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Nested Square Roots of 2 Revisited

Juan Fernández-Sánchez and Wolfgang Trutschnig

Abstract. We show how various recently established results on finite and infinite nested square
roots of 2 can be derived elegantly via a topological conjugacy linking the tent map and the
logistic map. We also prove an additional new and striking consequence of this relationship.

1. INTRODUCTION. In [2,3] the author proved the existence of the limit of nested
square roots of 2 of the form

lim
n→∞ a0

√√√√
2 − a1

√
2 − a2

√
2 − a3

√
· · · − an

√
2 (1)

for arbitrary a = (a0, a1, a2, . . .) ∈ {−1, 1}N0 and showed that for periodic a the limit
can be expressed in terms of sine and cosine. His results extended those presented
some years earlier in [6] and, partially, those in [4].

The main purpose of our article is to show, first, that the aforementioned results can
be derived more easily by utilizing a topological conjugacy argument (explained in
Section 2) and, second, that the conjugacy also allows us to prove additional surprising
results. The remainder of this article is organized as follows. Section 2 gathers some
notation and preliminaries that will be used in the sequel, including the aforementioned
conjugacy. Finite nested square root of 2 representations will be derived in Section 3,
infinite representations and a striking new result based on these representations are the
main content of Section 4. Finally, Section 5 provides a quick summary and sketch for
how to obtain additional results.

2. NOTATION AND PRELIMINARIES. Define the tent map T : [−π

2 , π

2 ] −→
[−π

2 , π

2 ] and the logistic map L : [−2, 2] −→ [−2, 2] (see Figure 1) by

T (x) =
{

2x + π

2 if x ∈ [−π

2 , 0],

−2x + π

2 if x ∈ (0, −π

2 ]

and L(x) = −x2 + 2. Then the dynamical systems ([−π

2 , π

2 ], T ) and ([−2, 2], L) are
topologically conjugate via the homeomorphism h : [−π

2 , π

2 ] −→ [−2, 2], defined by
h(x) = 2 sin(x), i.e., the following diagram, in which the vertical two-headed arrows
symbolize bijectivity, is commutative (via straightforward calculation):
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Figure 1. The tent map T (left panel) and logistic map L (right panel).
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2 , π

2 ]
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2 , π
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h��
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[−2, 2]
L

�� [−2, 2]

(2)

In other words, h(T (x)) = L(h(x)) holds for every x ∈ [−π

2 , π

2 ]. As a direct conse-
quence, the dynamical systems ([−π

2 , π

2 ], T ) and ([−2, 2], L) have the same dynami-
cal properties, e.g., the same number of fixed points, the same number of points with
period p ∈ {2, 3, . . .}, the transformation T is topologically transitive if and only if L

is, etc. (see [1, 8] for further properties).
The two intervals I−1 = [−π

2 , 0], I1 = (0, π

2 ] form a partition of [−π

2 , π

2 ] based
on which the T -orbit of every point x ∈ [−π

2 , π

2 ] can be assigned a unique element
a in �2 := {−1, 1}N0 by setting CT (x) = a = (a0, a1, a2, . . .) ∈ �2 if and only if
T i(x) ∈ Iai

for every i ∈ N. Analogously, J−1 = [−2, 0], J1 = (0, 2] form a parti-
tion of [−2, 2] and the L-orbit of every point x ∈ [−2, 2] can be encoded by setting
CL(x) = a = (a0, a1, a2, . . .) ∈ �2 if and only if Li(x) ∈ Jai

for every i ∈ N. In the
sequel we will refer to CT (x) and CL(y) as the T -coding of x and the L-coding of y,
respectively. Considering that h bijectively maps Ii to Ji for every i ∈ {−1, 1}, dia-
gram (2) implies that

CT (x) = CL(h(x)) (3)

holds for every x ∈ [−π

2 , π

2 ].

3. FINITE NESTED SQUARE ROOTS OF 2. Defining w−1 : [−2, 2] → [−2, 0]
and w1 : [−2, 2] → [0, 2] by w−1(x) = −√

2 − x and w1(x) = √
2 − x, we have

x =
{

w−1(L(x)) if x ∈ J−1,

w1(L(x)) if x ∈ J1.
(4)

Equation (4) is key in what follows and has been the sole reason for considering the
tent map and the logistic map on the intervals [π

2 , π

2 ] and [−2, 2], respectively (usually
they are considered on the interval [0, 1]). In fact, if CT (x) = (a0, a1, a2, . . .) ∈ �2,
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then applying equation (4) once yields h(x) = wa0(L(h(x))), applying it twice yields
h(x) = wa0 ◦ wa1(L

2(h(x))). Proceeding completely analogously it follows that

h(x) = wa0 ◦ wa1 ◦ · · · ◦ wan

(
Ln+1(h(x))

)

= a0

√√√√
2 − a1

√
2 − a2

√
2 − a3

√
· · · − an

√
2 − Ln+1(h(x)) (5)

holds for every n ∈ N0. Equation (5) can be used to derive finite nested square root of
2 representations very easily; we start with a simple example.

Example 1. For x = π

16 ∈ I1, we have T (x) = 3π

8 ∈ I1, T
2(x) = −π

4 ∈ I−1, and
T 3(x) = 0 ∈ I−1. Applying equation (5) for n = 2 directly yields

2 sin
( π

16

)
= w1 ◦ w1 ◦ w−1 ◦ L3 ◦ h(x)︸ ︷︷ ︸

=h◦T 3(x)=h(0)=0

= w1 ◦ w1 ◦ w−1(0)

=
√

2 −
√

2 + √
2.

Simplification 1. All formulas in the right column of Example 1 in [6] (finite nested
square root of 2 expressions for 2 sin

(
kπ

32

)
with k ∈ {1, . . . , 15}) follow in the same

manner since (as direct consequence of the conjugacy h) T n(x) = 0 if and only if
Ln(h(x)) = 0. In fact, setting

Zn = π

2
·
{

± 1

2n
, ± 3

2n
, ± 5

2n
, . . . , ±2n − 1

2n

}
, (6)

we have that T n(x) = 0 and Ln(h(x)) = 0 holds for every x ∈ Zn, and for each such
x the number h(x) can be expressed as a finite composition of the functions w−1, w1,
i.e.,

2 sin(x) = wa0 ◦ wa1 ◦ · · · ◦ wan−1(0), (7)

where CT (x) = (a0, a1, a2, . . . , an−1, −1, 1, −1) and −1 denotes an infinite string of
−1s.

Example 2. For n ≥ 3 and xn = π

2
1

2n ∈ Zn it is straightforward to verify that CT (xn)

is given by

CT (xn) = (1, 1, −1, −1, . . . , −1︸ ︷︷ ︸
n−2

, −1, 1, −1).

Considering T n(xn) = 0 and applying equation (7) yields 2 sin(xn) = w2
1 ◦ wn−3

−1 (0).
Since obviously limn→∞ xn = 0 holds, the identity

1 = lim
n→∞

2 sin(xn)

2xn

= lim
n→∞

w2
1 ◦ wn−2

−1 (0)
π

2n

= 1

π
lim
n→∞ 2nw2

1 ◦ wn−2
−1 (0)
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and, using the explicit expressions for w−1 and w1, the famous representation of π in
terms of nested square roots of 2, i.e.,

π = lim
n→∞ 2n ·

√√√√
2 −

√
2 +

√
2 +

√
2 + · · · + √

2︸ ︷︷ ︸
n square roots

,

follows immediately.

4. INFINITE NESTED SQUARE ROOTS OF 2. To derive infinite (periodic and
nonperiodic) nested square root of 2 representations, we again use the conjugacy h

and proceed as follows: Defining the functions f−1, f1 : [−π

2 , π

2 ] −→ [−π

2 , π

2 ] (anal-
ogously to w−1 and w1 above) by f−1(x) = x

2 − π

4 and f1(x) = π

4 − x

2 yields

x =
{

f−1(T (x)) if x ∈ I−1,

f1(T (x)) if x ∈ I1.

Additionally, a straightforward calculation shows that

h ◦ fa0(x) = wa0 ◦ h(x) (8)

holds for every x ∈ [−π

2 , π

2 ] and every a0 ∈ {−1, 1}. For every a ∈ �2 and arbitrary
z ∈ [−π

2 , π

2 ], define GT (a) ∈ [−π

2 , π

2 ] by

GT (a) = lim
n→∞ fa0 ◦ fa1 ◦ · · · ◦ fan(z). (9)

Notice that the limit exists and does not depend on z since f−1, f1 are contractions
on the complete metric space [−π

2 , π

2 ]; the map GT is therefore well-defined. We will
refer to GT as the T -address map in the sequel. Trying to proceed in the same way and
defining GL(a) ∈ [−2, 2] for arbitrary z ∈ [−2, 2] by

GL(a) = lim
n→∞ wa0 ◦ wa1 ◦ · · · ◦ wan(z), (10)

it is a priori not clear if GL(a) exists and, in the positive case, if is independent of
z since, unlike f−1, f1, the maps w−1, w1 are not contractions on [−2, 2] (they are,
in fact, not even Lipschitz-continuous). The following lemma clarifies this aspect and
states some additional useful facts for deriving infinite nested square roots of 2 repre-
sentations.

Lemma 1. The L-address map GL is well-defined. Additionally, the following asser-
tions hold:

(i) For every x ∈ [−π

2 , π

2 ] with CT (x) = a we have GT (a) = x and GL(a) =
h(x).

(ii) Both address maps GT : �2 −→ [−π

2 , π

2 ] and GL : �2 −→ [−2, 2] are onto.

Proof. Well-definedness of GL is a direct consequence of equation (8) and the fact that
GT is well-defined. In fact, according to equation (8) we have h ◦ fi ◦ h−1(y) = wi(y)
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for every y ∈ [−2, 2] and every i ∈ {−1, 1}, which implies

h ◦ GT (a) = h
(

lim
n→∞ fa0 ◦ fa1 ◦ · · · ◦ fan(h

−1(y))
)

= lim
n→∞ h ◦ fa0 ◦ fa1 ◦ · · · ◦ fan ◦ h−1(y)

= lim
n→∞ wa0 ◦ wa1 ◦ · · · ◦ wan(y) = GL(a).

To show assertion (i) notice that

∞⋂
n=1

fa0 ◦ fa1 ◦ · · · ◦ fan

(
[−π

2 , π

2 ]
)

contains exactly one point z and this point has to satisfy T n(z) ∈ Ian for every n ∈ N0.
Since x is such a point and since this implies h(x) = h ◦ GT (CT (x)) = GL(CL(h(x))),
it only remains to prove that GT and GL are surjective, which, however, is a straight-
forward consequence of the already implicitly proved identities GT ◦ CT = id[− π

2 , π
2 ]

and GL ◦ CL = id[−2,2].

Simplification 2. Despite its simplicity and straightforward proof, Lemma 1 immedi-
ately implies the existence of the limit of the continued radicals as studied in [4] and
proved in [3] using different methods. In fact, for every a ∈ �2, we have

GL(a) = lim
n→∞ wa0 ◦ wa1 ◦ · · · ◦ wan(0)

= lim
n→∞ a0

√√√√
2 − a1

√
2 − a2

√
2 − a3

√
· · · − an

√
2. (11)

Simplification 3. Notice that the simple form of the functions f−1, f1 allows us to
express GT (a) as an infinite sum (see [3, 5] and the references therein): In the case of
CT (x) = a we obtain

x = π

2

∞∑
n=1

(
−1

2

)n n−1∏
i=0

ai = π

2

∞∑
n=1

n−1∏
i=0

(
−ai

2

)
, (12)

as well as

h(x) = 2 sin

(
π

2

∞∑
n=1

n−1∏
i=0

(
−ai

2

))

= lim
n→∞ a0

√√√√
2 − a1

√
2 − a2

√
2 − a3

√
· · · − an

√
2. (13)

We now turn to periodic nested square root of 2 representations as derived in [2]
and provide alternative short proofs based merely on Lemma 1. For every n ∈ N let Pn

denote the set of all x ∈ [0, π

2 ] such that T n(x) = x. Since the graph of T n restricted to
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[0, π

2 ] consists of 2n−1 line segments with slope ±2n that cover [−π

2 , π

2 ], it is straight-
forward to show that Pn contains exactly 2n−1 points and is given by

Pn = π

2
·
{ 2i − 1

2n + (−1)i
: i ∈ {1, . . . , 2n−1}

}
.

For each x ∈ Pn we have Ln(h(x)) = h(x) and the T -coding a = CT (x) ∈ �2 is n-
periodic, i.e., it is of the form a = (1, a1, . . . , an−1) for some a1, . . . , an−1 ∈ {−1, 1}.
By Lemma 1, for every x ∈ Pn we get

h(x) = 2 sin(x) = lim
n→∞(w1 ◦ wa1 ◦ wa2 · · · ◦ wan−1)

n(0),

so h(x) can be expressed as periodic nested square root of 2. Since each x ∈ Pn cor-
responds to a unique element (1, a1, . . . , an−1) and vice versa, the main result in [2]
(and consequently the identities in Tables 1–3 therein) follows.

The representation just mentioned can easily be extended to all eventually periodic
a ∈ �2, i.e., all a of the form a = (b0, b1, . . . , bk, a1, a2, . . . , an) for some k ∈ N0

and n ∈ N. In fact, if we set y = GT (1, a1, . . . , an−1) and define x by x = fb0 ◦ · · · ◦
fbk

(y), then, according to Lemma 1, h(x) has the (eventually periodic) nested square
root of 2 representation

h(x) = lim
n→∞ wb0 ◦ · · · ◦ wbk

◦ (wa1 ◦ · · · ◦ wan)
n(0).

Simplification 4. It has already been mentioned that (as a direct consequence of the
conjugacy h) zeros and fixed points of T and L are strongly related: (i) T n(x) = 0 is
equivalent to Ln(h(x)) = 0, and (ii) T n(x) = x if and only if Ln(h(x)) = h(x). As
mentioned in [7] and the references therein, the zeros of Ln are sorted according to the
so-called Gray code. This property is yet another direct consequence of the conjugacy
h linking of L and T . In fact, if for every a ∈ �2 and every n ∈ N0 we set

Jn(a) := J(a0,...,an) = {
x ∈ [−π

2 , π

2 ] : T i(x) ∈ Jai
for every i ∈ {0, 1, . . . , n}},

In(a) := I(a0,...,an) = {
x ∈ [−2, 2] : Li(x) ∈ Iai

for every i ∈ {0, 1, . . . , n}},
then Jn(a), In(a) are intervals whose interiors int(Jn(a)), int(In(a)) satisfy

int(Jn(a)) = fa0 ◦ fa1 ◦ · · · ◦ fan

(
(−π

2 , π

2 )
)
,

int(In(a)) = wa0 ◦ wa1 ◦ · · · ◦ wan ((−2, 2)) .

More important, the intervals are sorted according to the Gray code (if −1 is substi-
tuted for 0): Writing E ≺ F for intervals E, F , if for all (e, f ) ∈ E × F we have
e < f , it follows that

J(−1) ≺ J(1)

J(−1,−1) ≺ J(−1,1) ≺ J(1,1) ≺ J(1,−1)

J(−1,−1,−1) ≺ J(−1,−1,1) ≺ J(−1,1,1) ≺ J(−1,1,−1) ≺ J(1,1,−1) ≺ J(1,1,1)

≺ J(1,−1,1) ≺ J(1,−1,−1)

· · · ≺ · · ·
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holds, and considering In(a) = h(Jn(a)) the same is true for the intervals In(a). Notice
that our conjugacy-based approach also allows for a simplified derivation of some of
the formulas involving Gray code as presented in [7].

We conclude this article by showing how Lemma 1 can also be used to derive an
additional surprising result which (to the best of the authors’ knowledge) has not yet
appeared in the literature. As usual we will call an element a ∈ �2 simply normal (in
base 2) if

lim
n→∞

1

n + 1

n∑
i=0

11(ai) = 1

2

holds. The map T is ergodic (in fact even exact and strongly mixing, see [8]), i.e.,
every Borel set B in [−π

2 , π

2 ] that satisfies T −1(B) = B has either measure 0 or full
measure. As a direct consequence of Birkhoff’s ergodic theorem (see [8]), it follows
that λ-almost every x ∈ [−π

2 , π

2 ] has a normal T -coding CT (x) (thereby λ denotes the
Lebesgue measure). This simple and well-known fact has the following consequence
(in the theorem “randomly” is to be interpreted in the sense of “randomly from the
uniform distribution on the interval [−π

2 , π

2 ]”):

Theorem 1. If we randomly select a point x ∈ [−π

2 , π

2 ], then with probability one
CL(2 sin(x)) = a ∈ �2 is simply normal (in base 2), and we have

2 sin(x) = lim
n→∞ a0

√√√√
2 − a1

√
2 − a2

√
2 − a3

√
· · · − an

√
2.

Proof. Let �T denote the Borel subset of [−π

2 , π

2 ] containing all x ∈ [−π

2 , π

2 ] for
which CT (x) is normal. Setting � = h(�T ), considering that h is absolutely continu-
ous, using equation (3), and applying Lemma 1 then completes the proof.

5. CONCLUSION. We have derived finite and infinite nested square root of 2 rep-
resentations of 2 sin(x) for x ∈ [−π

2 , π

2 ] by using the fact that the dynamical systems
([−π

2 , π

2 ], T ) and ([−2, 2], L) are topologically conjugate via the homeomorphism

h(x) = 2 sin(x). Replacing T by the map T̂ : [0, π] −→ [0, π] defined by

T̂ (x) =
{

2x if x ∈ [0, π

2 ],
−2x + 2π if x ∈ (π

2 , π]

and L by the reflected logistic map L̂ = −L, working with the homeomorphism
ĥ(x) = 2 cos(x), and proceeding completely analogously would directly yield finite
and infinite nested square root of 2 representations of 2 cos(x) for every x ∈ [0, π].
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100 Years Ago This Month in The American Mathematical Monthly
Edited by Vadim Ponomarenko

At the University of Kansas, Assistant Professor Solomon Lefschetz has been
advanced to an associate professorship.

We have already noted (1920, 45) the formation of a committee, or “Provisional
International Mathematical Union” charged with the duty of consulting mathemati-
cians and circulating statutes in different countries with a view to organizing an
International Mathematical Union. C. J. de la Vallée Poussin was appointed the
president of this committee, W. H. Young the vice-president, and Lamb, Picard,
and Volterra honorary presidents; there were four “secretaries” representing Bel-
gium, France, Roumania and Italy.

—Excerpted from “Notes and News” (1920). 27(4): 189–194.
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