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NOTES
Edited by Vadim Ponomarenko

The Midpoints Between Roots Reveal the
Quartic Equation

Javier Sánchez-Reyes

Abstract. The midpoints between roots provide the key to understanding the geometry, in the
complex plane, behind the roots of a quartic polynomial. In reduced form (i.e., with no cubic
term), midpoints come in three pairs, with opposite signs, as solutions to a resolvent cubic.
At any midpoint, a startlingly simple expression of the polynomial derivative indicates the
vectors from the midpoint to the corresponding pair of roots. This approach simplifies Euler’s
method for solving the quartic, since there is no need to make a suitable choice of the plus or
minus signs in the pairs of midpoints.

1. INTRODUCTION. The quartic equation arises in a number of relevant geomet-
rical problems, in particular those involving conic sections, such as computing the
intersection of two conics, their overlapping areas, or the orthogonal projection of a
point onto a conic. The quartic is the highest degree polynomial equation admitting a
closed-form solution in terms of radicals. Basically, analytical methods [10–12,18] for
solving the quartic involve inspired algebraic manipulation, finding the solutions of a
certain resolvent cubic, and extracting square roots.

Unfortunately, in general such methods are not endowed with any clear geomet-
ric meaning. Thus, already in the 19th century, a number of mathematicians [7–9, 19]
advocated transforming the analytical root-finding problem into its geometric counter-
part of finding the intersection of two conics. In articles published in this Monthly,
this technique was also employed by Glenn [5], Graustein [6], and Running [17], and
more recently by Faucette [4] and Auckly [1], who apply methods from algebraic
geometry. If all roots are real, they also admit an intuitive representation, put forward
by Nickalls [14] and Northshield [15], as coordinates of the vertices of a regular tetra-
hedron in R

3.
In a manner different from those used in these previous works, we resort to simple

geometric concepts in the complex plane C, tackling the general case of complex roots.
First, we borrow a key idea from another inspiring paper by Nickalls [13], giving a
modern exposition of Euler’s method for solving the quartic: Instead of directly finding
the roots, we try instead to find a midpoint between two roots. Second, we compute
the vectors pointing from a midpoint to the corresponding roots, rather than finding a
proper combination of signs as in Euler’s method.
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2. FINDING THE ROOTS OF A QUARTIC. We assume a quartic polynomial P

is expressed in reduced form, i.e., with no cubic term:

P(z) = z4 + pz2 + qz + r. (1)

If the quartic has a cubic term az3, it can be rewritten in reduced form by the change
of variable z → z − a/4. By Vieta’s formulas [20], this is tantamount to setting the
centroid of the roots zk at the origin:

z1 + z2 + z3 + z4 = 0. (2)

We also assume that at least one of the coefficients p, q, r ∈ C does not vanish, to
avoid the singular case P(z) = z4, where all roots and midpoints coalesce to the origin.

Vectors pointing at a pair of roots from their midpoint. Consider a midpoint ζ

between two roots, let us say ζ = 1
2 (z1 + z2) midway between z1, z2, and factor P as

the product

P(z) = Q(z)R(z), where
Q(z) = (z − z1)(z − z2),

R(z) = (z − z3)(z − z4).

As Q is a quadratic polynomial with roots z1, z2, its critical point, where the derivative
Q′ vanishes, coincides with the midpoint ζ , so Q′(ζ ) = 0. Since R′(ζ ) = 4ζ from
equation (2), by differentiating the product P(z), we see that

P ′(ζ ) = Q(ζ)R′(ζ ) = −4ζv2(ζ ), v(ζ ) = 1
2 (z1 − z2),

where ±v(ζ ) indicates the vectors emanating from ζ and pointing at the pair of roots
z1, z2 (Figure 1a). Solving for v(ζ ), we have

v(ζ ) = 1
2

√−P ′(ζ )/ζ , ζ �= 0. (3)

Note that expression (3), characterized exclusively by the derivative P ′(ζ ), holds
for any pair of roots and their midpoint ζ . In fact, it makes sense for all ζ �= 0, which
justifies the function notation v(ζ ). The reader may also wonder what happens for
midpoints ζ = 0. We advance that a midpoint ζ = 0 exists if and only if q = 0, putting
us in the biquadratic case, which deserves a particular discussion later. Clearly, not all
midpoints can be ζ = 0, since this leads to the case p = q = r = 0, which was ruled
out in the beginning.

Figure 1. Geometry of the roots zk of a quartic equation: a) Vectors v(ζ ). b) Pairs ±ζ of midpoints.
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The resolvent cubic yielding the midpoints. Centering the roots at the origin, (2)
implies that the midpoints come in pairs ±ζ , for instance, 1

2 (z1 + z2) = 1
2 (z3 + z4), as

Figure 1a shows. Consequently, if we find a pair ±ζ , the four roots zk are given by
formulas with a great deal of symmetry:

{z1, z2} = ζ ± v(ζ ), {z3, z4} = −ζ ± v(−ζ ). (4)

Four roots furnish
(4

2

) = 6 midpoints, grouped as three pairs ±ζ1, ±ζ2, ±ζ3 (Fig-
ure 1b). But, how can we find them? By Vieta’s formulas, the product of all roots zk in
(4) is equal to the constant term r in the reduced form (1) of P(z):

(z1z2)(z3z4) = r → [ζ 2 − v2(ζ )][ζ 2 − v2(−ζ )] = r. (5)

Next, in this expression we compute −v2(ζ ) in terms of the remaining polynomial
coefficients p, q:

−v2(ζ ) = P ′(ζ )

4ζ
= 4ζ 3 + 2pζ + q

4ζ
,

and analogously for −v2(−ζ ). Finally, after multiplying by ζ 2 and using straightfor-
ward algebraic manipulations, we see that equality (5) generates a resolvent sextic in
ζ . With the substitution ζ 2 → w/4, the sextic transforms to a cubic in w:

w3 + 2pw2 + (p2 − 4r)w − q2 = 0, (6)

whose three roots {w1, w2, w3} furnish the corresponding pairs ±ζ = ± 1
2

√
wj of mid-

points.
Let us summarize these results in a formal way.

Theorem 1. The four roots zk of a reduced quartic P(z) (1) are ζj ± v(ζj ) and −ζj ±
v(−ζj ), where v(ζ ) = 1

2

√−P ′(ζ )/ζ , ζj = 1
2

√
wj , and wj is any nonvanishing root

of the resolvent cubic (6).

Expression (3) has a singularity at the origin ζ = 0, which determines the choice of
wj :

• The condition wj �= 0 is required to avoid the singularity. If all the wj ’s vanish, the
resolvent cubic simplifies to w3 = 0, and then p = q = r = 0, but we ruled out this
case from the beginning.

• In exact arithmetics, any wj �= 0 would do the job. However, the computation of
v(ζ ) is clearly ill-conditioned for ζ close to the origin, so roots wj close to this
singularity must be avoided in a floating-point environment.

In essence, Theorem 1 reinterprets Euler’s method [13] for solving the quartic, where
the four roots must be identified among the eight possible combinations ±ζ1 ± ζ2 ± ζ3.
While this sign allocation boils down to a straightforward analysis, we circumvent it
by directly computing the roots from any midpoint ζj �= 0.

3. THE CASE OF THE BIQUADRATIC EQUATION. Finally, we remark on
how the geometry of Figure 1b simplifies, becoming even more symmetrical, for
a biquadratic equation. In this case, q = 0 in the quartic (1), which can hence be
rewritten as

P(s) = s2 + ps + r = 0, s = z2.
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Figure 2. Biquadratic equation: Configuration of the roots zk and midpoints ζj .

Therefore, the roots come in pairs ±√
sj from the roots sj of a quadratic polynomial,

thereby defining a parallelogram P (Figure 2). This is precisely the case already ana-
lyzed by Clifford and Lachance [2], and implicit in the papers by Parish [16] and
Clifford and Lachance [3], where P can be generated by an affine transformation A of
a square. Two pairs ±ζ1, ±ζ2 correspond to the midpoints of the edges of P , whereas
the remaining pair ±ζ3, the midpoints of the two diagonals of P , coalesce to the origin.
This is tantamount to a root w3 = 0 of the resolvent cubic (6), a property also clear
since the biquadratic condition q = 0 means a constant term q2 = 0 of this cubic.
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