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ABSTRACT
As statisticians and scientists consider a world beyond p < 0.05, it is important to not lose sight of
how we got to this point. Although significance testing and p-values are often presented as prescriptive
procedures, they came about through a process of refinement and extension to other disciplines. Ronald A.
Fisher and his contemporaries formalized these methods in the early twentieth century and Fisher’s 1925
Statistical Methods for Research Workers brought the techniques to experimentalists in a variety of disciplines.
Understanding how these methods arose, spread, and were argued over since then illuminates how p <
0.05 came to be a standard for scientific inference, the advantage it offered at the time, and how it was
interpreted. This historical perspective can inform the work of statisticians today by encouraging thoughtful
consideration of how their work, including proposed alternatives to the p-value, will be perceived and
used by scientists. And it can engage students more fully and encourage critical thinking rather than rote
applications of formulae. Incorporating history enables students, practitioners, and statisticians to treat the
discipline as an ongoing endeavor, crafted by fallible humans, and provides a deeper understanding of the
subject and its consequences for science and society.
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1. Introduction

With new journal policies, conferences, and special issues, it is
easy to view the debate around p-values and hypothesis testing
as a modern invention. For many scientists whose primary con-
nection to statistics is through these methods, the debate may
seem like a challenge to the received wisdom of their profession,
a rebuke to the way they have been using statistics for decades.
For students learning the field, it can seem bewildering, and they
might be tempted to replace one decontextualized methodology
with another. Indeed, as Gerd Gigerenzer (2004, p. 589) writes,
the anonymizing of the roots of the p-value and hypothesis
testing has contributed to the idea that “they were given truths”
and encouraged the “mindless” use of these procedures, to the
point of misuse and abuse. But for those who have studied
statistics, and, in particular, studied the progression of statistical
theory, the debates are not a sudden attack on a completely
accepted paradigm, and the statistics themselves did not arise
wholly formed to be prescriptively applied. Rather, the statistics
arose through the ongoing process of scientific discovery, with
contributions by many along the way.

In order to properly understand the challenges that face
statistics and its applications in science, medicine, and policy
today, and to meet those challenges in the future, we must
consider the history of the discipline and its most prominent
methods. It is a history that is too poorly known, even among
statisticians, but it is rich in characters, personal grudges, and
academic debates. Gigerenzer (2004, pp. 587–588) laments this
lack of focus on the history and controversy when he relates the
story of a psychological statistics textbook author who removed
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all mention of Thomas Bayes, Ronald A. Fisher, Jerzy Neyman,
and Egon Pearson. In a similar vein, Stephen Ziliak and Deirdre
McCloskey (2008, p. 232) argue that the conscious erasure of
William S. Gosset from the history contributed to the dom-
inance of Fisher’s paradigm and reduced the prominence of
competing ideas.

In Section 2, I trace the use of statistical reasoning sim-
ilar to the modern p-value before 1900, demonstrating that
the statistic and the use of thresholds did not arise from Karl
Pearson and Fisher alone. In Section 3, I briefly describe the
contributions of Pearson, Gosset, and Fisher, both covering the
similarities among them and highlighting some of the debates
that occurred as early as the 1920s when Fisher’s Statistical
Methods for Research Workers began to put the p-value in the
hands of experimenters. In Section 4, I point out some of the
challenges that emerged in response to Fisher’s paradigm, focus-
ing especially on those arising from Gosset, Neyman, and Egon
Pearson, and from the Bayesian paradigm. These sections are far
from comprehensive; rather, they seek to provide an overview
of the history that can spur thought and encourage further
research. In Section 5, I present resources that can be used
for that research and as teaching tools. I also discuss how the
historical debates relate to modern arguments surrounding the
p-value and how that can encourage statisticians to craft a
more useful and durable response to this controversy. I further
describe the role this history can play in education in formal
classroom settings and in research and collaboration settings.

Understanding how p-values and 0.05 came to occupy their
prominent role in twentieth century statistics reminds us that
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these “arbitrary” thresholds came about through work to make
mathematical statistics more practical and useful for experi-
mentalists. But these efforts were never without controversy.
Learning this history will help statisticians better appreciate
the translational challenges of their own work by improving
understanding of the fact that, since its inception, the modern
field of statistics has grappled with the balance between mathe-
matical rigor and practical use to scientists. Those pushing the
boundaries of knowledge in the discipline will surely face this
balance in their own work. They will have to consider, like the
statisticians of the early twentieth century did, how others will
use their theories.

Learning this history will help practitioners understand that
no method is sacred and that all methods are products of the era
in which they were born and the functions to which they have
been applied. As technology, mathematics, and science develop,
new methods or adjustments to old methods will be needed as
the underlying assumptions no longer apply, whether in a world
of early electronic computing devices or a world of big data.

Learning this history will help students access the discipline
by learning of the faults, personal and professional, of those who
came up with today’s commonly used statistics and help them
understand statistics as a living discipline rich with ongoing
debate and new understandings. Indeed, one can find many
parallels between today’s debate and the controversies that arose
with the development of p-values and significance testing, fram-
ing the ASA statement and subsequent discussion as another
step in the ongoing evolution of the discipline of statistics.

2. A World Before Fisher

The p-value is generally credited to Karl Pearson’s (1900) article
in his journal Biometrika; Ronald A. Fisher’s (1925) Statistical
Methods for Research Workers then formalized the concept and
expanded its reach to experimenters (Hubbard 2016, p. 14).
But statistics similar to p-values and probabilistic reasoning
akin to hypothesis tests existed well before then. Both Stigler
(1986) and David and Edwards (2001) point to John Arbuth-
nott’s (1710) “An Argument for Divine Providence” as perhaps
the earliest use of probabilistic reasoning that matches that of
a modern null hypothesis test. Using birth data from London,
Arbuthnott (1710) notes that births of males exceeded births
of females for 82 years in a row. Supposing that the probability
of males exceeding females in a year is 50%, and implicitly
assuming independence across the years, Arbuthnott calculates
the miniscule probability of this 82-year pattern. “From whence
it follows,” Arbuthnott (1710, p. 189) confidently concludes,
“that it is Art, not Chance, that governs.” Any modern student
who has run a test of proportions would notice the reasoning,
see Arbuthnott’s calculation of a p-value of 2.07 × 10−25, and
confirm his rejection of the null hypothesis that each year has an
independent probability of 50%. The mathematically-inclined
physician’s goal in this endeavor was to demonstrate the work of
“Divine Providence” in the sex distribution (Arbuthnott 1710,
p. 186). Many statisticians would recognize the flaw in this
reasoning: the lack of a clearly stated alternative hypothesis that
would be logically implied by a rejection of the null hypothesis.
Gigerenzer (2004, p. 588) decries this “null ritual” used by

experimentalists who often fail to properly specify “alternative
substantive hypotheses.”

In the nineteenth century, French mathematicians used sim-
ilar methods to analyze a wide variety of data. In celestial
mechanics, Pierre-Simon Laplace (1827, p. S.30) found a small
value for a statistic closely related to the modern p-value and
concluded that it indicated with a high likelihood that the dis-
crepancy in the measurements was thus “not due solely to the
anomalies of chance.” Stigler (1986, p. 151) notes that Laplace
himself appealed to a 0.01 significance level in his work. Stigler
(1986, pp. 151–153) further highlights several errors implicit in
Laplace’s analysis, errors that would be familiar to students and
critics of modern hypothesis testing: improper assumptions of
independence and improper estimation of variance.

Not long after, Siméon-Denis Poisson used a quantity equal
to one minus a modern p-value in describing patterns in the
outcomes of French jury trials. Two comparisons he makes are
particularly instructive. In one, he finds a p-value of 0.0897, a
value not large enough for him to conclude that there has been
a change in causes (Poisson 1837, p. 373). Shortly thereafter, a p-
value of 0.00468 leads Poisson to believe that in that case there
is a “real anomaly in the votes of juries” (Poisson 1837, pp. 376–
77). Poisson’s conclusions in these two cases, nearly a century
before Fisher’s work, would comport with a 0.05 (or 0.01) signif-
icance threshold, but do not specify a threshold he used. Poisson
(1837, p. 375) also refused to make a causal statement from his
identified associations, noting that “the calculation cannot teach
us” this answer.

Antoine Augustin Cournot formulated the p-value in fairly
explicit terms, noting that as a measure of the importance of
some discrepancy it combines the size of the effect and the
sample size (Cournot 1843, p. 196). Cournot (1843, pp. 196–
197) also issues a warning about the narrow-minded use of
probabilistic statements, noting that this p-value does not fully
capture the importance of the effect size and “does not at all
measure the chance of truth or of error pertaining to a given
judgment.” With a little modernization of language, Cournot
could have written principles 2, 5, and 6 of the ASA Statement
(Wasserstein and Lazar 2016).

In 1885, Francis Ysidro Edgeworth provided a more formal
mathematical underpinning for the significance test and gave a
simple example of how to use the standard deviation (he used
the “modulus,” equal to the standard deviation multiplied by
the square root of two) to perform a significance test on a given
parameter (Edgeworth 1885, pp. 184–185). Using a threshold of
twice the “modulus,” Edgeworth (1885) constructed a test that
would be equivalent to a modern two-sided α = 0.005. Stigler
(1986, p. 311) notes that this “was a rather exacting test” and
that Edgeworth also considered smaller differences as “worthy
of notice, although he admitted the evidence was then weaker.”

The existence of these tests of significance and p-value-like
quantities long before the twentieth century demonstrate that
this method of inference had an alluring rationale for practi-
tioners in a variety of fields. Their errors in interpretations and
words of caution, however, presage the controversies that would
follow. Throughout the twentieth century, many of the technical
probability results needed for modern significance testing arose
through the theory of errors, by which astronomers and other
physical scientists combined measurements and discarded out-
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liers (Gigerenzer, Swijtink, and Daston 1989, pp. 80–84). These
developments allowed Pearson, Gosset, and Fisher to make
key contributions that formalized, shaped, and popularized the
modern form of significance tests.

3. R.A. Fisher: the Experimentalist Statistician

In the early twentieth century, the forerunners of modern statis-
tics began to determine the properties of various useful distri-
butions. Karl Pearson (1900) described the χ2 distribution and
uses of the χ2 statistic, including its use in tests of independence
for proportions. Pearson (1900, pp. 157–158) here denoted by
P the “chances of a system of errors with as great or greater
frequency than that denoted by χ .” In an example involving dice
throws, Pearson (1900, pp. 167–168) finds P = 0.000016 on
a null distribution of equal probability of each face appearing
and claims that “it would be reasonable to conclude that dice
exhibit bias towards the higher points.” The combination of this
type of probabilistic reasoning and a distribution with many
practical uses made the p-value more approachable and brought
it more or less to its modern formulation. W. Palin Elderton
built on Pearson’s work and produced tables of values for this
distribution that would enable investigators to test the goodness
of fit. His article, published in Biometrika in 1902, devoted
roughly half of its space to these tables (Elderton 1902). Ziliak
and McCloskey (2008, pp. 199–202) note that Pearson was soon
teaching his students, and enforcing as a rule for authors seeking
publication in Biometrika, that three probable errors, or two
standard errors, represented “certain significance.”

William Sealy Gosset, the head experimental brewer at Guin-
ness publishing under the pseudonym “Student” (1908, p. 25),
found a curve “representing the frequency distribution of values
of the means of such samples,” that is, samples from a normal
or “not strictly normal” distribution, “when these values are
measured from the mean of the population in terms of the
standard deviation of the sample.” This so-called Student’s t
distribution is now taught in introductory and applied statis-
tics courses, as it forms the basis for a substantial number of
inferential procedures. Gosset’s initial paper focused as much
on illustrating examples of the utility of this curve as on the
mathematical justification for its use, and he produced numer-
ous tables to enable others to use it. He calculated statistics
akin to the p-value and drew conclusions from extreme values
of these. For one drug trial, he regarded a statistic equivalent
to p = 0.0015 as “such a high probability,” it would be in
practical matters “considered as a certainty” (Student 1908, p.
21). For Gosset, however, whether an effect existed or not was
less important than its impact, and he saw the use of the tests
more in determining the “pecuniary advantage” of one decision
versus another (Ziliak and McCloskey 2008, pp. 18–19). That is,
any conclusion must rest on effect size and the relative loss and
gain of any potential decision; this will be a recurring theme in
the debate between competing frameworks for testing discussed
below.

Ronald A. Fisher, who had corresponded with Pearson and
Gosset at various points, was well aware of these advances and
thus of the use of significance tests. His work, especially a series
of three monographs published in the 1920s and 1930s, would

expand the reach of significance tests, promote their use (and
the use of statistically rigorous experimental design and analysis
more broadly) to researchers, and provide tables that enabled
investigators to conduct such tests.

Fisher, employed at the time at Rothamsted Experimental
Station, an agricultural research institution, “extended the range
of tests of significance” using the theory of maximum likelihood
commonly used today and conceived of tests for small sample
problems (Box 1978, p. 254). In 1922, he published three key
manuscripts which covered the theoretical foundations of max-
imum likelihood estimation and the concept of the likelihood
(Fisher 1922c), the use of Pearson’s χ2 distribution to calcu-
late p-values from contingency tables (Fisher 1922b), and the
use of Student’s t distribution to conduct significance tests on
regression coefficients (Fisher 1922a). In 1925, he published the
first edition of Statistical Methods for Research Workers, which
sought, in his words, “to put into the hands of research workers,
and especially of biologists, the means of applying statistical tests
accurately to numerical data” (Fisher 1925, p. 16). The book
discusses in detail the meaning and practical implications of “P”,
the statistic now known as the p-value, and suggests 0.05 as a
useful cutoff:

The value for which P = .05, or 1 in 20, is 1.96 or nearly 2; it is
convenient to take this point as a limit in judging whether a
deviation is to be considered significant or not. Deviations
exceeding twice the standard deviation are thus formally
regarded as significant. Using this criterion we should be led
to follow up a negative result only once in 22 trials, even if
the statistics are the only guide available. Small effects would
still escape notice if the data were insufficiently numerous to
bring them out, but no lowering of the standard of signifi-
cance would meet this difficulty (Fisher. 1925, p. 47)

This simple paragraph demonstrates the probability-based
definition of the p-value that is commonly misunderstood: that
it is the probability of a result as or more extreme than the
observed result given that the null hypothesis is true (Greenland
et al. 2016). Additionally, it makes immediately apparent why
0.05 is convenient: it is roughly equivalent to the probability of
being more than two standard deviations away from the mean
of a normally distributed random variable. In this way, 0.05 can
be seen not as a number Fisher plucked from the sky, but as
a value that resulted from the need for ease of calculation at
a time before computers rendered tables and approximations
largely obsolete. This particular value had the added bonus of
corresponding to three “probable errors,” a measure of spread
of the normal distribution used commonly in early statistics
but now largely forgotten (Stigler 1986, p. 230). So a useful rule
of thumb could be given to researchers on either of two scales
of measuring the spread of the distribution. Later, in applying
the statistic to the χ2 distribution, Fisher (1925, p. 79) remarks
that “[w]e shall not often be astray if we draw a conventional
line at .05, and consider that higher values of χ2 indicate a real
discrepancy.”

Statistical Methods was most valuable in the hands of experi-
mentalists due to its explanations of tests and estimation proce-
dures, illustrative examples, and a wealth of user-friendly tables.
The tables further entrenched the use of Fisher’s preferred p-
value cutoffs by displaying the calculated figures so that an
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investigator looked up a desired probability level for the distri-
bution and found the quantile of the statistic that corresponded
to it. Among the levels presented one almost always found 0.05
and 0.01 (Fisher 1925). As Fisher’s biographer and daughter, Box
(1978, p. 246), states, “[b]y this means he produced concise and
convenient tabulations of the desired quantities” and presented
values “that were of immediate interest to the experimenter.” It
is this accessibility that made the book popular among prac-
ticing experimentalists who “had not a hive of staff humming
at their desk calculators,” but it did not endear him to more
rigorous mathematicians (Box 1978, pp. 242–246). And through
these presentations, which Fisher (1935; Fisher and Yates 1938)
continued and expanded in The Design of Experiments and the
1938 compilation of tables with Francis Yates entitled Statistical
Tables for Biological, Agricultural, and Medical Research, he set
the standard for the use of p-values and statistical inference
in a variety of forms of research. One may note, however, that
Fisher’s tables show that he did not think 0.05 was one size fits
all; if 0.05 worked in every setting, there would have been only
one column in each table.

The history of the tables presented in Statistical Methods is
interesting in itself and further demonstrates how these values
came to be presented; it also foreshadows forthcoming schisms
regarding these tests. Hubbard (2004, p. 311) notes that Pearson’s
Biometrika denied Fisher permission to use Elderton’s table of
χ2 probabilities in his monograph. When he created his own
version, according to Pearson et al. (1990, p. 52), Fisher “gave
the values of χ2 for selected values of P . . . and thus introduced
the concept of nominal levels of significance.” Because of this
change from Elderton’s table to Fisher’s, for users of the table
in Statistical Methods and its successors in Statistical Tables,
it would be easier to compare a calculated χ2 value to a set
threshold of significance rather than find the precise p-value.
For tables of the t statistic, as Ziliak and McCloskey (2008, p.
229) note, “Fisher himself copyrighted again Gosset’s tables in
his own name” in Statistical Methods (emphasis in original).
Through this action, which left Gosset’s name out of the book
except in the phrase “Student’s t”, Fisher removed Gosset from
the history of his own statistic, hid his contributions, and, more
importantly, hid his competing philosophy on how the statistic
should be used (Ziliak and McCloskey 2008, pp. 230–232).
Reprinters of the table and those who used it in applied research
would encounter only Fisher’s versions and his interpretations.

Following Fisher, the use of p-values grew among experimen-
talists. In the United States, they were particularly encouraged
by Harold Hotelling of Stanford University, who called some of
the tables in Statistical Methods “indispensable for the worker
with moderate-sized samples” (quoted in Ziliak and McCloskey
2008, p. 234). George Snedecor of Iowa State University played
a crucial role as well, continuing to develop the methods and
promoting their use in scientific fields (Hubbard 2016, p. 21).
Psychologists, sociologists, political scientists, and economists
all found the innovations useful (Hubbard 2016, pp. 22–27).
Thus, the p-value spread not only across oceans but beyond the
natural sciences to the social sciences, echoing its use by Poisson
a century earlier.

The use of 0.05 as a cutoff became customary, though not
all-encompassing. Fisher’s student L. H. C. Tippett (1931, p.
48), wrote in The Method of Statistics that the 0.05 threshold

was “quite arbitrary” but “in common use.” Lancelot Hogben
(1957, p. 495), two decades later, wrote that Fisher’s claim that
the cutoff was in usual practice was “true only of those who rely
on the many rule of thumb manuals expounding Fisher’s own
test prescriptions.” For scientists and students today, perhaps
the prominence of this admittedly arbitrary cutoff is difficult to
comprehend. However, they need only consider a time before
computers and compare the calculation of a p-value by hand
from one of Fisher’s or Gosset’s or Pearson’s formulae to the
ease by which one can determine whether a statistic meets a
threshold by reference to one of Fisher’s tables. It will imme-
diately become clear how Fisher’s standard became the gold
standard. Fisher led other tables to adopt his format through
his role as secretary of the Tables Committee of the British
Association (Box 1978, p. 247), ensuring that future statisticians
who sought to reach experimentalists would need to reconcile
their methods to this framework. Thus, “p < 0.05” could grow
to the prominence it holds today.

4. Challenges to Fisher’s View

The other piece of history often lost in the presentation of p-
values is that statisticians brought many challenges to Fisher’s
framework as soon as it was presented. As Fisher was writing
his manuscripts, Jerzy Neyman and Egon Pearson (1933) were
preparing their own framework for hypothesis testing. Rather
than focusing on falsifying a null hypothesis, Neyman and Pear-
son presented two competing hypotheses, a null hypothesis
and an alternative hypothesis, and framed testing as a means
of choosing between them. The decision then must balance
two types of error, one made by incorrectly rejecting the null
hypothesis when it is true (Type I Error) and one made by
incorrectly accepting the null hypothesis when it is false (Type II
Error). More generally, one can consider the class of “admissible
alternative hypotheses” of which the null hypothesis is a member
(Neyman and Pearson 1933, p. 294); the goal is then to compare
the null hypothesis to the alternative that imparts the highest
likelihood on the observed data. They propose a class of tests
that, for a given limit of Type I Error, minimize the risk of Type
II Error, the so-called most powerful tests. The Type I Error risk,
often called the significance level and denoted α, is commonly
set at 0.05 (or 0.01), as the pair noted in their paper. The Type II
Error risk, often denoted β , is equal to one minus what we now
call the power of the test.

This procedure has many similarities to Fisher’s framework
that uses the p-value as a continuous measure of evidence
against the null hypothesis; indeed, in many cases, Fisher’s
choice of test statistic corresponds to a reasonable choice of
alternative hypothesis in a Neyman–Pearson most powerful
test (Lehmann 1993, pp. 1243, 1246). In those cases, p < α

if and only if the most powerful α-level test would reject the
null hypothesis. Nonetheless, the two factions debated fiercely
the merits of each version. In one sense, the controversy can
be regarded as a debate over the role of the statistician and of
the test itself: should the test be considered as a step along the
way to deeper understanding, a piece of evidence among many
to be considered in crafting and supporting a scientific theory?
Or should it be considered as a guide to decision-making, a
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way to choose the next behavior, whether in a practical or
experimental setting? Fisher’s writings generally support the
former view, taking the test and the p-value as a piece of
evidence in the scientific process, one that he wrote “is based
on a fact communicable to, and verifiable by, other rational
minds” (Fisher 1956, p. 43). For Neyman and Pearson, on the
other hand, to accept a hypothesis means “to act as if it were
true” and thus the hypotheses and error probabilities should be
chosen in light of the consequences of making either decision
(Gigerenzer, Swijtink, and Daston 1989, p. 101).

In a practical way, the Neyman–Pearson view also meant
considering the reasonability of alternative hypotheses. Berkson
(1938, p. 531) provided an application of this question,
discussing how someone familiar with the data would only
truly reject the null hypothesis “on the willingness to embrace
an alternative one.” The debate took on a variety of aspects,
however, including being somewhat representative of a larger
controversy over the role of mathematical rigor in statistics,
with Fisher assailing Neyman and Pearson as mathematicians
whose work failed to reflect the nuances of scientific inference
(Gigerenzer, Swijtink, and Daston 1989, p. 98). It also covered
differences in the role assigned to a statistical model of data
and decision-making, which in turn relate to fundamental
probability questions about defining populations and samples
(Lenhard 2006). All of these differences were heightened and
perhaps even exaggerated by “the ferocity of the rhetoric”
(Lehmann 1993, p. 1242).

While this debate raged in the halls of academic statisticians
for decades (and, even today, attempts are made to clearly define
the differences or reconcile the two theories), experimentalists
began to follow a third way, an “anonymous hybrid consisting
of the union of the ideas developed by” Fisher and Neyman–
Pearson (Hubbard 2004, p. 296, emphasis in original). Often,
reporting of results will include a comparison of the p-value to a
threshold level (e.g., 0.05) to claim existence of an effect, report-
ing of the p-value itself, and relative measure of evidence terms
such as “highly significant,” “marginally significant,” and “nearly
significant.” This leads to what Hubbard (2004, p. 297) calls a
“confusion between p’s and α’s” among applied researchers, as
seen in textbooks, journal articles, and even publication manu-
als. This confusion undermines the rigorous Neyman-Pearson
interpretation of limiting error to a prespecified level α. And
the role of the value of p as a quantitative piece of ongoing
scientific investigation (including using null hypotheses that are
not a hypothesis of zero effect) favored by Fisher is lost to the
decision-making encouraged by a statement of significance or
lack thereof. Neither Fisher nor Neyman and Pearson would
approve of this hybrid, though it has been institutionalized
by textbooks and curricula, especially in applied settings. Its
popularity owes a great deal to its simplicity and the ability of
applied researchers to perform this “ritual” of testing in a more
mechanized fashion (Gigerenzer 2004).

While this debate was ongoing, a revival of another paradigm
of probability gained steam. Based on a crucial theorem by
Thomas Bayes that was published in 1763, the “inverse prob-
ability” or Bayesian viewpoint embraced the subjectivity of sta-
tistical analysis (Weisberg 2014, sec. 10.2). With regard to test-
ing, the Bayesian approach allows a researcher to calculate the
probability of a specific hypothesis given the observed data,

rather than the converse, which is what the Fisher and Neyman–
Pearson approaches do. These views gained considerable trac-
tion after Leonard J. (Jimmie) Savage’s 1954 publication of The
Foundations of Statistics, which also replied to anticipated objec-
tions to the paradigm. His work builds on that of Bruno de
Finetti (1937) and Harold Jeffreys (1939).

Bayesian ideas were present before then, however, as Fisher
(1922a, pp. 325–330) included in his article on maximum like-
lihood a rejection of Bayesian approaches. Fisher (1922c, p.
326) even notes that the works of Laplace and Poisson, dis-
cussed above, “introduced into their discussions of this sub-
ject ideas of a similar character” to inverse probability. While
this article is far too short to cover the debate between the
various Bayesian approaches and the frequentist approaches of
Fisher, Gosset, and Neyman–Pearson, Savage’s book is a use-
ful starting point, and a higher-level summary can be found
in Weisberg (2014). Sharon McGrayne (2011) provides a very
accessible overview of the Bayesian approach, its history, and
the common use of Bayesian methods in practical research
even while it was philosophically rejected by statisticians. These
debates, too, are ongoing, with Bayesians or frequentists hold-
ing more sway in different scientific fields (Gigerenzer, Swi-
jtink, and Daston 1989, pp. 91, 105), and Bayesian approaches
are often suggested as alternatives to p-values, as discussed
below.

In addition to these broad philosophical challenges, statis-
ticians and scientists objected to Fisher’s p-value on practical
grounds. Gosset wrote to Fisher and to Karl Pearson of the
importance of considering effect sizes and, indeed, arranging
experiments “so that the correlation should be as high as possi-
ble” (quoted in Ziliak and McCloskey 2008, p. 224). Fisher’s own
co-author, Francis Yates, wrote in 1951 (p. 33) of his concern that
experimenters were regarding “the execution of a test of signifi-
cance as the ultimate objective.” Fisher (1956, p. 42) himself later
wrote that “no scientific worker has a fixed level of significance
at which from year to year, and in all circumstances, he rejects
hypotheses.” His book even included a chapter entitled “Some
misapprehensions about tests of significance” (Fisher 1956, p.
75). His writings on the matter, however, are sometimes contra-
dictory and admit several interpretations (Gigerenzer, Swijtink,
and Daston 1989, p. 97). Medical statistician Joseph Berkson
(1942, p. 326) feared a disconnect between significance testing
and “ordinary rational discourse,” especially in applying a rule
to these tests without regard to “the circumstances in which
it is applied” (p. 329). The International Biometric Society’s
British Regional President warned in 1969 that significance tests
might “exercise their own unintentional brand of tyranny over
other ways of thinking” (Skellam 1969, p. 474). Psychologist
William Rozeboom (1960) wrote of the failings of p-values and
significance testing, including the uncritical appeals to 0.05, in
1960. Other psychologists and social scientists soon followed
(Bakan 1966; Meehl 1967; Skipper et al. 1967).

These arguments, which began as soon as the paradigm-
defining works were published, would all be familiar to those
following the modern debates and resonate in the ASA state-
ment (Wasserstein and Lazar 2016). Discussing and teaching
the modern debate without acknowledging its historical roots
does a disservice not only to those thinkers who engaged in the
debate, but to the statistics profession as a whole.
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5. History as Context to Inform the Present Debate

In this article, I have endeavored to recount only a small part
of the history of p-values and significance testing, which itself
forms only a small part of the history of probability and statistics.
Much more can be found on these subjects. David Salsburg’s
(2001) The Lady Tasting Tea provides a highly accessible treat-
ment. Stephen Stigler’s (1986) The History of Statistics: The
Measurement of Uncertainty Before 1900 covers the early his-
tory of the p-value and how it fit into notions of reasoning
about uncertainty; Theodore Porter’s book The Rise of Statistical
Thinking, 1820–1900, also published in 1986, covers the latter
end of this pre-Pearson history. H. A. David and A. W. F.
Edwards’s (2001) Annotated Readings in the History of Statistics
highlights primary source material relevant to this history. In
books published twenty-five years apart, Gigerenzer et al. (1989)
and Weisberg (2014) describe the rise of the dominant modern
mathematical conception of probability and how that influenced
and was influenced by the rise of these statistics and of data-
driven sciences. Stephen Ziliak and Deirdre McCloskey (2008)
describe the rise of these statistics in the early twentieth century
in great detail, focusing on reviving the forgotten role of Gosset
through presentation and interpretation of his archival materi-
als; they also describe the spread of the Fisherian paradigm in
economics, psychology, and law, and the consequences of that
spread. Finally, Donald MacKenzie’s (1981) Statistics in Britain,
1865–1930 discusses Fisher and his immediate predecessors in
detail, focusing especially on the effects of the British social
context on the work of Francis Galton, Karl Pearson, and Fisher
and on how eugenics shaped the statistical work of the three men
and the rise of statistics in Britain.

Articles and books exploring the use of statistical inference,
especially hypothesis testing, in specific fields can be informative
of this history as well: Morrison and Henkel (1970) write of the
controversies in the social sciences; Hubbard (2016) discusses
the use of statistics in the management sciences as well as the
social sciences; Hubbard (2004) and Chambers (2017) describe
the controversies in psychology; Kadane, Fienberg, and DeG-
root (1986) discuss the use of statistics in the field of law with
several case studies; I (Kennedy-Shaffer 2017) cover some of
this history with a focus on significance testing at the United
States Food and Drug Administration. These various detailed
accounts, among others, clarify the lessons that statisticians
and practitioners can take from this history and provide ample
material for statistics educators to incorporate this history into
their formal and informal teaching.

5.1. Lessons for Statisticians and Practitioners

The history of the p-value and significance testing is useful for
statisticians and scientists who use statistical methods today for
a variety of reasons. The history helps clarify today’s debates,
adding a long-term dimension to modern discussions. In this
way, it illuminates the factors that drive the creation of statis-
tical theory and methods and what enables them to catch on
in the broader community. Understanding these factors will
help statisticians respond to today’s debates and consider how
proposed solutions to problems that have arisen will play out in
the scientific community today and in the future.

First of all, the history clarifies the debates that are occurring
today; in particular, many of the objections raised to p-values
by modern scientists (and in Wasserstein and Lazar (2016) and
the accompanying Online Discussion) were raised by contem-
poraries of Fisher. One particular aspect, the importance of con-
sidering effect size rather than simply statistical significance, was
the crux of the difference between Fisher’s framework and Gos-
set’s (Ziliak and McCloskey 2008). Ziliak (2016) reiterates this
connection in an article in the Online Discussion, demonstrating
the relevance of historical debates to today’s discussion. A thread
of argument from Fisher’s earliest critics (and indeed Cournot
and Edgeworth before him) to Rothman (2016) indicates that
the de-emphasizing of effect size in favor of the p-value is an easy
mistake to make and one that needs to be addressed. Similarly,
debates have continued over the conflating of Fisher’s paradigm
with the Neyman-Pearson approach, as discussed above. Lew
(2016) describes how these different inferential questions have
become hybridized. Discussions of power and the role of statis-
ticians in the design of experiments arise in the commentaries
by Berry (2016) and Gelman (2016). While their approaches
are quite different, Fisher certainly understood that argument,
writing an entire book on how to properly design experiments
(Fisher 1935); Gosset, too, participated in this discussion, dis-
agreeing with Fisher on key aspects (Ziliak and McCloskey
2008, p. 218). And the Bayesian-frequentist debate continues
today, unresolved after decades of discussion. Among others,
Benjamin and Berger (2016) and Chambers (2017, pp. 68–73)
promote the potential use of Bayesian hypothesis testing as an
alternative to p-values and significance testing.

It would be easy to be disheartened by this history. If we
have been debating these ideas, raising similar arguments for
a century, what hope do we have of solving them now? And,
as Goodman (2016) puts it, “what will prevent us from dusting
this same statement off 100 years hence, to remind the com-
munity yet again of how to do things right?” The history may
provide the answer here. In particular, a closer look at how
Fisher’s ideas spread and how the hybridization of the Fisher and
Neyman-Pearson paradigms occurred, processes discussed here
only briefly, can inform us of what makes statistical methods
catch hold in the broader scientific, policymaking, and public
communities. Berry (2016) notes that statisticians should not
seek to “excuse ourselves by blaming nonstatisticians for their
failure to understand or heed what we tell them.” But we can
understand why they fail to heed us. Benjamini (2016) notes that
the p-value was so successful in science because it “offers a first-
line defense against being fooled by randomness.” That is, it was
useful to nonmathematicians in giving them a quantitative basis
for addressing uncertainty. Additionally, it has some intuitive
meaning, as can be seen by the fact that methods similar to the p-
value arose repeatedly in various fields even before Fisher. And
it had passionate advocates who put the tools into the hands
of scientists in a way that was easy to use, like through Fisher
and Yates’s Statistical Tables. Finally, it was responsive to condi-
tions of the time. These approaches addressed questions about
variance and experimental design that were frequently raised at
the time (Gigerenzer et al. 1989, pp. 73–74). Considering these
virtues, Abelson (1997) suggests in a tongue-in-cheek piece that
significance tests would be re-invented if they were banned and
forgotten.
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Table 1. Criteria for a lasting framework for inference beyond p < 0.05

Criterion How p < 0.05 Meeting criterion Does p < 0.005 meet criterion?

Provides quantitative basis to
address uncertainty

p-value varies with precision of estimator Same as p < 0.05

Rewards increased precision Significance achieved more easily with higher sample size Same as p < 0.05
Matches intuitive understanding Statistic akin to p-value developed several times Stricter threshold easily understood, but requires

departure from current intuition
Advocated by statisticians and

nonstatisticians
Promoted by Fisher, his students, and scientists in a variety

of fields
Supported by some statisticians and practitioners, but

value still disputed
Computationally feasible for

nonstatisticians
Fisher and Yates made tables user-friendly and accessible

to scientists and practitioners
Any threshold feasible with modern software

Responsive to changing
conditions

p < 0.05 met needs of a time when few tests were
conducted while varying thresholds allowed responses
to multiple testing

Addresses current preponderance of tests, but viewed by
advocates as a stopgap measure

A response that gains traction outside of academic statisti-
cians and that is durable, I argue, must meet these same criteria,
summarized in Table 1. And moreover, to remain valuable, it
must be able to adjust to changing conditions. For example,
as many authors, including Weisberg (2014, sec. 12.3), have
discussed, our computational and data-gathering capabilities
have changed enormously over the last several years, to say
nothing of changes since 1925. We have seen how the lack
of computing power at the time rendered Fisher’s tables so
valuable and thus so influential to practitioners. And the limited
computer capabilities of the 1950s may have limited the ability of
Bayesian methods to catch on with a wider audience (Weisberg
2014, sec. 8.4). The ease of computation is one cause of the mul-
tiplicity issues that are commonly discussed (Ioannidis 2005;
Benjamini 2016). However, there is no reason to believe that
computing capabilities have plateaued, and so an appropriate
response would take into account not only today’s conditions,
but also those likely to occur in the future. Moreover, as we
have seen, statistical methods are not always used with fidelity
to the original intents and assumptions, especially decades after
their initial formulation. Several of the responses to p-values, as
Benjamini (2016) notes, would be susceptible to misuse as well.

Certainly, these are high demands to make of any statistical
method, or indeed of any scientific methodology at all. And
the sheer variety of alternatives proposed indicate that even the
statistical community has not coalesced around one. To take
one example, consider the proposal to lower the significance
threshold to 0.005 (Benjamin et al. 2018). Table 1 summarizes
whether and how p < 0.005 addresses the criteria for a lasting
framework, not to argue for or against it, but to suggest the utility
of this framework in assessing responses beyond p < 0.05. This
proposal has several advantages: it maintains the ease of use and
familiarity that scientists prize and can be viewed as in line with
the approaches of Fisher (who often wrote of different thresholds
in different settings) or of Neyman and Pearson (if it represents
some true cost of a Type I Error and is paired with Type II
Error control). It also addresses some of the multiplicity issues
that have arisen from changing conditions and the reduced
computational burden. This is not even the first time it has
been proposed; as discussed, Edgeworth implicitly used this
threshold at times, and threshold proposals varied greatly before
and even after Fisher. However, it is, as Benjamin et al. (2018)
acknowledge, just as arbitrary as current thresholds and just as
susceptible to misinterpretation. And the benefits in addressing
multiplicity may fade as datasets get bigger and tests are run

even more frequently. Little (2016) also notes that lowering
the threshold fails to address the longstanding debate between
statistical significance and substantive significance. But differing
thresholds have worked in other fields and this proposal may
have a great deal of value in certain settings. And with tables of
significance thresholds no longer necessary thanks to modern
computing power, it is quite easy for researchers to use different
thresholds at different times. This suggests that no one method
and no one response to the controversy will be sufficient.

A multitude of responses, tailored to scientific purposes and
fields of study, will be much more likely to be able to address
all of these needs. Indeed, one can see this as an extension of
arguments made at various points by both Fisher and Neyman-
Pearson that different experimenters, working in different con-
texts, will use different thresholds of significance or set different
α and β parameters. As Fisher’s work focused on agriculture and
biology, perhaps his advice still holds sway there, while other
fields face different needs. Beyond just significance thresholds,
different scientific questions can be approached with the variety
of tools available, from Bayesian approaches to confidence inter-
vals to machine learning, to suit their context. Such an approach,
however, relies on a great deal of statistical sophistication among
those who use statistical methods. Fortunately, this history can
help improve statistics education and guide changes that would
enhance that sophistication.

5.2. The Role of History in Statistics Education

The rise in popularity of statistics books aimed at general audi-
ences, including some listed above, demonstrates the desires
of many people to learn both the practical uses of the disci-
pline and the way in which it came to be. Statistics educators
broadly defined, whether course instructors, statistical collabo-
rators, or writers of articles aimed at nonstatisticians, can benefit
from this interest and use history as a teaching tool within
this moment of debate in the discipline. The British mathe-
matician John Fauvel (1991, pp. 4–5) presented a variety of
reasons for incorporating history into mathematics education,
including to “increase motivation for learning,” “explain the
role of mathematics in society,” and “contextualise mathematical
studies.” A decade later, the Taiwanese educator Po-Hong Liu
expounded these ideas. He noted specifically that “[h]istory
reveals the humanistic facets of mathematical knowledge” and
can challenge students’ perceptions “that mathematics is fixed,
rather than flexible, relative, and humanistic” (Liu 2003, p. 418).
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These reasons all hold for statistics, especially as the dis-
cipline faces great change, not just in the use of conventional
inferential methods but also with the rise of computing power
and big data. As Goodman (2016, p. 1) notes: “that statisticians
do not all accept at face value what most scientists are routinely
taught as uncontroversial truisms will be a shock to many.” To
meet Millar’s (2016) and Stangl’s (2016) challenge of improving
statistical education, teachers and collaborators should consider
the introduction of this history into their discussions of signifi-
cance testing. Presenting these controversies requires educators
to present other approaches and thus also serves to, as Millar
(2016) suggests, “make our students aware that p-values are not
the ‘only way.’ ”

The topics covered here can be introduced alongside the
presentation of the tables of values of the normal, Student’s t,
and χ2 distributions, which still hold a place as early as the
Advanced Placement Statistics curriculum (AP 2010). Inviting
students to consider how the lack of computers affected the
development of statistics may further appreciation for these
tables (or, more likely, further appreciation for the computer
software that has rendered them obsolete). This in turn will
help students appreciate what has changed since 1925 and how
methods may need to change to reflect that.

Presenting the debate between Fisher, Gosset, Neyman-
Pearson, and the Bayesians, and how that debate has evolved
into the current discussion, highlights the human aspect of
statisticians and the constantly changing, challenging nature of
the field. As discussed above, many of the specific points made
in that debate are ongoing points of contention today. In-depth
analysis of Fisher’s rationale for using the 0.05 standard can
highlight how, though arbitrary, it is not without context, and
how it responded to the needs of experimentalists at a certain
point of history. This understanding will allow students and
practitioners to form their own assessment of, for example, the
proposal to lower the standard to 0.005. In this way, it becomes
harder to dismiss the p-value without providing a substitute
that is similarly usable by those who perform statistical analyses
today. This teaching will also give students and practitioners
the ability to critique the next statistical method that comes
along, and to consider alternatives to the p-value in the context
of statistical history and the role of statistics in modern science
and society.

6. Conclusion

As we consider a world “beyond p < 0.05,” I invite statisticians
and scientists alike to consider the world before p < 0.05,
a world where statistical analysis was less common and far
more difficult an undertaking. It is then easier to see how p-
values came to such prominence throughout science, despite
the immediate disagreements among statisticians. Statistics is
an evolving discipline, but it is in the difficult position of need-
ing to evolve alongside the various disciplines that make use
of its tools. In Fisher’s teaching and manuscripts, writes Box
(1978, p. 242), “he aimed to give workers a chance to familiar-
ize themselves with tools of statistical craft as he had become
familiar with them, and to evolve better ways of using them.”
This approach helped make statistics a fundamental tool in

many disciplines, but has led to the challenges discussed in the
ASA statement and elsewhere. Presenting this history as context
for these discussions provides appropriate recognition of the
rich debates that define statistics. It encourages statisticians
to consider how their work will be used by practitioners and
encourages practitioners to consider whether they are using sta-
tistical methodologies as they were intended. Through ongoing
discussions and by encouraging this critical thinking, statistics
can continue to be a field that helps push forward the boundaries
of knowledge.
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