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Computer Code Abstract

MULTI-PRED: A Software Module for Predictive Modeling of
Coupled Multi-Physics Systems
Dan G. Cacuci, * Ruixian Fang, and Madalina C. Badea

University of South Carolina, Center for Nulear Science and Energy, 541 Main Street, Columbia, South Carolina 29208

Received March 5, 2018
Accepted for Publication March 8, 2018

Abstract — The software moduleMULTI-PRED implements the methodology for predictive modeling of coupled
multi-physics systems (PM-CMPS) formulated by Cacuci [Ann. Nucl. Energy, Vol. 70, p, 266 (2014)]. This
methodology fully takes into account the coupling terms between the systems but requires only the computational
resources that would be needed to perform predictive modeling on each system separately. The PM-CMPS
methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori
distribution based on a priori known mean values and uncertainties characterizing the experimental and
computational parameters and results of interest responses called for the multi-physics models under considera-
tion. This maximum entropy a priori distribution is combined, using Bayes’ theorem, with the likelihood provided
by the multi-physics simulation models to obtain a formal posterior distribution. Subsequently, the posterior
distribution thus obtained is evaluated using the saddle-point method to obtain analytical expressions for the
optimally predicted values for the multi-physics model parameters and responses along with corresponding
reduced uncertainties. Noteworthy, the predictive modeling methodology for the coupled systems is constructed
such that the systems can be considered sequentially rather than simultaneously, while preserving exactly the same
results as if the systems were treated simultaneously. Consequently, very large coupled systems, which could
perhaps exceed available computational resources if treated simultaneously, can be treated with the PM-CMPS
methodology presented in this work sequentially and without any loss of generality or information, requiring just
the resources that would be needed if the systems were treated sequentially.

The PM-CMPS methodology can be applied to reduce uncertainties in both forward and inverse
problems. Three demonstration problems are provided to illustrate the application of the PM-CMPS
methodology. The first problem presents the application of the PM-CMPS methodology to a simple particle
diffusion problem which admits a closed-form analytical solution which facilitates a rapid understanding of
this methodology and its predicted results. The second demonstration problem presents the application
of the PM-CMPS methodology to the problem of inverse prediction, from detector responses in the presence
of counting uncertainties, of the thickness of a homogeneous slab of material containing uniformly
distributed gamma-emitting sources for optically thin and thick slabs. This problem highlights the essential
role played by the relative uncertainties (or, conversely, accuracies) of measured and computed responses.
The third demonstration problem presents the application of the PM-CMPS methodology to the F-Area
cooling towers at the Savannah River National Lab. This problem demonstrates that the PM-CMPS
methodology reduces the predicted response uncertainties not only at locations where measurements are
available, but also at locations where measurements are not available.

MULTI-PRED is written in Fortran and runs on Linux andWindows systems. AC++ versionwill also become
available.

*E-mail: cacuci@cec.sc.edu
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
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I. INTRODUCTION

The results of measurements inevitably reflect the
influence of experimental errors, imperfect instruments,
and imperfectly known calibration standards. Around any
reported experimental value, therefore, there always exists a
range of values that may also be plausibly representative of
the true but unknown value of the measured quantity. On the
other hand, computations are also imperfect, since they are
afflicted by errors stemming from numerical procedures,
uncertain model parameters, boundary and initial condi-
tions, and/or imperfectly known physical processes or pro-
blem geometry. Therefore, nominal values for
experimentally measured or computed quantities are insuf-
ficient, by themselves, for applications. The quantitative
uncertainties accompanying the measurements and compu-
tations are also needed, along with the respective nominal
values. Extracting best-estimate values for model para-
meters and predicted results (responses), together with
best-estimate uncertainties for these parameters and
responses, requires the combination of experimental and
computational data and their uncertainties. This combina-
tion process often requires reasoning from incomplete,
error-afflicted, and occasionally, discrepant information.

The discrepancies between experimental and computa-
tional results provide the basic motivation for performing
quantitative model verification, validation, qualification, and
predictive estimation. Loosely speaking, code verification
means: “Are you solving the mathematical model
correctly?” Code validation means: “Does the model
represent reality?” Code qualification means certifying that
a proposed simulation/design methodology/system satisfies
all performance and safety specifications. Model validation
addresses issues of (1) assessing model accuracy when
several system response quantities have been measured and
compared and (2) comparing system response quantities from
multiple realizations of the experiment with computational
results that are characterized by probability distributions.
Model validation and qualification require selected bench-
marking, including sensitivity and uncertainty analyses.

Predictive modeling commences with the identification
and characterization of uncertainties from all steps in the
sequence of modeling and simulation processes that lead to
a computationalmodel prediction. This includes (1) data error
or uncertainty (input data such as cross sections; model

parameters such as reaction-rate coefficients, initial condi-
tions, and boundary conditions; and forcing functions such
as external loading), (2) numerical discretization error, and (3)
uncertainty in (e.g., lack of knowledge of) the processes being
modeled. The result of the predictive modeling analysis is a
probabilistic description of possible future outcomes based on
all recognized errors and uncertainties.

Predictive modeling combines/assimilates computa-
tional and experimental information using response
sensitivities to perform model calibration, model extrapola-
tion, and estimation of the validation domain. Model
calibration addresses the integration of experimental data for
the purpose of updating the data of the computer model.
Important components include the estimation of discrepan-
cies in the data and of the biases between model predictions
and experimental data. The state-of-the-art of model calibra-
tion is fairly well developed, but current methods are still
hampered in practice by the significant computational effort
required. Reducing the computational effort is paramount,
and methods based on adjoint models show great promise in
this regard. Model extrapolation addresses the prediction
uncertainty in new environments or conditions of interest,
including both untested parts of the parameter space and
higher levels of system complexity in the validation
hierarchy. Extrapolation of models and the resulting increase
of uncertainty are poorly understood, particularly the
estimation of uncertainty that results from nonlinear coupling
of two or more physical phenomena that were not coupled in
the existing validation database. The quantification of the
validation domain underlying the models of interest requires
estimation of contours of constant uncertainty in the high-
dimensional space that characterizes the application of
interest. In practice, this involves the identification of areas
where the predictive estimation of uncertaintymeets specified
requirements for the performance, reliability, or safety of the
system of interest.

The software module MULTI-PRED implements the
methodology for predictive modeling of coupled multi-
physics systems (PM-CMPS) formulated by Cacuci.1

The PM-CMPS methodology generalizes the work of
Cacuci and Ionescu-Bujor2,3 on predictive modeling of
a single time-dependent multi-physics system, and also
generalizes and significantly extends the data
adjustment methods customarily used in nuclear
engineering, as well as those underlying the so-called
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4D-VAR data assimilation procedures in the geophysical
sciences.4,5 The PM-CMPS provides a quantitative indi-
cator, constructed from sensitivity and covariance
matrices, for determining the consistency (agreement
or disagreement) among the a priori computational and
experimental data (parameters and responses). This
consistency indicator measures, in the corresponding
metric, the deviations between the experimental and
nominally computed responses. Note that this consis-
tency indicator can be evaluated directly from the ori-
ginally given data (i.e., given parameters and responses,
together with their original uncertainties) once the
response sensitivities have been computed. Preferably,
the PM-CMPS utilizes the exactly and efficiently com-
puted response sensitivities using the adjoint sensitivity
analysis methodology as generally formulated by
Cacuci.6–11 When the numerical value of this consis-
tency indicator is close to unity (per degrees of freedom),
the respective data are considered to be consistent within
the respective error norms (usually under quadratic
loss). However, when the numerical value of this con-
sistency indicator differs considerably from unity, which
usually occurs when the distance between the mean
values of two (sets of) measurements or two (sets of)
computations of the same quantity are larger than the
sum of the two accompanying standard deviations, the
respective (measured of computed) data points are con-
sidered to be inconsistent or discrepant. This means that
there is a nonzero probability that two nondiscrepant
(i.e., belonging to the same distribution) measurements
that are separated by more than 2σ (thus giving the
appearance of being discrepant) could actually occur in
practice. Recall that for a Gaussian sampling distribu-
tion, the probability that two equally precise
measurements would be separated by more than 2σ is
15.7%. However, this probability is rather small;
therefore, it is much more likely that apparently
discrepant data actually indicate the presence of unrec-
ognized errors. Methods for treating unrecognized errors
have been developed by Cacuci and Ionescu-Bujor,12 by
applying the maximum entropy principle under quadra-
tic loss to the discrepant data.

The PM-CMPSmethodology is constructed such that the
systems can be treated sequentially rather than simulta-
neously, while preserving exactly the same results as if the
systems had been treated simultaneously. Consequently, very
large coupled systems, which could perhaps exceed available
computational resources if treated simultaneously, can be
treated with the PM-CMPS methodology sequentially,
without any loss of generality or information, requiring just
the resources that would be needed as if the systems had been

treated separately. The PM-CMPS methodology has been
successfully applied to reducing the predicted uncertainties
in model parameters and responses in several forward and
inverse problems.13–18 The MULTI-PRED software module
provides three illustrative problems: (1) a simple neutron
diffusion problem,19 (2) an inverse problem in particle
transport,18 and (3) a predictive modeling of the F-Area
cooling towers at the Savannah River National
Laboratory.16,17 Sections II and III describe the quantities
required as inputs toMULTI-PRED, alongwith the optimally
predicted best-estimate values for the model responses and
model parameters, with reduced predicted uncertainties,
which are obtained as the outputs of MULTI-PRED.

II. PM-CMPS: MATHEMATICAL FRAMEWORK

II.A. MULTI-PRED Input: A Priori Information for Two
Multi-Physics Models

Consider a multi-physics model, henceforth called
model A comprising Nα system (model) parameters αn.
Model A is used to compute results, henceforth called
responses, which can also be measured experimentally.
Consider now a second physical system, henceforth called
model B, comprising Nβ system (model) parameters βm , and
which is also used to compute responses that can bemeasured
experimentally. Model A and model B are considered to be
coupled. In reactor analysis and design, for example, model
A may comprise the neutron transport and depletion equa-
tions which are coupled to model B which computes the
thermal-hydraulic conservation (mass, momentum, energy)
equations.

Consider next that there are Nr experimentally measured
responses ri associated mostly, but not necessarily exclu-
sively, with model A. Furthermore, consider also that there
are Nq experimentally measured responses qj associated
mostly, but not necessarily exclusively, with model B. For
example, measurement of reaction rates and power (or flux)
distributions could be considered to be responses of type ri,
while measurements of flow rates and temperature distribu-
tions could be considered responses of type qj. In the same
spirit, cross sections can be considered to be model
parameters of type αn, while heat transfer correlations can
be considered model parameters of type βm. Parameters
modeling the geometry of the system (e.g., rod and assembly
dimensions, core dimensions), for example, could be
considered to belong to either type of model parameters
(i.e., either αn or βm), since they affect both the neutron
transport equation and the thermal-hydraulic conservation
equations.
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In practice, the values of the parameters αn and βm
are determined experimentally. Therefore, these para-
meters cannot be known exactly, but can be considered
to behave stochastically, obeying some probability distri-
bution function which is seldom known. Such stochastic
quantities will be called variates in this work; thus, the
parameters αn and βm as well as the measured responses
ri and qj are variates. To simplify the mathematical
derivations to follow in this section, the model parameters
αn will be considered to constitute the components of the
(column) vector α, defined as

α ¼Δ α1 ; : : : ; αNαð Þ ; ð1Þ

while the model parameters βm will be considered to con-
stitute the components of the (column) vector β defined as

β ¼Δ β1 ; : : : ; βNβ

� �
: ð2Þ

By convention, all of the vectors considered in this work
(e.g., α and β) are column vectors. A dagger y will be used
to denote transposition; thus, the quantities αy and βy are
row vectors. Similarly, the Nr experimentally measured
responses ri will be considered to be components of the
column vector:

r ¼Δ r1 ; : : : ; rNrð Þ ; ð3Þ

while the Nq experimentally measured responses qj will
be considered to be components of the column vector:

q ¼Δ q1; : : : ; qNq

� �
: ð4Þ

Most generally, the parameters αn and βm, as well as the
responses ri and qj can be considered to obey some a priori
probability distribution function P α; β; r; qð Þ. For large-
scale systems, as customarily encountered in practice, the
probability distribution P α; β; r;qð Þ is unknown. The infor-
mation usually available in practice comprises the mean
values of the model parameters and responses together
with the corresponding uncertainties (standard deviations
and, occasionally, correlations) about the respective mean
values. For notational simplicity, angular brackets h f i will
be used to denote the integral of the quantity f α; β; r; qð Þ
over the joint probability distribution P α; β; r; qð Þ, i.e.,

h f i ¼Δ
ð
f α; β; r; qð ÞP α; β; r; qð Þdα dβ dr dq : ð5Þ

Using the above convention, the mean values of the model
parameters αn will be denoted using the superscript zero, i.e.,

as α0n ¼Δ hαni; these mean values are considered to constitute
the components of the vector α0 defined as

α0 ¼Δ α01 ; : : : ; α
0
Nα

� �
: ð6Þ

Similarly, the mean values of the parameters βn are con-

sidered to be known and will be denoted as β0n ¼Δ hβni.
These mean values are considered to be the components

of the vector β0 defined as

β0 ¼Δ β01; : : : ; β
0
Nβ

� �
: ð7Þ

The parameters’ second-order central moments, namely the
standard deviations and correlations, are also considered to
be known. For the parameters αn, the second-order central
moments are the components of covariance matrices

C Nα�Nαð Þ
αα defined as

C Nα�Nαð Þ
αα ¼Δ cov αi; αj

� �� �
Nα�Nα

¼Δ αi � α0i
� �

αj � α0j
� �D E

Nα�Nα

;

i; j ¼ 1; . . . ;Nα;

ð8Þ

while the second-order central moments (i.e., the standard
deviations and correlations) for the parameters βm form

covariance matrices C
Nβ�Nβð Þ

ββ defined as

C
Nβ�Nβð Þ

ββ ¼Δ cov βi; βj
� �h i

Nβ�Nβ

¼Δ βi � β0i
� �

βj � β0j
� �D E

Nβ�Nβ

;

i; j ¼ 1; . . . ;Nβ:

ð9Þ

In general, the components of the vectors α and β may be
correlated. The correlations among the parameters α and β

are quantified by correlation matrices C
Nα�Nβð Þ

αβ defined as

C
Nα�Nβð Þ

αβ ¼Δ α� α0
� �

β� β0
� �y� 	

¼Δ C
Nβ�Nαð Þ

βα


 �y
:

ð10Þ
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The experimentally measured responses are also consid-
ered to be characterized by known mean measured values
and measured variances and covariances. Thus, for the Nr

experimentally measured responses ri, the mean mea-
sured values will be denoted as rmi and will be considered
to constitute the components of the vector rm defined as

rm ¼Δ rm1 ; :::; r
m
Nr

� �
; rmi ¼Δ hrii;

i ¼ 1; . . . ;Nr;
ð11Þ

while the corresponding measured covariance matrix,

denoted as C Nr�Nrð Þ
rr , is defined as

C Nr�Nrð Þ
rr ¼Δ ri � rmi

� �
rj � rmj

� �D E
Nr�Nr

;

i; j ¼ 1; . . . ;Nr :
ð12Þ

Similarly, the Nq experimentally measured responses qj
are characterized by mean measured values, denoted as
qmj , and constituting the components of the vector qm

defined as

qm ¼Δ qm1 ; :::; q
m
Nq

� �
; qmj ¼Δ hqji;

j ¼ 1; . . . ;Nq ;
ð13Þ

and by the measured covariance matrix C
Nq�Nqð Þ

qq defined as

C
Nq�Nqð Þ

qq ¼Δ qi � qmi
� �

qj � qmj

� �D E
Nq�Nq

;

i; j ¼ 1; . . . ;Nq :

ð14Þ

Furthermore, the responses r and q may also be correlated;
such correlations would be quantified by correlation matrices
defined as

C
Nr�Nqð Þ

rq ¼Δ r� rmð Þ q� qmð Þy
D E

¼Δ C
Nq�Nrð Þ

qr


 �y
: ð15Þ

In the most general case, correlations may also exist
among all parameters and responses. Such correlations
would be quantified through matrices defined as follows:

C Nα�Nrð Þ
αr ¼Δ α� α0

� �
r� rmð Þy

D E

¼Δ C Nr�Nαð Þ
rα

h iy
; ð16Þ

C
Nα�Nqð Þ

αq ¼Δ α� α0
� �

q� qmð Þy
D E

¼Δ C
Nq�Nαð Þ

qα


 �y
; ð17Þ

C
Nβ�Nrð Þ

βr ¼Δ β� β0
� �

r� rmð Þy
D E

¼Δ C
Nr�Nβð Þ

rβ


 �y
; ð18Þ

and

C
Nβ�Nqð Þ

βq ¼Δ β� β0
� �

q� qmð Þy
D E

¼Δ C
Nq�Nβð Þ

qβ


 �y
: ð19Þ

II.B. MULTI-PRED Output: Optimally Predicted Values of
Model Parameters and Responses

The following quantities are computed and provided
as outputs of MULTI-PRED:

1. Covariance matrices of the computed responses
for model A arising from the uncertainties in the model
parameters of model A:

Ccomp
rr ¼Δ r� rc α0; β0

� �� �
r� rc α0; β0

� �� �y� 	

¼ SrαCααS
y
rα þ 2SrαCαβS

y
rβ þ SrβCββS

y
rβ: ð20Þ

2. Covariance matrices of the computed responses
for model B arising from the uncertainties in the model
parameters of model B:

C comp
qq ¼Δ q� qc α0; β0

� �� �
q� qc α0; β0

� �� �y� 	

¼ SqαC ααS
y
qα þ 2SqαC αβS

y
qβ þ SqβC ββS

y
qβ : ð21Þ

3. Correlation matrices of the computed responses
for models A and B arising from the uncertainties in the
model parameters of models A and B:
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C comp
rq ¼Δ r� rc α0; β0

� �� �
q� qc α0; β0

� �� �y� 	

¼ SrαC ααS
y
qα þ SrαC αβS

y
qβ þ SrβC

y
αβS

y
qα

þ SrβC ββS
y
qβ : ð22Þ

4. Optimally predicted best-estimate values for
the parameters of model A (model calibration):

α pred ¼ α0 � XαD11 þ YαD
y
12

h i
rd α0; β0
� �

� XαD12 þ YαD22½ �qd α0; β0
� �

: ð23Þ

5. Optimally predicted best-estimate values for
the parameters of model B (model calibration):

β pred ¼ β0 � XβD11 þ YβD
y
12

h i
r d α0; β0

� �
� XβD12 þ YβD22

� �
qd α0; β0
� �

: ð24Þ
6. Optimally predicted best-estimate values for

the responses of model A:

r pred ¼ r m � XrD11 þ YrD
y
12

h i
r d α0; β0

� �
� XrD12 þ YrD22½ �qd α0; β0

� �
: ð25Þ

7. Optimally predicted best-estimate values for the
responses of model B:

q pred ¼ qm � XqD11 þ YqD
y
12

h i
r d α0; β0

� �
� XqD12 þ YqD22

� �
qd α0; β0
� �

: ð26Þ

8. Optimally predicted best-estimate values for
components of the covariance matrix C pred

αα for the para-
meters α of model A:

C pred
αα ¼Δ α� α pred

� �
α� α pred
� �y� 	

¼ C αα � Xα D11X
y
α þ D12Y

y
α

� �h

þYα D21X
y
α þ D22Y

y
α

� �i
: ð27Þ

9. Optimally predicted best-estimate values for
the components of the predicted covariance matrix
C pred

rr for the responses r of model A:

C pred
rr ¼Δ r� r pred

� �
r� r pred
� �y� 	

¼ C rr � Xr D11X
y
r þ D12Y

y
r

� �h

þYr D21X
y
r þ D22Y

y
r

� �i
: ð28Þ

10. Optimally predicted best-estimate values for
the components of the predicted correlation matrix
C pred

αr for the parameters α and r responses of model A:

C pred
αr ¼Δ α� α pred

� �
r� r pred
� �y� 	

¼ C αr � Xα D11X
y
r þ D12Y

y
r

� �h

þYα D21X
y
r þ D22Y

y
r

� �i
: ð29Þ

11. Optimally predicted best-estimate values for the
components of the predicted covariance matrix C pred

ββ for
the parameters β of model B:

C pred
ββ ¼Δ β� β pred

� �
β� β pred
� �y� 	

¼ Cββ � Xβ D11X
y
β þ D12Y

y
β

� �h

þ Yβ D21X
y
β þ D22Y

y
β

� �i
: ð30Þ

12. Optimally predicted best-estimate values for
the components of the predicted covariance matrix
C pred

qq for the responses q of model B are obtained as

C pred
qq ¼Δ q� qpred

� �
q� qpred
� �y� 	

¼ C qq � Xq D11X
y
q þ D12Y

y
q

� �h

þYq D21X
y
q þ D22Y

y
q

� �i
: ð31Þ

13. Optimally predicted best-estimate values for the
components of the predicted correlation matrix C pred

βq for
the parameters β and the responses q of model B:

C opt
βq ¼Δ β� β pred

� �
q� qpred
� �y� 	

¼ C βq � Xβ D11X
y
q þ D12Y

y
q

� �h

þYβ D21X
y
q þ D22Y

y
q

� �i
: ð32Þ

14. Optimally predicted best-estimate values for
the components of the predicted correlation matrix
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C pred
αβ for the parameters α of model A and the parameters

β of model B:

C pred
αβ ¼Δ α� α pred

� �
β� β pred
� �y� 	

¼ C αβ � Xα D11X
y
β þ D12Y

y
β

� �h

þYα D21X
y
β þ D22Y

y
β

� �i
: ð33Þ

15. Optimally predicted best-estimate values for
the components of the predicted correlation matrix
C pred

αq for the parameters α of model A and the responses

q of model B:

C pred
αq ¼Δ α� α pred

� �
q� qpred
� �y� 	

¼ C αq � Xα D11X
y
q þ D12Y

y
q

� �h

þYα D21X
y
q þ D22Y

y
q

� �i
:

ð34Þ

16. Optimally predicted best-estimate values for
the components of the predicted correlation matrix

C pred
βr for the parameters β of model B and the responses

r of model A:

C pred
βr ¼Δ β� β pred

� �
r� r pred
� �y� 	

¼ C βr � Xβ D11X
y
r þ D12Y

y
r

� �h

þYβ D21X
y
r þ D22Y

y
r

� �i
: ð35Þ

17. Optimally predicted best-estimate values for the
components of the predicted correlation matrix C pred

rq for
the responses r of model A and the responses q of
model B:

C pred
rq ¼Δ r� r pred

� �
q� qpred
� �y� 	

¼ C rq � Xr D11X
y
q þ D12Y

y
q

� �h

þYr D21X
y
q þ D22Y

y
q

� �i
: ð36Þ

18. The validation metric V :

V ¼Δ χ2

¼ rc � rmð ÞyD11 rc � rmð Þ
þ 2 rc � rmð ÞyD12 qc � qmð Þ
þ qc � qmð ÞyD22 qc � qmð Þ : ð37Þ

The validation metric V can be evaluated directly
from the originally given data (i.e., from given para-
meters and responses, together with their original
uncertainties). The validation metric V is distributed
according to the χ2 (chi-square)-distribution with n
degrees of freedom of the continuous variable
x; 0 � x < 1 and is defined as

P x < χ2 < xþ dx
� �

dx ¼ 1

2n=2Γ n=2ð Þ x
n=2�1e�x=2dx;

x > 0; n ¼ 1; 2 ; . . .ð Þ : ð38Þ

The mean and variance of x are hxi ¼ n and var xð Þ ¼ 2n.
Since the χ2-distribution is a measure of the deviation of
a true distribution (in this case, the distribution of experi-
mental responses) from the hypothetic one (in this case, a
Gaussian), the value of V ¼ χ2 computed using Eq. (37)
provides a very valuable quantitative indicator for inves-
tigating the agreement between the computed and experi-
mental responses, measuring essentially the consistency
of the experimental responses with the model parameters.

The various quantities appearing in Eqs. (20) through
(37) are defined as follows:

1. The matrices Srα α0; β0
� �

, Srβ α0; β0
� �

,

Sqα α0; β0
� �

, and Sqβ α0; β0
� �

comprise first-order
response-derivatives with respect to the model para-
meters, computed at the nominal parameter values

α0; β0
� �

, and are defined as follows:

SNr�Nα
rα ;

qr1
qα1

� � � qr1
qαNα

..

. . .
. ..

.

qrNr
qα1

� � � qrNr
qαNα

2
6664

3
7775; ð39aÞ

S
Nr�Nβ

rβ ;

qr1
qβ1

� � � qr1
qβNβ

..

. . .
. ..

.

qrNr
qβ1

� � � qrNr
qβNβ

2
66664

3
77775 ð39bÞ
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S
Nq�Nα
qα ;

qq1
qα1

� � � qq1
qαNα

..

. . .
. ..

.

qqNq
qα1

� � � qqNq
qαNα

2
6664

3
7775; ð40aÞ

S
Nq�Nβ

qβ ;

qq1
qβ1

� � � qq1
qβNβ

..

. . .
. ..

.

qqNq
qβ1

� � � qqNq
qβNβ

2
66664

3
77775 : ð40bÞ

2. The vectors r d α0; β0
� �

and qd α0; β0
� �

measure
the differences (deviations) between the computed and
measured responses, and are defined as follows:

rd α0; β0
� � ¼Δ rc α0; β0

� �� rm

and

qd α0; β0
� � ¼Δ qc α0; β0

� �� qm :

ð41Þ

3. The matrix Drr, having dim Drr ¼ Nr � Nrð Þ,
is actually the covariance matrix of the vector of response
deviations for model A, i.e.,

Drr ¼Δ Srα C ααS
y
rα þ C αβS

y
rβ � C αr

� �

þ Srβ C y
αβS

y
rα þ C ββS

y
rβ � C βr

� �

� C y
αrS

y
rα � C y

βrS
y
rβ þ C rr

¼ r d α0; β0
� �

r d α0; β0
� �� �y� 	

:

ð42Þ

4. The matrix Dqq, having dim Dqq ¼ Nq � Nq

� �
, is

actually the covariance matrix of the vector of response
deviations for model B, i.e.,

Dqq ¼Δ Sqα C ααS
y
qα þ C αβS

y
qβ � C αq

� �

þ Sqβ C y
αβS

y
qα þ C ββS

y
qβ � C βq

� �

� C y
αqS

y
qα � C

y
βqS

y
βq þ C qq

¼ hqd α0; β0
� �

qd α0; β0
� �� �yi :

ð43Þ

5. The matrix Drq ¼ D
y
rq, having dim Dqr ¼ D

y
rq ¼

Nq � Nr

� �
, is actually the correlation matrix between

the vector of response deviations for model A and
model B, i.e.,

Dqr ¼Δ Sqα C ααS
y
rα þ C αβS

y
rβ � C αr

� �

þ Sqβ C y
αβS

y
rα þ C ββS

y
rβ � C βr

� �

� C y
αqS

y
rα � C y

βqS
y
rβ þ C y

rq

¼ hr d α0; β0
� �

qd α0; β0
� �� �yi ¼ Dyrq

ð44Þ

and

Drq ¼Δ Srα C ααS
y
qα þ C αβS

y
qβ � C αq

� �

þ Srβ C y
αβS

y
qα þ C ββS

y
qβ � C βq

� �

� C y
αrS

y
qα � C y

βrS
y
qβ þ C rq

¼ hqd α0; β0
� �

r d α0; β0
� �� �yi :

ð45Þ

6. The matrices D11, D12, and D22 are defined as
follows:

D11 ¼Δ D�1
rr þ D�1

rr DrqD22D
y
rqD

�1
rr ; ð46Þ

D12 ¼Δ �D�1
rr DrqD22 ; ð47Þ

D
y
12 ¼Δ �D22D

y
rqD

�1
rr ; ð48Þ

and

D22 ¼Δ Dqq � DyrqD�1
rr Drq

� ��1
: ð49Þ

7. The vectors Xα, Yα, Xβ, Yβ, Xr, Yr, Xq, and Yq are
defined as follows:

Xα ¼Δ C ααS
y
rα þ C αβS

y
rβ � C αr ; ð50Þ

Yα ¼Δ C ααS
y
qα þ C αβS

y
qβ � C αq ; ð51Þ

Xβ ¼Δ C
y
αβS

y
rα þ C ββS

y
rβ � C βr ; ð52Þ

Yβ ¼Δ C βαS
y
qα þ C ββS

y
qβ � C βq ; ð53Þ

Xr ¼Δ C y
αrS

y
rα þ C

y
βrS

y
rβ � C rr ; ð54Þ
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Yr ¼Δ C y
αrS

y
qα þ C

y
βrS

y
qβ � C rq ; ð55Þ

Xq ¼Δ C y
αqS

y
rα þ C

y
βqS

y
rβ � C y

rq ; ð56Þ

and

Yq ¼Δ C y
αqS

y
qα þ C

y
βqS

y
qβ � C qq : ð57Þ

II.C. Discussion and Particular Cases

The derivations in Sec. II.B were carried out in the
response space because in large-scale practical problems,
the number of measured responses is smaller than the
number of model parameters. The only matrix inversions
required are the inversion of the matrix Drr of size Nr in
Eq. (46) and the inversion of the matrix

Dqq � D
y
rqD�1

rr Drq

� �
, which is of size Nq in Eq. (49).

Both of these matrix inversions are performed in the
respective response spaces.

The PM-CMPS methodology can also be used if
one starts with the data assimilation and model calibra-
tion for one of the models (either model A or model B)
and subsequently couples the second model to the first
one. Without the PM-CMPS methodology, when the
second model (e.g., model B) is coupled to the first one
(e.g., model A), both models would have to be calibrated
anew, simultaneously, and the work performed initially
for calibrating model A alone would become useless.
Using the PM-CMPS methodology, however, the work
initially performed for calibrating model A would not
become useless, but would simply be augmented by the
specific additional terms arising from model B, thus
performing PM-CMPS in a sequential and more efficient
way.

It is also important to note that the explicit
separation, in Eq. (37), of contributions from model
A and model B to the overall validation metric V
enables the explicit evaluation of adding or subtract-
ing measured responses. Large contributions to V
indicate that the respective responses may be incon-
sistent or discrepant, and such discrepancies warrant
further investigations.

It often happens in practice that, after one has
already performed a model calibration, e.g., using
model A (involving Nα model parameters αn and Nr

experimentally measured responses ri), additional mea-
surements may become available and/or additional para-
meters (which were not considered in the initial data

assimilation/model calibration/predictive modeling pro-
cedure) may need to be taken into account (e.g., model
parameters for which quantified uncertainties became
available only after the initial data assimilation/model
calibration/predictive modeling procedure was already
performed), all for the same model A. The PM-CMPS
predictive modeling methodology can also be used as a
most efficient procedure for systematically adding or
subtracting responses and/or parameters for performing
a subsequent data assimilation/model calibration/predic-
tive modeling procedure on the same model, without
“wasting” the information already obtained in previous
predictive modeling computations that involved a differ-
ent (higher or lower) number of responses and/or model
parameters. Adding and/or subtracting measurements
(responses) and/or model parameters to the same
model without needing to discard previous predictive
modeling computations are described in Secs. III.C.1,
III.C.2, and III.C.3 as particular cases of the general
PM-CMPS methodology.

II.C.1. Predictive Modeling for a Single Multi-Physics
Model

In the case of applying the PM-CMPS methodology
for the predictive modeling of a single multi-physics
model (e.g., model A, involving Nα model parameters
αn and Nr experimentally measured responses ri), the
predictive modeling equations Eqs. (20) through (37)
reduce to the final results presented originally by
Cacuci and Ionescu-Bujor,3 namely,

α pred ¼ α0 � C ααS
y
rα � C αr

� �
Drr½ ��1r d α0

� �
; ð58Þ

r pred ¼ r m � C y
αrS

y
rα � C rr

� �
Drr½ ��1r d α0

� �
; ð59Þ

C pred
αα ¼C αα � C ααS

y
rα�C αr

� �
Drr½ ��1 C ααS

y
rα�C αr

� �y
;

ð60Þ

C pred
rr ¼ C rr � C y

αrS
y
rα �C rr

� �
Drr½ ��1 Cy

αrS
y
rα �C rr

� �y
;

ð61Þ

and

C pred
αr ¼ C αr � C ααS

y
rα �C αr

� �
Drr½ ��1 Cy

αrS
y
rα �C rr

� �y
ð62Þ
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Note that if the model is perfect (i.e., C αα ¼ 0 and
C αr ¼ 0), then Eqs. (58) through (62) would yield α pred ¼
α0 and r pred ¼ r c α0; β0

� �
, predicted perfectly without any

accompanying uncertainties (i.e., C pred
rr ¼ 0, C pred

αα ¼ 0,
and C pred

αr ¼ 0). In other words, for a perfect model, the
PM-CMPS methodology predicts values for the responses
and the parameters that coincide with the model’s values
(assumed to be perfect), and the experimental measure-
ments would have no effect on the predictions (as would
be expected, since imperfect measurements could not pos-
sibly improve the perfect model’s predictions).

On the other hand, if the measurements are perfect
(i.e., C rr ¼ 0 and C αr ¼ 0), but the model is imperfect,
then Eqs. (58) through (62) would yield α pred ¼ α0 � C αα

Syrα SrαC ααS
y
rα

h i�1

r d α0
� �

;C pred
αα ¼ C αα � C αα Syrα SrαC½

ααS
y
rα��1SrαC αα, r pred ¼ r m, C pred

rr ¼ 0, and C pred
αr ¼ 0. In

other words, in the case of perfect measurements, the PM-
CMPS predicted values for the responses would coincide
with the measured values (assumed to be perfect), but the
model’s uncertain parameters would be calibrated by taking
the measurements into account to yield improved nominal
values and reduced parameter uncertainties.

II.C.2. Predictive Modeling for Model A with β Additional
Parameters, But No Additional Responses

In this case, the predictive modeling formulation in
the response space allows the consideration of additional
parameters for a model without increasing the size of the
matrix Drr to be inverted. This is clearly demonstrated as
Eqs. (20) through (57) become

Drq ¼ 0 ; Dqr ¼ 0 ; Dqq ¼ 0 ; ð63Þ

Drr ¼ Srα CααS
y
rα þ CαβS

y
rβ � Cαr

� �

þSrβ C
y
αβS

y
rα þ CββS

y
rβ � Cβr

� �

�C
y
αrS

y
rα � C

y
βrS

y
rβ þ Crr ;

ð64Þ

Xα ¼Δ C ααS
y
rα þ C αβS

y
rβ � C αr ; ð65Þ

Xβ ¼Δ C y
αβS

y
rα þ C ββS

y
rβ � C βr ; ð66Þ

Xr ¼Δ C y
αrS

y
rα þ C

y
βrS

y
rβ � C rr ; ð67Þ

Xq ¼Δ 0; Yα ¼Δ 0; Yr ¼Δ 0; Yβ ¼Δ 0; Yq ¼Δ 0 ; ð68Þ

D11 ¼Δ D�1
rr ; D12 ¼ 0; Dy12 ¼ 0; Dy12 ¼ 0; D22 ¼ 0 ;

ð69Þ

α pred ¼ α0 � XαD11r
d α0; β0
� �

; ð70Þ

β pred ¼ β0 � XβD11r
d α0; β0
� �

; ð71Þ

r pred ¼ r m � XrD11r
d α0; β0
� �

; ð72Þ

C pred
αα ¼ C αα � XαD11X

y
α ; ð73Þ

C pred
rr ¼ C rr � XrD11X

y
r ; ð74Þ

C pred
αr ¼ C αr � XαD11X

y
r ; ð75Þ

C opt
ββ ¼ C ββ � XβD11X

y
β ; ð76Þ

C pred
αβ ¼ C αβ � XαD11X

y
β ; ð77Þ

and

C pred
βr ¼ C βr � XβD11X

y
r : ð78Þ

II.C.3. Predictive Modeling for Model A with Q Additional
Responses, But No Additional Parameters

In this case, Eqs. (20) through (57) become

Drr ¼ SrαC ααS
y
rα � SrαCαr � CyαrSyrα

þ Crr; Dim Drrð Þ ¼ Nr � Nrð Þ;
ð79Þ

Drq ¼ SrαC ααS
y
qα � SrαC αq � C y

αrS
y
qα

þ C rq;Dim Drq

� � ¼ Nr � Nq

� �
;

ð80Þ

Dqr ¼ SqαCααS
y
rα � CyαqSyrα � SqαCαr

þ Cyrq;Dim Dqr

� � ¼ Nq � Nr

� �
;

ð81Þ

Dqq ¼ SqαCααS
y
qα � SqαCαq � CyαqSyqα

þ Cqq;Dim Dqq

� � ¼ Nq � Nq

� �
;

ð82Þ
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Xα ¼Δ C ααS
y
rα � C αr ; ð83Þ

Yα ¼Δ C ααS
y
qα � C αq ; ð84Þ

Xβ ¼Δ 0; Yβ ¼Δ 0 ; ð85Þ

Xr ¼Δ C y
αrS

y
rα � C rr ; ð86Þ

Yr ¼Δ C y
αrS

y
qα � C y

rq ð87Þ

Xq ¼Δ C y
αqS

y
rα � C y

rq ; ð88Þ

Yq ¼Δ C y
αqS

y
qα � C qq ; ð89Þ

α pred ¼ α0 � XαD11 þ YαD
y
12

h i
r d α0; β0

� �
� XαD12 þ YαD22½ �qd α0; β0

� �
; ð90Þ

r pred ¼ r m � XrD11 þ YrD
y
12

h i
r d α0; β0

� �
� XrD12 þ YrD22½ �qd α0; β0

� �
; ð91Þ

qpred ¼ qm � XqD11 þ YqD
y
12

h i
r d α0; β0

� �
� XqD12 þ YqD22

� �
qd α0; β0
� �

; ð92Þ

Cpred
αα ¼ Cαα � Xα D11X

y
α þ D12Y

y
α

� �h

þ Yα D21X
y
α þ D22Y

y
α

� �i
;

ð93Þ

Cpred
rr ¼ Crr � Xr D11X

y
r þ D12Y

y
r

� �h

þ Yr D21X
y
r þ D22Y

y
r

� �i
;

ð94Þ

Cpred
αr ¼ Cαr � Xα D11X

y
r þ D12Y

y
r

� �h

þ Yα D21X
y
r þ D22Y

y
r

� �i
;

ð95Þ

Cpred
qq ¼ Cqq � Xq D11X

y
q þ D12Y

y
q

� �h

þ Yq D21X
y
q þ D22Y

y
q

� �i
;

ð96Þ

Cpred
αq ¼ Cαq � Xα D11X

y
q þ D12Y

y
q

� �h

þ Yα D21X
y
q þ D22Y

y
q

� �i
;

ð97Þ

Cpred
rq ¼ Crq � Xr D11X

y
q þ D12Y

y
q

� �h

þ Yr D21X
y
q þ D22Y

y
q

� �i
;

ð98Þ

and

C pred
αβ ¼ 0; C opt

ββ ¼ 0; C pred
βr ¼ 0; C opt

βq ¼ 0 : ð99Þ

Note also that (to first order in response sensitivities) the
covariance matrices of the computed responses arising
from the uncertainties in the model parameters become

C comp
rr ¼Δ r� r c α0; β0

� �� �
r� r c α0; β0

� �� �y� 	

¼ SrαC ααS
y
rα ;

ð100Þ

C comp
qq ¼Δ q� qc α0; β0

� �� �
q� qc α0; β0

� �� �y� 	

¼ SqαC ααS
y
qα ;

ð101Þ
and

C comp
rq ¼Δ r� r c α0; β0

� �� �
q� qc α0; β0

� �� �y� 	

¼ SrαC ααS
y
qα :

ð102Þ

III. MULTI-PRED CODE MODULE

The equations expressing the results of the
PM-CMPS methodology developed by Cacuci1 namely,
Eqs. (20) through (57), have been programed in the com-
putational software module MULTI-PRED. All routines
in MULTI-PRED are written in Fortran 90 and are com-
patible with most Linux systems, performing predictive
modeling computations for the following four cases:

Case 1: One Multi-Physics Model—predictive modeling
solely for model A with Na model parameters and
Nr measured responses

Case 2: One Multi-Physics Model with Additional
Model Parameters—predictive modeling for
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model A with Nb additional model parameters,
but no additional responses

Case 3: One Multi-Physics Model with Additional
Model Responses—predictive modeling for
model A with Nq additional responses, but no
additional parameters

Case 4: Two Coupled Multi-Physics Models—predictive
modeling for model A coupled with model B.

III.A. Fortran Source Code for the Program
MULTI-PRED

The program MULTI-PRED includes the following
routines and modules:

1. main program: multi-pred.f90

2. module: ModuleGlobalParameters.f90

3. module: ModuleIO.f90

4. module: ModuleErrors.f90

5. subroutine: Files.f90

6. module: ModuleFiles.f90

7. subroutine: ReadInput.f90

8. module: ModuleReadWrite.f90

9. subroutine: MultiPredSolver.f90

10. module: ModuleMultiPred.f90

11. module: ModuleLapack.f90

The structure of the MULTI-PRED software module
is organized as shown in Fig. 1.

III.B. Directories

The computational software module MULTI-PRED
comprises the following directories:

1. multi-pred/source/: This folder contains the
source codes.

2. multi-pred/examples/: This folder contains five
examples specified in the following subfolders:

a. ../Neutron_Diffusion_Model_Case_1/: This
folder contains the input/output (I/O) files
for MULTI-PRED case 1 for a neutron
diffusion model.

b. ../Cooling_Tower_Model_Case_1/: This folder
contains the I/O files for MULTI-PRED case 1
for the SRNL cooling tower model.

c. ../Cooling_Tower_Model_Case_2/: This
folder contains the I/O files for MULTI-
PRED case 2 for the SRNL cooling tower
model.

d. ../Cooling_Tower_Model_Case_3/: This folder
contains the I/O files for MULTI-PRED case 3
for the SRNL cooling tower model.

e. ../Cooling_Tower_Model_Case_4/: This folder
contains the I/O files for MULTI-PRED case 4
for the SRNL cooling tower model.

Multi-Pred.f90

Files.f90 ReadInput.f90 MultiPredSolver.f90

ModuleGlobalParameters.f90ModuleIO.f90

ModuleLapack.f90

ModuleMultiPred.f90ModuleReadWrite.f90ModuleFiles.f90

ModuleErrors.f90

Fig. 1. MULTI-PRED code structure.
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3. multi-pred/matrix_positive_definite_test/: This
folder contains the source code for a standalone program
used to test if a symmetric matrix is positive definite (SPD).

Note that the covariance matrices C aaðNa � NaÞ,
C rrðNr � NrÞ, C bbðNb � NbÞ, and C qqðNq � NqÞ must
be SPD matrices. This program computes the Cholesky
factorization of the matrix being tested. If it can be
factorized, the program returns a flag indicating that the
tested matrix is SPD. Running this test standalone pro-
gram is optional, since the Cholesky factorization has
also been implemented in MULTI-PRED. Also included
in this folder is a large-scale matrix used for the SPD test.
This matrix is a large SPD matrix, with a seemingly
random sparsity pattern. It has a dimension of 60 000 ×
60 000 with 410 077 nonzero elements.a

III.C. Code Compilation and Execution

Compilation and execution are accomplished as follows:

1. Compile the software program in Linux. Enter
the multi-pred/source/ directory and use the command
make. An executable named multi-pred will be generated
under the source directory. The compiler used in the
makefile is ifort (version 12.1.6 and above). It can also
be compiled with gfortran (version 4.47 and above). An
example makefile with the gfortran compiler, named
makefile.gfortran, is also included in the source directory.

2. Run the program. To run the program, copy the
executablemulti-pred into the example directories, then use
the command: /multi-pred superfile.inpwhere the argument
superfile.inp contains all the I/O file names. Output files
will be generated in the respective example folders.

III.D. Input and Output File Organization

This section describes the I/O files within the MULTI-
PRED module.

III.D.1. Super-File

The MULTI-PRED super-file is a text file that contains
the names of I/O files and organizes the individual files for I/O
operations. This super-file is read from the command line
(UNIT = 5) as an argument. The first line of the super-file is
reserved for an identifier card, MultiPredSup. After the

identifier line, each subsequent line is preceded by a category
code and a file name. The category code and file name have to
be enclosed in single quotes. The file names can be changed
by the user. The second line of the super-file is also reserved
for the dims category; the corresponding input file defines
the dimensions of the matrices and vectors used in
MULTI-PRED. The lines after the second line are for data
files. There are no restrictions regarding the order of the data
files and their corresponding categories. Table I shows the
format and complete list of super-files for MULTI-PRED
case 4: Two Coupled Multi-Physics Models.

TABLE I

MultiPredSup Super-File Format for MULTI-PRED
Case 4: Two Coupled Multi-Physics Models

Category File Name

‘dims’ ‘dimensions.inp’
‘a_nom’ ‘a.inp’
‘r_mea’ ‘rm.inp’
‘r_com’ ‘rc.inp’
‘C_aa’ ‘Caa.inp’
‘C_ar’ ‘Car.inp’
‘C_rr’ ‘Crr.inp’
‘S_ra’ ‘Sra.inp’
‘b_nom’ ‘b.inp’
‘q_mea’ ‘qm.inp’
‘q_com’ ‘qc.inp’
‘C_bb’ ‘Cbb.inp’
‘C_bq’ ‘Cbq.inp’
‘C_qq’ ‘Cqq.inp’
‘S_qb’ ‘Sqb.inp’
‘C_ab’ ‘Cab.inp’
‘C_aq’ ‘Caq.inp’
‘C_br’ ‘Cbr.inp’
‘C_rq’ ‘Crq.inp’
‘S_rb’ ‘Srb.inp’
‘S_qa’ ‘Sqa.inp’
‘a_BE’ ‘aBE.out’
‘r_BE’ ‘rBE.out’
‘C_aaBE’ ‘CaaBE.out’
‘C_rrBE’ ‘CrrBE.out’
‘C_arBE’ ‘CarBE.out’
‘Crr_comp’ ‘Crrcomp.out’
‘b_BE’ ‘bBE.out’
‘q_BE’ ‘qBE.out’
‘C_bbBE’ ‘CbbBE.out’
‘C_qqBE’ ‘CqqBE.out’
‘C_bqBE’ ‘CbqBE.out’
‘Cqq_comp’ ‘Cqqcomp.out’
‘C_abBE’ ‘CabBE.out’
‘C_aqBE’ ‘CaqBE.out’
‘C_brBE’ ‘CbrBE.out’
‘C_rqBE’ ‘CrqBE.out’
‘Crq_comp’ ‘Crqcomp.out’
‘chi2’ ‘chi2.out’

a Refer to the following website http://www.cise.ufl.edu/research/
sparse/matrices/Andrews/Andrews for detailed information about
this matrix.
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TABLE II

Summary of I/O Files for MULTI-PRED Case 4: Two Coupled Multi-Physics Models

File Unit I/O
Corresponding
Vector/Matrix Description

superfile.inp 5 Input File organization
dimensions.inp 20 Input Defines the case selection and dimensions control
a.inp 21 Input αðNaÞ Nominal values of Na parameters of model A
rm.inp 22 Input rmðNrÞ Nominal values of Nr measured responses of model A
rc.inp 23 Input rcðNrÞ Nominal values of Nr computed responses of model A
Caa.inp 24 Input C aaðNa � NaÞ Covariance matrix of Na parameters of model A
Car.inp 25 Input C arðNa � NrÞ Correlations between Na parameters and Nr responses of

model A
Crr.inp 26 Input C rrðNr � NrÞ Covariance matrix of Nr responses of model A
Sra.inp 27 Input SraðNr � NaÞ Absolute sensitivities of Nr responses of model A with

respect to Na parameters of model A
b.inp 31 Input bðNbÞ Nominal values of Na parameters of model B
qm.inp 32 Input qmðNqÞ Nominal values of Nq measured responses of model B
qc.inp 33 Input qcðNqÞ Nominal values of Nq computed responses of model B
Cbb.inp 34 Input C bbðNb � NbÞ Covariance matrix of Nb parameters of model B
Cbq.inp 35 Input C bqðNb � NqÞ Correlations between Nb parameters and Nq responses of

model B
Cqq.inp 36 Input C qqðNq � NqÞ Covariance matrix of Nq responses of model B
Sqb.inp 37 Input SqbðNq � NbÞ Absolute sensitivities of Nq responses of model B with

respect to Nb parameters of model B
Cab.inp 41 Input C abðNa � NbÞ Correlation matrix between the Na parameters of model A

and the Nb parameters of model B
Caq.inp 42 Input C aqðNa � NqÞ Correlation matrix between the Na parameters and of model

A and Nq responses of model B
Cbr.inp 43 Input C brðNb � NrÞ Correlation matrix between the Nb parameters of model B

and Nr responses of model A
Crq.inp 44 Input C rqðNr � NqÞ Correlation matrix of between Nr responses of model A and

Nq responses of model B
Srb.inp 45 Input SrbðNr � NbÞ Absolute sensitivities of Nr responses of model A with

respect to Nb parameters of model B
Sqa.inp 46 Input SqaðNq � NaÞ Absolute sensitivities of Nq responses of model B with

respect to Na parameters of model A
aBE.out 51 Output αbeðNaÞ Best-estimate nominal values of parameters of model A
rBE.out 52 Output r beðNrÞ Best-estimate nominal values of responses of model A
CaaBE.out 53 Output C be

aaðNa � NaÞ Predicted covariance matrix of Na parameters of model A

CrrBE.out 54 Output C be
rr ðNr � NrÞ Predicted covariance matrix of Nr responses of model A

CarBE.out 55 Output C be
arðNa � NrÞ Predicted correlation matrix between the Na parameters and

Nr responses of model A
Crrcomp.out 56 Output C comp

rr ðNr � NrÞ Covariance matrix of Nr computed responses of model A

bBE.out 61 Output bbeðNbÞ Best-estimate nominal values of parameters of model B
qBE.out 62 Output qbeðNqÞ Best-estimate nominal values of responses of model B
CbbBE.out 63 Output C be

bbðNb � NbÞ Predicted covariance matrix of Nb parameters of model B

CqqBE.out 64 Output C be
qqðNq � NqÞ Predicted covariance matrix of Nq responses of model B

CbqBE.out 65 Output C be
bqðNb � NqÞ Predicted correlation matrix between the Nb parameters and

Nq responses of model B
Cqqcomp.out 66 Output C comp

qq ðNq � NqÞ Covariance matrix of Nq computed responses of model B

CabBE.out 71 Output C be
abðNa � NbÞ Predicted correlation matrix between the Na parameters of

model A and the Nb parameters for model B

(Continued)
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III.D.2. Contents and Organization of I/O Files

The file dimensions.inp defines the following impor-
tant control variables.

CaseNumber—Multi-Pred case selection:

Na: number of parameters for model A
Nr: number of responses for model A
Nb: number of additional parameters for model A

(case 2) or the number of parameters of model
B (case 4)

Nq: number of additional responses for model A
(case 3) or the number of responses of model
B (case 4).

All data files are in the sparse triplet matrix file format,
which is a commonly used ASCII file format for storing
sparse matrices and is compatible with most files in the
Matrix Market format.

The sparse triplet data structure simply records, for
each nonzero entry of the matrix, the row, column, and
value. The general format is as follows:

Line 1: M N Nz
Line 2: Row_index Col_index Val
Line 3: Row_index Col_index Val
… … … …
Line Nz + 1: Row_index Col_index Val

In the above format, the quantities M and N denote,
respectively, the number of rows and columns in the original
full matrix; Nz denotes total number of nonzero elements in
the matrix; Row_index and Col_index denote the row and
column indices of each nonzero element; and VAL denotes
the value of the nonzero element.

Table II describes the contents of the I/O files speci-
fied within the MULTI-PRED super-files for case 4: Two
Coupled Multi-Physics Models.

III.D.3. Input Data Files for MULTI-PRED Case 4

Table III presents the 20 input files required for
MULTI-PRED case 4.

TABLE II (Continued)

File Unit I/O
Corresponding
Vector/Matrix Description

CaqBE.out 72 Output C be
aqðNa � NqÞ Predicted correlation matrix between the Na parameters and

of model A and Nq responses of model B
CbrBE.out 73 Output C be

brðNb � NrÞ Predicted correlation matrix between the Nb parameters of
model B and Nr responses of model A

CrqBE.out 74 Output C be
rqðNr � NqÞ Predicted correlation matrix of between Nr responses of

model A and Nq responses of model B
Crqcomp.out 75 Output C comp

rq ðNr � NqÞ Correlation matrix of Nr computed responses of model A
and Nq computed responses of model B

chi2.out 76 Output χ2, scalar Value of the consistency indicator

TABLE III

Input Data Files for MULTI-PRED Case 4

Input Data Files for Model A
Input Data Files for the Coupled Matrices

Between Model A and Model B Input Data Files for Model B

a.inp – b.inp
rm.inp – qm.inp
rc.inp – qc.inp
Caa.inp Cab.inp Cbb.inp
Car.inp Caq.inp, Cbr.inp Cbq.inp
Crr.inp Crq.inp Cqq.inp
Sra.inp Sqa.inp, Srb.inp Sqb.inp
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