/suppl/10.1080/17538947.2020.1836048
https://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjde20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17538947.2020.1836048
https://www.tandfonline.com/doi/mlt/10.1080/17538947.2020.1836048
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2020.1836048&domain=pdf&date_stamp=2020-10-22
http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2020.1836048&domain=pdf&date_stamp=2020-10-22


Monitoring travel patterns in German city regions with the help of
mobile phone network data
Stefan Fina a, Jigeeshu Joshib and Dirk Wittowskyc

aILS – Research Institute for Regional and Urban Development gGmbH, RWTH Aachen University, Dortmund,
Germany; bGerman Aerospace Center DLR Berlin, Berlin, Germany; cInstitute of Mobility and Urban Planning,
University Duisburg-Essen, Essen, Germany

ABSTRACT
This paper discusses the possibility to use mobile phone network data to
monitor spatial policies in land use and transport planning. Monitoring
requires robust time series and reproducible concepts linking spatial
policies to monitoring outcomes, a requirement differing from current
literature where mobile phone data analysis is exemplified in selected
areas with privileged data access. Concepts need to serve the
evaluation of policy objectives, for example in regional or local area
plans. In this study, we, therefore, extend the application of mobile
phone network data to monitoring applications comparing urban
settlement types and their characteristic mobility patterns. To accomplish
this, we link mobile phone records with urban classifications and
transport network data, using both visual and computational approaches
to mine the data. The article presents comparisons of travel patterns for
selected monocentric and polycentric city regions in Germany, testing
hypotheses of transit-oriented regional development, as well as testing
for congestion risks in the transport network. The results help us to gain
a more detailed understanding of spatial and temporal patterns in
mobility for different urban types and assess future potentials for
monitoring spatial policies with mobile phone network data.
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1. Introduction: mobile phone network data and big data analytics

The advent of the mobile phone has revolutionized many aspects of modern life in an unprece-
dented way. In Germany, the number of registered mobile phone numbers has increased from
just under one million in 1992 to almost 137 million in 2018 (Statista 2020). This means that in
a country of over 83 million people most people have at least one mobile phone at their disposal,
with the vast majority likely to carry it with them for most of the day. The idea to use phone location
data for monitoring purposes is not new. Scholars and engineers in the automotive sector have con-
ducted so-called mobile phone travel surveys for quite some time. Initially, such studies focused on
enhancing in-car navigation devices with real-time traffic data. Nowadays, real-time traffic infor-
mation is used in many advanced routing and navigation applications on a range of devices.
Other disciplines have picked up on these new possibilities to learn more about individual travel
behaviour. For instance, spatial planners now conduct travel surveys for all transport modes,
including public transport and active forms of mobility (walking, cycling). However, there are
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two main requirements needing to be met for the data to be used efficiently: (1) data can only be
used if it conforms to data protection laws, i.e. it must be anonymized and aggregated to numbers
so that no personal information can be revealed, (2) the amount of data to be processable in a cost-
efficient manner by the hardware and software available. These requirements have been significant
obstacles in the past. To date, only early adopters of new technologies are experimenting with these
new datasets in areas with privileged data access. Area-wide spatial monitoring concepts have not
yet taken up the possibilities deriving from mobile phone network data to track fulfilment of spatial
policy objectives. In the case of Germany, studies mostly rely on the analysis of archived land use
statistics, topographic geodata and mobility surveys (Nobis and Kuhnimhof 2018). These are
usually some three years old before they can be made available in combination. Analysis options
are subject to limitations that come along with the data. Examples are inconsistent land use classifi-
cations over time, limited or non-matching spatial resolutions, or missing information on commu-
ters not belonging to the state social security system that the statistics cover (e.g. self-employed
people, government employees, Friedrich et al. 2017). Such shortcomings can now be overcome
through the use of more up-to-date mobile phone network data. With legal questions relating to
data protection now resolved, concepts integrating mobile phone network data for long-termmoni-
toring purposes are now feasible.

Against this background, we demonstrate in this article how mobile phone network data can
enhance analytical applications for monitoring spatial policies related to land use and transport
planning in Germany. Based on the available body of literature, we identify opportunities and chal-
lenges for the use of such data encountered by other researchers. This knowledge is then used to
develop concepts for a longitudinal analysis of the whole country.

The concepts serve to evaluate fulfilment of policy objectives in existing set-ups and are therefore
framed by software and manpower capacities typically available to spatial planning authorities. The
mobile phone network dataset was extracted from the German database of Telefónica, one of the
leading integrated telecommunications providers in Germany. The sample of Telefónica users is
large enough to provide robust estimates for all transport users based on extrapolation algorithms
(Telefónica NEXT 2018). The aggregated data covered all origins and destinations among Ger-
many’s 8230 household postcodes. The resulting matrix was segmented for each hour of the day,
giving the trip start and end time and its origin and destination postcode. The transport mode
was not available in the dataset so that data records could not be attributed to driving, walking,
cycling, or public transport usage. Nevertheless, the dataset for a typical one-week period in
March 2017 was useful for developing and testing the spatial monitoring concepts reported in
this paper.

Following a literature review, we explain how we analysed the data using free and commercial
software, how we added spatial knowledge by classifying postcodes by spatial type, and carried
out analyses using data exploration tools (for example, R Shiny) and GIS-based visualization tech-
niques. Finally, we discuss the usability of such analysis routines for planning practice in a conclud-
ing section.

In order to systematically interpret analysis potentials, this paper leans on the classification of big
data analytics according to Erl, Khattak, and Buhler (2016) for its structure.

Their approach covers four levels of analysis, as presented in Figure 1, with increasing complex-
ity but also increasing analytic value from the bottom to the top: Accordingly, while descriptive
analysis approaches are of low complexity, their analytic value helps understand processes that hap-
pened in the past. Diagnostic and predictive analyses are of medium complexity, providing further
analytical insight into current processes based on trends of the past. Erl, Khattak, and Buhler (2016)
cite as typical use cases the descriptive visualization of mobile phone users, the analysis of air pol-
lution in a comparison between stop-and-go and free-flow traffic (diagnostic), or forecasts on future
air pollution in smart traffic management (predictive). At the top (with a grey background since we
do not cover such analysis in this paper), prescriptive analysis is of high complexity but helps to
model and predict processes for the future (‘foresight’) and is therefore of the highest analytical
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value. One example would be smart in-car navigation that avoids routes with high levels of air
pollution.

Using this line of thinking, the following sections present potential spatial and urban planning
applications based on mobile phone network data.

2. Background: monitoring mobility patterns

In order to plan transport infrastructure, planners require not only supply information on physical
transport networks, their capacities and usage patterns, but also demand information in terms of
the mobility requirements of local populations and economies. The collection and management
of such information have evolved over the last decades: once the sole domain of transport engin-
eering and planning disciplines, a more interdisciplinary approach is now used, encompassing
spatial planning disciplines and the social sciences. In this context, the paradigm of sustainable
transport planning has led to a focus on travel behaviour studies. Planning practice now combines
new insights into mobility requirements with strategies of travel demand management. In order to
support such an enhanced perspective on sustainable transport, modern information systems need
to integrate data on a range of topics, for example, land use, transport infrastructure, population
statistics and projections. In the past, such information was collected from a variety of sources,
sometimes involving cost-intensive and time-consuming manual labour (e.g. traffic counts, house-
hold surveys, service level assessments).

The so-called datafication of society sees new data-driven applications generating a wealth of
new information (Big Data) on a range of topics. In our case, this data can be mined in terms of
its usability for the aforementioned transport planning purposes (Kitchin 2014). The expectation
is that such new data can reduce or eliminate the need to conduct costly and time-intensive travel
surveys. An important question is whether information previously collected manually can be
replaced by automatically generated data at the same or even higher frequency, quality and
depth of information, for instance, mobile phone network data. This would allow the geographical
scope of transport planning studies to be greatly expanded, removing the past limitations of scope
in transport analysis and related monitoring activities due to the cost and time required for data
collection.

Using vehicles and persons as mobile sensors and data collectors opens up new possibilities in
spatial analysis and traffic control. Examples are assessments of transport network performance,
strategic recommendations for a modified infrastructure, or the compilation of an origin-destina-
tion matrix for traffic demand modelling. In addition, high political and social expectations are

Figure 1. Levels of big data analytics (adapted from Erl, Khattak, and Buhler 2016).
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placed on innovative technologies and their possible positive effects on the future design of cities
and mobility systems. Authors like Wang, He and Zung have provided a literature overview in
this context, looking at how mobile phone network data can be used in travel behaviour research
(Wang, He, and Leung 2018). They identify three types of applications where such data has shown
promising analytical potential: the identification of travel patterns, the exploration of influencing
factors, and the modelling and prediction of travel behaviour (Wang, He, and Leung 2018, 2).
Other authors agree that the use of such data is a proven alternative to conventional travel surveys,
censuses or other existing data collection techniques (De Meersman et al. 2016). Mobile phone
records provide a sufficiently large sample size. The rapid increase in mobile phone usage has
made mobile phone data relatively easy to collect and to frequently update. The scope of its
usage varies. In particular, it is being extensively used to monitor urban mobility in relation to ori-
gins and destinations in a study area. For example, spatial structure and commuting dynamics have
been studied on the basis of hotspot clustering derived from mobile phone network data (Louail
et al. 2014). One article authored by Yang et al. (2018) proposes a workflow for characterizing com-
munities according to commuting patterns using mobile phone location data collected by a tele-
communications company. Having ascertained the work and home locations of the mobile
phone users from the location records, they constructed a directed and weighted commuting
flow network, using it to identify thirteen communities (functional regions) within the study
area of Shenzhen, China. Methods for dynamic accessibility analysis using mobile phone records
and online route planners are presented by García-Albertos et al. (2018). These compute on changes
in the attractiveness and travel time for transport zones within the Municipality of Madrid for a day,
using anonymized call details records and the Google Map Directions Application Programmers
Interface (API) respectively. Ahas et al. (2015) propose a methodology to detect spatial and tem-
poral differences in everyday activities using the call detail records (CDR) of three cities, namely
Harbin city (China), Tallinn (Estonia) and Paris (France). The study measures the temporal differ-
ences in activities for the three test cities using four temporal indicators: night minimum, morning
rush-hour, midday and the whole of an active day. It also proposes a quartile-based approach to
analysing spatial differences in the cities to reduce the effect of the uneven spatial distribution of
antennas. Chen et al. (2016) introduce datasets, concepts, methods and issues common in studies
of human mobility. In particular, they discuss the problems associated with using big data like
mobile phone network data. Dividing the study of mobility into three areas, namely behavioural
factors, model development and humanmobility patterns, the overall aim of the paper is to synergize
the work of two groups – one consisting of transport planners/researchers working with small data
and the other including computer/data scientists working with big data. Several studies have focused
on a visual analytics approach for urbanmobility analyses using mobile phone network data (Sobral,
Dias, and Borges 2019; Senaratne et al. 2017; Andrienko et al. 2017; Chen, Guo, andWang 2015; Sagl,
Loidl, and Beinat 2012). Toole et al. (2015) used call data records in conjunctionwith census and road
network data with the aim of gaining a better understanding of road usage patterns in five metro
regions: Boston, San Francisco, Lisbon, Porto and Rio de Janeiro. Based on bipartite road usage
graphs, the authors managed to identify congested road segments and sources (census tract) of con-
gestion. In a recent article, Gregersen and Lunke (2018) provided an additional review of literature on
the use of mobile phone network data for travel behaviour research. Most of the empirical work cov-
ered in these studies underlines the innovation potential of such data for transport analysis. At the
same time, this empirical work is so far restricted to specific urban regions and spatial types.We posit
that the use of mobile phone network data has much greater potential, allowing transport and travel
patterns between different urban environments to be analysed, for instance between different settle-
ment types (metropolis, large cities, small and medium-sized cities etc.), urban cores and catchment
areas, as well as daytime/night-time activity patterns in certain cities. The potential of such area-wide
monitoring could provide new insights into understanding interdependencies between different
urban types and recent mobility trends. Furthermore, the efficiency of a settlement structure to ser-
vice future mobility needs can be assessed in greater detail, for example between monocentric and
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polycentric urban development paradigms. Such analysis requires data with a larger spatial scope, in
our case for the whole of Germany.

In a previous study, Tolouei, Álvarez, and Duduta (2015) also used Telefonica data to verify the
accuracy of identified trip origins and destinations extracted from mobile phone network data.
They compared the data processed by Telefónica with roadside interview data (RSIs) obtained
for the region of Leicester, UK. They conclude that the processed mobile phone network data is
not biased or less accurate than conventional RSI data. They further highlight the strength of mobile
phone network data in providing valuable insights into macro population movements and its
potential for highway matrix development. In the following sections, we expand on the aforemen-
tioned research studies, aiming to test the analysis potentials of mobile phone network data for
transport planning and related analyses such as transport models, spatial monitoring applications
and their interpretation in transport planning policy targets.

3. The data and methodology section

3.1. Data sources and data fusion

Aggregated and anonymized mobile phone network data was provided by Telefónica Next as an
origin-destination-matrix based on nearly 45 million registered mobile phone numbers, 21
million customers and 8 billion network events. This database is populated with records when
mobile devices communicate with mobile phone cells, for example, when surfing the Internet
or making phone calls. Mobile device activities are recorded, anonymized and processed to ident-
ify movements and trips. In a further work step, movements are typified by recurring patterns,
identifying places of residence and work or paths to other destinations. In order to implement
statistical analyses of such mobility data responsibly, Telefónica Next has developed a specific
anonymization routine conforming to data protection regulations. The spatial extent of mobile
network traffic covers the whole of Germany, with postcodes used as the spatial unit of traffic
data. The temporal range of this data is one typical week in March 2017. The huge spatial extent
of the data provides an opportunity to explore movement patterns between different urban settle-
ment types, for example in terms of traffic flows. Table 1 gives a brief summary of the mobile
phone network dataset.

Trips were provided as a Comma Separated Value (CSV) file for a time series with 1-hour inter-
vals. The data essentially has five attributes, namely startzone, endzone, day, hour and number of
trips. The terms (used hereinafter) startzone and endzone represent the postcodes where the trip
originated and terminated. This data structure allows queries aggregated by day, hour and postcode,
meaning that mobility patterns can be analysed by morning and evening peaks or at specific hours
and filtered for start- and endzones of interest, for weekdays and weekends (Telefónica NEXT
2018). To detect spatial mobility pattern in data with postcodes as the spatial unit and thus answer
research questions interested in functional relationships between origins and destinations,
additional information on the character and function of origins and destinations needs to be
added. One useful representational unit for this purpose is the so-called RegioStaR classification
(in German: ‘Regionalstatistische Raumtypen’, English translation: ‘regional statistics spatial
types’) defined by the German Federal Ministry of Transport (BMVI 2018) which was used as an
auxiliary data source for this study. The objective of this new classification, published in mid-
2018, is to delineate functionally homogeneous municipalities into spatial types, especially for
research into transport and mobility planning. Another requirement was to establish spatial

Table 1. Brief summary of the Telefónica mobile phone network dataset used in this study (one week in March 2017).

No. of recorded trips No. of days No. of weeks No. of O-D Links No. of postcodes (All of Germany)

22,438,631 7 1 1,193,603 8222

INTERNATIONAL JOURNAL OF DIGITAL EARTH 5



types that are robust over time and can be updated and complemented with newer datasets designed
for monitoring purposes (BMVI 2018).

On this basis we aggregated trip volumes by the RegioStaR categories (1) rural areas and their
subtypes (peripheral rural areas and rural areas within the catchment areas of city regions), (2)
small and medium-sized cities and their commuter catchment areas (in German: ‘Regiopolitane
Stadtregionen’) and (3) larger metropolitan areas (in German: ‘Metropolitane Stadtregionen’).
This allowed us to detect typical mobility patterns between these spatial types (for example the
morning rush-hour for commuters working in inner-city locations) or to identify cases where devi-
ations from theoretical assumptions on mobility patterns were observed and needed to be
explained. To this end, we linked the original mobile phone network data with the RegioStaR
classification of the approx. 11,000 municipalities in Germany. Note that the phone data lacked
information on the mode of transport, an important attribute for any comprehensive travel behav-
iour analysis. This is a weakness in the current state of development for mobile phone network data
in general. In theory, it should be possible to detect transport modes by using phone location data to
ascertain speeds, i.e. the time needed to move from one location to the next, and thus the mode of
transport. Accuracy, however, varies between areas and transport modes; the differentiation of
transport modes in dense inner cities with many transport options is still an open research issue
(Huang, Cheng, and Weibel 2019).

The aggregated and anonymized mobile data was stored as a table in a PostgreSQL database.
Based on the details of a query execution plan, indexes were created on the table to speed up queries.
Computationally intensive geoprocessing tasks such as a so-called Spatial Join were also executed in
PostgreSQL using functions provided by its spatial database extender PostGIS.

Besides classification data from BMVI, another important source of auxiliary data was the road
network data from OpenStreetMap (OSM) for Germany. Obtained from Geofabrik GmbH, OSM
data are pre-processed as a routable shapefile for use in graph processing e.g. routing or reachability
analyses with ArcGIS Network Analyst (Ramm 2019). The OSM data were used to compute trip
length, the distance between origin and destination. Trip length and trip frequency are the two
measures of mobility analysed in this study. Trip frequency between pairs of startzone and endzone
was obtained from the mobile data records, while trip length was calculated using the Network Ana-
lyst Extension in ArcMap 10.5.1, a commercial desktop GIS software package developed by ESRI
Inc. This software package is frequently used by transport planning authorities and therefore
seen as the most accessible routine available to practitioners.

3.2. Data preparation and classification

As part of data preparation, we applied basic data quality checks and aggregation routines. The
main purpose was to convert data from postcode units to spatial units relevant for the policy
level. In Germany, the most important policy levels using spatial designations are regional plans
and district/local area plans. The most important base unit for monitoring spatial policies in related
plans and objectives in text formulations are municipalities (LAU 2 level according to the nomen-
clature of the European Union). Data conversion, therefore, entailed converting postcode data to
municipalities, for the most part without overlaps. To overcome any eventual overlaps, we drew
up rules to reassign data based on area proportions of overlapping units.

Of the total 8222 postcodes, 1363 were found to cover more than one municipality. However, of
these only 211 spanned municipalities belonging to different region classifications. These postcodes
were assigned to the region classification of the municipality with the largest overlap area, thereby
minimizing ambiguity. Table 2 shows the number of postcodes assigned to each classification. The
resulting spatial typology by postcode was then linked to the table with mobile traffic data in a
spatially enabled PostgreSQL database. Performance considerations required that indexes be
used to improve query performance.
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3.3. GIS-based network analysis

Frequency and spatial range constitute two key dimensions of mobility (Williams et al. 2015). In
this sense, we first measured frequency as the number of trips between two zones, a pattern vary-
ing at different times of the day and on different days of the week. Spatial and temporal frequency
patterns have several uses in urban studies, for example, to determine a zone’s attractiveness
(sometimes called ‘gravity’ from a modelling perspective). In order to model distances between
start- and endzones, we created travel routes in a street network provided by OSM, enabling
us to calculate the approximate length of each trip between the geometric centroids of start-
and endzones.

Computing routes between 8222 (German postcodes) datapoints requires intensive processing.
Even if not all possible combinations are practical (it is unlikely that people travel long distances on
a daily basis and remote places are less frequently travelled to), route calculation nonetheless dic-
tated significant performance considerations. Parallelization helped improve processing perform-
ance. The program code snippet featured in Appendix A.1 documents the procedure used to
compute the network distances between startzone and endzone. The function GetDistances given
in Appendix A.2 was used to calculate network distance between the features in the origin and des-
tination layers. This function uses a network dataset built from the OSM street network and
methods available in the ArcPy network analyst module (ESRI 2019).

4. Descriptive analysis options: methods, tools, examples

4.1. Interactive visualization tool with R shiny

To investigate human mobility patterns and compare different urban environments with a dataset
as the one used in this study, a visual analytics tool was needed, as such tools have interactive par-
ameter options useful for filtering, exploring and aggregating the data for criteria like spatial types
or time of the day (Sagl, Loidl, and Beinat 2012; Zheng et al. 2016; Keim et al. 2010). We developed
such a tool using the open-source R software in conjunction with various R packages. We chose the
R Shiny package to build the application interface and implement reactive functions. The RPost-
greSQL package was used to query the PostgreSQL database table (Conway et al. 2017). Query
results in the form of graphs were generated using the packages plotly and ggplot2. The design
of these tools addresses two main analysis objectives:

. Analysis of traffic flows to and from major urban centres/city cores in Germany
o in terms of trip frequency aggregated by day or hour
o in terms of total distance travelled aggregated by day or hour

Table 2. BMVI classification of regions and the number of postcodes assigned to each category.

Region classification Region code Postcode count

Stadtregion – Metropole
(Urban region – Metropolis)

71 771

Stadtregion – Regiopole und Großstadt
(Large cities/Second-tier cities)

72 601

Stadtregion – Mittelstadt, städtischer Raum
(Medium-sized cities)

73 1397

Stadtregion – Kleinstädtischer, dörflicher Raum
(Small towns and villages)

74 936

Ländliche Region – Zentrale Stadt
(Markets towns in rural areas)

75 282

Ländliche Region – Städtischer Raum
(Towns in rural areas)

76 1052

Ländliche Region – Kleinstädtischer, dörflicher Raum
(Small towns in rural area)

77 3183

Total 7 8222
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. Analysis of traffic flow between zones with different BMVI classifications
o in terms of trip frequency aggregated by day or hour
o in terms of total distance travelled aggregated by day or hour

Results are visualized in interactive graphs. Below are examples of the results produced with the
tool. Three directions of traffic flow can be analysed: (1) Incoming traffic to the postcodes in the
urban centres (Incoming) from all other postcodes in Germany, (2) outgoing traffic from postcodes
in the urban centres (Outgoing) to all other postcodes in Germany, and (3) net traffic defined as the
difference between incoming and outgoing traffic (Incoming – Outgoing).

The two graphs in Figure 2 show the computed traffic flows to and from the three largest urban
centres in Germany (Berlin, Hamburg, Munich, see results section for interpretation) in terms of
frequency and distance. Figure 3 uses another set of options to query the dataset, examining
traffic flow patterns within city regions and their sub-centre or suburban origins and destinations
under the RegioStaR classification. This method helps to better understand functional linkages
within a polycentric urban system with different city sizes, for example the Ruhrgebiet and Frank-
furt am Main metropolitan regions.

The tool also allows data to be viewed on a map. The Javascript library Leaflet together with the R
packages rgeos, sp and maptools were used to read and visualize the spatial data. Figure 4 shows a
choropleth map representing quantities of trips made to the zones of Berlin for selected hours of the
day. Furthermore, it allows a comparison of the number of trips made on different days of the week
(for example weekdays, Saturdays or Sundays), in this case for a weekday at 2 PM.

4.2. Spider map visualization

Methods for understanding road usage patterns in urban areas with the help of mobile phone net-
work data can be found in Toole et al. 2015. They explain the use of bipartite usage graphs to ident-
ify road segments at risk of becoming congested due to heavy traffic flows and the census tracts from
where the traffic originates. Our study enabled a similar usage pattern to be visualized, as shown in
Figure 5. The method used can help infer the attractiveness of postcodes, representing the incoming

Figure 2. Example of traffic flows to and from the three largest urban centres in Germany using an interactive data visualization
tool.
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traffic with graduated point symbols. It is also helpful in visualizing the volume of traffic between
zones displayed with graduated line symbols. Together they provide a good estimate of links with
heavy traffic flows and postcodes contributing to the traffic, regardless of the transport mode. A
similar visual heuristic approach was tested for the definition of commuter catchment areas in
the United States by Dash Nelson and Rae (2016). The authors point out that, although the visual

Figure 3. Example of traffic flows between different spatial types within defined urban regions in Germany using an interactive
data visualization tool.

Figure 4. Map showing the quantities of trips into the zones of the Berlin region for a selected hour of the day.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 9



approach aids in exploratory analysis, it is not sufficient to support practical decision-making. In
addition, a computational approach determining traffic volumes for specific road segments in
the network would significantly augment visualizations of traffic patterns. To arrive at a reasonable
estimate of traffic volumes and subsequent congestion potentials in the network, we tested the tech-
nique explained in the following section.

5. Diagnostic analysis options: are mobility patterns determined by urban spatial
structure?

In this section, we present and interpret some of the results obtained using the methods discussed in
the previous section for the mobile phone network data supplied by Telefónica. We chose study
areas providing the possibility to reflect on the accuracy of our results in the light of widely studied
mobility patterns – usually the case for the main metropolitan areas of Germany. Figure 2, which we
used to demonstrate the method, shows the number of trips and trip lengths for incoming trips for
the cities of Berlin, Hamburg, and Munich. Note that the two graphs do not show the same pattern:

Figure 5. Traffic density map visualizing the volume of traffic between postcodes and the incoming traffic volumes for each
postcode in the region of North Rhein-Westphalia for a typical weekday.
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despite the fact that the urban centre of Munich registers a greater number of incoming trips during
morning and evening peak hours, total travelled distances to the Munich centre are less than those
for the urban centres of Berlin and Hamburg. Figure 3, also shown in the previous section, depicts
trips within a region from suburbs and suburban centres to the main city for the polycentric regions
of Ruhrgebiet and Frankfurt/Rhein/Main. In an initial interpretation, we see that the two regions
have similar morning peaks in terms of traffic volume. However, volumes in the afternoon and eve-
ning differ, being much higher in the Ruhrgebiet. Interestingly, traffic in the Frankfurt/Rhein-Main
area attracts trips from farther away.

The following examples demonstrate applications of mobile phone network data and how it can
help develop a better understanding of human travel behaviour in different urban environments.

5.1. Trip patterns characteristic for monocentric city regions

We start by looking at trip patterns in two well-known monocentric city regions in Germany –Ham-
burg and Munich. Monocentric in this application means that we expect a dominant inner-city core
to act as a magnet for traffic flows from suburban locations. Though subcentres exist, they are far out-
weighed in their importance as centres of activities by the inner-city core, as is the case with Hamburg
and Munich – in contrast to most other city regions in Germany (Böltken and Stiens 2002). The two
cities have a very similar number of inhabitants- meaning that we do not have to control for popu-
lation size in the results. Figure 6 shows changes by hour in the traffic coming into Hamburg and
Munich from the rest of Germany. For both urban centres, we observe a morning peak between
7am and 9am. There is another much smaller afternoon peak between 4pm and 5pm. The peaks
for the two urban centres differ in magnitude. Munich records a slightly higher number of trips
into the urban centre during the morning peak than Hamburg, while its afternoon peak is signifi-
cantly higher. The graph largely resembles the typical trip pattern we would expect in a monocentric
city region with a dominant core. Commuters from the outskirts exert pressure on the transport sys-
tem in a clearly visible morning peak that levels off after typical business hours start (6–9am). The late
afternoon peak is less pronounced since end-of-the-day business hours are more spread out (3–8pm).

The value of such analysis for transport planning will only become obvious once time series for
monitoring become available. From other studies on commuting patterns we know that trip
volumes and trip lengths in economically successful cities like Munich and Hamburg have
increased significantly over the last decades (Fina, Rusche, and Gerten 2018). The liberalization
of the labour market, improvements to the transport system, but also residential suburbanization

Figure 6. Graph comparing aggregated incoming traffic in two monocentric regions – Hamburg and Munich.
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have led to a significant increase of long-distance commuting across the city regions of Hamburg
and Munich, resulting in unprecedented congestion problems and traffic delays on the road net-
work, overcrowded public transport and environmental and psychosocial stress for commuters
at peak times. Spatial planners are considering changes to the opening or operating hours of insti-
tutions where they can theoretically intervene, especially those engendering peak traffic like schools
and kindergartens, or coordinated efforts to regulate shift work to spread traffic more evenly across
the day. None of these proposals have so far been put into practice, as there are many legal and
societal obstacles that are difficult to resolve. Nevertheless, monitoring the magnitude of peak
traffic could help assess the potential of such initiatives.

It is also useful to know the distances travelled to urban centres. Figure 7 shows by hour the total
distance (calculated as trip length multiplied with the number of trips) travelled to the urban
centres. Unlike trip frequency (higher in Munich), the graph in Figure 7 shows that the total dis-
tance travelled to the Hamburg urban is higher, i.e. the catchment area is larger.

Such information, once available in time series and possibly also by transport mode, could pro-
vide transport planners with assessment results for transport strategies and objectives. One example
is the mixed-use development of subcentres with the aim of reducing the need for commuters to
travel in large numbers to jobs in the inner city. This expectation is certainly offset by general
trends, for instance, higher mobility needs in a highly diversified labour market. This trend has
been researched under the term ‘wasteful commuting’ in the past, with high-skilled employees will-
ing to travel large distances to workplaces that offer lucrative jobs in line with their skills (Hamilton
and Röell 1982). However, suburban locations with mixed land use functions (residential, business,
shopping, entertainment, recreation, etc.) are nevertheless more likely to produce fewer trips than
segregated land uses where people need to travel over longer distances for daily activities. Any
evaluation of the expected outcome of such developments could profit from accurate data and
the monitoring of trip patterns like the one shown in Figure 7.

5.2. Comparing trip patterns between monocentric and polycentric city regions

Having compared two monocentric regions, we now compare traffic flows within polycentric and
monocentric regions. As examples of polycentric regions in Germany, we consider the Stuttgart and
Frankfurt regions. Both have a significantly less dominant inner city core with a population in 2016
of approx. 628,000 (Stuttgart) and 736,000 (Frankfurt amMain) and a hierarchy of important to less
important sub-centres in their commuter catchment areas, compared to Munich and Hamburg

Figure 7. Graph comparing total distance travelled to urban centres of two monocentric regions – Hamburg and Munich.
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which we retain as typical monocentric regions for this exercise (City of Hamburg: approx. 1.81
mio. inhabitants; City of Munich: approx. 1.45 mio. inhabitants). Spatial planners frequently
claim that public transport is more cost-efficient in polycentric settlement structures with sub-
centres that serve as nodes or public transport hubs in a network of development axes connecting
sub-centres. The assumption is that transit-oriented development, a term coined by Peter Calthorpe
and William Fulton in the early 2000s, can be established through high-speed train connections
between the most important (sub-) centres in radial and circular connections, supplemented by
local transit options like tramways, park-and-ride facilities and active modes to the transport
hub (Calthorpe and Fulton 2001). Now a paradigm in regional planning, this concept has been
adopted for example in the Stuttgart Region through definitions of development axes and high-
speed train connections between the inner city and the main suburban centres Böblingen/Sindelfin-
gen, Esslingen, Ludwigsburg, Vaihingen/Enz and incrementally with newer connections to for-
merly more self-contained cities on the outskirts of the region (for example Kirchheim/Teck,
Heilbronn, Herrenberg, Waiblingen, see Verband Region Stuttgart 2010 and Figure 8). Spatial plan-
ners in Stuttgart have promoted new housing developments along these axes over the last 20 years,
while at the same time trying to restrict development outside these axes.

One would expect these efforts to result in a high number of trips between these subcentres and
the core city of Stuttgart. In its basic structure, the Frankfurt region is similar, with the difference
that two different German states (‘Länder’) are involved: Hesse and Rhineland-Palatinate. Two
important centres in the Frankfurt region have the status of state capitals (Wiesbaden for Hesse,
Mainz for Rhineland-Palatinate), while Darmstadt is a further important city. These centres have
important administrative functions and therefore attract traffic flows to related workplaces and edu-
cational institutions. However, the dominant labour market with the status of a so-called global city
is Frankfurt am Main, the city analysed in the graph below.

Figure 8. Regional plan of the Stuttgart region with transit-oriented state-planned development axes (in German ‘Entwicklung-
sachse’), regional development axes (in German: ‘regionale Achse’), settlement areas along the development axes (in German:
‘Siedlungsbereich der Entwicklungsachsen’) and a city/town hierarchy from high to low (in German: ‘Oberzentrum’, ‘Mittelzen-
trum’, ‘Unterzentrum’ and ‘Kleinzentrum’). Some cities/towns are ranked together (a ‘Doppelzentrum’).
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With this as background, we can now test whether the regional planning paradigm mentioned
above holds true for the selected cities, comparing traffic flows between a region’s subcentres and
core city in the respective two polycentric and monocentric regions. Figure 9(a) shows the resulting
statistics for traffic flows in the case study regions in absolute number of trips. The first thing we
observe is the lack of significant morning and evening peaks in the two polycentric regions, leading
to the conclusion that commuter traffic is not so dominant in medium-sized cities as in core cities
with their larger numbers of workplaces. On the one hand, it is clear that the number of trips
between medium-sized cities in polycentric regions like Frankfurt and Stuttgart is far higher
than in monocentric regions like Hamburg and Munich, populous cities attracting more traffic
(see Table 3). Figure 9(b) complements the visualization with a standardized graph representation
showing trips per capita. We interpret the higher number of trips in the Stuttgart and Frankfurt
regions as indicative of the relative economic importance of their subcentres in comparison to
Munich and Hamburg. On the other hand, we find that there are more trips in absolute terms
between small-sized cities in monocentric regions than in polycentric regions, as seen in Figure
10(a) (number of trips), but not in relative terms (Figure 10(b), trips per capita). There are two con-
clusions to be drawn from this observation: apart from trips going into the urban core, traffic
between medium-sized cities dominates in polycentric regions. From a transport planning point
of view, we, therefore, expect a higher cost-efficiency and related investments in transit-oriented

Figure 9. Graphs comparing traffic flows between medium-sized cities within polycentric (Stuttgart, Frankfurt) and monocentric
(Hamburg, Munich) regions; (a) total trips made between medium-sized cities at different hours of the day; (b) standardized plot
showing trips per capita between medium-sized cities at different hours of the day.
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developments in polycentric regions. For monocentric regions we expect a higher reliance on pri-
vate vehicles to travel from small towns to non-central destinations. This is not to say that mobility
in polycentric regions is more sustainable in every case. However, the results suggest that poly-
centric regions have structural advantages over monocentric ones in their cost-efficient provision
of public transport.

6. Predictive analysis options: traffic volume and future congestion risks

The final use case presented here aims to identify potential bottlenecks in the road system. It is pre-
dictive in nature because it applies a set of assumptions based on empirical knowledge to a modelled
use case in the future.

Table 3. Statistics on small and medium-sized cities for the case study regions.

Small cities Medium-sized cities

Count Population Count Population

Munich 96 364,530 79 1,149,733
Hamburg 281 375,108 68 1,032,401
Stuttgart 4 24,951 147 1,985,052
Frankfurt 27 120,165 145 2,275,235

Figure 10. Graphs comparing traffic flows between small-sized cities within polycentric (Stuttgart, Frankfurt) and monocentric
(Hamburg, Munich) regions; (a) total trips made between small-sized cities at different hours of the day; (b) standardized plot
showing trips per capita between small-sized cities at different hours of the day.
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6.1. Traffic volume estimates

The identification of road segments in the network with heavy traffic volumes would require a
spatial analysis including routes along the street network rather than OD links. The routes between
a set of origin and destination nodes in a road network can be generated using the Closest Facility
tool in ArcGIS. The workflow to compute routes is basically the same as described in Section 3.3
except that the OD cost matrix is replaced by the closest facility solver in the function GetDistances.
Once the routes are generated, an overlay analysis such as spatial join can be carried out to quan-
titatively determine traffic volumes on a given road segment. Below we briefly illustrate and explain
the steps carried out in this study to estimate traffic volumes in the network.

The process is essentially two-step. In the first step, the routes are computed for a set of origin
and destination nodes. Here again, the centroid of a trip’s startzone and endzone is considered as
origin and destination node. For the sake of example in Figure 11(a), we show 6 origin points, O =
{1, 2, 3, 4, 5, 6} and one destination point D. The same can be applied to n number of origin and
destination points. This generates six routes to which we can assign the desired attributes like num-
ber of trips for each hour, day etc. with a table join.

Once the required attributes are joined, in the second step the routes are spatially joined to
aggregate the number of trips for the road segments. The thickness of the lines in Figure 11(b) is
indicative of the increasing number of trips or traffic volume. Traffic volume along with type,
capacity or average speed can help ascertain whether a given road segment is susceptible to conges-
tion. One major caveat here is the lack of transport mode information, currently not available.
Another limitation is the assumption that all users use the same route. In practice, where multiple
options are available, users can make route choices. Consequently, the traffic flow along the routes
may be divided. The ArcGIS Network analyst returns the best route by shortest distance or travel
time between two points. In theory, it is possible to model alternative routes by introducing line
barriers. Once the shortest path is solved, it could be loaded as a line barrier with an appropriate
scale factor for the subsequent solutions to find alternative routes. However, this was not
implemented in the current study since we consider such an approach as inferior to the function-
alities of a state-of-the-art transport model. Such models, especially in the form of four-stage trans-
port models, are specifically designed to solve such questions muchmore comprehensively than GIS
network analysis can do.

6.2. Congestion modelling

This method was used to estimate the traffic volume of each road segment in the transport network,
taking into account the number of trips registered in the mobile phone network data and assigning

Figure 11. Diagrams explaining the steps used to compute traffic volumes from mobile phone network data and street network
using GIS: (a) routes between given origin and destination points, (b) aggregated route attributes for each segment in the
network.
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them to the nearest road network features. Comparing the traffic volume with the known road
capacities can give a good estimate of congestion. It should, however, be noted that the method
assumes all trips are made by car due to lack of information about the mode of transport used. In
practice, a certain percentage of trips are made with modes of transport other than by car. This per-
centage, however, is small if we consider only longer trips that are not likely to be made on foot or by
bicycle. The remaining portion of trips could have been undertaken on public transport where such
options exist. This is unknown in this study design and potentially distorts the results. Using generic
figures given by the panel study ‘Mobilität in Deutschland 2017’, we estimate the modal share of pub-
lic transport to be around 5% for small towns and up to 20% for metropolitan areas, according to the
settlement type of the trip origin (Bundesministerium für Verkehr und digitale Infrastruktur 2017).
Road capacity was estimated based on OpenStreetMap (OSM) road classes and associated capacity
values for the OSM fclass attribute (Zilske, Neumann, and Nagel 2015). Intended to be used for
inner cities, these numbers have been rolled out for all road segments in the state of North Rhine-
Westphalia. This is a critical caveat; the estimates need to be replaced as soon as valid estimates
for road segments become available. Table 4 lists the tags in OSM data used for identifying different
kinds of roads, streets or paths. The capacities (vehicles per hour) for each tag used to determine con-
gestion potentials in the network are also listed. These were extracted from the article by Zilske, Neu-
mann, and Nagel (2015) on the use of OpenStreetMap for traffic simulation. The table also gives the
length of the network in the study area for different road type as well as for each class as derived from
congestion analysis. Though positing that this approach is useful in theory, we have no way of ver-
ifying the correctness of the results without further reference data. Results will become more robust,
once information on modes of transport and more accurate values of road capacity for different OSM
road types become available. The method can however help detect congestion potentials in the road
network in a timelier and more frequent manner for future transport analysis applications. We
applied the method to the whole of North Rhine-Westphalia (NRW), Germany’s most populous
and most densely populated state and a classic polycentric region containing four of Germany’s 10
largest cities: Düsseldorf, Cologne, Dortmund and Essen. Indeed, the Rhein-Ruhr metropolitan
area is the largest in Germany (Wikipedia 2019). As many as 93,000 routes were computed for
trips that either originated or terminated in the NRW postcodes for a typical weekday (see Figure
12). The line features representing the routes were linked with the trip count for each hour of the
day from mobile data records based on the common attributes (startzone and endzone). The routes
were then spatially linked with the layer containing road network to aggregate the traffic volume for
road segments in the network. The capacity (vehicles per hour) of each road segment in the network
was assigned based on the characteristics of the road types.

With traffic volume (V) and capacity (C) for each road segment now available, we were able to
map segments with congestion potential using the ratio of traffic volume / capacity. Figure 12 high-
lights road segments prone to congestion i.e. the ratio (traffic volume at morning peak hour/

Table 4. Road type, capacity and length of road network.

Road type Capacity (vehicles/hour) Total length (km)

Length (km)
Ratio (V/C)

<1

Length (km)
Ratio (V/C)

1–3

Length (km)
Ratio (V/C)

>3

Motorway 2000 4177 4077 100 0
Motorway link 1500 1041 1015 26 0
Trunk/Trunk link 1000 980 880 92 8
Primary/Primary link 1000 5405 4290 1025 90
Secondary/Secondary link 1000 12,356 10,981 1307 68
Tertiary/Tertiary link 600 6405 5427 908 70
Residential link 600 3490 2755 645 90
Traffic-calmed link 300 105 60 35 10
Unclassified 600 1876 1652 196 28
Total – 35,835 31,137 4334 364
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capacity) is greater than 1 but less than 3 (in blue) and those highly prone to congestion with a ratio
greater than 3 (in red).

7. Discussion and future work

This article demonstrates the potential of using mobile phone network data in transport planning
and monitoring applications in Germany. Based on a brief literature review we agree with many
scholars that the time-consuming and expensive organization and conduct of dedicated travel sur-
veys can be largely replaced and complemented by analysing mobile phone network data. Users set
to benefit from such data are transport planners and transport engineers who rely heavily on traffic
counts to apply best practice infrastructure planning and evaluation procedures. In addition, the
data is also useful to academia in transport and spatial planning-related disciplines, in transport
economics, to scholars and planning practitioners working on local and regional policy as well
as to policymakers concerned with the much discussed mobility transition as a key to decarbonize
the transport sector. Some studies come to the conclusion that mobile phone network data captures

Figure 12. Map showing congestion potentials in the transport network for the state of North Rhein-Westphalia in Germany
during the morning peak hour.
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mobility trends much better than any dedicated travel survey can do. The data is automatically col-
lected by mobile phone network providers and therefore readily available, at least for the spatial
activities of a company’s customer base. Location-specific projections can be used to derive the
absolute number of trips based on the available sample, provided that the sample size is large
enough. In this respect, the Telefónica data used in this study covers a considerable market
share, thereby allowing robust projections. In addition, it covers the whole country of Germany
in a data format that can easily serve as a longitudinal data source for continuous monitoring. In
contrast to existing studies that focus on metropolitan areas with privileged data access, our
study shows concepts that serve the purpose of such continuous monitoring on the national,
state or regional levels of spatial planning.

Data protection issues are usually covered by customer consent provisions allowing the use of
anonymous data as part of the contract. However, general data protection regulations (GDPR) pro-
tecting the anonymity of individuals prevent the gathering of information on household structure
and demographics, a ‘nice to have’ from an analytical point of view. Detailed information on mobi-
lity behaviour that can be linked to social characteristics at an individual level is therefore likely to
remain the domain of panel studies and micro-census reporting. For example, Germany and Swit-
zerland have been reporting on the mobility behaviour of their respective populations at regular
intervals since the 1970s (Bundesamt für Statistik Schweiz 2017; Nobis and Kuhnimhof 2018).
Data collection is time-consuming and expensive, and this is where mobile phone network data
comes in: it can complement micro-census data with much bigger sample sizes and in a frequent
and timely manner. Currently, there are still weaknesses, for example in identifying the mode of
transport used for a trip. We expect algorithms to become available in the near future to improve
the identification of transport modes, possibly by integrating additional transport infrastructure
data and the information collected by built-in sensors like accelerators or magnetometers in smart-
phones (Wang, He, and Leung 2018). The mobile phone network data as used in this study provides
only limited opportunities to understand travel patterns and support transport planning and
policymaking.

Our primary aim was to highlight the potential of this data for spatial analysis, making its value
clearer to the transport planning community. Data-handling procedures require skills in database
management, for example in the handling of large datasets in a PostgreSQL database with spatial
analysis functionalities (PostGIS). We describe in this paper how such analysis paths can be set
up and finetuned to perform with acceptable processing times. This technical backbone will natu-
rally require data analysts trained in such techniques. Having this data ready for analysis, however,
is just one step. The other is to come up with analysis concepts of use in spatial monitoring and
allowing planners to identify for example mobility patterns in detail. In this context, we show
examples requiring the data to be aggregated to spatial typologies relevant for policy formulations
in the transport sector. We chose a typology recently developed by the Federal Ministry of Trans-
port for this purpose, aggregating the data in SQL queries for selected spatial types, for example,
metropolitan areas and their commuter catchment areas, medium-sized or small towns. By
doing so, we can produce traffic flow graphs and test the results against normative planning objec-
tives, for example, transit-oriented regional planning paradigms. We show for example that traffic
volumes in monocentric city regions are structurally different to those in polycentric regions. The
latter have advantages in terms of public transport provision, and in this respect planning can help
reduce a population’s travel needs. It is clear that such reductions can be offset by other changes and
new policies aimed to support the mobility transition from the private motor car to more sustain-
able forms of transportation. Examples currently under discussion include road tolls, restrictions on
driving older diesel vehicles into inner cities, but also general societal changes to car usage such as
carsharing.

We posit that the monitoring is of crucial importance for evaluating the efficacy of such policies.
From an analytical point of view, the new methods promise to raise monitoring applications to a
new level in this respect. From an organizational point of view, however, datasets for such
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applications are currently only available from commercial providers. Potential users will have to
rely on their continuous availability in terms of data structure and pricing. In comparison to
official datasets provided by governments (census data, regional statistics, geotopography), this
risk has to be assessed in the light of the added value the datasets provide for monitoring purposes.
At the same time, there are some problems that need to be resolved: in order for mobile network
data to become a standard for transport monitoring the mode of transport needs to be provided.
Moreover, data availability and consistency need to be such that time series are robust and compar-
able over many years. There is ample evidence that these issues will be resolved in the near future,
meaning that the concepts and applications shown in this article can be further developed and
picked up by the community.
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