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Abstract

A convention in designing randomized clinical trials has been to choose sample sizes that yield specified
statistical power when testing hypotheses about treatment response. Manski and Tetenov recently critiqued
this convention and proposed enrollment of sufficiently many subjects to enable near-optimal treatment
choices. This article develops a refined version of that analysis applicable to trials comparing aggressive
treatment of patients with surveillance. The need for a refined analysis arises because the earlier work
assumed that there is only a primary health outcome of interest, without secondary outcomes. An important
aspect of choice between surveillance and aggressive treatment is that the latter may have side effects.
One should then consider how the primary outcome and side effects jointly determine patient welfare. This
requires new analysis of sample design. As a case study, we reconsider a trial comparing nodal observation
and lymph node dissection when treating patients with cutaneous melanoma. Using a statistical power
calculation, the investigators assigned 971 patients to dissection and 968 to observation. We conclude that
assigning 244 patients to each option would yield findings that enable suitably near-optimal treatment
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choice. Thus, a much smaller sample size would have sufficed to inform clinical practice.

1. Introduction

A core objective of randomized clinical trials is to inform treat-
ment choice. The convention has been to choose sample sizes
that yield specified statistical power when testing designated
null hypotheses about treatment response against designated
alternatives. However, statistical power and hypothesis testing
are at most loosely connected to effective patient care.

Manski and Tetenov (2016) critiqued the use of power cal-
culations to set sample size and developed an alternative prin-
ciple that aims to inform patient care directly. They proposed
enrollment of sufficiently many subjects to enable determina-
tion of near-optimal treatment choices and provided criteria to
accomplish this. An optimal treatment rule would always select
the best treatment, with no chance of error. This is infeasible
to achieve with trials having finite sample size. Near-optimal
treatment choices are ones that are suitably close to this ideal.
The article gave numerical calculations of sufficient sample sizes
for trials with binary outcomes.

A broad conclusion was that sample sizes determined by clin-
ically relevant near-optimality criteria are much smaller than
ones set using conventional statistical power calculations. A
variety of factors contribute to this conclusion. One is that the
near-optimality perspective considers Type I and Type II errors
symmetrically. In contrast, power calculations are performed
with the probability of a Type I error a priori constrained to
equal 0.05 or another conventional value. Another is that the
near-optimality perspective evaluates products of effect sizes

and error probabilities. It allows larger error probabilities if the
two treatments are nearly equivalent from a patient welfare per-
spective than if one treatment is substantially better for patients.

Reduction of sample size relative to prevailing norms can be
beneficial in multiple ways. Reduction of total sample size can
lower the cost of executing trials, the time necessary to recruit
adequate numbers of subjects, and the need to perform trials
across multiple centers. Reduction of sample size per treatment
arm can make it feasible to perform trials that increase the
number of treatment arms and, hence, yield information about
more treatment options.

This article develops and applies a refined version of the
analysis in Manski and Tetenov (2016) to trials that compare
aggressive treatment of patients with surveillance. Patient care
abounds with instances of this choice problem. Internists choose
between prescription of pharmaceuticals and surveillance when
treating patients at risk of heart disease or diabetes. Oncologists
choose between surveillance and aggressive treatments such as
surgery or chemotherapy when treating cancer patients at risk of
metastasis. Aggressive treatment may be appealing to the extent
that it better prevents onset or reduces the severity of illness.
Surveillance may be attractive to the extent that it avoids side
effects that may occur with aggressive treatment.

The need for a refined version of the analysis in Manski
and Tetenov (2016) arises because this earlier work studied
settings in which there is only a primary health outcome of
interest, without any secondary outcomes. An important aspect
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of choice between surveillance and aggressive treatment is that
the latter may have side effects. The prevailing approach to
choice of sample size in trials has been to focus entirely on
the primary outcome of a treatment, without considering sec-
ondary outcomes. This practice is reasonable when the pri-
mary outcome is the dominant determinant of patient wel-
fare or, put another way, when there is little variation in sec-
ondary outcomes across treatments. It is not reasonable other-
wise. When the side effects of aggressive treatments are serious,
it is more reasonable to consider how the primary outcome and
side effects jointly determine patient welfare. This requires new
analysis of sample design, regardless of whether one adopts the
perspective of near optimality or statistical power.

To provide a realistic case study illuminating the general
issues, we consider a trial comparing nodal observation and
lymph node dissection (lymphadenectomy) when treating
patients with early-stage cutaneous melanoma at risk of
metastasis. Nodal observation is surveillance of lymph nodes
by ultrasound scan, a procedure that has negligible side effects.
Lymph node dissection is a surgical procedure in which the
lymph nodes in the relevant regional basin are removed.
Dissection is commonly viewed as an aggressive treatment. A
particularly concerning side effect is chronic swelling in the
region of lymph node removal, a condition called lymphedema,
which may reduce patient quality of life substantially (Cheville
etal. 2010). Choice between nodal observation and lymph node
dissection is a common decision faced in early treatment of
melanoma, breast cancer, and other forms of localized cancer.
We focus on melanoma because there has long been controversy
about the merits of dissection relative to observation in this
context (see Faries 2018).

The Multicenter Selective Lymphadenectomy Trial IT (MSLT-
II) compared dissection and observation for melanoma patients
who had recently undergone sentinel lymph-node biopsy and
who had obtained a positive finding of malignancy. The pri-
mary outcome was defined to be melanoma-specific survival for
three years following the date of randomization. Findings were
reported in Faries et al. (2017).

Our concern is choice of sample size in the trial. Using a sta-
tistical power calculation, the investigators assigned 971 patients
to dissection and 968 to observation. Considering sample size
from the perspective of near-optimal treatment choice, we con-
clude that assigning 244 patients to each treatment would yield
findings that enable suitably near-optimal treatment choice.
Thus, a much smaller sample size would have sufficed to inform
clinical practice.

We perform the computations under the assumption that
treatment choice will be made with the empirical success (ES)
rule, which selects the treatment with the higher sample average
welfare. When used to choose between two treatments, the ES
rule approximately yields equal Type I and Type II error prob-
abilities. This contrasts sharply with conventional hypothesis
tests, which yield asymmetric error probabilities (typically 0.05
for Type I errors and 0.10-0.20 for Type II errors). The ES
rule provides a simple and plausible way to use the results of
a trial. Analysis of its performance from the perspective of near
optimality was initiated by Manski (2004). Stoye (2009) shows
that use of this rule either exactly or approximately minimizes

the sample size needed to achieve near optimality in common
settings with two treatments.

The analyses in Manski and Tetenov (2016) and in the
present article focus on trials such as MSLT-II that are
performed to help clinicians choose between treatments that are
already used in practice, rather than for a regulatory purpose
such as drug approval. Trials performed for regulatory purposes
may be analyzed from the perspective of improving patient
welfare, but the analysis may need to recognize legal constraints
and the incentives of the firms or other entities that perform the
trials. See Tetenov (2016) for discussion of these matters.

2. Methods

2.1. Critique of the Use of Power Calculations to Set Trial
Size

The use of statistical power calculations to set trial size derives
from the presumption that outcome data will be used to test a
null hypothesis against an alternative. A common practice is to
use a hypothesis test to recommend which of two treatments,
say A and B, should be given to a patient population. The null
hypothesis often is that treatment B is no better than A, and
the alternative is that B is better. If the null hypothesis is not
rejected, choice of A is recommended. If the null is rejected, B is
recommended.

The standard practice has been to perform a test that fixes
at a predetermined level the probability of rejecting the null
hypothesis when it is correct (a Type I error). Then sample size
determines the probability of rejecting the alternative hypoth-
esis when it is correct (a Type II error). The power of a test is
one minus the probability of a Type II error. The convention
has been to choose a sample size that yields specified power
at some value of the average treatment effect deemed clinically
relevant. For example, International Conference on Harmonisa-
tion (1999) provides guidance for the design of trials evaluating
pharmaceuticals, stating (p. 1923):

“Conventionally the probability of Type I error is set at 5%
or less or as dictated by any adjustments made necessary
for multiplicity considerations; the precise choice may be
influenced by the prior plausibility of the hypothesis under
test and the desired impact of the results. The probability of
Type II error is conventionally set at 10% to 20%.”

Trials with samples too small to achieve these error probabilities
are called “underpowered” and are criticized as scientifically
useless and medically unethical (e.g., Halpern, Karlawish, and
Berlin, 2002).

MSLT-II followed the standard practice of setting sample
size to obtain statistical power. The investigators enrolled 1939
subjects, citing this reasoning (Faries et al. 2017, p. 2214): “We
estimated that with a total sample of 1925 patients, the trial
would have a power of 83% to detect a between-group difference
of 5 percentage points in melanoma-specific survival” Specif-
ically, the investigators contemplated using the trial data to
perform a two-tailed hypothesis test. The null hypothesis is that
both treatments yield the same rate of three-year melanoma-
specific survival. The alternative is that the survival rates differ
by at least 5 percentage points. The probabilities of Type I and



Type Il errors are 0.05 and 0.17. The study investigators provide
detailed statements of the study protocol and statistical analysis
plan in a supplementary online document.

Manski and Tetenov (2016) critique the standard practice,
observing that there are several reasons why hypothesis testing
may yield unsatisfactory results for medical decisions. These
include

Use of conventional asymmetric error probabilities: It has been
standard to set the probability of Type I error at 5% and the
probability of Type II error at 10-20%. The theory of hypothesis
testing gives no rationale for selection of these error probabil-
ities. It gives no reason why a clinician concerned with patient
welfare should find it reasonable to make treatment choices that
have a substantially greater probability of Type II than Type I
error.

Disregard of magnitudes of losses when errors occur: A clin-
ician should care about more than the probabilities of Type
I and II errors. He should care as well about the magnitudes
of the losses to patient welfare that arise when errors occur.
A given error probability should be less acceptable when the
welfare difference between treatments is larger, but the theory
of hypothesis testing does not take this into account.

Limitation to settings with two treatments: A clinician often
chooses among several treatments and many clinical trials com-
pare more than two treatments. Yet the standard theory of
hypothesis testing only contemplates choice between two treat-
ments. Statisticians have long struggled to extend it to deal sensi-
bly with comparisons of multiple treatments, without consensus
on how to do this.

See Manski (2019) for further critique of the use of hypothe-
sis tests to make treatment choices.

2.2, Setting Sample Size to Enable Near-Optimal
Treatment

An ideal objective for trial design would be to collect data
that enable optimal treatment choice in the patient population
of interest, with no chance of error. Optimality is too strong
a property to be achievable with finite sample size, but near-
optimal rules exist when trials with perfect internal and external
validity are large enough.

Near optimality was suggested as a principle for decision
making under uncertainty by Savage (1951) within an essay
commenting on the seminal Wald (1950) development of sta-
tistical decision theory. Statistical decision theory studies the
broad problem of decision making when one has incomplete
knowledge of the “state of nature” (i.e., how patients respond to
treatment), but can collect informative sample data. For exam-
ple, a clinician who has incomplete knowledge of treatment
response may use trial data to become better informed.

Considering each possible state of nature, Savage proposed
computation of the mean loss in welfare that would occur across
repeated samples if one were to choose a specified treatment
rule rather than the one that is best in this state. This quantity
measures the nearness to optimality of the specified treatment
rule in each state of nature. The actual decision problem requires

' www.nejm.org/doi/suppl/10.1056/NEJMoa1613210/suppl_file/
nejmoal613210_protocol.pdf
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choice of a treatment rule without knowing the true state of
nature. The decision maker can evaluate a rule by the maximum
distance from optimality that it yields across all possible states of
nature. He can then choose a rule that minimizes the maximum
distance from optimality. Doing so yields a rule that is uniformly
near optimal. Statistical decision theory has used the term regret
as a shorthand for nearness to optimality. Maximum nearness to
optimality is called maximum regret and the rule that minimizes
the maximum distance from optimality is called the minimax-
regret rule. See Manski (2019) for further discussion of the Wald
theory and minimax regret.

The concept of near optimality is applicable in general set-
tings with multiple treatments, but it is easiest to explain when
there are two treatments, say A and B. In states of nature where A
is better, the nearness to optimality of a specified treatment rule
is the product of the probability (across repeated samples) that
the rule commits a Type I error (choosing B) and the magnitude
of the loss in patient welfare that occurs when choosing B.
Similarly, in states where B is better, nearness to optimality is the
probability of a Type II error (choosing A) times the magnitude
of the loss in welfare when choosing A. In contrast to the use
of hypothesis testing to choose a treatment, evaluation by near
optimality views Type I and II error probabilities symmetrically
and it assesses the magnitudes of the welfare losses that errors
produce.

Manski and Tetenov (2016) investigated trial design that
enables near-optimal treatment. They supposed that the objec-
tive is to maximize average welfare across the relevant patient
population. For example, the objective may be to maximize the
five-year survival rate of a population of cancer patients or the
average number of quality-adjusted life years of patients with a
chronic disease.

They considered trials that draw predetermined numbers
of subjects at random within groups stratified by treatments
and observed patient risk factors. They showed that, given any
specified positive value of a constant & measuring nearness to
optimality, e-optimal rules exist when trials have large enough
sample size. A g-optimal rule is one whose mean value of
average patient welfare, across repeated samples, is within ¢ of
the optimum in every state of nature.

They reported exact numerical results for the case of two
treatments with binary outcomes such as survival versus death.
They gave simple sufficient conditions on sample sizes that
ensure existence of e-optimal treatment rules when there are
multiple treatments and outcomes are bounded.

2.3. Choosing the MSLT-Il Sample Size to Enable
Near-Optimal Treatment

The sample-size calculations in Manski and Tetenov (2016)
concerned settings where treatments do not have side effects.
Hence, they should not be applied to MSLT-II or other trials
comparing surveillance and aggressive treatment. The present
article develops a refined version of the earlier analysis that
recognizes the possibility of side effects.

We assume a simple patient welfare function that transpar-
ently expresses patient concern with both survival, the primary
outcome of treatment, and lymphedema, a possible secondary
outcome. Patients may perhaps have more complex welfare



308 C. F. MANSKI AND A. TETENOV

functions than the one posed here. Our methodology for setting
sample size may be applied with any welfare function. The
specific findings depend on the welfare function.

Let welfare with nodal observation equal 1 if a patient
survives for three years and equal 0 otherwise. Welfare
with dissection depends on whether a patient experiences
lymphedema. When a patient does not experience lymphedema,
welfare with dissection equals 1 if the patient survives for
three years and equals 0 otherwise. When a patient experiences
lymphedema, welfare is lowered by a specified fraction A, whose
value expresses the harm associated with lymphedema. Thus,
a patient who experiences lymphedema has welfare 1 — h if he
survives and —#h if he does not survive.

When making the treatment decision, a clinician does not
know whether a given patient will survive and/or experience
lymphedema. To cope with uncertainty about patient-specific
treatment response, medical economists have recommended
that clinicians maximize average welfare in a relevant patient
population. Implementation of this recommendation does
not require that a clinician knows patient-specific treatment
response. It does, however, require that the clinician know
average treatment response in the patient population (see, e.g.,
Phelps and Mushlin 1988; Meltzer 2001).

A few symbols help to explain in the setting of choice between
nodal observation and dissection. Let nodal observation be
treatment A. Let y(A) denote the primary outcome with treat-
ment A. Thus, y(A) = 1 if a patient survives with observation
and let y(A) = 0 if the patient does not survive. Let p denote
the probability of a specified event. Then average patient welfare
with observation is the survival probability p[y(A) = 1].

Let lymph node dissection be treatment B. Let y(B) = 1
if a patient survives with dissection and y(B) = 0 otherwise.
Let s(B) denote the secondary outcome with treatment B. Thus,
s(B) = 1 if a patient experiences lymphedema and s(B) =
0 otherwise. Then average patient welfare with dissection is
the difference between the survival probability and & times the
probability of lymphedema; that is, p[y(B) = 1]—h-p[s(B) = 1].
The optimal treatment is the one yielding the higher average
patient welfare. Thus, observation is optimal if p[y(4) = 1]
exceeds p[y(B) = 1] — h - p[s(B) = 1]. Dissection is optimal
if otherwise.

In this setting, a state of nature is a set of values for the four
probabilities p[y(A) = 1],ply(B) = 1],pls(B) = 1ly(B) = 0],
and p[s(B) = 1|y(B) = 1]. Determination of the optimal
choice is feasible with knowledge of these probabilities. A trial
such as MSLT-II yields information about the probabilities of
survival and lymphedema that clinicians need to know to choose
treatments maximizing average patient welfare. The sample size
determines the extent of the information. For any positive con-
stant ¢, a sample of size N per treatment arm enables £-optimal
treatment if N is sufficiently large.

The Appendix explains the computation of sample sizes that
enable ¢-optimal treatment for any values of /1 and ¢, assuming
use of the ES rule. We show computational results using two
methods to determine maximum regret, one applying simulated
annealing and the other using a normal approximation to the
finite-sample distribution of ES. Our computations of maxi-
mum regret are conservative in the sense that we impose no a
priori restrictions on the values of the probabilities of survival

and lymphedema. One may believe that some values of these
probabilities are implausible. If so, one may restrict attention to
the values deemed plausible and maximize regret across these
values. Maximum regret across a restricted set of probability
values logically must be less than or equal to maximum regret
across all values. Hence, performing our analysis with restric-
tions imposed on the plausible probabilities cannot weaken our
findings on minimum sample sizes that suffice to enable ¢-
optimal treatment choice. It may yield smaller minimum sample
sizes than those we report in Section 3.

3. Findings

We report the minimal sample size enabling near-optimal treat-
ment when h = 0.2 and ¢ = 0.0085. Recall that we use a
scale for patient welfare in which, absent lymphedema, a patient
has welfare 1 if he survives three years and welfare 0 if he dies
within three years. Setting h = 0.2 supposes that suffering from
lymphedema reduces a patient’s welfare by one-fifth relative to
lymphedema-free survival. This quantification of the welfare
loss produced by lymphedema is suggested by Cheville et al.
(2010), who elicited from a group of patients their perspectives
on the matter. See Basu and Meltzer (2007) for discussion of
elicitation of patient treatment and health preferences more
generally.

Setting ¢ = 0.085 follows naturally from how the MSLT-II
investigators performed their power calculation. They judged a
difference of 5 percentage points in melanoma-specific survival
to be a clinically meaningful loss in patient welfare and they
judged 0.17 to be an acceptable probability of Type II error. As
discussed in Section 2, regret equals the magnitude of welfare
loss times the probability that the loss will occur. Thus, the
MSLT-II investigators judged 0.17 x 0.05 = 0.0085 to be an
acceptable level of regret.

When b = 0.2 and ¢ = 0.0085, we find that near-optimal
treatment is achievable if one assigns 244 patients to observation
and 244 to dissection. This total sample size of 488 is much
smaller than the 1939 subjects enrolled in MSLT-II.

4. Discussion

Our reconsideration of MSLT-II opens many possibilities
that the investigators could have contemplated if they had
approached trial design from the perspective of near-optimal
treatment rather than statistical power. They could have
achieved the declared study objective—comparison of observa-
tion and dissection for patients with a malignant sentinel lymph
node—with a much smaller total sample size. Reducing total
sample size would have lowered the cost of executing the trial,
the time required to recruit subjects, and the need to perform
trials across multiple centers. Or, maintaining enrollment of
1939 subjects, they could have expanded the study objective by
performing a trial with more than two treatment arms, thus
yielding information about more treatment options.

Our suggestion of potential alternatives to the MSLT-II
design should not be interpreted as criticism of its investigators.
They adhered to what has been the standard practice in setting
sample size, proceeding as have thousands of other clinical



trials. The lessons of Manski and Tetenov (2016) and this
article are intended to be forward looking, as trials are designed
henceforth. The ideas developed in these papers have general
potential application.

A coherent alternative to setting trial size to enable near-
optimal treatment is application of Bayesian statistical decision
theory. The Bayesian perspective would be attractive if trial
designers and clinicians were able to place a credible consensus
subjective prior distribution on treatment response. However,
Bayesian statisticians have long struggled to provide guidance
on specification of priors and the matter continues to be contro-
versial. In the context of clinical trials, the authors and discus-
sants of Spiegelhalter, Freedman, and Parmar (1994) express a
spectrum of views. Bayesian decision theorists have occasion-
ally recognized that inability to specify a credible subjective
distribution may yield poor decisions. Berger (1985) cautions
that (p. 121): “A Bayesian analysis may be ‘rational’ in the
weak axiomatic sense, yet be terrible in a practical sense if an
inappropriate prior distribution is used””

Appendix: Computation of Sample Sizes That Enable ¢-
Optimal Treatment

A.1 Setup and Notation

In the setting described in the article, the vector of unknown param-
eters is @ = (a, boo, bo1, b10, b11). The probability that treatment A
yields a positive outcome (survival) is a = Pg(Y(A) = 1) and the
probability of a negative outcome (death) is 1 — a. Treatment B has four
possible outcomes, with two values for the main outcome Y (B) € {0, 1}
and two for the side effect S(B) € {0,1}. The probability of each
outcome is bys = Py(Y(B) = »,S(B) = s),y € {0,1},s € {0,1}.
The parameter space for 6 is ® = [0, 1]5 , with the restriction that
boo + bo1 + bio + b11 = 1. This specification of the parameter space
imposes no assumptions on the joint distribution of primary outcomes
and side effects.

The patient’s expected gain/loss from treatment B compared to
treatment A in state of nature 6 equals

79 = Eg(Y(B) — hS(B)) — Eg (Y (A)).

With N subjects per treatment arm, a sample analog of this quantity
computed from the trial data is

1 N 1 2N
t= 3 2 (B —hSiB) — & 3 Yi(A),
i=1 i=N+1

where observations of individuals randomly assigned to treatment B
have indices i = 1,...,N and those assigned to treatment A have
indicesi=N +1,...,2N.

We assume that the patient will choose between the treatment
options using the empirical success (ES) rule, choosing treatment B if
T > 0, choosing treatment A if T < 0, and choosing either treatment
with probability 1/2 if T = 0.

The regret of the ES rule in state 6 is the product of the magnitude of
error |tg| from choosing the suboptimal treatment and the probability
of making that error:

—1g[Pg(f > 0) + 1/2Pg(f = 0)], 79 <0,

Rn(9) = { 79[Po (T < 0) + 1/2Py(f = 0)], 79 > O,

To determine whether a particular sample size N is sufficient to
enable ¢-optimal treatment choice when using the ES treatment rule,
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we need to compute the maximum regret of the ES rule maxgc@ Ry (6)
and compare it to . Exact computation of maxgc@ Ry (6) is challeng-
ing because the function Ry () is not convex in 6. It generally has
multiple local maxima, both over {6 : typ < 0} and over {6 : 7p > 0}.

We consider two approximations for maxgec@ Ry (6). The first
method maximizes regret with an asymptotic normal approximation
to Pg(f < 0). The derivations in the following section of the Appendix
show that maximizing regret with this normal approximation over
0 reduces to a very simple one-dimensional numerical optimization
problem. The second method computes exact values of Ry(6) for
given values of 6 and searches for the maximum using the simulated
annealing algorithm, described in detail in Press et al. (2007). This
method is often used to search numerically for the global maximum of
a function that may have multiple local maxima. It is computationally
intensive and is not guaranteed to find the exact maximum, but
its precision can be improved by increasing the computation time.
With sufficient computation time this method is more accurate, since
the normal approximation clearly underestimates maximum regret,
especially in small samples.

The maximum regret of the ES rule approximated using both meth-
ods is reported in Table A1 for sample sizes ranging from N = 10 to
N = 250 and for values of the side effect disutility ranging from h = 0
toh = 0.5. A table with calculations of maximum regret for other values
of N and h is available from the authors.

Comparison of the results obtained using the two methods shows
that it is important to compute regret exactly in very small sample sizes,
where the normal approximation tends to substantially underestimate
maximum regret. For sample sizes N > 100, both methods produce
similar results. It is then more practical to use the normal approxima-
tion as it is computationally much simpler.

For h = 0.2, the maximum regret of the ES rule is greater than
0.0085 for all sample sizes N < 243 and is smaller than 0.0085 for all
sample sizes N > 244. Hence, assigning 244 subjects to each treatment
is sufficient for near-optimal treatment choice with & = 0.0085.

A.2. Details for the Normal Approximation

A simple analytical approximation to maximum regret can be obtained
with a normal approximation to the finite-sample distribution of 7. In
a trial with N randomly drawn subjects per treatment arm,

T ~% N(z9, Vg/N),
Vi = varg (Y(B) — hS(B)) + varg (Y (A)).

The regret of the ES rule in state 6 equals

—19Py(T > 0),79 <0,

Rn(0) = { 9Py (T < 0),79 > 0,

which is approximated by

g ® (g /N V), 19 <0,
T9P(—19/N/ V), 19 > 0.

Note that for a given value of 79 < 0, ®(19/N/Vy) is increasing
in Vy, hence R};(0) is increasing in V. For a given value of 7y >
0, ®(—19+/N/Vp) and R{(8) are also increasing in V. To find the
maximum of RY (8) we will focus on a simple subset of parameter
values that maximize Vy for any 7g.

For any parameter vector & = (a, boo, bo1, b10,b11), there exists
an alternative parameter vector 0* with the same expected gain/loss
Ty, but with higher variance of the estimate Vi > Vjp.
We construct 8* by spreading the probability mass bgg (on outcome
Y(B) — hS(B) = 0) between bg1 (outcome Y(B) — hS(B) = —h) and

bio(outcome Y (B) — hS(B) = 1). Moving ﬁbgo to bg; and ﬁboo

R, (60) = { (A1)

*
Ty =
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Table A1. Near-optimality (maximum regret) of ES rules (N is the number of subjects per treatment arm).

h=0 h=0.1 h=0.2 h=103 h=04 h=05

Simulated Normal Simulated Normal Simulated Normal Simulated Normal Simulated Normal Simulated Normal
N annealing approx. annealing approx. annealing approx. annealing approx. annealing approx. annealing approx.
10 0.038209  0.037490  0.044905  0.039672  0.045017  0.041857  0.045794  0.044046  0.046704  0.046237  0.049236  0.048431
20 0.026947  0.026689  0.030401 0.028180  0.030479  0.029672  0.031212  0.031166  0.032803  0.032661 0.034487  0.034157
30 0.021983  0.021841 0.024046  0.023039  0.024516  0.024237  0.025874  0.025435  0.026805  0.026634  0.028039  0.027834
40 0.019029  0.018937  0.020710  0.019963  0.021105  0.020989  0.021930  0.022016  0.023172  0.023044  0.024218  0.024071
50 0.017016  0.016949  0.018217  0.017860  0.018829  0.018772  0.019865  0.019683  0.020688  0.020595  0.021621 0.021507
60 0.015530  0.015480  0.016640  0.016307  0.017170  0.017134  0.018019  0.017962  0.018859  0.018789  0.019709  0.019617
70 0.014376 ~ 0.014336  0.015231 0.015099  0.015890  0.015861 0.016708  0.016624  0.017444  0.017387  0.018227  0.018150
80 0.013447  0.013414  0.014291 0.014124  0.014861 0.014835  0.015612  0.015546  0.016306  0.016257  0.017034  0.016968
90 0.012677  0.012649  0.013371 0.013317  0.014009  0.013985  0.014690  0.014653  0.015365  0.015321 0.016048  0.015990
100  0.012025  0.012002  0.012724  0.012634  0.013287  0.013266  0.013952  0.013898  0.014570  0.014530  0.015215  0.015163
150  0.009817  0.009804  0.010330  0.010316  0.010841 0.010827  0.011359  0.011339  0.011876  0.011850  0.012395  0.012362
200  0.008501 0.008493  0.008941 0.008933  0.009384  0.009374  0.009826  0.009814  0.010274  0.010255  0.010720  0.010696
250  0.007603  0.007597  0.007995  0.007990  0.008390  0.008382  0.008786  0.008775  0.009183  0.009168  0.009580  0.009560

to byp preserves the mean of Y(B) — hS(B), and hence 7g. Similarly,
spreading the probability mass by1 (on outcome Y (B) —hS(B) = 1—h)
by moving H—th“ from b11 to bp1 and by moving H%hbu from by
to byg also preserves the mean of Y(B) — hS(B). In summary, 0* =
(a,0, b, by, 0) where

b =bo1 + —— b + — b ,
01 T+ h 00 T+ h 11
h 1
by =b b b1
10 10+1+h 00+1+h

Since Eg*(Y(B) — hS(B)) = Eg(Y(B) — hS(B)), to show that
varg+(Y(B) — hS(B)) > varg(Y(B) — hS(B)) it is sufficient to show

that Eg= ((Y(B) — hS(B))*) = Eg((Y(B) — hS(B))?).
Eg((Y(B) — hS(B)?) = h*bo1 + bro + (1 — h)*b11,
Eg-((Y(B) — hS(B))?) = I? (bm - ihboo - jl_hb11>
(hw + H_thoo + o hbu)
= hbo1 + b1o + hf:hh boo + hf_;_'—hl b

Since hl:_hl =1-h+h >1-2h+h2=QaQ-h?forh > 0, it
follows that 2L by > (1 — h)2by1. Hence, Eg+ ((Y(B) — hS(B))?) =
Eg((Y(B) — hS(B))?).

Under 6*, the outcome values Y(B) — hS(B) of treatment B have a

binary distribution on {—Ah, 1}, with probabilities b31 =1- b’fo and
TO' Hence,
varg+(Y(B) — hS(B)) = (1 + h)?b¥,(1 — by).
and
Vor = (1 + h)2bl(1 — b%y) + a(l — a), (A2)
75 = bjy — h(1 — bjy) —a. (A.3)
Thus,
glea())(RN(Q) = max RN(Q)
where ©* = {6 € Os.t.6 = (a,0,1 — b}, b](,0),a € [0,1],b], €
[0,1]}.

We can further constrain the set of values of (a, bTO) on which Vs
may attain its maximum. The value of the treatment effect 7 (a, b},)

. a
as a function of |: %

:| remains constant along the vector u =
10

1+h
1
equals

i|. The directional derivative of Vi« (a, b’fo) in direction u

VaVgs = VVgs -u=[(1-2a) (1+h)*(1—2b5)]- [1+h]

= (14 h) (1 —2a) + (1 + h)(1 — 2b%))).

Hence, over the set of (a, b’fo) values on which ré" is constant, Vg« is
increasing in direction u when

(1—2a)+ (14 h)(1 —2b5) >0

(for low values of a and b};) and reaches its maximum at the point
where
(1 —2a) + (1 + k)1 —2b%y) =0,
that is,
w14 h/2—a
10 1+h

>

if this point is feasible or at the closest feasible point. It follows that
the set of parameter values (a, b},) which maximize variance Vg« for
different values of 7 consists of three line segments:

1+ h/2
a=0, b’{oe[iurh ,1], (A4)
_1+h/2—a
h/2
a=1, bTO (S |:0, m:| . (A.6)
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