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ABSTRACT
We address several problems of coordination and consensus on SO(3) and S3 that can be for-
mulated as minimization problems on these Lie groups. Then, gradient descent methods for
minimization of the corresponding functions provide distributed algorithms for coordination
and consensus in a multi-agent system. We point out main differences in convergence of algo-
rithms on the two groups. We discuss advantages and effects of representing 3D rotations
by quaternions and applications to the coordinated motion in space. In some situations (and
depending on the concrete problem and goals) it is advantageous to run algorithms on S3 and
map trajectories onto SO(3) via the double cover map S3 → SO(3), instead of working directly
on SO(3).
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1. Introduction

Explosive growth of interest in distributed and cooper-
ative control reflects a shift of paradigm in the design
of engineering systems and Control Theory. Geometric
consensus theory is a recently developed subdiscipline
in this broad field that deals with problems of consensus
(and, more generally, coordination) on non-Euclidean
manifolds [1–3].

This theory studies systems of agents whose states
are represented by points on a certain nonlinear man-
ifold. Agents communicate through a communication
graph and adjust their positions in accordance to
the information received from their neighbours. In
such a way, the system as a whole can achieve a
desired configuration through their pairwise interac-
tions. Consensus is one of such configurations, where
all agents are represented by a same point on man-
ifold. As the fundamental and important issue of
flocking and synchronization, consensus problem has
attracted a larger number of scientists’ attention, e.g.
[1,4–12].

Mathematical formalization of some important
engineering problems yields consensus problems on
certain higher-dimensional Riemmanian manifolds. In
order to develop a meaningful geometric consensus
theory, it is necessary to impose some conditions on
the class of Riemannian manifolds on which the prob-
lems are stated. One natural restriction is to work
under the assumption that the underlying manifold is
a homogeneous space. Problems of coordination on
Lie groups, notably on SO(3) and S3, are of a special
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interest, due to mathematical tractability and great
number of applications. Among others, problems of
attitude synchronization in space [13,14], formation
flying [9,15,16], sensor networks [17–21] can be stated
in amathematically rigorous way as coordination prob-
lems on these Lie groups.

Many problems of Geometric consensus theory can
be reduced tominimization of some potential functions
that are defined on appropriate non-Euclidean spaces.
For an overview of optimization problems and algo-
rithms on matrix manifolds we refer to the book of
Absil et al [22]. In such setup, gradient descentmethods
for minimization of these potential functions provide
distributed algorithms for reaching desired configura-
tions of agents.

In this view, one of central questions in this theory
is the one regarding the structure of the set of minima
of these potential functions. Convergence properties of
gradient descent methods obviously depend on exis-
tence and stability of critical points of corresponding
potential functions.

However, the structure of local minima depends on
a communication graph and underlying manifold and
there are only a few universal results in this direction.

In the present paper we consider several coordina-
tion problems on groups SO(3) and S3 that are formu-
lated as minimization problems.

In the next Section we consider consensus over
the complete communication graph. This particular
situation is well understood and universal results are
available.
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In Section 3 we proceed with consensus over arbi-
trary connected graphs. The situation here is more
involved and satisfactory answers are available only for
some manifolds. We present some simulation results
that illustrate the difference between the problems on
SO(3) and S3.

In Section 4 we analyse coordination protocols with
state-dependent weighted communication graphs that
can be formulated as minimization problems for a cer-
tain potential function. In this setup, the potential func-
tion is minimized simultaneously over the states of
agents and weighted pairwise synapses between them.
As we will see, this framework offers more robust dis-
tributed protocols for achievement of desired equilib-
rium configurations.

Finally, in Section 5, we briefly discuss the results,
draw some conclusions and point out some opportu-
nities in the design of robust protocols for coordinated
motion in space.

2. Coordination on homogeneous spaces over
the complete communication graph

Consider a system of N agents whose states are
described by pointsX1, . . . ,XN onmanifoldM. LetM
be a special orthogonal group SO(n) or a special uni-
tary group SU(n). Suppose that agents communicate to
each other through complete communication graph G.
Based on the information received fromhis neighbours,
each agent continuously adjusts his state. Following an
analogy with linear consensus algorithms it is natural
to consider the following minimization problem [2,3]:

VM(X1, . . . ,XN) = − 1
2N2

N∑
j=1

N∑
k=1

Tr(X∗
j Xk) → min

(1)
with respect to agents’ statesX1, . . . ,XN . The notionX∗
above stands for the transpose (or conjugate transpose)
of a matrix X.

The gradient system for this problem reads

X∗
k
d
dt
Xk = α

N

N∑
j=1

(X∗
kXj − X∗

j Xk),

k = 1, . . . ,N, α > 0. (2)

In other words, (2) is obtained as gradient descent
method for minimization problem (1). Thus, trajec-
tories converge to critical points of VM and all strict
minima of VM are stable equlibria of (1).

Consensus (alignment, synchronization) are those
configurations, where X1 = · · · = XN .

Notice that on special orthogonal (or unitary)
groups the maximum of the trace is achieved for
the identity matrix. Hence, the minimum of VM is
achieved when the matrix X∗

j Xk = X−1
j Xk = I, where I

denotes identity matrix. It follows then that consensus

configurations are exactly global minima of the func-
tion VM. Formal proof of this statement is given in
the next theorem, which is a corollary of Proposition
7 from [2].

Theorem 2.1 ([2,3]): Consensus configurations are the
only stable critical points of VM.

Proof: Since VM always decreases along solutions,
only localminima can be asymptotically stable. All local
minima of VM correspond to consensus. Indeed, for
X∗ = (X1∗, . . . ,Xn∗) to be a local minimizer of VM,
Xk∗ must be, for each k, a local minimizer of vk(c) =
VM(X1∗, . . . ,Xk−1∗, c,Xk+1∗, . . . ,Xn∗) = ξk − 1

N2 cT
(
∑

j Xj∗), where ξk is constant for all k. Let us recall
that the local minima of linear function over SO(n)
(or SU(n)) are all global minima. Therefore, Xk∗ is a
global minimum of vk(c) for all k, which corresponds
of consensus. �

As we have seen, (1) can be interpreted as the con-
sensus problem onM over the complete communica-
tion graph. In this view, Theorem 1 guarantees that the
distributed algorithm given by dynamical system (2)
will converge towards consensus.Hence, Theorem1 is a
universal result about consensus over complete graphs
onmatrix groups. The convergence of the algorithm (2)
over complete communication graph on SO(3) and S3 is
shown in the following two videos in the supplementary
materials1 respectively SM1 and SM2. In Figures 1
and 2we depict the evolution of the potential functions,
pairwise distances between the agents, and motion of
the agents on the unit spheres2 under the dynamics (2).

Remark 2.1: Throughout the article we use the videos
showing rotating bodies in order to visualize the evo-
lution of gradient dynamical systems. These videos
illustrate continuous rotations in the space, that is the
motion on the group SO(3). The algorithms on S3 are
visualized by using 2 → 1 map from S3 onto SO(3). In
this way, the trajectories on S3 are mapped onto trajec-
tories on SO(3). This corresponds to the representation
of 3D rotations by unit quaternions, the technique that
is frequently used as a working framework for rotations
in Robotics andComputer Graphics. This approach has
some advantages over the working with SO(3) matri-
ces directly. However, one drawback is that the map is
not 1 → 1, as two antipodal points on S3 (that is, unit
quaternions q and−q) correspond to the same rotation.

Notice that Theorem 2.1 is valid also for the wide
class of connected compact homogeneous manifolds
that includes spheres and someGrassmannians. In con-
clusion, Theorem 2.1 is a universal result regarding
consensus problems over complete graphs. However,
in most applications, this topology is too expensive or
even not feasible. Hence, problems of the design of

https://doi.org/10.1080/00051144.2020.1863544
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Figure 1. Parameter values: N = 5, α = 1. Initial values are the same for this figure and video SM1. (a) evolution of the potential
function VM, (b) pairwise distances d(Xj , Xk) = 3 − Tr(XTj Xk) between the agents j and k on SO(3), and (c) visualization of agents’

motion on unit spheres by plotting curves Xj(t)p ∈ S2 for different unit vectors p = [1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T respectively, where
Xj(t) are curves on SO(3).

Figure 2. Parameter values: N = 5, α = 1. Initial values are the same for this figure and video SM2. (a) evolution of the potential
function VM, (b) pairwise cosines cos θjk = 〈xj , xk〉 (where θjk is an angle between the unit vectors xj and xk , and 〈·〉denotes the inner
product) between the agents j and k on S3, and (c) visualization of agents’ motion on unit spheres by plotting curves qj(t)pq̄j(t) ∈ S2

for different unit quaternions p = i, j, k respectively, where qj(t) are curves on S3.
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multi-agent systems in real life require study of consen-
sus over more general graphs.

3. Coordination on SO(3) and S3 over an
arbitrary connected graph

In this Section we address the problem of reaching con-
sensus in a multi-agent system where agents commu-
nicate through a undirected connected graph �(V ,E),
where V and E are sets of vertices and edges, respec-
tively. Then, the potential function is defined by

V�(X1, . . . ,XN) = − 1
2N2

∑
(j,k)∈E

Tr(X∗
j Xk). (3)

The corresponding gradient system reads

X∗
k
d
dt
Xk = α

N

∑
k∈Ej

(X∗
kXj − X∗

j Xk),

k = 1, . . . ,N, α > 0. (4)

Here,Ej denotes the set of all agents l ∈ {1, . . . ,N}, such
that there exists an edge (j, l) ∈ E.

As the communication graph � is undirected and
connected, we can conclude that the only consensus
configurations are globalminima ofV� in the sameway
as in the previous Section. Hence, convergence of the
algorithm (4) depends on the existence of local minima
or stable critical points of the function V� . However, it
turns out that this question is very difficult in general
and the answer depends both on the topology of � and
geometry of the underlying manifold. Even in seem-
ingly the simplest non-Euclidean case, when underly-
ing manifold is the unit circle S1, this remains an open
question. Surprisingly, it turns out that for spheres in
higher dimensions the situation is a bit simpler.

For instance, we consider the problem on the spe-
cial unitary group SU(2), i.e. assume that X1, . . . ,XN ∈
SU(2).

Theorem 3.1 ([7]): Suppose that the communication
graph � is connected and undirected. Then the set of
consensus configurations is almost globally stable for the
system (4). In other words, the set of all initial data
X1(0), . . . ,XN(0), for which the system (4) does not con-
verge towards consensus, has a zero Lebesguemeasure on
SU(2)N = SU(2) × · · · × SU(2).

Emphasize that Theorem 3.1 is a partial case of the
result of Markdahl et al, [7]. In fact, the similar asser-
tion is valid for any sphere Sn for n ≥ 2. It is well known
that SU(2) is a Lie group, isomorphic to the sphere S3.
However, one can not guarantee the same result for S1,
there are asymptotically stable equilibrium sets on S1
that are disjunct from the consensus set. [2,3]. In this
way, the situation with S1 surprisingly turns out to be

Table 1. The table shows how much consensus is reached on
SO(3) and S3 in 1000 simulations for the case when communi-
cation graph is the ring.

I II III IV V

SO(3) 610 593 596 605 591
S3 1000 1000 1000 1000 1000

themost complicated among all spheres. The unit circle
is the least favourable sphere for consensus.

Theorem 3.1 states that convergence of the sys-
tem (4) towards consensus is almost guaranteed on
SU(2). As the group manifold of SU(2) is the 3-sphere,
we can say that this Theoremguarantees (almost surely)
consensus on S3.

In Table 1 we present simulation results for multi-
agent systems consisting of 5 agents connected through
the ring graph �. This clearly illustrates fundamental
difference between problems on SO(3) and S3: consen-
sus is always achieved on S3, while on SO(3) the result
depends on the initial configuration and happens in
approximately 60 percent of attempts. Similar results
have been reported in [7].

The two videos demonstrate the situation when the
algorithm (4) over the ring graph converges towards
consensus on S3 (see the supplementary material
SM3), and fails to reach consensus on SO(3) (see the
supplementary material SM4). See Remark 2.1 for the
explanation of the video for the case S3. Figures 3 and 4
demonstrate the evolution of the potential functions,
pairwise distances between agents, and dynamics of
the agents on the unit spheres S2 mapped from S3 and
SO(3).

4. Coordination on SO(3) and S3 over
state-dependent communication graphs

In many applications communication graph is not con-
stant, but depends on states of agents. In such situations,
the graph evolves according to a certain learning rule.
Inspired by Neuroscience, evolving weighted edges of a
graph are called adaptive synapses. Coordination prob-
lems on S3 with various learning rules are studied in
[23,24].

One possible way to introduce coordinates on S3 is
provided by the algebra of quaternions. Then, states
of the agents are represented by unit quaternions
q1, . . . , qN . Suppose that agents evolve by the following
system of quaternion-valued ODE’s (QODE’s)

q̇j = α

N

N∑
k=1

wjk(qjqkqj − qk) (5)

The notation q̄ stands for quaternionic conjugation of a
quaternion q, that is if q = q1 + q2 · i + q3 · j + q4 · k,
then q̄ = q1 − q2 · i − q3 · j − q4 · k.

https://doi.org/10.1080/00051144.2020.1863544
https://doi.org/10.1080/00051144.2020.1863544
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Figure 3. Parameter values: N = 5, α = 1. Initial values are the same for this figure and video SM3. (a) evolution of the potential
function V� , (b) pairwise cosines cos θjk = 〈xj , xk〉 (where θjk is an angle between the unit vectors xj and xk , and 〈·〉 denotes the inner
product) between the agents j and k on S3, and (c) visualization of agents’ motion on unit spheres by plotting curves qj(t)pq̄j(t) ∈ S2

for different unit quaternions p = i, j, k respectively, where qj(t) are curves on S3.

Figure 4. Parameter values: N = 5, α = 1. Initial values are the same for this figure and video SM4. (a) evolution of the potential
function V� , (b) pairwise distances d(Xj , Xk) = 3 − Tr(XTj Xk) between the agents j and k on SO(3), and (c) visualization of agents’

motion on unit spheres by plotting curves Xj(t)p ∈ S2 for different unit vectors p = [1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T respectively, where
Xj(t) are curves on SO(3).
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The set of unit quaternions is isomorphic to the spe-
cial unitary group SU(2), so one can treat the above
Equations (5) as matrix ODE’s on SU(2).

It is easy to verify that (5) preserves S3, hence if the
initial conditions q1(0), . . . , qN(0) are sampled from S3,
then qj(t) ∈ S3 for all t ≥ 0.

In addition, suppose that synapses wjk evolve by the
following learning rule

ẇjk = − α

N

(
1 − 1

2
(qjqk + qkqj) + μωjk

)
(6)

The key observation is that the system (5), (6) displays
potential dynamics with the potential function

Vq = 1
N2

N∑
j,k

wjk

(
1 − 1

2
(qjqk + qkqj)

)

+ μ

2N2

N∑
j,k

w2
jk (7)

Hence, (5), (6) is the gradient descent system for mini-
mization of Vq.

This video demonstrates evolution of agents on S3
(we again refer to Remark 2.1 for clarification) for ran-
dom initial conditions (see the supplementary material
SM5). Figure 5 shows evolution of the potential func-
tion Vq, pairwise cosines between (vectors on S3 that

represent) agents’ states, and dynamics of agents on the
unit spheres S2 mapped from S3.

On the other hand, consider the analogous system
on SO(3):

Q̇j = α

N

N∑
k=1

wjk

(
QjQkQj − QT

k

)
(8)

with initial condition Qj(0) ∈ SO(3). The notion QT

stands for the transpose of Q.
Suppose that synapseswjk satisfy the following learn-

ing rule

ẇjk = − α

N

(
1 − Tr(QT

j Qk) + μwjk

)
(9)

The system (8), (9) appears to be the gradient descent
method for minimization of the following function

VQ = 1
N2

N∑
j,k

wjk

(
1 − Tr(QT

j Qk)
)

+ μ

2N2

N∑
j,k

w2
jk

(10)

Remark 4.1: It is convenient to use d(A,B) = 3 −
Tr(ATB) as a measure of distance on SO(3). Indeed,
the trace is maximal for identity matrix, that is if
ATB = A−1B = I, that is if A = B. As Tr(I) = 3, it fol-
lows that d(A,A) = 0 and d(A,B) > 0 whenever A �=

Figure 5. Parameter values: N = 5, α = 1, μ = 1. Initial values are the same for this figure and video SM5. (a) evolution of the
potential function Vq, (b) pairwise cosines cos θjk = 〈xj , xk〉 (where θjk is an angle between the unit vectors xj and xk , and 〈·〉 denotes
the inner product) between the agents j and k on S3, and (c) visualization of agents’ motion on unit spheres by plotting curves
qj(t)pq̄j(t) ∈ S2 for different unit quaternions p = i, j, k respectively, where qj(t) are curves on S3.

https://doi.org/10.1080/00051144.2020.1863544
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Figure 6. Parameter values: N = 5, α = 1, μ = 1. Initial values are the same for this figure and video SM6. (a) evolution of the
potential function VQ, (b) pairwise distances d(Qj ,Qk) = 3 − Tr(QTj Qk) between the agents j and k on SO(3), and (c) visualization of

agents’ motion on unit spheres by plotting curves Qj(t)p ∈ S2 for different unit vectors p = [1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T respectively,
where Qj(t) are curves on SO(3).

B. This measure of distance on SO(3) has been used in
[3,25,26].

This video demonstrates evolution on the group
SO(3)under the dynamics (8),(9) (see the supplementary
material SM6). In Figure 6 we depict the potential func-
tion VQ, pairwise distances d(Qi,Qj) = 3 − Tr(QT

i Qj)

between agents i and j for some pairs, and agents’
motion on the unit spheres S2 mapped from SO(3).

Comparison between videos 5 and 6 (combinedwith
insight into Figures 5–6) unveils an essential difference
between the algorithms on S3 and SO(3). From Figure 5
it is clear that algorithm (5), (6) ends up in bipolar con-
figuration (i.e. agents occupy two antipodal points on
S3).When restricted to SO(3), this algorithm converges
towards consensus, since bipolar configuration on S3 is
mapped into consensus on SO(3) (see Remark 2.1 for
the explanation).

On the other hand, algorithm (8), (9) provides a dis-
tributed protocol for dividing the set of agents into two
groups.

5. Conclusion and outlook

In this paper, we have addressed several consensus
and coordination problems on Lie groups SO(3) and
S3 that can be stated as minimization problems. It
turns out that the situation is different for these two

groups and analogous algorithms in many cases per-
form differently.

In conclusion, we stress two important points. The
sphere S3 (i.e. special unitary group SU(2)) is more
favourable for consensus then SO(3). It means that the
potential function V� on SO(3) can have local min-
ima. Existence of local minima of V� strongly depends
on the communication graph �. It is an open problem
to characterize all graphs with which the distributed
consensus algorithms on SO(3) fail to reach globalmin-
imum. Also, it would be interesting to see is it the
situation on SO(4) (or SO(n) for some n) is the same
or different from one on SO(3)? This problems are still
unsolved at present, and we leave it for a future work.
Hence, in those applications, in which the objective
is to reach consensus, it is advantageous to represent
rotations by quaternions, rather then by orthogonal
matrices. However, whenever representing rotations by
quaternions, one needs to be aware of some pecu-
liar effects that come as a consequence of nonunique-
ness of such representation, such as unwinding see for
instance [27]

When designing engineering systems and intelligent
swarms, introduction of adaptive synapses brings new
possibilities. This additional flexibility is easy to imple-
ment in some applications in order to enhance the
robustness of the system.

https://doi.org/10.1080/00051144.2020.1863544
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In whole, in the design of autonomous engineer-
ing systems it is possible to combine different tech-
niques and methods, depending on a specific applica-
tion, objectives and available resources.

Notes

1. All videos in the supplementary materials and figures are
implemented using Wolfram Mathematica package and
4th order Runge-Kutta method for solving systems of
ordinary differential equations.

2. We have used Hopf fibration for mapping from S3 and
SO(3) to S2.
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