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networks and neighbourhood

Jiangchun Mo and Yucai Zhou

School of Energy and Power, Changsha University of Science and Technology, Changsha, People’s Republic of China

ABSTRACT
Various problems existed in the image inpainting algorithms, which can’t meet people’s require-
ments visually. Aiming at the defects of the existing image inpainting algorithms, such as
low accuracy, poor visual consistency, and unstable training, an improved image inpainting
algorithm used on a multi-scale generative adversarial network (GAN) and neighbourhood
model have been proposed in the paper. The proposed algorithmmainly improves the network
structure of the discriminator, and introduces a multi-scale discriminator based on the global
discriminator and the local discriminator. The multi-scale discriminators were trained on images
of different resolutions. Discriminators of different scales have different receptive fields, which
can guide the generator to generate more global image views and finer details. Aiming at the
problem of gradient disappearance or gradient explosion that often occurs in GAN training, the
method of WGAN (Wasserstein GAN) has been used to simulate the sample data distribution
using EM distance. The proposed model has been trained and tested on the CelebA, ImageNet,
and Place2. The experimental results show that compared with the previous algorithm model,
the proposed algorithm improves the accuracy of image inpainting and can generate more
realistic repairing images, and it is suitable for many types of images.
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The following variables are matrices:
Repaired Image (Original Image): I
The Noise Mask: z
The Distribution of Real Data x: Pdata(x)
The Distribution of Noise Variable z: Pz(z)
Others are common variables.

1. Introduction

With the rapid development of deep learning in the
researching field of computer vision, the researchworks
on image editing and image generation have achieved
remarkable results. The image inpainting problem, dis-
cussed in the paper, is a hot issue between image edit-
ing and image generation. It has important applica-
tions in the areas of image scaling, protection of cul-
tural relics, facial repair of police detectives, biomedical
image applications, and aerospace technology.

Image inpainting is a traditional graphic problem.
A certain area is missing at a certain position on an
image, and other information is used to restore this
missing area, making it impossible for people to iden-
tify the repaired part. As shown in Figure 1 (from left
to right, the original image, the missing image, and the
repaired image), the missing areas in the two images

have cups and flowers, respectively. Persons can easily
convert the images according to the content of the sur-
rounding image inpainting. Because the human brain
has subjective consciousness, different people have dif-
ferent repair effects. Therefore, in the process of image
repairing, the principles of structure, similarity, consis-
tent texture, and structure priority must be followed.
However, the image repairing task is particularly diffi-
cult for computers, because there is no unique solution
to this problem. How to use other information to assist
the repair and how to determine whether the repair
results were sufficiently authentic are the concerns of
researchers.

At present, the structure-based image inpainting
[1–4], texture-based image inpainting [5–10], and deep
learning-based image inpainting [11–16] are the three
main directions in the research field of image inpaint-
ing. The research in the paper is mainly aimed at image
learning algorithms based on deep learning. In recent
years, convolutional neural networks (CNN) [17,18]
have greatly improved the performance of semantic
image classification [19–22], object detection [23–27],
and image segmentation tasks [28,29]. Researchers
have used CNN models for image inpainting tasks,
but the image inpainting methods using only CNNs
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Figure 1. Repair of three different images (a) original image (b)
missing image (c) repaired image.

have low accuracy and great room for improvement in
performance.

Aiming at the problems of the existing methods,
the paper has proposed a multi-scale generative adver-
sarial network and neighbourhood model to obtain
high-precision, high-accuracy, and visually consistent
inpainting images. Firstly, the generator and discrim-
inator were composed deep generation adversarial
inpainting model uses the reconstruction loss and
the adversarial loss to synthesize the missing content
from random noise. Secondly, a multi-scale discrimi-
nator structure has been proposed, and image inpaint-
ing is performed by using adversarial training with
images of different resolutions. Then, the generator uses
dilated convolution to reduce the loss information dur-
ing down-sampling, and uses current Poisson blending
method to perform certain subsequent processing on
the repaired image. Finally, the advantages of the pro-
posed method and the effect of image inpainting are
illustrated through experiments.

2. The related works

Traditional image inpainting methods, such as the lit-
erature [30], have used the diffusion equation to iter-
atively propagate to the unknown region along the
low-level features of the known region along the mask
boundary. Although it performs well in inpainting, it
is limited to dealing with small and uniform areas. By
introducing texture synthesis [31], the inpainting effect
is further improved. The literature [32] recovered the
image with missing pixels by learning the prior of the
image block.

Early, the deep learning-based image inpainting
methods, such as the literature [33], have learned a con-
volutional network, which greatly improves the perfor-
mance of image inpainting through an efficient image
block matching algorithm [34]. When a similar image
block is found, it performs well, but when the dataset
does not contain enough data to fill the unknown area,

it is likely to fail. The literature [35] has used image
inpainting as a task to recover sparse signals from the
input. By solving a sparse linear system, the image
can be repaired based on some corrupted input image.
However, the algorithm requires images to be highly
structured. The literature [36] has proposed Variational
Auto-Encoders (VAEs). By applying a priori on the
latent units, the images can be generated by latent unit
sampling or interpolation. However, due to training
objects based on pixel-level Gaussian likelihood, the
images generated by VAEs were usually blurred.

With the further development of deep learning
[58–60] [37–39], the Generative Adversarial Networks
(GAN) have been proposed by the literature [40]. The
literature [40] is a milestone in the development of
deep learning. With the advent of GAN, the problem
of blurring of images generated using traditional VAEs
was solved, and shocking results were achieved. In the-
ory, a large number of clear images can be generated.
The literature [41] has improved VAEs by adding an
adversarial trained discriminator, which came from a
generative adversarial network and proved that it can
generate more realistic images.

One of the main problems in image inpainting using
GANs is the instability during model training, such as
the inability of the network to converge, prone to gra-
dient disappearance, and gradient descent, which led
to a lot of research on this problem [42]. The latest
research shows that cross-entropy (JS divergence) in
traditional GANs isn’t suitable for measuring the dis-
tance between the generated data distribution and the
real data distribution. If you train GANs by optimizing
the JS divergence, you will not find the correct opti-
mization object. The Wasserstein GAN (WGAN) [43]
has been proposed by the literature [43] to improve the
GAN from the perspective of the loss function. The
improved WGAN after the loss function can obtain
good performance results even on the fully connected
layer, and solves the problem of unstable training. The
literature [44] has improved on the basis of Wasser-
stein GAN [44], optimized the continuity constraints,
solved the problem of training gradient disappearance
and gradient explosion, and accelerated the conver-
gence speed. The LSGAN (Least Squares GAN) [45]
model has used the least squares loss function instead of
the GAN loss function, which also alleviates the prob-
lems of unstable GAN training, poor image quality, and
insufficient diversity.

As a person has higher requirements for the resolu-
tion of GAN-generated images, another problem that
comes with it is that the network will down-sample
the images during the pooling process to extract low-
dimensional features, resulting in the loss of much key
information in the images [46–48]. The discriminator
is easier to distinguish real and fake images, so that the
gradient can’t indicate the correct optimization direc-
tion. How to effectively use the features extracted from
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Figure 2. Multi-scale discriminator model.

each layer of the neural network, minimize the loss
caused by the down-sampling process, and fully extract
the low-dimensional features of the image, it is a hot
spot in the current research. The literature [49] has
proposed a method of expanding convolution, which
can expand the receptive field and keep the size of the
feature map unchanged during the convolution pro-
cess, which effectively reduces the banding caused by
down-sampling in the traditional convolution process.
The incoming information is lost and used for image
processing. The “pix2pixHD” model proposed by the
literature [50] utilizes conditional generative adversar-
ial networks (Conditional GANs) [51] to synthesize
high-resolution realistic images, using a latest multi-
scale generator-discriminator structure to stabilize. At
the same time, the quality of the image has improved
and the resolution of the image has improved. Figure
2 shows a schematic diagram of a multi-scale discrim-
inator model. It has the same network structure, but
works at different image scales. These discriminators

are called D1, D2, and D3. Specifically, the down-
sampling of real and synthetic high-resolution images,
respectively D1, D2, and D3 are then trained to dis-
tinguish between real and synthetic images on three
different scales.

By using the Mean Squared Error (MSE) loss com-
bined with the GAN loss, an image inpainting network
can be trained, avoiding the common ambiguity when
only using the MSE loss. Merely using this method can
make network training unstable. The paper has used the
loss in WGAN to replace the loss of traditional GAN,
uses the EMdistance tomeasure the difference between
data distributions, and does not train generative mod-
els and adjust the learning process to prioritize stability
to avoid this problem. In addition, the architecture and
training process were optimized for image inpainting
problems. In particular, instead of using a single dis-
criminator, multiple discriminators were used, and a
multi-scale discriminator similar to the “pix2pixHD”
model [50] is used to improve visual quality.

3. The proposed algorithm

Section 3 introduces the multi-scale generative adver-
sarial networks model and neighbourhood, includ-
ing a generative network for image inpainting, four
additional discriminator networks-assisted training,
namely two multi-scale discriminator networks, a
global discriminator network, and a local discriminator
network in order to train the entire network to per-
form image repair tasks outstandingly. During train-
ing, the discriminator is trained to determine if the
image has been successfully repaired, while the genera-
tor is trained to fool all discriminators. Only through

Figure 3. Network architecture.
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Table 1. Architecture of generator G.

Layer Kernel Dilation Stride Outputs

conv 5× 5 1 1× 1 64
conv 3× 3 1 2× 2 128
conv 3× 3 1 1× 1 128
conv 3× 3 1 2× 2 256
conv 3× 3 1 1× 1 256
d-conv 3× 3 2 1× 1 256
d-conv 3× 3 4 1× 1 256
d-conv 3× 3 8 1× 1 256
d-conv 3× 3 16 1× 1 256
conv 3× 3 1 1× 1 256
deconv 4× 4 1 1/2× 1/2 128
conv 3× 3 1 1× 1 128
deconv 4× 4 1 1/2× 1/2 64
conv 3× 3 1 1× 1 32
deconv 3× 3 1 1× 1 3

all the networks trained together can the generator
really repair various images. The network architecture
is shown in Figure 3.

3.1. Generator

A convolutional self-encoder is used as the generator
model G, which is a standard encoder–decoder struc-
ture. The encoder structure takes an imagewithmissing
regions as input content, and generates a latent fea-
ture representation of the image through a convolution
operation. The decoder structure uses this latent fea-
ture representation to restore the original resolution
through a transposed convolution operation, resulting
in the image content of the missing area. Unlike the
original GAN model, which starts directly from the
noise vector, the hidden representation obtained from
the encoder captures more changes and relationships
between unknown regions and known regions, and
then inputs the decoder to generate content. The inter-
mediate layer uses dilated convolution, which allows a
larger input area to be used to calculate each output
pixel. There are no additional parameters and calcula-
tions. Compared with the standard convolution layer,
the dilated convolution network model can use larger
pixels in the input image to calculate each output pixel
under the influence of the area. If you don’t use dilated
convolution, it will only use smaller pixel areas and can-
not use more context information for image synthesis.

The generator uses a standard auto-encoder network
[12], and on this basis, an expansion convolution layer
is added, that is, the generator network proposed by the
literature [44] to remove the middle two convolution
layers. The network architecture is shown in Table 1.
From left to right are the network layer type (conv is
the convolution layer, d − conv is the expansion convo-
lution layer, deconvis the deconvolution layer), the size
of the convolution kernel, the number of zero-filling of
the convolution kernel, the step size, and the layer of
output channels.

3.2. Discriminator

After training, the generator can fill the corresponding
pixels of the missing area with a small reconstruction
loss. Just using the generator does not ensure that the
filled area is visually true and consistent. The pixels
in the missing area of the generated image are very
blurred, and only the general shape of the missing area
can be captured. In order to obtain a more realistic
effect, global discriminators, local discriminators, and
multi-scale discriminators were added as binary clas-
sifiers to distinguish real image and fake image. The
purpose is to distinguish whether the image is real or
restored. The discriminator helps the network improve
the quality of the repairing results, and the trained dis-
criminator will not be fooled by unrealistic images.
These discriminators were based on convolutional neu-
ral networks to compress images into corresponding
small feature vectors. The prediction corresponds to the
probability value that the image is true.

The first is the local discriminator Dl, which deter-
mines whether the synthesized content of the missing
area is authentic information that helps the network to
generate missing content. It encourages the generated
objects to be semantically valid. Due to the locality of
the local discriminator, its limitations are also obvious.
Local discriminator can neither normalize the global
structure of a face, nor guarantee the consistency of the
inner and outer edges of the missing region. Therefore,
the inconsistency of the pixel values of the repair image
along the boundary of the repair area is obvious.

Due to the limitations of the local discriminator,
another network structure called global discriminator
Dg is introduced to determine the accuracy of the image
as a whole. The basic idea is that the content of the gen-
erated image repair area must not only be true, but also
be consistent with the context. A network with a global
discriminator greatly alleviates the problem of incon-
sistency and further improves the effect of generating
repaired images to make them more realistic.

Finally, a multi-scale discriminator network struc-
ture has been proposed. The basic idea is to down-
sample real and synthesized images with down-
sampling coefficients of two and four, and train two dis-
criminators, Dm1 and Dm2, to distinguish between real
and repaired images on two different scales. Through
two discriminator networks whose inputs are images
of different resolutions, the process of repairing the
image by the generator is strictly controlled. The two
multi-scale discriminators and global discriminators
had similar architectures but different receptive fields
of different sizes. Compared with using the global dis-
criminator, trainingwith a jointmulti-scale discrimina-
tor can guide the generator to generate a more globally
consistent repairing image and finer details, and the
repairing effect of the entire image is more reasonable
visually. By adding two multi-scale discriminators



708 J. MO AND Y. ZHOU

Table 2. Architecture of local discriminator Dl .

Layer Kernel Stride Outputs

conv 5× 5 2× 2 64
conv 5× 5 2× 2 128
conv 5× 5 2× 2 256
conv 5× 5 2× 2 512
conv 5× 5 2× 2 512
conv 5× 5 2× 2 512

Table 3. Architecture of global discriminator Dg.

Layer Kernel Stride Outputs

conv 5× 5 2× 2 64
conv 5× 5 2× 2 128
conv 5× 5 2× 2 256
conv 5× 5 2× 2 512
conv 5× 5 2× 2 512

Table 4. Architecture of multi-scale discriminator Dm1.

Layer Kernel Stride Outputs

conv 5× 5 2× 2 64
conv 5× 5 2× 2 128
conv 5× 5 2× 2 256
conv 5× 5 2× 2 512
conv 5× 5 2× 2 512

Table 5. Architecture of multi-scale discriminator Dm2.

Layer Kernel Stride Outputs

conv 5× 5 2× 2 64
conv 5× 5 2× 2 128
conv 5× 5 2× 2 256
conv 5× 5 2× 2 512

to the network, a better repaired image can be
obtained.

The global discriminator and local discriminator are
removed from the last two fully connected layers, and
other structures aren’t changed. The global discrimina-
tor, local discriminator, and multi-scale discriminator
network architectures are shown in Tables 2–5, respec-
tively. From left to right are the network layer type, the
size of the convolution kernel, the step size, and the
number of output channels of the layer. Tables 2–5 are
Dl, Dg , Dm1 and Dm2, respectively.

3.3. Loss function

There are usually many reasonable ways to fill in miss-
ing image areas that are consistent with the context.
This behaviour can be modelled, for example, by a loss
function. So, first introduce the reconstruction loss Lr
to the generator, which is responsible for capturing the
structural information of the missing area and keep-
ing it consistent with the context, that is, L2 distance
between the pixels of the repair image and the original
image, and z is the noise mask.

Lr(x, z) = ||z � (x − F((1 − z) � x))||22 (1)

But using Lr loss, it is observed that the content of
the generated repaired image tends to be blurred and

smooth. Because the cause of the L2 distance loss is due
to severe penalties for outliers, the network is encour-
aged to smoothly cross various assumptions to avoid
large penalties. By using a discriminator, an adversar-
ial loss is introduced, which reflects how the genera-
tor fools the discriminator to the maximum and how
the discriminator distinguishes between real and fake.
Adversarial loss is a loss based on the GAN model. In
order to learn the generative model of data distribu-
tion, GAN learns an adversarial discriminator model
D to provide a loss gradient for the generator model.
The adversarial discriminatorD predicts both the sam-
ples generated by the generator G and the real samples,
and tries to distinguish them, while the generator G
obfuscates the discriminator D by generating as “true”
samples as possible:

L = min
G

max
D

Ex∼Pdata(x)[lg(D(x))]

+ Ez∼Pz(z)[lg(1 − D(G(z)))] (2)

Among them,Pdata(x) andPz(z) represent the distri-
bution of real data x and noise variable z, respectively.
Optimize the network byminimizing the generator loss
and maximizing the discriminator loss.

Due to the instability in the training process of the
traditional GAN model, the loss function and method
of WGAN are used to train the GAN. The specific
method is to remove the sigmoid of the last layer of
the discriminator D. The loss function of G and D
doesn’t take the log of the loss function. The proposed
method is used instead of the traditional GANobjective
function:

L = min
G

max
D∈1−Lipschitz

Ex∼Pdata(x)[D(x)]

− Ez∼Pz(z)[D(G(z))] (3)

The discriminator Dmeets the 1 − Lipschitz limita-
tion factor, which essentially requires that the degree of
fluctuation of the network can’t be too large. The spe-
cificmethod is to update the parameters ofD every time
and then cut off the absolute value so that it does not
exceed a fixed constant, namely clipping.

The four discriminant networks {Dl,Dg ,Dm1,Dm2}
have the same definition of the loss function. The only
difference is that the local discriminator provides train-
ing loss gradients only for the missing regions, and
the global discriminator andmulti-scale discriminators
back-propagate the loss gradients on the entire image
with different resolutions. The input of the local dis-
criminator Dl is a repaired part of the output image of
the generator G and a part corresponding to the real
image. The input of the global discriminator Dg is the
output image and real image of the generator G. The
input of themulti-scale discriminatorDm1 is the output
image and real image of the generator G output image
and the real image down-sampled twice, respectively.
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The input of the multi-scale discriminator Dm2 is the
output image and real image of the generator G output
image and the real image, respectively, down-sampled
four times. The discriminators are defined for formulas
(4–7).

LDl = min
G

max
Dl∈1−Lipschitz

Ex∼Pdata(x)[Dl(x)]

− Ez∼Pz(z)[Dl(G(z))] (4)

LDg = min
G

max
Dg∈1−Lipschitz

Ex∼Pdata(x)[Dg(x)]

− Ez∼Pz(z)[Dg(G(z))] (5)

LDm1 = min
G

max
Dm1∈1−Lipschitz

Ex∼Pdata(x)[Dm1(x)]

− Ez∼Pz(z)[Dm1(G(z))] (6)

LDm2 = min
G

max
Dm2∈1−Lipschitz

Ex∼Pdata(x)[Dm2(x)]

− Ez∼Pz(z)[Dm2(G(z))] (7)

In summary, the total loss function of the entire
network optimization is defined as formula (8).

LAll = Lr + λ1Ll + λ2Lg + λ3Lm1 + λ4Lm2 (8)

λ1, λ2, λ3 and λ4 are the corresponding weights of dif-
ferent losses, which are used to balance the effects of
different losses on the entire loss function. The specific
values of λ1, λ2, λ3 and λ4 need to be set and adjusted
manually during the experiment.

4. Training details

The proposed work is based on the implementation
of deep convolutional adversarial neural networks. In
order to effectively train the network, the training pro-
cess is divided into three stages: (1) The generator net-
work G is trained, and the network is trained using
the reconstruction loss. The generator can get Vague
repair content, this stage does not include confrontation
training and confrontation loss. (2) Use the generator
network trained in the first stage to train all discrimina-
tor networks {Dl,Dg ,Dm1,Dm2}, and use the adversar-
ial loss to update all discriminators. (3) The final stage
trains the generator and all discriminators in joint con-
frontation. Each stage can prepare for the next stage of
improvement, which greatly improves the effectiveness
and efficiency of network training. The training process
is completed by the Back Propagation method.

When training for adversarial loss, a method similar
to the literature [52] is adopted to avoid the situation
where the recognizer is too strong at the beginning
of the training process. The default hyperparameters
(such as learning rate), suggested in the literature [53],
were used. Set λ1, λ2, λ3 and λ4 to 0.001. The training
is done by adjusting the image size, and the image is
cropped to a 256×256 image as the input image. For
the missing area, the input of the central square area

Algorithm 1:Multi-Scale GAN Algorithm
1. while t< T3 do
2. Collect small-batch images from training data x;
3. Generate a mask with random holes for each image x in the

mini-batch;
4. if t< T1 then
5. Update generator network Gwith weighted L2 loss;
6. else
7. Generate a mask with random holes for each image x in the

mini-batch;
8. Down-sampling of image x and G(z)with×2 and×4, respectively;
9. Update all discriminators {Dl ,Dg ,Dm1,Dm2}with EM distance loss;
10. if t> T1+T2 then
11. Joint adversarial loss gradient update generator networks G and

{Dl ,Dg ,Dm1,Dm2};
12. end if
13. end if
14. end while

in the image is set to 0. That is the missing part of
the image covers about 1/4 of the image. The input
of the global discrimination is a complete image of
256× 256 size, the input of the local discriminator is
an image of a repair area of 128× 128 size, and the
inputs of the two multi-scale discriminators are com-
plete images of 128× 128 and 64× 64 sizes. The net-
work model in the paper can reasonably fill the missing
areas, but sometimes the generated areas will be incon-
sistent with the surrounding areas. To avoid this, simple
post-processing is performed by blending the repaired
area with the colours of surrounding pixels. In par-
ticular, the paper has used Poisson blending [54] for
subsequent processing of images.

5. The experimental results’ analysis

The paper has used 100,000 images obtained from the
CelebA dataset to train a multi-scale generative adver-
sarial network model. A total of 80,000 images were
used for training and 20,000 images were used for the
testing procedure. The dataset includes a variety of face
images. The inpainting of face images is more diffi-
cult than the scene images. The inpainting of facial
images requires more details. For example, the posi-
tion of the facial features and the symmetry of the face
make repairing relatively difficult, so higher require-
ments are imposed on the design of the neural network,
and the batch size is set to 32. The generator network
goes through 20,000 iterations, then trains the discrim-
inator through 10,000 iterations, and finally trains the
entire network 70,000 times. The device conditions are
CPU, Intel i7-8700; GPU, RTX2080Ti; Main Memory,
DDR4 16GB. The code runs under the Pytorch deep
learning framework, and the entire network training
takes about five days to complete.

We can also try to add more multi-scale discrimi-
nators. It is found in the experiment that two discrim-
inators are enough to improve the network repairing
effect. Adding too many discriminators will complicate
the entire network, increase network parameters and
operation time.
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Figure 4. Comparison of repair results of different models (a)
original image (b) unrepaired (c) GIICA (d) GLCIC (e) proposed
method.

The experimental results were compared with the
inpainting results of the GIICA (Generative Image
Inpainting with Contextual Attention) [55] using only
one discriminator acting on the repairing area, and the
GLCIC (Globally and Locally Consistent Image Com-
pletion) [56] using the generator and two discrimina-
tors. In order to compare the fairness, the above model
was retrained and the same number of iterations was
performed, and the results are shown in Figure 4.

Figure 4 shows the face repairing results on the
CelebA testing dataset [57]. In each testing image, the
network will automatically cover the area in the mid-
dle of the image, because generally the middle part
will contain important parts of the face (for example,
eyes, mouth, eyebrows, hair, and nose). The column (a)
in Figure 4 corresponds to four original non-missing
images. The column (b) in Figure 4 is a masked miss-
ing image. Due to the lack of a globally consistent
understanding of this structure, it can be seen that the
repair results obtained by the proposed method not
only have obvious global inconsistencies, but also repair
themissing area. It is also very blurry and can’tmeet the
requirements of image repairing tasks. The column (d)
in Figure 4 is the repairing effect diagram of the “glob-
ally and locally consistent image completion” method
with the global discriminator and local discriminator.
The introduction of adversarial loss can enable the net-
work to repair the image more reasonably. The area has
an impact, so that the repair of missing area can be suc-
cessfully completed. The global discriminatorwill affect
the entire image in response to the global inconsistency
of the repaired image, forcing the network to generate
a globally consistent image, eliminating obvious edge
differences. It is good. The column (e) in Figure 4 is the
repair result of the algorithm in this paper, which uses
the loss function of WGAN to make the training of the

Table 6. Quantitative exper-
imental results on PSNR

Algorithm PSNR/dB

CE 18.61
GLCIC 19.45
Proposed 19.61

entire adversarial network more stable. Multi-scale dis-
criminators are added, and training is performed jointly
with global discriminators and local discriminators. It
can be seen that compared with the result of column
(d) in Figure 4, column (e) in Figure 4 has a certain
improvement in the details of repair, the image is more
integrated, and the repair effect is better.

In addition to the visual effects, the paper also
uses the PSNR (Peak Signal-to-Noise Ratio) and SSIM
(Structural Similarity Index) for quantitative evaluation
of the CelebA testing dataset. These two indicators are
the repair results and original faces obtained through
different methods. The first indicator is PSNR, which is
an objective standard for evaluating images. It directly
measures the difference in pixel values. The unit of
PSNR is dB. The larger the value, the smaller the dis-
tortion. Assuming that the two images input are x and
y, the calculation formula is given as formula (9) and
formula (10).

MSE(x, y) = 1
H × W

H∑
i=1

W∑
j=1

(X(i, j) − Y(i, j)) (9)

PSNR(x, y) = 10 lg

(
(2n − 1)2

MSE

)
(10)

Among them, MSE represents the Mean Square
Error of the repaired image x and the real image y, H
and W are the height and width of the image, respec-
tively, n is the number of bits per pixel, generally eight
is taken, that is, the number of pixel grey levels is 256.
The results are shown in Table 6.

The second indicator is the Structural Similarity
Index (SSIM), which is a measure criterion of the simi-
larity between two images. It is a number between zero
and one. The larger the value, the smaller the difference
between the repaired image and the real image. That
is, the better the image quality. When the two images
are identical, and the value is one. Assuming that the
two image inputs are x and y, the calculation formula is
formula (11).

SSIM(x, y) = (2μxμy + c1)(σxy + c2)
(μ2

x + μ2
y + c1)(σ 2

x + σ 2
y + c2)

(11)

Among them,μx andμy represent the average values of
x and y. σx and σy represent the standard deviations of
x and y. σxy represents the covariance of x and y, and c1
and c2 are constants. The calculation results are shown
in Table 7.
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Table 7. Quantitative experi-
mental results on SSIM.

Algorithm SSIM

CE 0.773
GLCIC 0.799
Proposed 0.805

Figure 5. Repair results of the proposed algorithm on Ima-
geNet dataset.

Figure 6. Repair results of the proposed algorithm on Place2
dataset.

In addition, in order to prove that the proposed
algorithm in the paper can be applied to many types of
image repairing, 50,000 images acquired in ImageNet
dataset and 50,000 images acquired in Places2 dataset
were used to train the model in the paper. The net-
workmodel trainingmethod is the same as the training
method used in the CelebA dataset. The experimental
results are shown in Figures 5 and 6, indicating that the
proposed model also performs well on the ImageNet
dataset and Places2 dataset. Table 8 shows experimen-
tal results on PSNR and SSIM in ImageNet and Place2
datasets.

Table 8. Experimental results on PSNR and
SSIM in ImageNet and Place2 datasets.

Dataset SSIM PSNR

ImageNet 0.7483 18.55
Place2 0.7869 19.21

6. Conclusions

In recent years, the deep learning had achieved great
results in the field of computer vision. The research of
image inpainting technology based on deep learning
has achieved initial results and has a wide application
prospect. The paper firstly introduces the background
and significance of image inpainting technology, briefly
reviews the current research status at home and abroad,
and analyses the shortcomings of those existing algo-
rithms. Then, it introduces the principle of genera-
tive adversarial network, analyses the problems exist-
ing in generative adversarial network, and applies the
improved generative adversarial network model to the
research of image repairing problems. Multi-scale gen-
erative adversarial networksmodel consists of adversar-
ial discriminators. The reconstruction loss andmultiple
confrontation losses are used to synthesize the missing
content from random noise. Combined with the idea of
WGAN, EM distance is used to simulate the data dis-
tribution, which improves the stability of the network
and improves the effect of image repairing. Finally, it
is verified on the CelebA dataset. Using qualitative and
quantitative evaluation methods, it is proved that the
image repairing algorithm, based on multi-scale gener-
ative adversarial networks proposed in the paper, has
better repairing effect than the current image repairing
methods. The corresponding training and testing were
also performed on the ImageNet and Place2, respec-
tively, which proves that the proposed algorithm can be
applied to the repair of many types of images and has
good results.

In addition, during the image repairing experiment,
it was found that in most cases, the network output
image repairing effect is good, but in some cases, the
image repairing output by the network will show some
strange pixels, that is, artefacts,making thewhole image
looks very unnatural. The reason for this may be that
the network has extracted the features of some invalid
pixels during the convolution process. The situation
isn’t good for image repairing tasks. The purpose of the
image repairing task is to complement the missing area
asmuch as possible with the existing information in the
image. The appearance of artefacts makes the repairing
effect worse. The next work of the paper will improve
the network model for this problem, and find a method
that can eliminate artefacts, such as partial convolution,
to achieve better image repair results.
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