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ABSTRACT
The vitamin E forms c- and d-tocopherols (T) inhibit carcinogenesis in animal models; never-
theless, their cancer preventive activities in humans are uncertain. As an initial step to
address this issue, we conducted a pilot phase 0 trial to determine the levels of tocopherols
and their metabolites in prostate cancer patients undergoing radical prostatectomy. The
patients were randomized to no supplementation or two capsules of a c-T-rich vitamin E
mixture daily for 7 or 14 day prior to prostatectomy. Blood and urine samples were collected
before supplementation and on the day of surgery, along with prostate tissue, for analysis
of tocopherols and their metabolites. Estimated blood loss during surgery was not signifi-
cantly different across treatment arms and there were no reported adverse events. Prostate
tissue levels of c-T and d-T were increased after 14day of supplementation. Their side-chain
degradation metabolites (CEHCs and CMBHCs) were significantly elevated in plasma, pros-
tate and urine samples after supplementation for 7 or 14day. In conclusion, supplementa-
tion with c-T-rich vitamin E increased the prostate levels of c-T and d-T. The use of pure c-T,
d-T or tocopherol mixtures with higher ratio of c-T or d-T to a-T is recommended for
future studies.
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Introduction

Numerous epidemiological studies have investigated
the relationship between vitamin E (VE) nutrition and
cancer (reviewed in (1–4)). Many studies showed a
negative association between dietary VE intake or
blood levels of VE (mostly a-tocopherol (T)) and can-
cer risk, suggesting a cancer preventive effect.
However, other studies, including some recent large-
scale intervention studies, did not support the hypoth-
esis that VE is cancer preventive (1,2,5–19). In a large
chemoprevention trial, the Alpha-Tocopherol, Beta-
Carotene Cancer Prevention (ATBC) study, supple-
mentation with VE (given as all rac-a-tocopheryl acet-
ate 50 IU daily) was associated with a 32% decrease in

prostate cancer incidence and a 41% decrease in mor-
tality of prostate cancer, when prostate cancer ana-
lyzed as a secondary endpoint (11). Results of this
trial and the Nutritional Prevention of Cancer (NPC)
study with selenium (20) were the basis for the large-
scale Selenium and Vitamin E Cancer Prevention
Trial (SELECT). In SELECT, high doses of VE (pro-
vided as 400 IU of all rac-a-tocopheryl acetate) taken
daily for an average of five years, alone or in combin-
ation with selenium, did not prevent prostate cancer
in a population of relatively healthy men (21). This
high dose of a-T was shown to lower plasma levels of
c-T (21). Furthermore, the 7 to 12 year follow-up of
the SELECT showed that subjects receiving the a-T
supplementation had a hazard ratio of 1.17 for
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developing prostate cancer (22). While this was a
negative result for the primary endpoint of prostate
cancer prevention, it is important to note the VE used
in this trial was high doses of a-T. Based on data
from our laboratory and a review of published studies,
we hypothesized that c-T and d-T have cancer pre-
ventive activity, while a-T does not, in animals and
humans with adequate VE nutrition (2). The present
study is the first step in testing this hypothesis by
conducting a pilot phase 0 trial in prostate can-
cer patients.

Tocopherols (including the a, b, c, and d forms) are
major forms of VE and important dietary antioxidants,
mainly from vegetable oils and nuts (23). Tocotrienols
are the other family of VE, but their dietary intake is
generally low, except in individuals consuming large
quantities of palm oil. Using c-T as a base, the struc-
tures of these VE forms are shown in Figure 1.
Although c-T is more abundant in the human diet
than a-T, the latter is the major tocopherol found in
human and animal tissues. This is because the transfer
of VE from the liver to blood is mediated by a-T trans-
fer protein (a-TTP) (24,25), even though all VE forms
can be transported to the liver after absorption. a-TTP
in the liver preferentially transfers a-T to very low-
density lipoproteins, and therefore a-T is preferentially
secreted into the circulation and then transferred to
nonhepatic tissues. Due to their low affinities for
a-TTP, hepatic c-T, d-T and tocotrienols are much less

efficiently transferred out from the liver, and most of
these VE forms undergo side-chain degradation in the
liver and other organs. This pathway is initiated with
hydroxylation of the x-methyl group of the side chain
by cytochromes P450 4 F or 3A, and followed by five
cycles of b-oxidation in the mitochondria, mainly in
the liver, to cut off two-carbon units from the side-
chain in each cycle (26). This degradation pathway is
illustrated in Figure 1 using c-T as an example. Larger
percentages of c-T, d-T and tocotrienols than a-T are
degraded through this pathway (27). The c- and
d-forms of short chain metabolites – carboxyethyl
hydroxychromans (CEHCs) and carboxymethylbutyl
hydroxychromans (CMBHCs) – are readily measurable
in tissue, urine and fecal samples, and they may be
used as biomarkers for exposure and metabolism of
these VE forms.

a-T has been traditionally considered as “the vita-
min E” because of its higher tissue abundance and
superior activity over other VE forms in the classical
fertility-restoration assay (23). Many studies suggest
that c-T, which is not methylated at the 5-position of
the chroman ring, can effectively trap reactive nitro-
gen species and inhibit cyclooxygenase, and is a stron-
ger anti-inflammatory and anticancer agent than a-T
(1–4). Because of these properties, c-T may be more
effective than a-T in the prevention of cancer and
other diseases. The robust cancer preventive activity
of c-T has been demonstrated in many studies in

Figure 1. Structures of c-tocopherol and the side-chain degradation pathway. The structures of different vitamin E forms are illus-
trated with c-tocopherol as a base, which is dimethylated at the 7- and 8-positions. The chromanol ring is trimethylated at the 5-,
7- and 8-positions in a-tocopherol, dimethylated at the 5- and 8- positions in b-tocopherol and methylated at the 8-position in
d-tocopherol. The corresponding a, b, c and d-forms of tocotrienols each have double bonds at the 3�, 7� and 11� positions. The
side-chain degradation pathway is initiated by x-oxidation and followed by five cycles of b-oxidation, each reducing the chain
length by two carbons. The metabolites are named following reference Jiang (4); for example, 130-COOH is the metabolite of VE
with the carboxylic group at the 130-position. The degradation of other forms of tocopherols follows the same pathway (from ref-
erence Yang et al. (1)).

2 S. GOODIN ET AL.



animal models (reviewed in (1,2)). For example, c-T
has been shown to inhibit prostate carcinogenesis
dose-dependently in the transgenic rat for adenocar-
cinoma of prostate (TRAP) model (28). Dietary
administration of a c-T-rich mixture of tocopherols
(c-TmT) or purified c-T (or d-T) inhibited the pros-
tate carcinogenesis in the transgenic adenocarcinoma
of the mouse prostate (TRAMP) model as well as mod-
els for colon, lung, and mammary carcinogenesis, while
a-T was not effective (1,2,29–36). Our recent study also
demonstrated that dietary c-TmT prevented a dietary
carcinogen, 2-amino-1-methyl-6-phenylmidazo[4,5-
b]pyridine (PhIP)-induced prostate carcinogenesis in
CYP1A-humanized mice, and purified d-T had higher
inhibitory activities than c-T and a-T (33). The pre-
ventive effect was associated with the inhibition of
many PhIP-induced events: elevation of 8-oxo-deoxy-
guanosine, nitrotyrosine and the proinflammatory
enzyme COX2, as well as the pro-growth Ki-67 and p-
AKT signaling. The treatment also prevented the loss
of PTEN and Nrf2 expression. In a recent study, d-T
was shown to inhibit prostate carcinogenesis in pros-
tate-specific PTEN-/- (PTENp-/-) mice, in which the
activation of AKT is the major driving force for
tumorigenesis. However, a-T (2 g/kg diet) was not
effective (34).

In contrast to the clear effect of c-T in prostate can-
cer prevention in animal studies, results from human
studies are inconsistent. For example, in a prospective
study by Huang et al., serum c-T level, but not a-T,
was inversely correlated with the risk of developing
prostate cancer (5). Similarly, Bauer et al. reported an
inverse association between serum c-T levels and high-
grade prostate cancer in an observational study (13).
Cheng et al. observed that both c-T and a-T were
inversely associated with the risk of aggressive prostate
cancer among current smokers (12) in a nested case-
control study of the Carotene and Retinol Efficiency
Trial (CARET). Conversely, in the case-cohort study of
the SELECT, no significant association between serum
levels of c-T or a-T were observed (37). In a pooled
analysis of 15 studies by Key et al., blood levels of a-T
were negatively associated with prostate cancer risk,
while blood levels of c-T were not (38).

Based on the strong evidence for the prostate cancer
prevention activity of c-T and c-TmT in animal models
and the inconsistent results in humans, it would be
important to test the hypothesis that these agents are
cancer preventive in humans. As the first step, we con-
ducted a pilot phase 0 study in prostate cancer patients
to evaluate plasma and tissue levels of tocopherols and
their metabolites using a commercially available c-T-

rich VE dietary supplement (High Gamma Vitamin E
from Nature’s Bounty, Inc) to obtain preliminary infor-
mation prior to pursuing the development of a pure
c-T or a desired c-T-rich tocopherol mixture for testing
in humans. Prostate cancer patients were treated with
this c-T-rich VE supplement for one or two weeks
before prostate surgery; blood, urine and prostate tissue
levels of a-, c-, and d-tocopherols and their metabolites
were determined. As high doses of tocopherols have
previously been reported to inhibit blood clotting in
animal models (39), we also evaluated blood loss dur-
ing surgery with the neoadjuvant administration
of tocopherol.

Materials and Methods

Eligible patients for this pilot trial included men diag-
nosed with localized prostate cancer undergoing radical
prostatectomy as their primary treatment. Patients were
excluded if they had a personal or family history of a
bleeding disorder (including individuals taking warfarin
or dicumarol); they were taking extra supplementation
of VE (a multivitamin containing 60 IU or less of VE
was allowable); they had a known history of problems
absorbing dietary fats (eg., Crohn’s disease, cystic fibro-
sis), including patients taking colestipol or orlistat; or
they were taking nonsteroidal anti-inflammatory drugs
(NSAIDs) or corticosteroids at any time in the two
weeks prior to study entry. Patients taking a baby
aspirin (81mg) and those using inhaled or topical ste-
roids were eligible. The trial was approved by the
Institutional Review Board of Rutgers, The State
University of New Jersey, and the Robert Wood
Johnson Medical School (NCT 00895115).

A total of 82 men were screened, 65 were enrolled,
59 were randomized, and one patient withdrew after
randomization. Consort standards of clinical trials
were followed (see Figure 2). The first five patients
enrolled received no supplement and their tissue was
used to establish laboratory standards and their data
is not included in the analyses of the treatment
groups. The subsequent patients were randomized by
the Rutgers Cancer Institute of New Jersey Biometrics
Department and Research Pharmacy to either: 1) no
supplementation; 2) daily oral high c-T-rich VE sup-
plementation for 1week prior to prostatectomy; or 3)
daily oral high c-T-rich VE supplementation for
2weeks prior to prostatectomy. Patients randomized
to treatment were given a commercially available c-T-
rich VE supplement (High Gamma Vitamin E from
Nature’s Bounty, Inc., Bohemia, NY 01716) in two
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soft gel capsules per day, with the last dose taken the
evening before prostatectomy.

The supplement was from the same lot number
and was stored in a continuously monitored pharmacy
at room temperature (20� to 25� C) per USP Storage
Conditions. For quality control of the supplement, the
composition of different forms of tocopherols were
analyzed by HPLC according to the procedure
described in the following section. Each capsule con-
tained 128mg a-T, 200mg c-T and 71mg d-T, similar
to values provided by the supplier. Patient compliance
was assessed by pill count, medication diary, and
patients were contacted through one to three random
telephone calls by the clinical research coordinator
or nurse.

Blood and urine samples were collected at baseline
and on the day of surgery. Each patient underwent
radical prostatectomy with or without bilateral pelvic
lymph node dissection (PLND) in the standard man-
ner. All surgeries were robotic prostatectomy.
Decisions for carrying out PLND at the time of rad-
ical prostatectomy was based on National
Comprehensive Cancer Network (NCCN) guidelines.

Estimated blood loss during surgery was documented.
Once the prostate tissue was removed from the
patient, the tissue was immediately delivered to the
pathologist who immediately sectioned the tissues to
assess the adequacy for pathologic diagnosis. The
remaining tissues were immediately snap frozen and
stored in the Biospecimen Repository until analysis.

Analysis of Tocopherols and Metabolites

For the analysis, our previous method (30) was used.
In brief, both plasma and urine samples were mixed
with deionized water and ethanol. Prostate tissues
were homogenized in water and ethanol. The lipid-
soluble materials in the supernatants were extracted
with hexane. For analysis of short-chain metabolites
of tocopherols (CEHC & CMBHC), the aqueous phase
was extracted with ethyl acetate after incubation with
glucuronidase and sulfatase to hydrolyze the conju-
gated CEHC and CMBHC metabolites. After drying
in the speed vacuum concentrator, the residues were
re-dissolved in methanol and then injected onto
HPLC. The recovery of tocopherols and their

Figure 2. A consort flowchart of the study.
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metabolites was 70-85%. This was corrected by run-
ning samples with known quantities of tocopherols
parallelly in the analysis.

Levels of a-T, c-T and d-T and the metabolites
were quantified using an HPLC system with an elec-
trochemical detector. The HPLC system consists of an
ESA Model 542 refrigerated autosampler, two ESA
Model 582 dual-piston pumps, and an ESA 5600 cou-
lochem electrode array system (CEAS) with potentials
set at 400, �1000, 200, 400, 500, 600, 700 and
800mV. A SupelcosilTM LC18 reversed-phase column
(150mm x 4.6mm in diameter; particle size, 5 mm)
was used. Solvent A: acetonitrile, 28% (V:V); metha-
nol, 4% (V:V); lithium acetate dihydrate, 30mM;
acetic acid, 2ml/L; Solvent B: acetonitrile, 84% (V:V);
methanol, 13% (V:V); lithium acetate dihydrate,
30mM; acetic acid, 2ml/L. The gradient cycle con-
sisted of an initial 84% A and 16% B at a flow rate of
0.6ml/min, the linear gradient was changed progres-
sively by increasing to 85% B at a flow rate of 0.7ml/
min at 13min, to 88% B at 0.8ml/min at 20min, to
94% B at 1.0ml/min at 22min, and to 100% B at
1.2ml/min at 32min. The gradient was run at 100% B

at 1.2ml/min until 56min. Then B was reduced to
16% B at 1.1ml/min at 56.1min and stayed at 16% B
at 1.1ml/min until 65min, then the flow rate was
changed to 0.6ml/min for the next run. The column
and CEAS detector were housed in a temperature-
regulated compartment maintained at 35 ± 0.1 �C, and
the auto sampler was maintained at 6 �C. System con-
trol, data acquisition and analysis were performed
with the CEAS software.

Statistical Considerations

For each of the tocopherols and their metabolites in
plasma and urine samples, pre (before supplementa-
tion) and post (after supplementation) values are pre-
sented (as mean ± SD). The pre-post differences were
compared between treatment groups. The least-
squares means of the post-pre differences and the
pair-wise comparisons were performed. For the toco-
pherols and their metabolites in prostate tissue sam-
ples, the post supplementation values (tissue obtained
after prostatectomy) were compared and pair-wise
comparisons were performed. The main analyses were

Table 1. Characteristics of patients enrolled.
Total Population

(n¼ 59)
Control Arm
(n¼ 21)

7-day Supplementation
(n¼ 18)

14-day Supplementation
(n¼ 20)

Age, median 59 yrs 59 yrs 59.5 yrs 59.5
range 42-77 yrs 42-71 yrs 43-77 yrs 48-70 yrs
Race
White 47 16 14 17
Black 8 4 2 2
Asian 4 1 2 1
Median Baseline PSA, ng/mL 5.16 5.14 5.45 4.2
range, ng/mL 1-53.7 2.2-53.7 1-22.14 2.1-10.2
Median PSA on Day of Surgery, ng/mL 4.8 6.62 4.53 4.51
range, ng/mL 0.8-47.25 2.11-47.25 2-19.42 0.8-10.87
Pre-operative Gleason Score, median 6 6 7 7
Range 6-10 6-9 6-10 6-9
3þ 3 29 14 8 7
3þ 4 18 6 5 7
4þ 3 4 – 1 3
4þ 4 5 – 3 2
4þ 5 1 – – 1
5þ 4 1 1 – –
5þ 5 1 – 1 –

Table 2. Pathologic Gleason Score and estimated blood loss during surgery by treatment group.
Total Population

(n¼ 59)
Control Arm
(n¼ 21)

7-day Supplementation
(n¼ 18)

14-day Supplementation
(n¼ 20)

Gleason Score
3þ 3 29 10 6 7
3þ 4 18 6 7 4
4þ 3 4 2 – 5
4þ 4 5 – 2 –
4þ 5 1 1 1 3
5þ 4 1 1 – –
5þ 5 1 – 1 –
Estimated Blood Loss, Median (mL)

range
200

(50-1200)
175

(50-500)
262.6

(50-1150)
200

(50-1200)
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parametric t-tests; normality assumptions were
checked and verified the conclusions with non-para-
metric analyses (Wilcoxon signed-rank test) when the
normality assumption was violated. The parametric
and non-parametric analyses agreed on their signifi-
cance/non-significance conclusions in almost all
parameters. Results of non-parametric analysis was
indicated (see footnote in Tables 3 and 4) when the
normality assumption did not hold for parametric t-
test. The tests were not adjusted for multiple compari-
sons for this phase 0 trial.

Results

Patients

Between October 2009 and February 2012, a total of 59
patients were randomized in this pilot trial.
Characteristics of the patient population are outlined in
Table 1. There were no significant differences between
the treatment groups. Overall, the median age of patients
enrolled was 59 years (range 42-77 years) and the median
Gleason score was 6. The median baseline PSA was
5.16ng/mL (range 1-53.7ng/mL) and the median PSA
on the day of surgery was 4.8ng/mL (range
0.8� 47.25ng/mL). Although there was a trend for
decreasing PSA with supplementation, this change in
PSA was not significant.

Compliance and Adverse Effects

Compliance was high when assessed by either pill
count or patient diary and this is supported by the
urine tocopherol metabolite data. There were no
adverse effects reported by patients in any of the
treatment groups. The median estimated blood loss
was 175 mls, 262.5 mls, and 200 mls, in the control,
7-day, and 14-day treatment groups, respectively
(Table 2). The seemingly higher blood loss in the 7-
day group was probably due to a few cases with high
blood loss associated with more extensive surgery
with lymph node dissection. The blood loss may vary
but not one patient received blood transfusion. The

difference in blood loss among the three treatment
groups was not statistically different.

Plasma Levels of Tocopherols and Metabolites

As shown in Table 3, mean plasma levels of a-T at base-
line and after supplementation were consistently higher
than the concentrations of c-T and d-T.
Supplementation did not significantly increase mean
plasma levels of a-T, c-T, or d-T, except in the subjects
randomized to 1-week supplementation when the pre-
post difference of c-T or d-T level was compared to the
control group by pair-wise comparisons (P< 0.05).
However, the data are difficult to interpret because the
post-levels were lower than the pre-levels in the control
group. A comparison of the effect on tocopherol levels
between 1-week and 2-week supplementation groups
did not demonstrate a statistically significant difference.

Although a-T levels were higher than c-T and d-T
levels, higher metabolite levels of c-CEHC and
d-CEHC than a-CEHC were detected in the plasma,
both before and after supplementation. c-CEHC had
the highest mean values after supplementation in both
1-week and 2-week treatment groups. The c- and
d-CEHC levels of the 1-week or 2-week treatment
groups were significantly higher than the pre-supple-
mentation levels (P< 0.05). Although the mean
c-CEHC and d-CEHC levels for the 1-week supple-
mentation group appeared higher than the 2-week
group, the difference was not significant (P¼ 0.25).

Supplementation significantly increased c- and
d-CMBHC levels, but had no effect on a-CMBHC lev-
els in the plasma. c-CMBHC levels were the highest
in plasma, both before and after supplementation.
While the 1-week treatment group had higher c- and
d-CMBHC concentrations than the 2-week group, this
difference was not statistically significant.

Prostate Tissue Levels of Tocopherols and
Metabolites

Overall, the a-T levels were the highest in the prostate
tissues, followed by c-T, and then d-T (Table 4). In

Table 3. Plasma concentrations of tocopherols and their metabolites (mM) before and after supplementation.
Group a-T c-T d-T a-CEHC c-CEHC d-CEHC a-CMBHC c-CMBHC d-CMBHC

Control
n¼ 12

Pre 23.62 ± 3.34 3.73 ± 1.96 0.18 ± 0.17 0.18 ± 0.09 0.31 ± 0.30 0.41 ± 0.32 0.04 ± 0.06 0.09 ± 0.03 0.03 ± 0.02
Post 22.73 ± 13.90 2.61 ± 0.88 0.10 ± 0.04 0.16 ± 0.10 0.11 ± 0.06 0.31 ± 0.30 0.05 ± 0.07 0.07 ± 0.02 0.02 ± 0.01

1-week
n¼ 12

Pre 23.67 ± 5.38 4.20 ± 1.83 0.16 ± 0.07 0.17 ± 0.12 0.30 ± 0.10 0.30 ± 0.35 0.05 ± 0.07 0.10 ± 0.05 0.04 ± 0.02
Post 29.97 ± 9.91 3.84a ± 1.62 0.29a ± 0.26 0.23 ± 0.15 1.23b ± 0.90 0.72b ± 0.42 0.05 ± 0.09 0.31b ± 0.15 0.23b ± 0.14

2-week
n¼ 13

Pre 20.72 ± 7.94 3.41 ± 1.60 0.13 ± 0.03 0.18 ± 0.12 0.31 ± 0.27 0.32 ± 0.28 0.05 ± 0.08 0.08 ± 0.04 0.03 ± 0.02
Post 27.57 ± 12.70 3.10 ± 1.53 0.20 ± 0.21 0.22 ± 0.12 0.98a ± 1.17 0.57a ± 0.37 0.05 ± 0.09 0.25a ± 0.27 0.17b ± 0.15

Data are expressed as mean ± standard deviation. Pre-post differences were compared to the control group by pair-wise comparisons using parametric
t-test (P< 0.05a, P< 0.005b).
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patients randomized to the 1-week supplementation
group, mean tissue levels of c-T and d-T were higher
than, but not statistically significant from, those in the
control group. In the 2-week supplementation group,
the higher values of c-T and d-T reached statistical
significance (P< 0.05 for c-T; P< 0.005 for d-T).
However, there were no differences in tissue levels for
any form of tocopherol when comparing the 1-week
and 2-week supplementations.

There were no differences in the levels of a-CEHC in
the prostate tissue between the groups receiving the sup-
plement and the control group (Table 4). For c-CEHC,
the levels in the 1-week group were 6-fold higher than
the pre-supplementation levels (P< 0.005). The levels of
the 2-week group were also higher; however the differ-
ence was not statistically significant because of the large
standard deviations, possibly due to the individual differ-
ences in the side-chain degradation of tocopherols. The
tissue levels of d-CEHC in the 2-week supplementation
group were the highest and were significantly higher
than the control group (P< 0.005).

Overall, a-CMBHC concentrations in the prostate
tissue did not change significantly after supplementa-
tion (P¼ 0.50 for 1-week; P¼ 0.77 for 2-week).
However, both c-CMBHC and d-CMBHC levels sig-
nificantly increased in the prostate tissue with supple-
mentation. The changes in c-CMBHC and d-CMBHC
levels after supplementation were statistically signifi-
cant for both supplementation groups when compared
to the pre-supplementation levels (P< 0.05).
Additionally, the mean values of c-CMBHC and
d-CMBHC levels in the 2-week supplementation
group were higher than their levels in the 1-week

group; however, no statistically significant difference
was detected between the two treatment groups.

Urine Levels of Tocopherol Metabolites

Tocopherols as fat-soluble vitamins are not excreted
in the urine. We assessed their metabolites, CEHC
and CMBHC. Urinary levels of c-CEHC and d-CEHC
were much higher than those of a-CEHC (Table 5).
While all forms of CEHC increased with both the 1-
week and 2-week supplementation, changes in
c-CEHC and d-CEHC levels were several-fold higher
and statistically significant (P< 0.05) when compared
to the pre-supplementation levels and the control
group. All forms of CMBHC, including the
a-CMBHC, were elevated after supplementation, and
the increases were statistically significant in the 2-
week supplementation group (P< 0.05 for a-T and
c-T; P< 0.005 for d-T). In the 1-week supplementa-
tion group, however, only d-CMBHC was significantly
elevated (P< 0.005).

Discussion

We successfully conducted a pilot phase 0 trial with a
high dose (800mg daily) of a c-T-rich VE supplement
in prostate cancer patients before radical prostatec-
tomy. This product was selected because it was com-
mercially available for human use, allowing us to
obtain preliminary information on plasma, tissues,
and urine levels of tocopherols and their metabolites.
High doses of tocopherols have previously been
reported to inhibit blood clotting in animal models
(39). This was a major concern for the use of

Table 5. Urinary concentrations of tocopherol metabolites (mM) before and after supplementation.
Group a-CEHC c-CEHC d-CEHC a-CMBHC c-CMBHC d-CMBHC

Control n¼ 12 Pre 0.22 ± 0.42 15.38 ± 15.62 13.72 ± 12.26 0.34 ± 0.64 4.71 ± 4.30 4.59 ± 4.55
Post 0.74 ± 1.14 9.78 ± 6.48 8.65 ± 6.70 0.11 ± 0.26 4.45 ± 3.23 5.18 ± 6.29

1-week n¼ 12 Pre 0.67 ± 1.16 19.02 ± 14.28 12.66 ± 10.33 0.16 ± 0.39 5.28 ± 5.35 3.36 ± 3.03
Post 6.76 ± 13.15 134.67b ± 106.81 84.93b ± 61.51 1.42 ± 1.67 44.87c ± 44.57 44.17b ± 32.63

2-week n¼ 13 Pre 0.47 ± 1.22 10.75 ± 11.56 7.40 ± 5.75 0.16 ± 0.24 2.90 ± 4.09 2.33 ± 2.13
Post 8.78 ± 13.61 128.82b ± 101.77 94.38b ± 50.64 4.57a ± 8.05 55.23a ± 82.09 43.69b ± 30.63

Data are expressed as mean ± standard deviation. Pre-post differences were compared to the control group by pair-wise comparisons using parametric t-
test analyses (P< 0.05a, P< 0.005b) and non-parametric analyses (P< 0.05c).

Table 4. Prostate tissue levels of tocopherols and their metabolites (mmol/kg) at the time of prostatectomy.
Group a-T c-T d-T a-CEHC c-CEHC d-CEHC a-CMBHC c-CMBHC d-CMBHC

Control
n¼ 13

28.97 ± 14.09 2.65 ± 1.19 0.27 ± 0.18 0.08 ± 0.06 0.10 ± 0.10 0.24 ± 0.42 0.12 ± 0.15 0.04 ± 0.06 0

1-week
n¼ 13

23.96 ± 12.00 4.17 ± 2.95 0.49 ± 0.34 0.09 ± 0.08 0.62c ± 0.59 0.29 ± 0.17 0.08 ± 0.13 0.15c ± 0.09 0.08a ± 0.05

2-week
n¼ 15

32.66 ± 10.50 4.77a ± 2.10 0.60b ± 0.30 0.22 ± 0.40 1.03 ± 1.61 0.51c ± 0.68 0.14 ± 0.17 0.22a ± 0.26 0.11b ± 0.14

Data are expressed as mean ± standard deviation. The 1-week and 2-week groups were compared to the control group by pair-wise comparisons using
parametric t-test analyses (P< 0.05a, P< 0.005b) and non-parametric analyses (P< 0.005c).
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neoadjuvant tocopherol in this trial; therefore, patients
with a bleeding history were excluded. In this trial, no
adverse effects, including prolonged or excessive
bleeding, were observed. The effect of the treatment
on PSA levels was not statistically significant.

An important finding from our trial is that two weeks
of supplementation significantly increased the levels of
c-T and d-T levels in prostate tissue, even though their
levels in the plasma were not increased. However, the
levels of side-chain degradation metabolites (CEHCs and
CHBMCs) of c-T and d-T were all increased in the
plasma, prostate tissue and urine samples. To our know-
ledge, this is the first report of the level of different
forms of tocopherols and their metabolites in human
blood, prostate tissue and urine after supplementation
with a mixture of tocopherols.

Upon examining the results from our pilot study, the
study design with 18-21 subjects in each arm appears
under-powered. With more subjects some of the differ-
ences in tocopherol levels may reach statistical signifi-
cance. A limitation of this study is that the biological
effects of supplementation with c-T-rich VE were not
determined. In future studies this information may be
obtained by measuring cell proliferation (Ki67), apoptosis
(cleaved-caspace-3) and other markers in prostate tissues
with immunohistochemistry.

The lack of a robust increase of c-T levels in the
plasma after the c-T-rich VE supplementation was
unexpected but worth discussing. This is probably due
to the rather low c-T to a-T ratio in the tocopherol
mixture used (a-T: c-T: d-T at ratios of 1: 1.56: 0.55).
In our previous studies in animal models, dietary sup-
plementation with c-TmT, which contained 13% a-T,
57% c-T, 24% d-T and 0.5% b-T (at ratios of 1: 4.38:
1.85), consistently increased levels of c-T in the
plasma and different tissues (30–33,35,36,40–42).
Tocopherols ingested from the diet are known to be
absorbed in the intestinal mucosa and are transported
to the liver via the lymphatic system. In the liver,
a-TTP selectively mediates the transfer of a-T into
very low-density lipoprotein and then into the blood
(23). c-T, with lower affinity to a-TTP, is less effi-
ciently transported to the blood through this mechan-
ism. d-T, with an even lower affinity for a-TTP, is not
efficiently transferred. There are suggestions that d-T
may be transferred to the blood through mechanisms
independent of a-TTP. As a consequence, a-T is
found in much higher levels in the blood and non-
hepatic tissues than c-T and d-T. Competition
between a-T and c-T for a-TTP has been observed
both in animal models and in humans, that is, when
high concentrations of a-T were given, the blood

levels of c-T decreased (21). This may be the basis for
the lack of increase in plasma levels of c-T, even
though the VE supplement contained more c-T than
a-T. For future studies, in order to raise the blood
and non-hepatic tissue levels of c-T, pure c-T or a
preparation with a much higher c-T to a-T ratio
should be used.

The c-T and d-T in the liver are metabolized
through the side-chain degradation pathway
(Figure 1), with CEHCs and CMBHCs as the readily
measurable short-chain metabolites (30–33,43). This is
the biochemical basis for the observed high concentra-
tions of c- and d- forms of CEHCs and CMBHCs in
different samples in the supplemented groups. When
high doses of a-T were given, a-CEHC and
a-CMBHC were also observed in biological samples.
These side-chain degradation metabolites of different
tocopherols, excreted as glucuronide- and sulfate-con-
jugates in the urine, together with plasma levels of
a-T, c-T, d-T and their metabolites, could be used to
assess the dietary exposure and metabolism of toco-
pherols in human subjects. Since the urinary levels of
c- and d- forms of CEHCs and CMBHCs are higher
than those in the blood (as well as c-T and d-T in the
blood), these urinary metabolites may be convenient
exposure markers for c-T and d-T.

Whether VE prevents or promotes cancer is an intri-
guing topic. Based on our review of the results from ani-
mal and human studies, we propose that at nutritional
levels, a-T, c-T and d-T are all cancer preventive; how-
ever, at supra-nutritional levels, only c-T and d-T are
effective (1). Possible mechanisms of cancer prevention
by tocopherols include antioxidant action, which is
shared by all forms of tocopherols (1). In addition,
because of unmethylated carbon at the 5-position of the
chromanol ring, c-T and d-T can more effectively
quench reactive nitrogen species than a-T (2). Recent
results from animal and cell line studies also suggest that
d-T can more effectively decrease the phosphorylation of
AKT than other tocopherols (33,44). An interesting pos-
sibility for the higher cancer preventive activities of c-T
and d-T is the possible cancer preventive activities of
their side-chain metabolites. Longer-chain metabolites,
such as 130-carboxychromanols (130-COOHs) and 110-
COOHs, have been shown to lower prostaglandin levels
and to have anti-inflammatory, anti-proliferative and
apoptosis promoting activities (4). All these activities
may result in cancer prevention. Short-chain metabolites
– CEHCs and CMBHCs – retaining the intact chroma-
nol ring structure, may also contribute to cancer pre-
ventive activity.

8 S. GOODIN ET AL.



Based on the above results and discussions, we
believe additional human studies with pure c-T or d-T
or tocopherol mixtures with higher c-T or d-T to a-T
ratio are needed to assess their preventive activity
against prostate and other cancers.
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