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An Example of an Improvable Rao–Blackwell Improvement, Inefficient
Maximum Likelihood Estimator, and Unbiased Generalized Bayes

Estimator

Tal GALILI and Isaac MEILIJSON

The Rao–Blackwell theorem offers a procedure for convert-
ing a crude unbiased estimator of a parameter θ into a “better”
one, in fact unique and optimal if the improvement is based on a
minimal sufficient statistic that is complete. In contrast, behind
every minimal sufficient statistic that is not complete, there is an
improvable Rao–Blackwell improvement. This is illustrated via
a simple example based on the uniform distribution, in which
a rather natural Rao–Blackwell improvement is uniformly im-
provable. Furthermore, in this example the maximum likelihood
estimator is inefficient, and an unbiased generalized Bayes es-
timator performs exceptionally well. Counterexamples of this
sort can be useful didactic tools for explaining the true nature
of a methodology and possible consequences when some of the
assumptions are violated.

KEY WORDS: Improper prior; Minimal sufficiency; Uniform
distribution; Uniformly minimum-variance unbiased estimator.

1. INTRODUCTION

Statistical theory courses usually start with basic notions for
describing how much information on some unknown parameter
θ can be obtained from a set of data Y . These are likelihood, suf-
ficiency, minimal sufficiency, completeness, the Rao–Blackwell
(Rao 1945; Blackwell 1947), and Lehmann–Scheffé theorems
(Lehmann and Scheffé 1950, 1955). Familiarity with these no-
tions is assumed.

The Rao–Blackwell theorem (RBT) offers a procedure
(coined “Rao-Blackwellization” seemingly by Berkson 1955)
for improving a crude unbiased estimator g (Y ) of the pa-
rameter θ into a better one (in mean-squared-error or any
other convex loss function), by taking the conditional ex-
pectation of g (Y ) given some sufficient statistic T = T (Y ),
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that is, θ̂RB = Eθ [g (Y ) |T ] (this is a statistic because T is
sufficient). The Lehmann–Scheffé theorem and RBT taken to-
gether state that the (unique) unbiased estimator based on a com-
plete minimal sufficient statistic T achieves uniformly smaller
expected loss under any convex loss function (the common
term UMVUE, uniformly minimum-variance unbiased estima-
tor, stresses only squared loss). Furthermore, if a parameter can
at all be unbiasedly estimated, then it can also be unbiasedly esti-
mated by a function of T , and the Rao–Blackwell improvement
of the former automatically leads to the latter. If an unbiased
estimator of a parameter is not a function of the sufficient statis-
tic T , the Rao–Blackwell improvement based on T is a strict
improvement over the original unbiased estimator.

Classical examples for these ideas are often based on uncon-
strained exponential families of distributions in which a com-
plete sufficient statistic always exists, and the Rao–Blackwell
improvement yields optimal unbiased results (see Abramovich
and Ritov 2013). However, applying Rao–Blackwell improve-
ments with noncomplete minimal sufficient statistic T will al-
ways yield some estimator that fails to have minimal possi-
ble variance, at least somewhere in the parameter space: Any
non-degenerate function of T with mean identically zero (the
existence of such is the definition of noncompleteness) is an
unbiased estimator of the zero function that is left unchanged
by Rao-Blackwellization because it is already a function of T ,
but is dominated (with strict variance inequality somewhere) by
the zero statistic.

The didactically motivated family of examples to be
introduced does not depend on delicate measure-theoretical
pathologies of noncountably generated families of distribu-
tions. It deals instead with commonplace positive uniformly
distributed random variables parameterized by their mean, and
yields a uniformly dominated Rao–Blackwell improvement.
Consider the uniform distributions U ((1 − k)θ, (1 + k)θ ) with
unknown mean θ > 0 and known design parameter k ∈ (0, 1),
henceforth the scale-uniform family of distributions. This
family does not satisfy the usual differentiability assumptions
leading to Fisher Information, the Crámer-Rao bound and
efficiency of maximum likelihood estimators (MLEs). For this
family, MLE is inefficient.

While proper Bayes estimators cannot be unbiased (Bickel
and Blackwell 1967), unbiased examples have been built under
improper priors, such as the sample mean in the normal case.
An explicit Bayes estimator built under a specific improper prior
will be shown to be unbiased, simultaneously for all sample sizes
and all k.
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2. AN IMPROVABLE RAO–BLACKWELL
IMPROVEMENT

Let X1, X2, . . . , Xn be a random sample from a scale-uniform
distribution X ∼ U ((1 − k)θ, (1 + k)θ ), with unknown mean
E[X] = θ and known design parameter k ∈ (0, 1). In the search
for “best” possible unbiased estimators for θ , it is natural to con-
sider X1 as an initial (crude) unbiased estimator for θ and then
try to improve it. Since X1 is not a function of T = (

X(1), X(n)
)
,

the minimal sufficient statistic for θ (where X(1) = min(Xi) and
X(n) = max(Xi)), it may be improved using the Rao–Blackwell
theorem as follows:

θ̂RB = Eθ [X1|X(1), X(n)] = X(1) + X(n)

2
(1)

since X1|T ∼ U (X(1), X(n)). Although this estimator has lower
variance than X1 (and Xn), it is not even best among the linear
unbiased estimators for θ . For this family of uniform distribu-
tions, there exists an unbiased estimator θ̂LV for θ with uni-
formly lower variance than the Rao–Blackwell improvement of
X1. Both θ̂LV and θ̂RB are linear in X(1) and X(n), but with dif-
ferent coefficients. This will be shown in two steps: first, two
unbiased estimators θ̂m and θ̂M of θ will be defined, as con-
stant multiples of (the minimum) X(1) and (the maximum) X(n),
respectively. Second, among the affine combinations of θ̂m and
θ̂M , a minimum-variance solution θ̂LV will be found, with strictly
lower variance than θ̂RB, uniformly in θ > 0.

This idea of taking an affine combination of two unbiased
estimators to define a new unbiased estimator appeared at least
200 years ago in a work by Laplace (see Stigler 1973), and is
still found in modern use (e.g., see recent work by Damilano
and Puig 2004).

As a preliminary, let Y1, Y2, . . . , Yn be iid, with common
U (a, b) distribution, for some a < b, with Y(1) = min(Yi) and
Y(n) = max(Yi). Then

E[Y(1)] = a + 1

n + 1
(b − a)

E[Y(n)] = b − 1

n + 1
(b − a) (2)

var[Y(1)] = var[Y(n)] = n

(n + 1)2(n + 2)
(b − a)2 (3)

cov[Y(1), Y(n)] = 1

(n + 1)2(n + 2)
(b − a)2

ρ[Y(1), Y(n)] = 1

n
. (4)

Step 1: Substituting a = (1 − k)θ and b = (1 + k)θ , the last
formulas take the form

Eθ [X(1)] =
(

1 − n − 1

n + 1
k

)
θ

Eθ [X(n)] =
(

1 + n − 1

n + 1
k

)
θ (5)

varθ [X(1)] = varθ [X(n)] = 4nk2θ2

(n + 1)2(n + 2)
(6)

covθ [X(1), X(n)] = 4k2θ2

(n + 1)2(n + 2)

ρθ [X(1), X(n)] = 1

n
(7)

giving rise to the “basic” unbiased estimators of θ

θ̂m = 1

1 − n−1
n+1k

X(1)

θ̂M = 1

1 + n−1
n+1k

X(n) (8)

with variances

varθ [θ̂m] = 4nk2θ2

((1−k)(n − 1) + 2)2(n + 2)

varθ [θ̂M ] = 4nk2θ2

((1+k)(n − 1) + 2)2(n + 2)
. (9)

These variances reveal that X(n) is strictly more informative
about θ than X(1) throughout the range of n and k. Indeed, the
variance of θ̂M is uniformly smaller than the variance of θ̂m,
even asymptotically:

lim
n→∞ n2varθ [θ̂m] = 4k2

(1−k)2
θ2 >

4k2

(1+k)2
θ2

= lim
n→∞ n2varθ [θ̂M ]. (10)

Step 2: When k < 1, the basic estimators θ̂m and θ̂M gen-
erate the more general family of unbiased estimators θ̂

(α)
mM of

θ obtained as their affine combinations

θ̂
(α)
mM = (1 − α)θ̂m + αθ̂M

= 1 − α

1 − n−1
n+1k

X(1) + α

1 + n−1
n+1k

X(n) (11)

from which it is easy to identify the Rao–Blackwell improve-
ment θ̂RB of X1 as the case with α = αRB = 1

2 (1 + n−1
n+1k) > 1

2 ,

and θ̂LV as the standard analytically derived case with

α = αLV = var[θ̂m] − cov[θ̂m, θ̂M ]

var[θ̂m] + var[θ̂M ] − 2cov[θ̂m, θ̂M ]
(12)

and minimal variance

var[θ̂ (αLV)
mM ] = var[(1 − αLV)θ̂m + αLVθ̂M ]

= var[θ̂m]var[θ̂M ] − cov2[θ̂m, θ̂M ]

var[θ̂m] + var[θ̂M ] − 2cov[θ̂m, θ̂M ]
(13)

that in the present case becomes

αLV = 1

2
(1 + 2n

(n − 1)k + (n + 1) 1
k

), (14)

which yields the following two representations for θ̂LV

θ̂LV =
(

1

2
− n

(n − 1)k + (n + 1) 1
k

)
θ̂m

+
(

1

2
+ n

(n − 1)k + (n + 1) 1
k

)
θ̂M

= 1

2(k2 (n−1)
(n+1) + 1)

[(1 − k)X(1) + (1 + k)X(n)] (15)
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with

var[θ̂LV] = 2k2θ2

((1 + k2)(n − 1) + 2)(n + 2)
. (16)

The asymptotic standard deviation σ [θ̂LV], proportional to

k

√
2

1+k2 , is smaller than σ [θ̂M ], proportional to 2k
1+k

. However,

their asymptotic ratio ranges from only
√

2 (as k ↓ 0) to 1 (as
k ↑ 1), which means that the two estimators θ̂M and θ̂LV are of
comparable accuracy throughout the range, while θ̂m becomes
infinitely worse as k → 1.

We proceed now to analyze the Rao–Blackwell improvement
θ̂RB. From a probability point of view (i.e., when θ is a known
constant), Eθ

[
X1|X(1), X(n)

]
treats X(1) and X(n) symmetrically.

Indeed, the two are homoscedastic and stochastically equidistant
from θ . From a statistics point of view (i.e., when learning about
θ ), X(n) is more informative than X(1), in the sense that θ is
unbiasedly estimated more accurately by contracting X(n) than
by expanding X(1). Thus, θ̂M should be intuitively expected to
have a more decisive weight.

To see that indeed αRB < αLV, it is needed to check that
n−1
n+1k < 2n

(n−1)k+(n+1) 1
k

or equivalently that 1 < 2n

(n−1)(1+k2 n−1
n+1 )

. But

this last expression is monotone decreasing in k, with value
n+1
n−1 > 1 at k = 1.

The variance of θ̂RB can be expressed as

var[θ̂RB] = 2k2θ2

(n + 2)(n + 1)
. (17)

The ratio var[θ̂RB]
var[θ̂LV]

= 1 + k2 (n−1)
(n+1) increases with n and, like

var[θ̂M ]
var[θ̂LV]

, is bounded from above by 2.

2.1 A Remark on Minimal But NonComplete Sufficient
Statistics

The scale-uniform example given illustrates that using the
Rao–Blackwell theorem with a noncomplete minimal sufficient
statistic on a crude initial (unbiased) estimator does not always
yield an estimator with the lowest possible variance. And in
fact, it never will. Any unbiased estimator that is a function
of the minimal sufficient statistic is its own Rao–Blackwell
improvement. If one such estimator has larger variance than
another (such as θ̂m vs. θ̂M ), then the first has been improved,
and if the two have equal variances, their average improves both.
This is in essence the message in Torgersen’s converse to the
Rao–Blackwell theorem (Torgersen 1988).

3. INEFFICIENCY OF THE MAXIMUM LIKELIHOOD
ESTIMATOR

Under the usual differentiability assumptions, MLEs con-
verge to the true parameter value at rate n− 1

2 efficiently, that is,
with asymptotic variance that achieves the Crámer–Rao lower
bound for the variance of unbiased estimators. In the model at
hand these assumptions are violated and the parameter θ can be
estimated, as seen above, with a faster rate of consistency n−1.

For the scale-uniform family, the likelihood function
( 1

2kθ
)nI{ X(n)

1+k
<θ<

X(1)
1−k

} is maximized at the minimal feasible θ value

θ̂MLE = 1
1+k

X(n), a slight departure from its unbiased correc-

tion θ̂M = 1
1+ n−1

n+1 k
X(n) developed above. Thus, the asymptotic

variance of n(θ̂MLE − θ ) is 4k2

(1+k)2 θ
2, strictly bigger than the

asymptotic variance 2k2

1+k2 θ
2 achieved by n(θ̂LV − θ ), showing

that MLE is inefficient in this case. The likelihood function dis-
closes valuable deterministic information about θ , its feasible
Low endpoint L = X(n)

1+k
and High endpoint H = X(1)

1−k
. The MLE,

θ̂MLE = L, ignores the information provided by X(1) and pays a
price for it in terms of efficiency.

The likelihood function exhibits a nice feature of the
Rao–Blackwell improvement θ̂RB = 1+k

2 L + 1−k
2 H : it is the

only unbiased estimator of θ in the class θ̂
(α)
mM that is guaran-

teed to obtain values in the feasibility interval [L,H ], since it
is the only one with coefficients adding up to 1 when viewed as
a linear combination of L and H. Of course, feasibility is guar-
anteed for MLE (= L) and Bayesian estimators, the subject of
the next section.

4. AN UNBIASED IMPROPER BAYES ESTIMATOR

In this section, we intend to complement the previous section
by showing that, while MLE leads to the inefficient θ̂M , Bayes
estimation leads to a slight improvement over θ̂LV, so the latter
is a reasonably good estimator and the requirement of unbiased-
ness does not take a heavy toll. However, as will be seen, θ̂LV is
uniformly dominated by another unbiased estimator, one that is
not a linear combination of X(1) and X(n).

Letting ϑ stand for the Bayes-oriented random scale param-
eter and θ stand for its possible values, assume a smooth (im-
proper) prior density λ(θ ) on ϑ , proportional to θ−a . As far as
the posterior density of ϑ is concerned, it is only needed for
its support, the feasibility interval [L,H ] = [ X(n)

1+k
,

X(1)

1−k
], where

it becomes a proper posterior density from the first observa-
tion onward. The Bayes estimator of the scale parameter θ , the
posterior expectation of ϑ , is

θ̂
(a)
BAYES =

∫ H

L

θλ(θ)
(2kθ)n dθ∫ H

L

λ(θ)
(2kθ)n dθ

=
∫ H

L
dθ

θn−1+a∫ H

L
dθ

θn+a

= n − 1 + a

n − 2 + a

L−(n−2+a) − H−(n−2+a)

L−(n−1+a) − H−(n−1+a)

= n − 1 + a

n − 2 + a

[
1 −

H
L

− 1

(H
L

)n−1+a − 1

]
L. (18)

The Bayes estimators under this conjugate bounded Pareto
family are homogenous of order 1, that is, share with X1, Xn,
θ̂RB, and θ̂LV their “respect” for the scale-parameter nature of
θ , the property that the distribution of θ̂

θ
is a pivotal quantity,

that may depend on n and k but is independent of θ . Accord-
ingly, their bias and standard deviation are constant multiples
of θ . We show in the sequel that for the case a = 2, the Bayes
estimator (henceforth θ̂

(2)
BAYES = θ̂BAYES for short) is unbiased,

simultaneously on n ≥ 2 and k ∈ (0, 1).
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k=0.9 ; X~U[0.1,1.9]
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k=0.1 ; X~U[0.9,1.1]

0.90 0.95 1.00 1.05 1.10

0

5

10

15

20

25

Figure 1. The simulated distribution (106 runs, sample size n = 5) of various unbiased estimators for θ = 1 with design parameter k =
0.9; 0.5; 0.1.

The joint density of X(1) and X(n) is fθ (x, y) = n(n−1)
(2kθ)n (y −

x)n−2 on [(1 − k)θ, (1 + k)θ ]. The expectation of θ̂BAYES can be
evaluated for θ = 1 as follows:

E[θ̂BAYES] = n + 1

n

[
E

[
X(n)

1 + k
− n(n − 1)

(2k)n

×
∫ 1+k

1−k

∫ 1+k

x

y

1 + k

1+k
1−k

x
y

− 1

( 1+k
1−k

x
y

)n+1 − 1

×(y − x)n−2dydx

]
. (19)

The proof that E[θ̂BAYES] ≡ 1 appears in the Appendix.
Figure 1 displays the empirical distribution of the various

unbiased estimators of θ for sample size n = 5 from the uniform-
scale distribution with θ = 1 and k = 0.9; 0.5; 0.1.

The three panels display that θ̂RB (solid gray line) is sym-
metrically distributed around 1, with θ̂m (two-dash gray line)
skewed to the right and θ̂M (long-dash gray line) skewed to the
left. Both θ̂LV (solid line) and θ̂BAYES (thin dashed line) overlap
θ̂M as k ↑ 1 (leftmost panel), and approach θ̂RB as k ↓ 0 (right-
most panel).

Since generalized Bayes rules need not be admissible, we
cannot state from general principles that θ̂BAYES has lower vari-
ance than θ̂LV. However, Figure 2 provides evidence that it does.
Figure 2 displays for θ = 1, all k that are multiples of 1

50 and
the choices n = 3, 10, 25, 100 of the sample size, the ratio of
the empirical variance of θ̂BAYES (on 108 runs each, using the
R software (R Core Team 2014)) to the theoretical variance
of θ̂LV (16). These graphs are U-shaped, with value 1 toward
the endpoints. The larger n is, the stronger the improvement of
θ̂BAYES over θ̂LV, but seemingly never by as much as 10%.

5. DISCUSSION

The concepts of minimal sufficiency and completeness of
parametric families, at the basis of the theory of statistics, al-
low for the development of “optimal” statistical methods under
proper sufficient conditions. The above example serves to point
out the difficulty of exhibiting a “uniformly best estimator” in
some settings. The purpose in presenting it is primarily peda-
gogical.

This article introduced the scale-uniform family of distribu-
tions U ((1 − k)θ, (1 + k)θ ) (with unknown mean θ > 0 and a
known design parameter k ∈ (0, 1)). This family helps to illus-
trate the limitations of the Rao–Blackwell improvement when
using a sufficient statistic that is minimal but not complete. It
also serves to show that the maximum likelihood estimator may
be inefficient for finite samples as well as asymptotically. Cases
with inefficient MLE for finite samples are easily available:
when estimating λ for the exponential distribution, the unbi-
ased estimator ( n−1

n
1
X̄

) has lower variance than the MLE ( 1
X̄

).
However, an asymptotically inefficient MLE is harder to come
by.

The impressive progress in statistics in the last few decades
has dimmed the role played by minimal sufficiency and com-
pleteness of parametric families in the development of statistical
tools. Various nonparametric methods ranging from bootstrap
and permutation tests to random forests and deep learning have
emerged, playing now prominent roles in statistical practice.
Nevertheless, the need for parametric methods continues to sur-
face in this new era. For example, new online machine learning

0.0 0.2 0.4 0.6 0.8 1.0

0.95

0.96

0.97

0.98

0.99

1.00

n = 3
n = 10
n = 25
n = 100

var(θ̂BAYES) var(θ̂LV)

k

Figure 2. The ratio of the empirical variance of θ̂BAYES (on 108 runs
each) to the theoretical variance of θ̂LV for various sample sizes over a
range of k values.
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methods are used in cases where the data become available in a
sequential fashion. Since these methods need to be scalable for
petabytes of information, data compression is essential (such as
used by Google, Facebook, etc.). Another example is the use
of map-reduce techniques that rely on summary statistics, either
for efficiency in distributed computing, or for privacy-preserving
properties (e.g., in hospital data, as is currently done in the medi-
cal informatics platform of the European Human Brain Project).
A last example is of modern health care where the hope is to dis-
cover personalized medicines that can best treat the conditions
of a specific individual. Such specificity is usually determined
through inference, based on finding and analyzing a relatively
small homogenous subsample of patients. In all three examples,
the methods used often rely on minimal sufficient statistics, and
whether this statistic is complete or not has consequences on
the “optimal” properties of such methods. Hence, we would ar-
gue that while traditional statistical methods may have less of
a need for old-school parametric assumptions, this need con-
tinues to resurface as we face new challenges in the modern
era of massive, online, distributed, private, and personalized
data.

A. APPENDIX: PROOFS

A.1 Proof of ρ
[
Y(1), Y(n)

] = 1
n

For n iid Yi ∼ U (a, b), the n − 1 observations except
for Y(1) are conditionally iid given Y(1), distributed U

(
Y(1), b

)
.

Therefore E
[
Y(n)|Y(1)

] = n−1
n

b + 1
n
Y(1). Since this conditional ex-

pectation is linear, its slope 1
n

coincides with the slope
of the linear regression that, for dependent and independent
variables with equal variances is equal to their correlation
coefficient.

A.2 Proof that θ̂BAYES is Unbiased

Apply E[ X(n)
1+k

] = 1 − 2k

(1+k)(n+1) , transform variables

u = y − x ; v = x

y

x = uv

1 − v
; y = u

1 − v
(A.1)

and evaluate the Jacobian as | det ∂(x,y)
∂(u,v) | = u

(1−v)2 . The integrand of the
double integral in (19) is transformed into a function in which the new
variable u appears only multiplicatively as un, and the inner integration
over u can be easily performed once the endpoints of u are identified,
for fixed v. For this purpose, u is represented in terms of v and x as
u = 1−v

v
x. Then its lower endpoint u∗ = (1 − k) 1−v

v
is obtained by the

substitution x = 1 − k while its upper endpoint u∗ = (1 + k)(1 − v) is
obtained from the equation resulting from the substitution x = 1 + k −
u. The inner integral is

∫ u∗

u∗
undu = 1

n + 1
((u∗)n+1 − (u∗)n+1)

= 1

n + 1

(
1 − v

v

)n+1 (
(1 + k)n+1vn+1

− (1 − k)n+1
)
. (A.2)

Putting these elements together, (19) becomes

E[θ̂BAYES] = 1 + 1 − k

1 + k

1

n
− (n − 1)(1 − k)n+1

(2k)n(1 + k)

×
∫ 1

1−k
1+k

(
1+k

1−k
v − 1

)
(1 − v)n−2

vn+1
dv, (A.3)

which upon the rescaling w = (1+k)v−(1−k)
2k

becomes

E[θ̂BAYES] = 1 + 1 − k

1 + k

1

n
− (n − 1)(1 − k)n(1 + k)

(2k)n+1

×
∫ 1

0

w(1 − w)n−2

(w + 1−k

2k
)n+1

dw. (A.4)

For E[θ̂BAYES] = 1 to hold (meaning that θ̂BAYES is unbiased), the
identity ∫ 1

0

w(1 − w)n−2

(w + 1−k

2k
)
n+1 dw = (2k)n+1

n(n − 1)(1 − k)n−1(1 + k)2

(A.5)

must hold. This formula appears explicitly in Gradshteyn & Ryzhik
(Jeffrey and Zwillinger 2007, formula 3.197 (4)) as∫ 1

0
xμ−1(1 − x)ν−1(1 + ax)−μ−νdx

= (1 + a)−μB(μ, ν), (A.6)

where B is the Beta function B(μ, ν) = ∫ 1
0 tμ−1(1 − t)ν−1 dt . Substi-

tuting x = w, μ = 2, ν = n − 1, a = 2k

1−k
(after its inverse is taken out

of the integral), identity (A.5) follows.
The above formula can also be accessed through WolframAlpha.com

(LLC 2014).

[Received December 2014. Revised September 2015.]
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