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ABSTRACT
We analysed features relevant for differentiation between males and females based on the data
available from the Human Connectome Project (HCP) S1200 dataset. We used 354 features con-
taining cognitive and emotional measures as well as measures derived from task functional
magnetic resonance imaging (MRI) and structural brainMRI. The paper presents a thorough anal-
ysis of this extensive set of features using amachine learning approachwith a goal of identifying
features that have the ability to differentiate between males and females. We used two state of
the art classification algorithmswith different properties: support vectormachine (SVM) and ran-
dom forest classifier (RFC). For each classifier the hyperparameters were obtained and classifiers
were optimized using nested cross validation and grid search. This resulted in the classification
performance of 91% and 89% accuracy using SVM and RFC, respectively. Using SHAP (SHapley
Additive exPlanations)methodwe obtained relevance of features as indicators of sex differences
and identified features with high discriminative power for sex classification. The majority of top
features were brain morphological measures, and only a small proportion were features related
to cognitive performance. Our results demonstrate the importance and advantages of using a
machine learning approach when analysing sex differences.
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1. Introduction

Differences between male and female brains have been
the research focus of many neurological studies. Sex
difference analyses include various combinations of
different data types such as different magnetic res-
onance imaging (MRI) modalities (structural, func-
tional, diffusion), as well as different behavioural, cog-
nitive, psychological and other various non-imaging
sex-related measures. Some studies analysed psycho-
logical, anatomical and structural differences and cor-
relations [1], while others analysed structural and func-
tional differences [2–4]. A common way of performing
such analyses ismultivariate and statistical analysis, and
assessment of correlations between measures of vari-
ables. Recently, other methods have been introduced,
such as machine learning approaches.

Tunc et al. [5] usedmultivariate analysis of brain net-
works and their connection with behavioural sex dif-
ferences and showed an increasing separation between
males and females in behavioural patterns and in brain
structure. Szalkai et al. [1] analysed Human Connec-
tome Project’s 500-subject dataset using a maximum
spanning tree method. They created braingraphs and
analysed the pairwise correlations between 717 psycho-
logical, anatomical and structural connectome prop-
erties. They detected numerous natural correlations,

which describe parameters computable or approx-
imable from one another, but have also found sev-
eral significant, novel correlations in the dataset. They
found that men, on average, have greater grip strength,
brain volume and are physically more aggressive.
Ritchie et al. [2] analysed structural and functional
sex differences from a large sample comprising 5216
older adult participants (age range 44–77 years) from
the UK Biobank project. They mapped sex differences
in brain volume, surface area, cortical thickness, dif-
fusion parameters and functional connectivity. Their
results showed that males had higher raw volumes, raw
surface areas and white matter fractional anisotropy,
while females had higher raw cortical thickness and
higher white matter tract complexity. Lotze et al. [4]
performed statistical analysis and examined grey mat-
ter (GM) volume of 2838 adult brains (age range 21–90
years) to assess sex differences. Their findings revealed
that females had more GM volume in medial and lat-
eral prefrontal areas, the superior temporal sulcus, the
posterior insula and orbitofrontal cortex, and that male
brains had more GM volume in subcortical temporal
structures (such as the amygdala and hippocampus),
temporal pole, fusiform gyrus, visual primary cortex
and motor areas (premotor cortex, putamen, anterior
cerebellum).
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The usage of machine learning approaches and clas-
sification algorithms has an expanding role in sex
differentiation or predicting cognitive outcomes. Joel
et al. [3] used an anomaly detection algorithm to test
whether the brain types typical of one sex category are
also typical of the other sex category. This was com-
plemented by unsupervised clustering to find clusters
that best describe variability in a population of human
brains regardless of sex category. Their study showed
that it is possible to use one’s brain architecture to pre-
dict whether this person is female or male with an
accuracy of 80%, although one’s sex category provides
very little information on the likelihood that one’s brain
architecture is similar to or different from someone
else’s brain architecture. Luo et al. [6] used multivari-
ate pattern analysis of cortical three-dimensional (3D)
morphology and derived discriminative morphologi-
cal features to identify gender effectively. Xin et al. [7]
applied deep learning on the diffusion MRI data to
analyse morphological differences between men and
women. They used 3D convolutional neural network
(3D CNN) on the maps of fractional anisotropy (FA)
and compared it with support vector machine (SVM)
and tract-based spatial statistics methods. Their pro-
posed 3D CNN yielded a better classification result
(93.3%) than the SVM (78.2%) on the whole-brain
FA images. Their results indicate gender-related differ-
ences in the whole brain as well as in several specific
brain regions. Van Putten et al. [8] used a deep con-
volutional neural network to predict sex from brain
rhythms obtained in EEG (electroencephalogram) data
and achieved an accuracy of 81%. Azevedo et al. [9]
applied machine learning approach for predicting indi-
vidual differences in cognitive functioning by using fea-
tures derived from brain surface-based morphometry
and cortical myelin estimates. They reduced the num-
ber of features into 23 sets using Factor Analysis, out
of which they extracted nine factors that represented
70% of cumulative variance using Principal Compo-
nent Analysis. They used nested cross validation and
XGBoost (Extreme Gradient Boosting) method to pre-
dict the factors and applied SHAP (SHapley Addi-
tive exPlanations) analysis for interpreting predictions.
Their results revealed that the prediction of the sex-
related factor yielded the best Pearson-r correlation val-
ues compared to the other eight factors that comprised
different cognitive measures.

The aim of our study was to analyse anatomi-
cal as well as behavioural factors as indicators of sex
differences and the ability of the machine learning
approaches to separate between male and female par-
ticipants based on the used features. With that goal in
mind we have applied two state of the art classifiers,
support vector machine and random forest classifier, to
detect underlying patterns and subtle information. The
purpose of the applied classification algorithms and
subsequent analysis of features was to identify features

relevant for discriminating between males and females.
We performed the analysis of feature relevance using
SHAP analysis. Results revealed features that had strong
distinguishing power between males and females.

The significance of this work is that it uses a big
dataset of young adults and a broad set of different
features, from neuroimaging measures, to psycholog-
ical and cognitive measures. Further, it uses state of
the art machine learning approaches to analyse fea-
ture relevance for sex differentiation. Our results, that
agree with statistical findings of sex differences, show
the utility and power of the applied machine learning
approach.

2. Materials andmethods

2.1. Materials

Data used in this study were obtained from the S1200
public dataset released as part of the Human Connec-
tome Project (HCP)1 [10]. After accounting for miss-
ing information, the total number of subjects included
in our analysis was 863, where 410 were males and
453 were females. Age distribution of male and female
participants is shown in Table 1.

A total number of the analysed features was 354, as
summarized below, and additional details can be found
in the HCP Data Dictionary2 and in Barch et al. [11].

Features can be separated into non-imaging and
imaging features. Non-imaging features include the fol-
lowing:

• Health factor included sleep quality measured using
the Pittsburgh Sleep Quality Index (PSQI) [12].

• Cognitivemeasures includedNIHToolbox tests [13]
as well as non-toolbox tests [14,15] that sampled
a broad spectrum of domains, and final composite
scores.

• Motor skills were tested using NIH Toolbox
endurance, locomotion, dexterity and strength tests.

• Sensory abilities were tested using NIH Toolbox
(audition, olfaction, pain, taste) and Electronic
Visual Acuity and Mars contrast tests (vision).

• Emotional processing measures included the Penn
Emotion Recognition test and several NIH Toolbox
surveys.

• Tasks during the fMRI experiment included emo-
tion, gambling, language, relational, social and
working memory tasks. Variables that capture

Table 1. Age distribution of male and female participants.

Age range Male Female

22–25 124 67
26–30 173 197
31–35 110 184
36+ 3 5
Total 410 453
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reaction times, difficulty level of stimuli and various
accuracy measures were derived for each task in the
scanner.

• Personality trait scores (agreeableness, openness,
conscientiousness, neuroticism, extraversion) were
assessed using the Five Factor Inventory (NEO-FFI)
[16].

Listed NIH Toolbox measures were reported both
age-adjusted (participant score was normed using the
age appropriate band of Toolbox Norming Sample) and
age-unadjusted (participant score was normed to those
in the entire NIH Toolbox Normative Sample).

Imaging features included FreeSurfer (FS) derived
structural measures of the brain comprising cortical
and subcortical volumes, cortical surface thickness and
area across different brain regions. These were obtained
from the FreeSurfer part [17] of the minimal process-
ing pipelines developed for the analysis of theHCP data
[18].

2.2. Methods

The goal of the analysis was to identify features that
have discriminative power for classifying male and
female participants.We applied two state of the art clas-
sification algorithms with different properties from the
scikit-learn package [19]:

(1) Support Vector Machine (SVM) [20] with radial
basis function (RBF) kernel finds a hyperplane that
helps to classify the data points. The dimension
of the hyperplane depends on the number of fea-
tures N and results in a N-1 dimensional space.
The position and the orientation of the hyperplane
are defined by support vectors which are the data
points closer to the hyperplane.

(2) Random Forest Classifier (RFC) creates a set of
decision tree classifiers from randomly selected
subsets [21]. Each tree in the ensemble is built from
a sample drawn with replacement (i.e. a bootstrap
sample) from the training set. In contrast with the
original method where each classifier votes for a
single class, the used scikit-learn implementation
combines classifiers by averaging their probabilis-
tic prediction to decide the final class.

Before applying classification, the variables were first
standardized by removing the mean and by scaling to
unit variance. This reduces the chances for classifiers
to be overly biased by variables that show the most
variance in the original data.

We have split the dataset into two equal parts: (i)
development set, which was further split into training
and testing sets, that were used for optimizing the clas-
sifier models using grid search, and (ii) an evaluation
set (comprising held-out samples that were not seen

during the optimization) for reporting final classifier
performance and obtaining the feature rankings.

Each classifier was optimized using grid search for
finding the best set of hyperparameters relevant for the
classifier with a goal of achieving the best cross vali-
dation (CV) score. GridSearchCV in scikit-learn pack-
age exhaustively considers all parameter combinations.
Hyperparameters that were optimized for SVM clas-
sification were regularizer C and a kernel coefficient
gamma. For RFC we tuned number of trees in random
forest, number of features to consider at every split,
maximum number of levels in tree and criterion that
measures the quality of each split.

In order to avoid over-fitting of the model and to
reduce the subsequent selection bias [22], we used a
nested CV with 4 folds to do hyperparameter tuning
and to assess the performance of the best model. The
bias is reduced by passing only training set from the
outer loop to the inner loop, while the testing set in
the outer loop is held back. The performance of the
model is assessed in the outer loop, and the selection
of the best model is done in the inner loop. The model
is selected on each outer-training set (using the inner
CV loop) and its performance was measured on the
corresponding outer-testing set. In the inner loop (exe-
cuted by GridSearchCV), the score was approximately
maximized by fitting a model to each training set, and
then directly maximized in selecting hyperparameters
over the testing set. In the outer loop (executed using
cross_val_score), generalization error was estimated by
averaging test set scores over dataset splits.

Classification results and the performance of each
classifier were analysed on the evaluation set in terms
of accuracy:

Accuracy = TP + TN
TP + TN + FP + FN

, (1)

where TP (true positive) is the number of positive
classes correctly predicted (or classified) as positive,
TN (true negative) is the number of negative classes
correctly classified as negative, FP (false positive) is
the number of negative classes misclassified as posi-
tive, and FN (false negative) is the number of positive
classes misclassified as negative. Positive and negative
are generic names for the predicted classes. Accuracy
is often expressed as a percentage value obtained by
multiplying the above expression with 100.

Additional measures that were used for assessing
the performance include precision, recall and F1-score.
These are defined as follows:

Precision = TP
TP + FP

, (2)

Recall = TP
TP + FN

, (3)

F1 - score = 2
Recall Precision

Recall + Precision
. (4)
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In other words, precision gives a rate of positive
predictions, and recall gives a fraction of correctly clas-
sified positives. F1-score combines the two measures
and is their weighted average, with 1 being the best
score, and 0 being the worst.

For determining the impact of a feature on the out-
put of themodel, i.e. the feature importance for the data
separation task, we used SHAPmethod [23]. It is based
on the game theory and the estimation of Shapley val-
ues [24]. SHAP was used for explaining and analysing
individual predictions by computing the contribution
of each feature to the prediction. KernelSHAP [23],
which is a kernel-based estimation approach for Shap-
ley values, was used for analysing SVM outputs. Tree-
SHAP [25], which is an efficient implementation for
tree-basedmodels, was used for analysing RFC outputs.
TreeSHAP is a fast method and computes exact Shap-
ley values, while KernelSHAP is computationally more
expensive and only approximates the actual Shapley
values.

3. Results

Classification accuracies of SVM and RFC are 91.44%
and 89.35%, respectively. These results show that the
features used for the classification have good discrim-
inative power for classification between males and
females. Precision, recall and F1-score are listed in the
classification report shown in Table 2, separately for the
two classes (males and females) and as the final overall
score expressed through weighted average. Comparing
precision and recall over two classes may be obsolete
since it only shows that a classifier has better abil-
ity to find one class compared to the other. F1-score,
which combines precision and recall, shows that both
classifiers are slightly better in predicting females than
males, 0.5% better in case of SVM and 1% better in case
of RFC. However, in the final result that small differ-
ence has disappeared. Overall, classifier performance
expressed in terms of weighted averages of precision,
recall and F1-score are all approximately 0.91 for SVM
and 0.89 for RFC. This indicates that each classification
model and our dataset are balanced, i.e. that classifier’s
ability to correctly classify males is equivalent to its
ability to correctly classify females.

Summary plot [23] of SHAP values of every fea-
ture for every sample gives an overview of features that
are most important for the classifier. It sorts features

Table 2. Classification report for SVM and RFC.

SVM RFC

Precision Recall F1-score Precision Recall F1-score

Males 0.923 0.901 0.911 0.915 0.864 0.889
Females 0.906 0.927 0.916 0.874 0.922 0.898
Weighted

average
0.915 0.914 0.914 0.895 0.894 0.893

by the sum of SHAP value magnitudes over all sam-
ples, and uses SHAP values to show the distribution of
the impacts each feature has on the model output. The
colour represents the feature value (red is high, blue is
low). Due to space limitations we plotted only top 20
features. Full feature names and explanations are avail-
able in the HCP Data Dictionary. In summary, feature
names starting with FS are FreeSurfer measures of vol-
ume (Vol), cortical thickness (Thck) and surface area
(Area) for different brain regions for left (L) and right
(R) hemisphere. Top 20 features for classifying males
and females obtained with SVM and RFC are presented
in separate summary plots for each sex in Figures 1 and
2, respectively. In the summary plots, it can be noticed
that the results for males and females are mirrored for
a particular feature. High values (red) of a certain fea-
ture cause higher predictions for males, and low values
(blue) cause lowpredictions formales, while at the same
time for females low values of the same feature cause
high predictions and high values cause low predic-
tions. For example, higher values of grip strength show
higher prediction for a male, and lower prediction for a
female.

Mean absolute SHAP values for top 20 features for
SVM and RFC classifiers are presented in summary
plots with stacked bars for both sexes in Figure 3. The
overlap between those top 20 features for SVM and
RFC, based on SHAP values, is 6 features, or 30%, while
for top 177 features (50% of all features) the overlap
is 52%, or 92 features. However, a closer look at plots
in Figure 1, with plots for SVM output for male and
female SHAP values, shows that the relevance is not
identical for male and female SHAP values either, and
that the overlap between the two is different. This dis-
crepancy may be in the way KernelSHAP (used for
analysing SVM outputs) computes the resulting SHAP
values, which are only an approximation of Shapley
values, while TreeSHAP (used for RFC outputs) com-
putes the exact Shapley values. Thus, for the final feature
ranking we computed arithmetic mean of the feature
importance rank across the two classifiers and pre-
sented them, along with the standard deviation (SD),
in Table 3. Positions are rounded to the closest integer
value. Due to space limitations, we included only the
top 50 features.

The top three features, which achieved the same
ranking using both SVM and RFC, are the grip strength
(age-adjusted and unadjusted) and FreeSurfer total
brain mask volume. Among the other top 50 rele-
vant features are mostly imaging derived features from
FreeSurfer (37 out of 50), with the majority being volu-
metric measures: total GM volume, cortical volume of
cerebellum, volume of the third ventricle, total cortical
GM volume, left and right cortical GM volume, etc. It
is interesting to note that volumes of subcortical struc-
tures are not bilaterally included in the top 50 features.
An example is the amygdala, where only the volume of
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Figure 1. Summary plot of SHAP values for classifying males and females using SVM for the top 20 features.

Figure 2. Summary plot of SHAP values for classifying males and females using RFC for the top 20 features.

the left one is among top 50 with its mean position of 23
(±10.58 SD), while the volume of right amygdala has
the mean position of 163 (±57.27 SD). Also, the vol-
ume of left hippocampus is among the top 50 features,
with its mean position being 25 (±8.49 SD), while the
volume of right hippocampus has the mean position of
153 (±106.77 SD).

Further FreeSurfer features among the top 50 are
surface areas of various regions, including right lat-
eral occipital region, left posterior cingulate, right and
left precentral and left postcentral, left entorhinal, right

inferiorparietal and left fusiform region. Surface area
of both left and right insula is also among the top 50
features.

The following FreeSurfer derived measures of corti-
cal thickness are in the top 50 relevant features: thick-
ness of right precuneus region, leftmedial orbitofrontal,
right superior temporal, right temporal pole, left
cuneus and right parstriangularis.

Aside already mentioned grip strength, which is on
the top position, other non-imaging features among
the top 50 relevant features are: in-scanner task
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Figure 3. Mean absolute value of the SHAP values stacked for bothmales (Class 0) and females (Class 1) for SVM and RFC for the top
20 features. (mag. = magnitude).

Table 3. Mean positions and standard deviations (SD) across SVM and RFC of the top 50 features.

Feature Mean position SD Feature Mean position SD

Strength_Unadj 1 0 FS_R_Precentral_Area 57 67
Strength_AgeAdj 2 0 Flanker_Unadj 57 61
FS_Mask_Vol 3 0 SCPT_TN 57 3
FS_Total_GM_Vol 10 8 FS_BrainSeg_Vol 58 59
FS_L_Cerebellum_Cort_Vol 11 4 FS_L_Entorhinal_Area 59 53
FS_R_Cerebellum_Cort_Vol 12 10 FS_R_Cerebellum_WM_Vol 59 13
FS_3rdVent_Vol 22 6 FS_BrainStem_Vol 60 52
FS_L_Amygdala_Vol 23 11 FS_L_Postcentral_Area 62 80
FS_LCort_GM_Vol 25 18 Language_Task_Story_Median_RT 64 53
FS_R_Lateraloccipital_Area 25 30 FS_L_Precentral_Area 65 30
FS_L_Hippo_Vol 27 8 FS_R_Superiortemporal_Thck 67 18
FS_L_Medialorbitofrontal_Area 31 18 FS_OpticChiasm_Vol 69 62
FS_BrainSeg_Vol_No_Vent_Surf 32 30 FS_R_Temporalpole_Thck 69 1
Relational_Task_Rel_Median_RT 34 38 FS_L_Cuneus_Thck 70 81
SCPT_SPEC 35 13 FS_R_Inferiorparietal_Area 72 5
FS_L_Lateraloccipital_Area 39 9 NEOFAC_A 73 74
FS_TotCort_GM_Vol 44 54 Emotion_Task_Median_RT 74 18
FS_SupraTentorial_Vol 47 54 VSPLOT_OFF 74 50
FS_R_Precuneus_Thck 51 28 FS_R_Parstriangularis_Thck 76 35
FS_RCort_GM_Vol 52 62 FS_CSF_Vol 77 66
FS_IntraCranial_Vol 55 68 FS_R_Insula_Area 77 88
FS_L_Posteriorcingulate_Area 55 39 GaitSpeed_Comp 77 15
FS_L_Cerebellum_WM_Vol 56 20 FS_L_Fusiform_Area 79 71
FS_L_Insula_Area 56 52 NEOFAC_N 82 23

performance including median reaction time for cor-
rect trials during relational blocks in relational task
(Relational Task RelMedian RT), and during story con-
dition in language task (Language Task Story Median
RT), and average of median reaction times from each
condition in emotion task (Emotion Task Median
RT); cognitive measures including specificity (SCPT
SPEC) and true negatives (SCPT TN) of the sustained
attention from the Short Penn Continuous Perfor-
mance Test, Flanker measure of executive function and
spatial orientation (VSPLOT OFF); personality traits
agreeableness (NEOFAC A) and neuroticism (NEO-
FAC N); motor skills that included locomotion (Gait-
Speed Comp); and alertness measure regarding sleep

habits of having a bed partner or roommate (PSQI
BedPtnrRmate).

4. Discussion

This paper presents a machine learning approach to
identify psychological and brain anatomical features
and their relevance for distinguishing between males
and females. We used two classifiers with different
properties (SVM and RFC) to obtain relevance of 354
features and identify features with high discriminative
power for determining sex on the set of 863 subjects
from the publicly availableHCP dataset. Hyperparame-
ters for each classifier were optimized through a nested
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cross validation and grid search with a goal of achieving
optimal performance and reducing classification bias.
The resultingmodels were used to identify features that
had the highest contribution in the classification task.

High accuracy of the used classifiers (91% for SVM
and 89% for RFC) shows that the features used for the
classification have good discriminative power for clas-
sification between males and females. It is important to
note that the performance was high due to the com-
bination of features, and single features would likely
perform worse. However, the purpose of this study has
not been the selection of the best individual feature
or subsets of features, but to use classifiers to identify
features relevant for discriminating between males and
females and obtain their ranking. Applying standard
procedures for feature selection prior to the classifica-
tion, such as e.g. recursive feature elimination, would
reduce the number of features and retain only the best
set of features for a certain classifier. Feature selection
would identify which features (and their combinations)
contribute the most in class prediction. However, here
we wanted to assess the individual top features and
their contribution to the classification, while retaining
all features during the process.

Another point worth noting is that SVM outper-
formed RFC. This may be due to the demands of the
given task being a two class problem. Namely, RFC is
suited for multiclass problems, while SVM is intrinsi-
cally a two-class problem classifier.

Our classification analysis revealed that non-imaging
features with strong discriminative power among the
top 50 features are grip strength, reaction times dur-
ing tasks in the scanner, cognitivemeasures of sustained
attention, executive function and spatial orientation,
personality traits agreeableness and neuroticism, loco-
motion and alertness measure. Many FreeSurfer mea-
sures derived from structural MR images were revealed
as relevant features (37 among the top 50) for distin-
guishing between males and females, including volu-
metric, thickness and surface area measures.

Our results of top relevant features agree with find-
ings from various statistical analysis that show sex dif-
ferences in the regions that our classifiers and SHAP
analysis revealed as top ranking features. Analysis by
Szalkai and Grolmusz [26] showed that females have
significantly larger numerous subcortical areas and
most cortical areas. Further, analysis by Ritchie et al. [2]
revealed that males generally had larger volumes and
surface areas of the brain, whereas females had thicker
cortices. They also found that volume and surface area
mediated nearly all of the small sex difference in rea-
soning ability, but far less of the difference in reaction
time. Results by Szalkai et al. [1] showed that men, on
average, have greater grip strength and brain volume.

Beside a benefit of classification algorithms in help-
ing identifying features relevant for discriminating sex,
they also reduce the possible drawbacks of statistical

analysis. Namely, an issue of statistical analysis of big-
ger datasets has been brought out by Smith and Nichols
[27], where caution is needed since a bigger sample size
renders significant individual associationsmeaningless.
However, wheremany variables are considered simulta-
neously, a reasonable total percentage of variance pre-
diction may be found. Furthermore, a big dataset may
show high sensitivity to artifactual associations due to
confounding effects, and even when a real association
exists, confounds can bias the estimate of the correla-
tion. To tackle such issues of big data in neuroimaging,
Smith and Nichols [27] propose multivariate analysis
as well as rigorous cross validation based on held-out
data. Thus, our classification approach is in line with
the stated demands and issues, where the proportion of
data was held-out for the final evaluation and feature
ranking, and models were trained using a nested CV.

Lotze et al. [4] pointed out that assessing only vol-
umes of brain structures, i.e. voxel-basedmorphometry
may not include global or local changes of vertex-based
measures (cortical thickness, surface area) in different
directions (e.g. increase of cortical thickness, decrease
of surface area). Thus, a study, such as ours, that
includes and combines vertex-based measures such as
cortical thickness and surface area alongwith the voxel-
based measurements of volumes of brain structures has
an increased value.

To our knowledge, our study is the first one that
included cognitive, emotional as well as structural brain
measures for the analysis of important features for dis-
tinguishing between males and females and applied
machine learning approach for that purpose. Our
results show the importance of using a machine learn-
ing approach when analysing sex differences, and the
approach may well be expanded to other hypotheses
designs in future studies. Future work should extend
the analysis of relevant features by training separate
classifiers for the cognitive and imaging measures, to
determine the importance of each in differentiating sex
and assessing the relevance of each, both separately and
jointly. Finally, our results verify the findings from var-
ious statistical analyses of sex differences and thereby
demonstrate the power and advantages of the applied
machine learning approach.

Notes

1. https://www.humanconnectome.org/
2. https://wiki.humanconnectome.org/display/PublicData/

HCP+Data+Dictionary+Public-+Updated+for+the
+1200+Subject+Release
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