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NOTES
Edited by Vadim Ponomarenko

Stokes’s Theorem, Data,
and the Polar Ice Caps

Yuliy Baryshnikov and Robert Ghrist

Abstract. Geographers and climate scientists alike sometimes need to estimate the area of
a large region on the surface of the Earth, such as the polar ice caps. Doing so using only
a sequence of latitude–longitude data points along a piecewise-linear approximation of the
boundary of the region can be accomplished via a novel use of Stokes’s theorem that gener-
alizes classical and contemporary applications of Green’s theorem to data. The polar ice caps
are seen to hide a complication that makes their estimation from data singularly interesting.

1. STOKES’S THEOREM. The calculus student’s long ascent through multivari-
able calculus usually culminates in an encounter with three mathematical names:
Green, Gauss, and Stokes. Their eponymous theorems mean for most students of cal-
culus the journey’s end, with a quick memorization of relevant formulae. A smaller
number of students are led to some of the applications for which these theorems were
first used. These largely concern electromagnetics (say, Maxwell’s equations [5, 6, 8])
or fluid dynamics (the theorems of Kelvin and Helmholtz [3, 6]). These applications
in field physics are more than a century old. Examples of a more modern nature from
statistics, data analysis, economics, or other fields, are either not well known or too
advanced for a first-year undergraduate course. The net result of this is too often an
unmotivated, abrupt end to multivariable calculus.

A very few students are permitted a flash of mathematical beauty beyond the tradi-
tional physics-centered approach of the classical calculus texts. This is best done via
differential forms, which, if presented in a simplified Euclidean setting, is entirely rea-
sonable for first-year students (several texts now include such material [4, 6, 8]). One
may introduce the basis k-forms on R

n, dxi1 ∧ dxi2 ∧ · · · ∧ dxik , in terms of oriented
projected k-dimensional volume via determinants. With a few algebraic rules concern-
ing ∧, d, and integration, one simplifies the theorems of Green, Gauss, and Stokes into
the full version of Stokes’s theorem:

∫
∂D

α =
∫

D

dα, (1)

for D a smooth (k + 1)-dimensional domain in R
n with k-dimensional boundary ∂D

and α a k-form on D. A bit of dexterity is required to not prompt too many awkward
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questions on what a smooth domain means. This theorem is unifying and beautiful, but
does not seem to lend itself to many applications of a concrete nature.

2. COMPUTING EUCLIDEAN AREA AND VOLUME. There is one popular
application of Green’s theorem that has an interpretation in terms of data and approxi-
mation. Consider, for example, what happens when an ultrasound technician performs
a scan of a partially obstructed artery. A cross section of the artery is viewed with free-
flowing and obstructed regions visible. The cross-sectional area of the free-flowing
region may be specified by the operator marking a sequence of points on the image
as ordered landmarks for an approximate boundary (Figure 1[left]). This free cross
section may or may not be convex.

How is the area estimated? One well-known method for approximating area invokes
Green’s theorem. Using planar coordinates (x, y), the area A of the free cross section
D can be computed as a loop integral:

A =
∫

D

dx ∧ dy = 1

2

∮
∂D

x dy − y dx. (2)

By approximating the boundary ∂D as a piecewise-linear curve of straight segments
γ i from (xi

1, y
i
1) to (xi

2, y
i
2), and integrating the 1-form above on each such segment for

i = 1 to N , one obtains the classic combinatorial formula for area [9],

A ≈ 1

2

N∑
i=1

xi
1y

i
2 − xi

2y
i
1. (3)

This has applications ranging from medical image data to determining area of counties
and plots of land. The curious reader may wish to show that other geometric quantities
(centroid coordinates and moments of inertia, for example) can be likewise approxi-
mated via combinatorial formulae, with a simple modification to the 1-form integrated
over the straight-line segments.

Similarly, one can use Gauss’s theorem for computing volume based on a trian-
gulation of the boundary. Here, again, medical imaging data provide a clear motiva-
tion, with nonconvex surfaces arising naturally (Figure 1[right]). Assume that a three-
dimensional region has boundary sampled by a collection of points in (x, y, z) coordi-
nates. Triangulate this surface and label the vertices of each triangle T i as (xi

j , y
i
j , z

i
j )

for j = 1, 2, 3, cyclically ordered so as to induce a positive orientation on the surface
(outward pointing normals). By parameterizing each T i as a flat surface and integrating

Figure 1. [LEFT] The boundary of the unobstructed cross section of an artery is approximated by a piecewise
linear loop. [RIGHT] Medical imaging leads to volume-estimation problems for complex, nonconvex regions.
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Figure 2. Left to right: two cyclic time series, x(t) (starting positive) and y(t) (starting at zero); x approx-
imately leads y; the corresponding parametric curve in the plane traces out a positive area, as measured by
x dy − y dx, indicating leadership.

the 2-form 1
3 (x dy ∧ dz + y dz ∧ dx + z dx ∧ dy), one obtains via Gauss’s theorem:

V ≈ 1

6

N∑
i=1

xi
1y

i
2z

i
3 + xi

2y
i
3z

i
1 + xi

3y
i
1z

i
2 − xi

3y
i
2z

i
1 − xi

2y
i
1z

i
3 − xi

1y
i
3z

i
2 . (4)

More can be done: centroids and moments in three dimensions are again computable
via combinatorial formulae on the vertices, and one can recover Archimedes’ principle
on buoyant force applying Gauss’s theorem to z dx ∧ dy.

In these applications to area and volume, there is no clear advantage to using differ-
ential forms over vector calculus. The following pair of examples shows how thinking
in terms of differential forms guides one to deeper applications to data [6].

3. WHO’S IN THE LEAD WITH GREEN’S. The classical application of Green’s
theorem for area has a modern update to problems of data coming from time series. The
key insight is that the area 2-form dx ∧ dy is oriented area. In the applications to area
computations above, one ignores the orientation, since the desired output is positive.
However, the global orientation retains information. In the case of time series data,
this encodes cyclic order. Consider a pair of time series x(t), y(t) in Figure 2[left].
One look at the data suggest that x is a leading indicator and y is lagging. Assuming
these time series were periodic in t , they would generate a closed curve γ = ∂D in
the (x, y)-plane. The integral of dx ∧ dy over D would be positive when x leads y,
negative when y leads x, and zero when they are in phase (or anti-phase).

For purely periodic functions, there are many ways to discern this order: correla-
tions and Fourier coefficients come to mind. Those methods are, however, very sensi-
tive to time axis reparameterizations. In contrast, many real-life phenomena are cyclic
(roughly repetitive) without being rigidly periodic. Cardiac rhythms, musculo-skeletal
movements exercised during a gait, population dynamics in closed ecosystems, busi-
ness cycles, and more are examples of cyclic yet aperiodic processes.

The key insight is that the loop integral in (2) is independent of (oriented) time-
reparameterization: no matter how you write γ = ∂D as an oriented parametric curve
(x(t), y(t)) the oriented area will be the same, even if there is some backtracking along
the path. For discretized data, this means that the estimate from equation (3) is robust
with respect to nonuniformities in sampling of points on γ .

Here lies an excellent motivation for differential forms on R
n: for multiple cyclic,

noisy time series {xi(t)}n
1, the full leader-follower ordering can be derived from the

integrals of dxi ∧ dxj for all i �= j . These integrals give a skew-symmetric matrix of
nonparametric phase values. Further manipulations can reveal combinations of vari-
ables that are leading or trailing. The key to all of this is interpreting 2-forms on R

n as
oriented projected area, and using Green’s theorem as in (2) and (3).
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Figure 3. [LEFT] One can estimate the area of a region on the Earth’s surface with piecewise-linear boundary.
[RIGHT] One needs care with geographic and mathematical poles.

4. THE FORM OF SPHERICAL AREA. Green and Gauss have put in an appear-
ance: what, then, of Stokes? By analogy with the previous examples of area and vol-
ume, the three-dimensional Stokes’s theorem would seem to be helpful in computing
the area of a surface based on coordinate data of a piecewise-linear approximation
to the boundary. This problem is natural in the context of estimating surface area on
regions of the Earth based on boundary points (Figure 3). One sees specific examples
in estimating the surface areas of countries or states, with border landmarks given
in latitude and longitude, or the surface area of a connected component of the Great
Pacific Garbage Patch or the polar ice caps.

For the sake of exposition, assume that the Earth’s surface is a sphere of radius
R and that spherical coordinates are used: (ρ, θ, ϕ) with 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π .
The area 2-form on the sphere of radius R with standard (outward pointing) orientation
is recognizable from the volume form in spherical coordinates: R2 sin ϕ dϕ ∧ dθ . In
order for (1) to be applicable, one needs this form to be exact, the derivative of a
1-form. It is, since

R2 sin ϕ dϕ ∧ dθ = d(−R2 cos ϕ dθ). (5)

This tells us what to integrate over the boundary. Assume that a piecewise-linear
approximation to the boundary of the spherical patch is given by N segments γ i in the
(θ, ϕ) plane with start points (θ i

1, ϕ
i
1) and endpoints (θ i

2, ϕ
i
2). These must collectively

give a simple, closed, oriented curve. Integrating the 1-form of (5) over the straight-line
segments γ i , summing, and invoking Stokes yields a surface area S with

S ≈ −R2
N∑

i=1

(θ i
2 − θ i

1)
sin ϕi

2 − sin ϕi
1

ϕi
2 − ϕi

1

. (6)

As far as the authors can tell, this formula does not appear in the literature on geo-
graphic area estimation. Most references suggest performing an area-preserving pro-
jection to the Euclidean plane, then applying (3) to the projected boundary landmarks.
One NASA JPL technical report [2] derives a number of exact and approximate for-
mulae using techniques from spherical geometry. One such estimate (found on p. 7) is
very similar to (6) above, though replacing the quotient of ϕi terms with an average
value over the segment.

The more traditional vector-field approach to Stokes’s theorem does not seem to
facilitate this application so readily as the forms approach. Observing that R2 sin ϕ dϕ ∧

November 2018] NOTES 833



dθ is exact is more natural than, say, trying to find a vector field in spherical coordi-
nates that has curl equal to ∂/∂ρ, so that the flux of the curl yields surface area.

5. THE STARRY POLE. All that remains is to do some examples and show students
just how well this method of integrating a 1-form over the boundary works in practice.
Perhaps the most compelling example is that of a polar ice cap. Let us suppose for
simplicity that one has a round cap centered at the North Pole at an inclination angle
of 0 < ϕ∗ < π/2, with boundary circle γ discretized arbitrarily into segments.

Application of (6) presents two problems. The first difficulty is that the ϕi terms
are singular. This is not a surprise, as the terms in (6) were derived from an integral
assuming nonzero variation in ϕ. The integral is simpler when ϕ = ϕ∗ is constant.
The second difficulty is that the answer is clearly wrong, since

∮
γ
−R2 cos ϕ∗ dθ =

−2πR2 cos ϕ∗ < 0. The hypotheses of Stokes’s theorem have not been respected. The
1-form in (5) is a multiple of dθ and is not well-defined at the poles, invalidating its
use in Stokes’s theorem. There are no difficulties in applying (6) to regions that do not
encircle one of the poles. Indeed, this resolves the ambiguity in which of two surfaces
on the sphere the loop γ encloses.

What if one wants to apply this result to measuring the area of a region encircling
a pole? For an oriented, simple, closed curve γ that surrounds a pole of the sphere, a
small improvement using ideas from contour integrals (see Figure 3[right]) shows that

S = R2

∮
γ

(1 − cos ϕ) dθ. (7)

This correction term permits a combinatorial formula for γ discretized.
Here is our final argument for using forms. The existence of two poles of the sphere,

each of which contributes a term to the integrand that is describable as an index of +1,
permits a clean segue for the curious from calculus to the Euler characteristic, de Rham
cohomology, and other exalted spheres [1, 7].
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