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l’Hôpital’s Rule for Multivariable Functions

Gary R. Lawlor

Abstract. Zero divided by zero is arguably the single most important concept underlying
calculus. For functions of more than one variable, methods of proof for indeterminate limits
are not as familiar as for functions of a single variable. We present a l’Hôpital’s rule that
provides a way to simplify and resolve a wide variety of zero-over-zero limits in terms of
quotients of their derivatives.

1. INTRODUCTION. It is interesting to reflect on how many times in mathematics
the word “impossible” only means “you’re not ready to understand that yet.” At dif-
ferent stages of school we may be instructed that it is impossible to subtract 3 minus
5, or to take the square root of 6, or to take the square root of −1, only to find later
that these were only impossible within the given framework that we knew. And even
in mathematical research, a generally agreed-upon impossibility may melt away in the
presence of a context-expanding new insight.

Now what about zero divided by zero? We are sternly informed in school that
dividing by zero is impossible and must be shunned. Does that prohibition ever get
softened?

In fact, a more accurate statement, (once we are ready to understand it) is that it
is impossible to divide zero by zero out of context. All other arithmetic operations are
independent of context, a rather remarkable fact. So six divided by three equals two, no
matter whether you are sharing expenses with a couple of friends or making a fraction
of a recipe of bread. Not so with zero divided by zero: if you take a photograph of two
racecars and observe that in the picture both cars travel zero feet in zero seconds, that
is no help in comparing the cars’ velocities.

But if you can find some contextual information to a zero-over-zero problem, like a
sequence or a quotient of functions, then you are back in business.

In 1696 the Marquis de l’Hôpital published the first calculus text, in which was
revealed the elegant and enduring rule that bears his name. Single-variable indetermi-
nate limits were thus supplied with a go-to method of resolution.

However, methods for resolving indeterminate limits in several variables are not
as universally established. A calculus textbook will usually tell how to prove certain
multivariable limits do not exist, by restricting the domain to individual lines through
the singular point and obtaining different limits. This is followed by a warning not to
try a proof using the same method to claim that a limit does exist. A standard coun-
terexample is x2y/(x4 + y2) as (x, y) → (0, 0), whose limit along each line through
the origin is zero, but along the parabola y = x2 its limit is 1/2.

The student may then naturally ask what is the right way to prove existence of a
multivariable limit, but may find this question addressed only partially. What about a
l’Hôpital’s rule for multivariable functions? At one point the present author knew why
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such a rule was impossible; we will comment further on this below, where we will also
acknowledge the vital contribution of an anonymous referee.

Papers by Dobrescu and Siclovan [3] and Young [9, p. 71], both present a very
specific version of l’Hôpital’s rule for a two-variable indeterminate limit resolvable
by taking the mixed second derivative ∂2/∂x∂y of the numerator and denominator
functions.

A paper of Fine and Kass [4] has a version using first-order derivatives, taking
directional derivatives always in the direction toward the singular point. While this
version provides an interesting perspective, it seems difficult to find examples where
the rule simplifies the functions and resolves the limit.

Carter [2] discusses when l’Hôpital’s rule does and does not work for complex-
valued functions.

Kishka et al. [5] prove that l’Hôpital’s rule works for matrix functions under certain
circumstances; an example they give is that the limit of sin(X)X−1, as the n-by-n
matrix X approaches the zero matrix, is the identity matrix.

There are some papers with a good treatment of the indeterminate limit of a quotient
of a vector-valued function over a real-valued function, but these papers concern func-
tions of a single variable. See the Rosenholtz paper [7], as well as papers by Albrycht
[1], Popa [6], and Ważewski [8] for l’Hôpital-style theorems of this type.

2. FEATURES AND DIFFICULTIES. The expanded territory in the multivariable
setting is both a feature and a challenge. On the one hand, it provides for a novel
type of singularity not possible with single-variable functions. On the other hand, the
potential difficulties will require side hypotheses as well as the extra step of working
out which partial (and iterated partial) derivatives to include in the comparison.

Unlike the single-variable setting, a zero-over-zero singularity can be nonisolated,
as with the function

f (x, y)

g(x, y)
= x − y

sin x − sin y
. (1)

In such a case, when we take the limit we implicitly exclude the points where g = 0
from the domain.

This function has a limit of 1 as we approach the origin, as Theorem 4 will prove.
The limit is suggested by the quotients

fx(0, 0)

gx(0, 0)
= fy(0, 0)

gy(0, 0)
= 1.

But we need to take more care than just examining the derivatives, as shown by the
function

f (x, y)

g(x, y)
= x − sin y

sin x − y
, (2)

whose graph is shown in Figure 1(a). Near zero, the numerators of (1) and (2) are very
nearly the same, as are their denominators. The first partial derivatives might suggest
that the limit of (2) is also 1, but this is not the case. In the second example, the set of
points where f (x, y) = 0 does not contain the set where g(x, y) = 0, so we can find
points arbitrarily near the origin at which g is much closer to 0 than is f ; thus, the
quotient f/g is unbounded as we approach the origin.

This type of counterexample originally caused the author to believe that a l’Hôpital’s
rule could not exist for multivariable functions. Not until later did the resolution of
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this problem present itself; we simply make the side hypothesis that the zero set of f

contain that of g within a neighborhood of the singularity.
The author was also perplexed by examples with isolated singularities such as

xky

x4 + y2
; (3)

see Figure 1(b) for the graph when k = 3. When k > 2, the limit at the origin is zero,
and when k ≤ 2, the limit does not exist, as shown by approaching the origin along the
curves y = mx2 for different values of m. But which quotient(s) of partial derivatives
would establish this result?

The author’s disbelief in the existence of a l’Hôpital’s rule for isolated singulari-
ties persisted for years after finding a result for the nonisolated case. Indeed, the first
submission of the present article did not include a rule for isolated singularities. The
author is most grateful for an anonymous referee’s reassuring disbelief in the nonexis-
tence of that vital part of l’Hôpital’s rule, and his or her suggestion to look at different
pathways toward the singular point. (Not lost on the author is the historical precedent
for anonymity in contributing to l’Hôpital’s rules!)

The key turns out to be understanding which groups of iterated partial derivatives
to divide and compare, and then finding the right curves along which to approach the
singular point; see Theorem 5.

As with the nonisolated singularities, we must check one side hypothesis, as illus-
trated by the example

lim
(x,y)→(0,0)

(x2 − y2)2

x4 − 2 sin2 x sin2 y + y4
;

see Figure 1(c). This limit does not exist, as shown by examining the function restricted
(in turn) to each of the lines y = x and y = 2x. The derivative quotients prescribed
in our l’Hôpital’s rule below do not detect the subtlety inherent in this example. We
resolve this by requiring as a side hypothesis that a Taylor polynomial of the denomi-
nator have an isolated zero at (0, 0).

Figure 1. Graphs of examples discussed above.

3. L’HÔPITAL’S RULE. Our l’Hôpital’s rule will have three parts, grouped into the
two theorems of the present section, together covering a considerable range of zero-
over-zero, indeterminate limits. The strategy of proof in all cases will be to apply the
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generalized mean value theorem to restrictions of the multivariate functions along cer-
tain paths, namely straight lines, paths of steepest ascent or descent of the denominator
function g(x), and paths parameterized using certain integer powers of t .

Note that the standard single-variable l’Hôpital’s rule includes cases that allow
infinity to play various roles in the limits. In the present article, we omit infinite limits,
leaving them for future research.

We begin by proving a result giving some basic control over the behavior of paths
of steepest change, ensuring that they cannot wander too far.

Lemma 1. Let h be a C1,1 function on an open set N with h(p) = 0 for some p ∈ N
and ∇h �= 0 in N except possibly at p. Then for any ε > 0 there exists δ ∈ (0, ε) such
that for every x0 ∈ Bδ(p) at which h(x0) is positive (respectively, negative), a path of
steepest descent (respectively, ascent) of h from x0 cannot leave Bε(p) before reaching
the value h(x) = 0.

Proof. We may restrict attention to ε sufficiently small so that the closure of the ball
Bε(p) is contained in N . Given such an ε, let k > 0 be the minimum value of ‖∇h‖ in
the annulus A : ε/2 ≤ ‖x − p‖ ≤ ε. Then given any path of steepest ascent or descent
of h beginning at a point closer to p than distance ε/2, if the path could extend further
from p than distance ε, then h(x) must change by at least kε/2 as the path passes
through A. Thus, we need only choose δ > 0 sufficiently small so that within Bδ(p),
|h(x)| < kε/2, and the result will follow.

Definition 2. Let ki ∈ N for each i. Let S = S(k1, . . . , kn) be the (n − 1)-simplex
in R

n with vertices on the axes at {kiei}. For any nonnegative integer lattice point
q = (q1, . . . , qn), let Dq be the differential operator that differentiates a function qi

times by each variable xi .
For any α ∈ Z

n with nonnegative integer entries we say α lies below S(k1, . . . , kn)

if α is not in S but lies on the same side of S as the origin. Let the simplicial Taylor
polynomial T

S
g(x), centered at p, be the polynomial satisfying DαT (p) = 0 for all

α /∈ S and DαT (p) = Dαg(p) for all α ∈ S.
We say a C∞ function g is dominant at p with respect to S(k1, . . . , kn) if

1. the pure partial derivatives Dkiei
g(p) are all nonzero,

2. the pure and mixed partial derivatives Dαg(p) are zero for all lattice points α

below S, and
3. the simplicial Taylor polynomial T

S
g(x) has an isolated zero at p, which will

require in particular that each ki is an even integer.

We will use the Dα notation in connection with Theorem 5 and its supporting
Lemma 3. Elsewhere a simple subscript notation for partial derivatives will be more
convenient.

Lemma 3. Let N be an open neighborhood of p = (p1, . . . , pn) ∈ R
n and let g :

N → R be a C∞ function. Let k = (k1, . . . , kn) with ki ∈ N for each i ∈ {1, . . . , n},
and let xi(t) = pi + mit

ki for each i, where each mi is a free variable. Define

G(t) = g(x1(t), . . . , xn(t)).

Then for any j ∈ N, the derivative satisfies

G(j)(0) = j !
∑

q · k = j

qi ∈ N ∪ {0}

Dqg(p)
∏ m

qi

i

qi!
,
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which equals j ! times the sum of terms of the Taylor polynomial of g corresponding to
the vectors q that appear in the above sum, with each xi replaced by mi .

Proof. We may assume that g is an analytic function, since the result only depends on
the rules of differentiation, which will give the same results as long as g is sufficiently
many times differentiable. For simpler notation assume p is the origin; otherwise we
would subtract pi from each xi in what follows.

Let c x
q1
1 · · · xqn

n be a term of the power series for g. This term will only contribute to
the j th derivative of g(x(t)) at t = 0 if q1k1 + · · · + qnkn = j . Plugging in the values
xi(t) = mit

ki , the term becomes

c m
q1
1 · · · mqn

n tj ,

whose j th derivative at t = 0 is

j ! c m
q1
1 · · ·mqn

n . (4)

On the other hand, if we differentiate g(x) by each xi qi times, we get

c q1! · · · qn!. (5)

Dividing (4) by (5) we obtain the desired expression.

We are now ready to disprove the nonexistence of a l’Hôpital’s rule for multivariable
functions.

Theorem 4 (l’Hôpital’s rule for multivariable functions, nonisolated singulari-
ties). Let f and g be C∞ functions defined in a neighborhood N of p ∈ R

n. Suppose
that within N , whenever g(x) = 0 then f (x) = 0 as well. Then

1. If any first partial derivative gxi
(p) is nonzero, then

lim
x→p

f (x)

g(x)
= fxi

(p)

gxi
(p)

.

2. If ∇g(x) = 0 only at x = p, then

lim
x→p

f (x)

g(x)
= lim

x→p

fxi
(x)

gxi
(x)

if the right-hand side exists (and is a finite real number, not infinity) and is equal
for all i; this last limit is taken over x such that gxi

(x) �= 0.

Proof. First consider claim 1. Since the partial derivative gxi
(p) is nonzero, we can

restrict to a possibly smaller neighborhood of p in which the derivative is everywhere
nonzero.

Let L be the line through p parallel to the xi-axis, and let C be the level set g = 0.
Again since gxi

(p) is nonzero, L is transverse to C at p.
We need to know that lines parallel to L and sufficiently near L also cross C near p.

Choose an angle θ strictly closer to π/2 than the angle between L and the normal ∇g

to C. Form a double cone K as the union of lines through p that make an angle of θ

with ∇g; see Figure 2. Now the directional derivatives of g at p in the cone directions
are all a positive constant for half the cone and its negative for the other half. Since
g is C1,1, in a small neighborhood B2 of p these directional derivatives have constant
sign. There is a smaller neighborhood B3 of p such that all lines parallel to L that
pass through B3 must pass through both halves of K within B2. These will therefore
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Figure 2. Parallel lines crossing the zero set of g.

Figure 3. Sequences of points approaching a singularity.

pass through points where g > 0 and points where g < 0; by the intermediate value
theorem all such lines also pass, near p, through the zero set of g.

Now consider, as in Figure 3, any sequence (xj ) of points in B3 converging to p,
with g(xj ) �= 0 for all j . Let zj be the points guaranteed above, at which g(zj ) = 0
and zj − xj is a scalar multiple of the coordinate vector ei for each j . The points zj

also converge to p.
Now for each j , as in the proof of the single-variable l’Hôpital’s rule, apply the

generalized mean value theorem to the quotient f/g restricted to the line L. We find
that there is a point yj , lying in between xj and zj , such that

fxi
(yj )

gxi
(yj )

= f (xj ) − f (zj )

g(xj ) − g(zj )
= f (xj )

g(xj )
.

But now since the points yj also converge to p, the desired result follows.

Now consider claim 2 in the theorem. We will apply the generalized mean value
theorem to f/g restricted to paths of quickest ascent or descent of g.

Let λ ∈ R be the common value of the limits of fxi
(x)/gxi

(x).
Given ε1 > 0, choose ε2 > 0 such that for all x ∈ Bε2(p), |f (x)| < ε1 and such

that for all i satisfying gxi
(x) �= 0,

|fxi
(x)/gxi

(x) − λ| <
ε1

2

so that

|fxi
(x) − λgxi

(x)| <
ε1

2
|gxi

(x)|. (6)

By Lemma 1 choose δ > 0 so that paths of steepest change of g beginning in B =
Bδ(p) remain within Bε2(p) up until g = 0.
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Take a point x0 ∈ B with g(x0) �= 0. Without loss of generality, g(x0) > 0.
Let x(t), t ≥ 0, be a parameterization of a path of fastest decrease of g from x0. A

priori it might happen that x(t) has infinite length without g(x(t)) ever reaching zero.
But we do know at least that g nears zero in finite time. For if g(x(t)) were to stay
above some ε > 0, then x(t) would have to stay outside some ball about the origin.
But then by compactness and the fact that ∇g �= 0, ‖∇g‖ would be bounded below by
a positive quantity. This would force g(x(t)) to decrease to zero, a contradiction.

So g(x(t)) goes as near to zero as we wish in finite time. Now if f (x(t)) did not also
converge to zero, there would exist ε3 > 0 and a sequence (ti) with g(x(ti)) → 0 but
|f (x(ti))| > ε3 for all i. Then by compactness, a subsequence of x(ti) would converge
to some y0, forcing g(y0) = 0 but f (y0) �= 0, a contradiction.

Now x ′(t) is a scalar multiple of −∇g(x(t)) for each t ∈ (0, t0). By the chain rule
and the generalized mean value theorem, there exists c ∈ (0, t0) such that

f (x0) − f (x(t0))

g(x0) − g(x(t0))
= ∇f (x(c)) · x ′(c)

∇g(x(c)) · x ′(c)
= ∇f (x(c)) · ∇g(x(c))

∇g(x(c)) · ∇g(x(c))
.

But since f (x(t0)) and g(x(t0)) can be made arbitrarily small, we can ensure that the
quantity

∣∣∣∣
f (x0) − f (x(t0))

g(x0) − g(x(t0))
− f (x0)

g(x0)

∣∣∣∣

is less than 1
2ε1. Then

∣∣∣∣
f (x0)

g(x0)
− λ

∣∣∣∣ <
1

2
ε1 +

∣∣∣∣∣∣

(
∇f (x(c)) − λ∇g(x(c))

)
· ∇g(x(c))

∇g(x(c)) · ∇g(x(c))

∣∣∣∣∣∣
.

Since the path x must stay within Bε2(p), by (6), the above expression is less than ε1,
as required.

Theorem 5 (l’Hôpital’s rule for multivariable functions, isolated singularities).
Let f and g be C∞ functions in a neighborhood N ⊆ R

n, with f and g equaling
zero only at p. For each i let 	i be the smallest natural number such that the pure
iterated partial D	iei

g(p) is nonzero. Let S be the simplex whose vertices are the points
{	iei}. If g is dominant (Definition 2) then the limit of f/g exists and equals λ ∈ R, if
Dαf (p) = λDαg(p) for all α lying in or below S.

Conversely, if Dαg = 0 for all α below S but there does not exist such a λ, then the
limit of f/g does not exist.

Proof. As before, for simplicity’s sake assume that the singularity p is at the origin.
Work within a closed ball C = Br(0) inside N within which T

S
g is zero only at 0.

Assume first that such a λ does exist. We note that

f (x)

g(x)
= f (x)

T
S
g(x)

÷ g(x)

T
S
g(x)

.

Thus it will suffice to prove the theorem with a simplicial polynomial as the denomi-
nator; then λ will equal 1 when we apply the theorem to g/(T

S
g), and we can divide

the limits of f/(T
S
g) and g/(T

S
g) to obtain the desired result. (The advantage is to

make it easier to verify the hypothesis that the denominator have nonzero derivative
when applying the Cauchy mean value theorem.)
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Let L be the least common multiple of (	1, . . . , 	n), and set ki = L/	i for each i.
The key idea is to approach the origin along curves

γx(t) = (x1t
k1, . . . , xnt

kn) (7)

for x ∈ ∂Br(0) and t ∈ (0, 1].
Given any starting point z �= 0 in Br(0), by continuity we can choose t0 ≥ 1 such

that

‖(z1t
k1
0 , . . . , znt

kn

0 )‖ = r.

Let xi = zit
ki

0 ; then x ∈ Br(0), and the path (7) lies in Br(0) and passes through z when
t = 1/t0.

Define

F(t) = Fx(t) = f (γx(t)) and G(t) = Gx(t) = T
S
g(γx(t)).

Apply the Cauchy mean value theorem to Fx(t)/Gx(t) on the interval t ∈ [0, 1/t0].
We obtain

f (z)

g(z)
= Fx(1/t0)

Gx(1/t0)
= F ′

x(c1)

G′
x(c1)

for some c1 ∈ (0, 1/t0). Repeat the application L − 1 more times, obtaining in the end
that

f (z)

g(z)
=

dL

dtL
Fx(cL)

dL

dtL
Gx(cL)

=
dL

dtL
Fx(cL)

dL

dtL
Gx(0)

for some cL ∈ (0, 1/t0); the last equation follows because Gx is a simplicial polyno-
mial and the denominator is a function only of x and is constant in t .

By Lemma 3, for fixed x the limit as t → 0 of Fx(t)/Gx(t) equals λ; we need only
be concerned about the uniformity of that limit.

Let W be the (positive) minimum value of the coefficient of tL in Gx(t), for x

satisfying ‖x‖ = r . Then

F (L)
x (cL)

G
(L)
x (0)

− λ = F (L)
x (cL) − F (L)

x (0)

G
(L)
x (0)

≤ F (L)
x (cL) − F (L)

x (0)

L! W
.

Now by the (regular) mean value theorem, the numerator equals cL times the (L + 1)st
derivative of F evaluated at some t ∈ (0, cL). So there is a constant X depending on
finitely many derivatives of f , which in turn are bounded on Br(0), such that

f (z)

g(z)
− λ <

XcL

L! W
<

X

t0L! W
.

Since t0 → ∞ as z → 0, the limit of this discrepancy is zero.
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4. EXAMPLES. We now give five examples whose analysis is straightforward given
l’Hôpital’s rule, leaving the reader to resolve them. The sixth example is a bit fancier.

1. lim
(x,y)→(0,0)

2 tan2 x + y2

x2 + 1 − cos y

2. lim
(x,y,z)→(0,0,0)

sin z − sin(x2 + y2)

tan(z − x2) − tan(y2)

3. lim
(x,y)→(0,0)

x2 − y2

cos x − cos y

4. lim
(x,y)→(0,0)

cos x + xy3 − sin4 y − 1

sin2 x + 2y4

5. lim
(x,y)→(0,0)

xαy

x4 + y sin y
for each α ≥ 0

6. lim
(x,y)→(0,0)

x5y

x6 + x2y2 + y6
.

Hint: The hypotheses of l’Hôpital’s rule are not satisfied in the last example
because the points (6, 0), (2, 2), and (0, 6) are not collinear, but try imbedding
the problem into three dimensions by setting z = xy and eliminating some of the
occurrences of y.

ACKNOWLEDGMENTS. The author is most grateful to the second referee for suggesting the existence of
the rule for isolated singularities, and sketching an idea of how it might be done.
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132–147.

[9] Young, W. H. (1910). On indeterminate forms. Proc. Lond. Math. Soc. 2(8): 40–76.

GARY LAWLOR is an associate professor at his alma mater, Brigham Young University, with a Ph.D. from
Stanford. Previously he was an instructor and assistant professor at Princeton from 1988 to 1991. One of the
principal moving forces in his research has been the insatiable hunger to know: Is there a simpler way?

He is a husband, dad, grandpa and BYU sports fan, and an avid genealogist and student of ancient and
modern scripture, but has no idea how to apply l’Hôpital’s rule to any of these pursuits.
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