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Abstract — This work presents an application of Cacuci’s Second-Order Adjoint Sensitivity Analysis
Methodology (2nd-ASAM) to the simplified Boltzmann equation that models the transport of uncollided particles
through a medium to compute efficiently and exactly all of the first- and second-order derivatives (sensitivities) of
a detector’s response with respect to the system’s isotopic number densities, microscopic cross sections, source
emission rates, and detector response function. The off-the-shelf PARTISN multigroup discrete ordinates code is
employed to solve the equations underlying the 2nd-ASAM. The accuracy of the results produced using PARTISN
is verified by using the results of three test configurations: (1) a homogeneous sphere, for which the response is
the exactly known total uncollided leakage, (2) a multiregion two-dimensional (r-z) cylinder, and (3) a two-region
sphere for which the response is a reaction rate. For the homogeneous sphere, results for the total leakage as well
as for the respective first- and second-order sensitivities are in excellent agreement with the exact benchmark
values. For the nonanalytic problems, the results obtained by applying the 2nd-ASAM to compute sensitivities are
in excellent agreement with central-difference estimates. The efficiency of the 2nd-ASAM is underscored by the
fact that, for the cylinder, only 12 adjoint PARTISN computations were required by the 2nd-ASAM to compute all
of the benchmark’s 18 first-order sensitivities and 224 second-order sensitivities, in contrast to the 877 PARTISN
calculations needed to compute the respective sensitivities using central finite differences, and this number does
not include the additional calculations that were required to find appropriate values of the perturbations to use for
the central differences.

Keywords — Second-order adjoint sensitivity analysis, particle and radiation transport, response variance
and skewness.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

This work presents the application of the Second-Order
Adjoint Sensitivity Analysis Methodology (2nd-ASAM),

developed byCacuci,1,2 to the simplifiedBoltzmann equation
describing the transport of uncollided neutrons or gamma rays
in a medium to compute all of the first- and second-order
derivatives (also known as sensitivities) of a detector response
with respect to the system’s isotopic number densities, micro-
scopic cross sections, source emission rates, and detector
response parameters. The 2nd-ASAM is the most efficient
methodology for computing exactly and efficiently the first-
order sensitivities (using a single adjoint computation) and the
second-order sensitivities (using at most as many large-scale
computations as there are parameters in the system under
investigation), since the number of large-scale computations
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using the 2nd-ASAM increases only linearly with the number
of system parameters. In contradistinction, the number of
large-scale computations needed by all of the other methods
currently used for computing higher-order response sensitiv-
ities increase exponentially with the number of system
parameters.

The second-order sensitivities contribute the leading cor-
rection terms to the response’s expected value, causing it to
differ from the response’s computed value.3–5 The second-
order sensitivities also contribute the leading terms to the
response’s third-order moments, which determine the skew-
ness of a response. Events occurring in a response’s long and/
or short tails, which are characteristic of rare but decisive
events (e.g., major accidents, catastrophes), would likely be
missed if the second-order sensitivities were ignored.

This paper is organized as follows. Section II presents
the Boltzmann transport equation describing the transport of
uncollided particles within a finite medium and defining the
physical system’s parameters and responses. Section III
presents the construction of the First-Level Adjoint
Sensitivity System (1st-LASS) for the transport equation.
The 1st-LASS is used for the efficient computation of the
first-order response sensitivities to variations in model para-
meters, and it serves as the basis for the construction of the
Second-Level Adjoint Sensitivity System (2nd-LASS). The
actual construction of the 2nd-LASS for the transport
equation is presented in Sec. IV, which also presents the
specific expressions for computing exactly and efficiently
all of the second-order response sensitivities to variations in
model parameters. Sections V, VI, and VII present numer-
ical results for test problems in spherical and cylindrical
geometries. The sensitivities of the total uncollided leakage
for the homogeneous sphere (Sec. V) can be computed
analytically,6,7 thus serving as a stringent verification of
the numerical accuracy produced by the off-the-shelf
PARTISN multigroup discrete ordinates code,8 which has
been used to solve the equations underlying the 2nd-ASAM.
Section VIII summarizes and concludes this work.

II. THE FORWARD BOLTZMANN EQUATION FOR
UNCOLLIDED PARTICLES

The angular flux φ r;Ωð Þ of uncollided neutrons or
gamma rays in a finite medium placed in vacuum satisfies
the transport (Boltzmann) equation with no scattering
source6:

Ω � �φ r;Ωð Þ þ Σt rð Þφ r;Ωð Þ ¼ q rð Þ ; ð1Þ

subject to the vacuum boundary condition that specifies
there is no incoming flux of particles:

φ rs; Ωð Þ ¼ 0; rs 2 qV ; Ω � n < 0 ; ð2Þ

where

Ω = unit vector in the direction of the particle’s
(neutron or photon) motion

r = particle’s position

Σt rð Þ = total interaction cross section

q rð Þ = particle source density (particles/cubic cen-
timeters/seconds), assumed to be isotropic

V = body’s volume

n = unit outward normal vector at any point
rs 2 qV on the body’s outer surface qV :

The quantity of interest is a detector response, denoted as
R φ;αð Þ, of the form

R φ; αð Þ ¼
ð
dV

ð
4π
dΩ Σd r; Ωð Þφ r; Ωð Þ ; ð3Þ

where Σd r;Ωð Þ models the interaction of the detector
with the incident particles. The detector responses of
particular interest are: (1) the scalar flux at a point, in
which case the detector-interaction function has the form

Σd r;Ωð Þ ¼ δ r� rdð Þ ; ð4Þ

where rd represents the detector’s location, and (2) the
partial current density at a point, in which case the
detector-interaction function has the form

Σd r;Ωð Þ ¼ Ω � nδ r� rdð Þ ; ð5Þ

where n is a unit vector normal to the unit area at rd
through which the partial current density is to be calcu-
lated. Equations (4) and (5) can easily be modified to
compute the flux or partial current density over an entire
surface.

The quantities Σt rð Þ, q rð Þ, and Σd r;Ωð Þ depend not
only on the spatial variable r but also on model para-
meters such as atomic number densities, microscopic
cross sections, and weighting functions. Therefore, it is
convenient to denote generically the model’s parameters
as αj, and to consider that these model parameters are
ordered as the components of a (column) vector of model
parameters denoted as α and defined as

α ¼Δ α1; : : :; αNα½ �y : ð6Þ
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The model parameters are not perfectly well known;
it is considered that their nominal values, which will be

denoted as α0 ¼Δ α01; : : :; α
0
Nα

h iy
, and their corresponding

standard deviations, which will be denoted as

σ ¼Δ σ1; : : :; σNα½ �y, are available. Throughout this paper,
the dagger yð Þ is used to denote transposition and the
superscript zero is used to denote nominal values.

Although the medium in which the neutrons and/
or gamma rays propagate is heterogeneous, the
material properties Σt rð Þ, q rð Þ, and Σd r;Ωð Þ are often
piecewise constant within the various material regions
which make up the respective medium. Usually, the
heterogeneous medium under consideration comprises
Nm layers of materials having piecewise constant
properties within each layer. In such cases, the quan-
tities Σt rð Þ, q rð Þ, and Σd r;Ωð Þ can be represented as
follows:

Σt rð Þ ¼
XNm

j¼1

Cj αð Þ fj rð Þ ; ð7Þ

q rð Þ ¼
XNm

j¼1

Qj αð Þ gj rð Þ ; ð8Þ

and

fj rð Þ ¼ gj rð Þ ¼ H r� rj
� �� H r� rjþ1

� �
;

j ¼ 1; : : :;Nm ;
ð9Þ

where

Cj αð Þ, Qj αð Þ = parameter-dependent coefficients

fj rð Þ, gj rð Þ = corresponding piecewise spatial varia-
tion of the cross sections and sources,
respectively

H r� rj
� �

= customary Heaviside unit-functional

rj = j’th-material interface, with r1
denoting the coordinate(s) of the
innermost material boundary.

When the detector consists of Nd layers of materials
having piecewise constant properties, represented by
interaction coefficients μk αð Þ within each layer, the effec-
tive detector cross section may be represented in a form
similar to Eq. (7), namely

Σd r;Ωð Þ ¼
XNd

k¼1

μk αð Þhk r;Ωð Þ : ð10Þ

In this paper, the space-dependent functions fj rð Þ,
gj rð Þ, and hk r;Ωð Þ, which describe internal bound-
aries, will be considered to be perfectly well known.
Situations with uncertain internal and/or external
boundaries will be considered in subsequent work.
Linear and/or nonlinear spatial dependence of
material properties can also be accommodated by sui-
table definitions of the functions fj rð Þ, gj rð Þ,
and hk r;Ωð Þ.

III. FIRST-LEVEL FORWARD AND ADJOINT SENSITIVITY
SYSTEMS FOR COMPUTING FIRST-ORDER RESPONSE
SENSITIVITIES TO VARIATIONS IN MODEL
PARAMETERS

The nominal value of the angular flux φ0 r;Ωð Þ is
obtained by solving Eqs. (1) and (2) using the nominal
parameter values, i.e., φ0 r;Ωð Þ is the solution of

Ω � �φ0 r;Ωð Þ þ Σ0
t rð Þφ0 r;Ωð Þ ¼ q0 rð Þ ; ð11Þ

subject to the vacuum boundary condition which specifies
that there is no incoming flux of particles:

φ0 rs;Ωð Þ ¼ 0; rs 2 qV ;Ω � n < 0 : ð12Þ

The nominal value of the detector response R0 is obtained
by evaluating Eq. (3) at the nominal flux and parameter
values:

R0 ¼Δ R φ0;α0
� �

¼
ð
dV

ð
4π
dΩ Σ0

d r ;Ωð Þφ0 r;Ωð Þ : ð13Þ

The total sensitivity δR ðφ0;α0; δφ; δαÞ of the detec-

tor response defined in Eq. (3) to variations δα ¼Δ

δα1; : : :; δαNα½ �y in the model parameters, around the
nominal values α0, is obtained by computing the
Gateaux (G-) differential of Eq. (3) at the nominal para-
meter and flux values, which is obtained from
its definition, as follows:
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δRðφ0;α0; δφ; δαÞ ¼Δ d
dε

ð
dV

ð
4π
dΩ ½Σ0

d r;Ωð Þ
�

þ εδΣd r;Ωð Þ�½φ0 r;Ωð Þ þ εδφ r;Ωð Þ�
o
ε¼0

¼ δRðφ0;α0; δαÞ� �
dir þ δRðφ0;α0; δφ; δαÞ� �

ind ;

ð14Þ

where the direct-effect term is defined as

δRðφ;α; δαÞf gdir ¼Δ
ð
dV

ð
4π
δΣd r;Ωð Þφ r;Ωð ÞdΩ ;

ð15Þ

and where the indirect-effect term is defined as

δRðφ;α; δφ;δαÞf gind ¼Δ
ð
dV

ð
4π
dΩ Σd r;Ωð Þδφ r;Ωð Þ :

ð16Þ

The variation δφ r;Ωð Þ that appears in Eq. (16) is the
solution3,5 of the First-Level Forward Sensitivity System
(1st-LFSS), which is derived by G-differentiating Eqs. (1)
and (2) to obtain

Ω � �δφ r;Ωð Þ þ Σ0
t rð Þ δφ r;Ωð Þ

¼ δq rð Þ � δΣt rð Þφ0 r;Ωð Þ ð17Þ

and

δφ rs;Ωð Þ ¼ 0; rs 2 qV ;Ω � n < 0 : ð18Þ

In view of Eqs. (7) through (10), the variations
δΣt rð Þ, δq rð Þ, and δΣd r;Ωð Þ which appear in Eqs. (15)
and (17) are defined as follows:

δΣt rð Þ ¼
XNm

j¼1

XNα

k¼1

qCj αð Þ
qαk

δαk

" #
fj rð Þ ; ð19Þ

δq rð Þ ¼
XNm

j¼1

XNα

k¼1

qQj αð Þ
qαk

δαk

" #
gj rð Þ ; ð20Þ

and

δΣd r;Ωð Þ ¼
XNd

j¼1

XNα

k¼1

qμj αð Þ
qαk

δαk

" #
hj r;Ωð Þ : ð21Þ

The indirect-effect term defined in Eq. (16) can be computed
only after solving the 1st-LFSS, which is computationally

expensive, since the 1st-LFSS would need to be solved anew
for every variation in the model parameters. As is well
known, the computationally expensive evaluation of the
indirect-effect term by using Eq. (16) can be avoided by
expressing this indirect-effect term in terms of the solution
of the 1st-LASS,1,2 which is constructed by implementing the
following sequence of steps:

1. Define the inner product hu r;Ωð Þ;w r;Ωð Þi of
two functions u r;Ωð Þ 2 L2 V �Ωð Þ and w r;Ωð Þ 2
L2 V �Ωð Þ in the Hilbert space L2 V �Ωð Þ of square-
integrable functions, as follows:

hu r;Ωð Þ;w r;Ωð Þi ¼Δ
ð
dV

ð
4π
dΩ u r;Ωð Þw r;Ωð Þ : ð22Þ

2. Form the inner product of Eq. (17) with a yet
undefined function ψ 1ð Þ r;Ωð Þ to obtain

hψ 1ð Þ r;Ωð Þ; Ω � �δφ r;Ωð Þ þ Σ0
t rð Þ δφ r;Ωð Þi

¼ hψ 1ð Þ r;Ωð Þ; δq rð Þ � δΣt rð Þφ0 r;Ωð Þi : ð23Þ

3. For a linear operator L 1ð Þ use the Hilbert space
L2 V �Ωð Þ with the inner product defined in Eq. (22) to

define the formal adjoint operator, denoted as A 1ð Þ, of
L 1ð Þ, through the following relationship:

hψ 1ð Þ; L 1ð Þδφi ¼ hδφ; A 1ð Þψ 1ð Þi þ P 1ð Þ δφ; ψ 1ð Þ
� �

;

ð24Þ

where

L 1ð Þδφ ¼Δ Ω � �δφ r;Ωð Þ þ Σ0
t rð Þ δφ r;Ωð Þ ð25Þ

and

A 1ð Þψ 1ð Þ ¼Δ �Ω � �ψ 1ð Þ r;Ωð Þ
þ Σ0

t rð Þψ 1ð Þ r;Ωð Þ ; ð26Þ

and where the bilinear concomitant P 1ð Þ δφ; ψ 1ð Þ� �
on the

boundary qV � qΩð Þ is defined as

P 1ð Þ δφ;ψ 1ð Þ� �¼Δ ð
Ω�n < 0

dΩ

ð
qV
dA Ω � nj jδφ r;Ωð Þψ 1ð Þ r;Ωð Þ

�
ð
Ω�n > 0

dΩ

ð
qV
dAΩ � nδφ r;Ωð Þψ 1ð Þ r;Ωð Þ :

ð27Þ
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Note that the superscript zero denoting nominal
values will be omitted henceforth in order to simplify
the notation. This simplification should not cause any
loss of clarity, since it will become clear from the context
which quantities are to be evaluated/computed using the
nominal values for the model parameters.

4. Use Eq. (23) in conjunction with the boundary
conditions given in Eq. (18) to construct the following
1st-LASS to be satisfied by the first-level adjoint function

ψ 1ð Þ r;Ωð Þ:

A 1ð Þψ 1ð Þ ¼Δ �Ω � �ψ 1ð Þ r;Ωð Þ þ Σt rð Þψ 1ð Þ r;Ωð Þ
¼ Σd r;Ωð Þ ; ð28Þ

together with the boundary condition

ψ 1ð Þ rs;Ωð Þ ¼ 0 ; rs 2 qV ;Ω � n > 0 ; ð29Þ

which is selected in order to cause the bilinear concomi-

tant P 1ð Þ δφ; ψ 1ð Þ� �
in Eq. (24) to vanish.

5. Use the 1st-LFSS defined by Eqs. (17) and (18)
together with Eqs. (25) and (26) to obtain the following
expression for the indirect-effect term [see Eq. (16)], in
terms of the first-level adjoint function ψ 1ð Þ r;Ωð Þ:

δRðφ;α;ψ 1ð Þ; δαÞ
n o

ind
¼
ð
dV

ð
4π
dΩ ψ 1ð Þ r;Ωð Þ½δq rð Þ

� δΣt rð Þφ r;Ωð Þ� : ð30Þ

As is well known, the 1st-LASS is solved by using
the same numerical method as used for solving the
original Eqs. (1) and (2), except for replacing Ω with
�Ω, and recognizing that the adjoint particles travel
backward, i.e., in the �Ω direction. As is well known,
the 1st-LASS is independent of parameter variations,
so it needs to be solved just once for each particular
form that the source term Σd r;Ωð Þ might have to obtain

the first-level adjoint function ψ 1ð Þ r;Ωð Þ. The indirect-

effect term is computed efficiently once ψ 1ð Þ r;Ωð Þ is
available by performing the integrations (quadratures)
indicated in Eq. (27).

Replacing Eqs. (30) and (15) in Eq. (14) yields the
following expression for the total first-order response
sensitivity in terms of the first-level adjoint func-

tion ψ 1ð Þ r;Ωð Þ:

δRðφ;α; ψ 1ð Þ; δαÞ ¼
ð
dV

ð
4π
dΩ δΣd r;Ωð Þφ r;Ωð Þ

þ
ð
dV

ð
4π
dΩ ψ 1ð Þ r;Ωð Þ δq rð Þ � δΣt rð Þφ r;Ωð Þ½ � :

ð31Þ

The partial first-order response sensitivity to a gen-
eric parameter αi is obtained from Eq. (31) as

S 1ð Þ
m1
ðφ;α; ψ 1ð ÞÞ ¼Δ qRðφ;α;ψ 1ð Þ;δαÞ

qαm1

¼
XNd

k¼1

qμk αð Þ
qαm1

ð
dV

ð
4π
dΩ hk r;Ωð Þφ r;Ωð Þ

þ
XNm

k¼1

qQk αð Þ
qαm1

ð
dV

ð
4π
dΩ ψ 1ð Þ r;Ωð Þgk rð Þ

�
XNm

k¼1

qCk αð Þ
qαm1

ð
dV

ð
4π
dΩ ψ 1ð Þ r;Ωð Þφ r;Ωð Þfk rð Þ;

m1 ¼ 1;: : :; Nα : ð32Þ

In the illustrative examples presented in Secs. V, VI,
and VII and in many other practical instances, the quantities
Σt rð Þ, q rð Þ, and Σd r;Ωð Þ can be represented as follows:

Σt rð Þ ¼
XNm

j¼1

Njσj fj rð Þ ; ð33Þ

q rð Þ ¼
XNm

j¼1

Njqj gj rð Þ ; ð34Þ

and

Σd r;Ωð Þ ¼
XNd

k¼1

λkhk r;Ωð Þ : ð35Þ

The following definitions apply to Eqs. (33), (34),
and (35):

1. Nj represents the atomic number density, σj
denotes the microscopic cross section, and fj rð Þ denotes
the spatial variation, respectively, which characterize the
j’th material contained in the heterogeneous medium
under consideration, while Nm denotes the total number
of materials contained in this medium.

2. qj and gj rð Þ denote the source emission rate, and
respectively, the spatial variation of the respective source
contained in the j’th material within the heterogeneous
medium under consideration.

2ND-ASAM FOR UNCOLLIDED PARTICLES · CACUCI and FAVORITE 109

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 190 · MAY 2018



3. λk and hk r;Ωð Þ denote the scalar interaction coeffi-
cient of neutrons or gamma rays, and respectively, the corre-
sponding spatial and angular variation of this interaction
coefficient within the detector’s k’th material; the total num-
ber of distinct materials within the detector is denoted as Nd.

It follows from Eqs. (33), (34), and (35) that the
variations δq rð Þ, δΣt rð Þ, and δΣd r;Ωð Þ in the model para-
meters Σt rð Þ, q rð Þ, Σd r;Ωð Þ, respectively, have the fol-
lowing expressions:

δΣt rð Þ ¼
XNm

j¼1

δNj

� �
σj þ δσj

� �
Nj

	 

fj rð Þ ; ð36Þ

δq rð Þ ¼
XNm

j¼1

δNj

� �
qj þ δqj

� �
Nj

	 

gj rð Þ ; ð37Þ

and

δΣd r;Ωð Þ ¼
XNd

k¼1

δλkð Þhk r;Ωð Þ ; ð38Þ

where the scalar-valued variations δNj, δσj, δqj, and δλk
are considered to be known. For bookkeeping purposes
for this specific situation, it is convenient to consider that
the model parameters Nj, σj, qj, and λk are ordered as the
components of a (column) vector of model parameters
denoted as α and defined as follows:

α ¼Δ α1; : : :; αNα½ �y ; ð39aÞ

αj ¼Δ Nj for j ¼ 1; : : :;Nm ; ð39bÞ

αNmþj ¼Δ σj for j ¼ 1; : : :;Nm ; ð39cÞ

α2Nmþj ¼Δ qj for j ¼ 1; : : :;Nm ; ð39dÞ

α3Nmþj ¼Δ λj for j ¼ 1; : : :;Nd ; ð39eÞ

and

Nα ¼Δ 3Nm þ Nd : ð39fÞ

Specializing Eq. (32) to the particular case described by
Eqs. (36), (37), and (38) and identifying the terms
corresponding to the various variations δα yields the
following expressions for the respective first-order partial
sensitivities:

S 1ð Þ
i ðφ;α; ψ 1ð ÞÞ ¼Δ qR

qNi

¼� σi

ð
dV

ð
4π
dΩ fi rð Þψ 1ð Þ r;Ωð Þφ r;Ωð Þ

þ qi

ð
dV

ð
4π
dΩ ψ 1ð Þ r;Ωð Þgi rð Þ;

i ¼ 1; : : :;Nm ; ð40Þ

S 1ð Þ
iþNm

ðφ;α; ψ 1ð ÞÞ¼Δ qR
qσi

¼ � Ni

ð
dV

ð
4π
dΩ fi rð Þψ 1ð Þ r;Ωð Þφ r;Ωð Þ;

i ¼ 1; : : :;Nm ; ð41Þ

S 1ð Þ
iþ2Nm

ðα; ψ 1ð ÞÞ ¼Δ qR
qqi

¼ Ni

ð
dV

ð
4π
dΩ ψ 1ð Þ r;Ωð Þgi rð Þ;

i ¼ 1; : : :;Nm ; ð42Þ

and

S 1ð Þ
iþ3Nm

ðφ;αÞ ¼Δ qR
qλi

¼
ð
dV

ð
4π
dΩ φ r;Ωð Þhi r;Ωð Þ;

i ¼ 1; : : :;Nd : ð43Þ

The density derivatives here and everywhere in this paper
are constant-volume partial derivatives.9

IV. SECOND-LEVEL FORWARD AND ADJOINT SENSITIVITY
SYSTEMS FOR COMPUTING SECOND-ORDER
RESPONSE SENSITIVITIES TO VARIATIONS IN MODEL
PARAMETERS

The second-order response sensitivities will be

denoted as S 2ð Þ
m1;m2 ¼Δ

q2R
qαm1qαm2

; m1;m2 ¼ 1; : : : ;Nα;

and will be obtained by applying the 2nd-ASAM devel-
oped by Cacuci,1,2 which relies on the construction of a
2nd-LASS for each of the first-order sensitivities defined
by Eq. (32). Thus, the G-differential of the first-order
sensitivities defined in Eq. (32) yields the following
expression:

δS 1ð Þ
m1
ðφ;α; ψ 1ð Þ; δαÞ ¼ δS 1ð Þ

m1
ðφ;α; ψ 1ð Þ; δαÞ

n o
dir

þ δS 1ð Þ
m1
ðφ;α; ψ 1ð Þ; δαÞ

n o
ind
;

m1 ¼ 1; : : : ;Nα ; ð44Þ
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where

δS 1ð Þ
m1
ðφ;α; ψ 1ð Þ; δαÞ

n o
dir

¼Δ
XNd

k¼1

XNα

j¼1

q2 μk αð Þ
qαm1qαj

δαj

�
ð
dV

ð
4π
dΩ hk r;Ωð Þφ r;Ωð Þ þ

XNm

k¼1

XNα

j¼1

q2Qk αð Þ
qαm1qαj

δαj

�
ð
dV

ð
4π
dΩ ψ 1ð Þ r;Ωð Þgk rð Þ �

XNm

k¼1

XNα

j¼1

q2Ck αð Þ
qαm1qαj

δαj

�
ð
dV

ð
4π
dΩ ψ 1ð Þ r;Ωð Þφ r;Ωð Þfk rð Þ; m1 ¼ 1; : : : ;Nα

ð45Þ

and

δS 1ð Þ
m1
ðφ;α; ψ 1ð Þ;δαÞ

n o
ind

¼Δ
XNd

k¼1

qμk αð Þ
qαm1

�
ð
dV

ð
4π
dΩ hk r;Ωð Þδφ r;Ωð Þ þ

XNm

k¼1

qQk αð Þ
qαm1

�
ð
dV

ð
4π
dΩ δψ 1ð Þ r;Ωð Þgk rð Þ �

XNm

k¼1

qCk αð Þ
qαm1

�
ð
dV

ð
4π
dΩ δψ 1ð Þ r;Ωð Þφ r;Ωð Þ

h
þψ 1ð Þ r;Ωð Þδφ r;Ωð Þ

i
fk rð Þ; m1 ¼ 1 ; : : : ;Nα : ð46Þ

The direct-effect term δS 1ð Þ
m1 ðφ;α; ψ 1ð Þ; δαÞ

n o
dir

can be

computed immediately. On the other hand, the indirect-effect

term δS 1ð Þ
m1 ðφ;α; ψ 1ð Þ; δαÞ

n o
ind

can be computed only after

having obtained the variation δφ r;Ωð Þ in the forward angu-
lar flux and the variation δψ 1ð Þ r;Ωð Þ in the first-level adjoint
function. The function δψ 1ð Þ r;Ωð Þ is the solution of the
system of equations obtained by G-differentiating the
1st-LASS, see Eqs. (28) and (29), which yields

�Ω � �δψ 1ð Þ r;Ωð Þ þ Σt rð Þ δψ 1ð Þ r;Ωð Þ
¼ δΣd r;Ωð Þ � δΣt rð Þψ 1ð Þ r;Ωð Þ ð47Þ

and

δψ 1ð Þ rs;Ωð Þ ¼ 0 ; rs 2 qV ;Ω � n > 0 : ð48Þ

It is evident from Eqs. (47) and (48) that the evalua-

tion of the function δψ 1ð Þ r;Ωð Þ is just as expensive com-
putationally as determining the variation δφ r;Ωð Þ by
solving the 1st-LFSS. The system comprising Eqs. (47),
(48), (17), and (18) is called1,2 the Second-Level Forward

Sensitivity System (2nd-LFSS). To avoid the need for
solving the 2nd-LFSS, the indirect-effect term

δS 1ð Þ
m1 ðφ;α; ψ 1ð Þ; δαÞ

n o
ind

will be expressed in terms of

the 2nd-LASS, which will be constructed by following the
general principles introduced by Cacuci,1,2 comprising
the following sequence of steps:

1. Define the inner product hu 2ð Þ r;Ωð Þ;w 2ð Þ r;Ωð Þi
of two vector-valued functions u 2ð Þ r;Ωð Þ ¼Δ ½u 2ð Þ

1 r;Ωð Þ;
u 2ð Þ
2 r;Ωð Þ�y, with u 2ð Þ

1 r;Ωð Þ 2 L2 V �Ωð Þ, u 2ð Þ
2 r;Ωð Þ 2

L2 V �Ωð Þ, and w 2ð Þ r;Ωð Þ ¼Δ ½w 2ð Þ
1 r;Ωð Þ;w 2ð Þ

2 r;Ωð Þ�y,
with w 2ð Þ

1 r;Ωð Þ 2 L2 V �Ωð Þ, w 2ð Þ
2 r;Ωð Þ 2 L2 V �Ωð Þ,

as follows:

hu 2ð Þ r;Ωð Þ;w 2ð Þ r;Ωð Þi ¼Δ
X2
j¼1

ð
dV

ð
4π
dΩ u 2ð Þ

j r;Ωð Þw 2ð Þ
j r;Ωð Þ : ð49Þ

2. For matrix-valued linear operator L 2ð Þ ¼Δ

L 2ð Þ
11 L 2ð Þ

12

L 2ð Þ
21 L 2ð Þ

22

 !
, define its formal adjoint operator A 2ð Þ ¼Δ

A 2ð Þ
11 A 2ð Þ

12

A 2ð Þ
21 A 2ð Þ

22

 !
through the following relationship:

hw 2ð Þ; L 2ð Þu 2ð Þi ¼ hu 2ð Þ; A 2ð Þw 2ð Þi þ P 2ð Þ u 2ð Þ; w 2ð Þ
� �

;

ð50Þ

where P 2ð Þ u 2ð Þ; w 2ð Þ� �
denotes the corresponding bilinear

concomitant on the boundary qV � qΩð Þ.
3. Apply the definition provided in Eq. (49) to form

the inner product of Eqs. (47) and (17) with a yet unde-

fined function ψ 2ð Þ
m1 r;Ωð Þ ¼Δ ψ 2ð Þ

1;m1
r;Ωð Þ;ψ 2ð Þ

2;m1
r;Ωð Þ

h iy
,

ψ 2ð Þ
1;m1

r;Ωð Þ 2 L2 V �Ωð Þ and ψ 2ð Þ
2;m1

r;Ωð Þ 2 L2 V �Ωð Þ,
to obtain

ð
dV

ð
4π
dΩψ 2ð Þ

1;m1
r;Ωð Þ �Ω ��δψ 1ð Þ r;Ωð Þ

h
þΣt rð Þδψ 1ð Þ r;Ωð Þ

i

þ
ð
dV

ð
4π
dΩψ 2ð Þ

2;m1
r;Ωð Þ Ω ��δφ r;Ωð ÞþΣt rð Þδφ r;Ωð Þ½ �

¼
ð
dV

ð
4π
dΩψ 2ð Þ

1;m1
r;Ωð Þ δΣd r;Ωð Þ� δΣt rð Þψ 1ð Þ r;Ωð Þ

h i

þ
ð
dV

ð
4π
dΩψ 2ð Þ

2;m1
r;Ωð Þ δq rð Þ� δΣt rð Þφ r;Ωð Þ½ � :

ð51Þ
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4. Apply Eq. (50) to the left side of Eq. (51) for the special case when u 2ð Þ r;Ωð Þ ¼Δ δψ 1ð Þ r;Ωð Þ; δφ r;Ωð Þ	 
y
,

w 2ð Þ ¼Δ ψ 2ð Þ
m1 r;Ωð Þ, L 2ð Þ

12 ¼ L 2ð Þ
21 ; 0; L 2ð Þ

11 ψ
1ð Þ ¼Δ �Ω � �ψ 1ð Þ r;Ωð Þ þ Σt rð Þψ 1ð Þ r;Ωð Þ, and L 2ð Þ

22 δφ ¼Δ Ω � �δφ r;Ωð Þ
þ Σt rð Þ δφ r;Ωð Þ to obtain

ð
dV

ð
4π
dΩψ 2ð Þ

1;m1
r;Ωð Þ �Ω � �δψ 1ð Þ r;Ωð Þ þ Σt rð Þ δψ 1ð Þ r;Ωð Þ

h i

þ
ð
dV

ð
4π
dΩψ 2ð Þ

2;m1
r;Ωð Þ Ω � �δφ r;Ωð Þ þ Σt rð Þ δφ r;Ωð Þ½ �

¼
ð
dV

ð
4π
dΩδψ 1ð Þ r;Ωð Þ Ω � �ψ 2ð Þ

1;m1
r;Ωð Þ þ Σt rð Þψ 2ð Þ

1;m1
r;Ωð Þ

h i

þ
ð
dV

ð
4π
dΩδφ r;Ωð Þ �Ω � �ψ 2ð Þ

2;m1
r;Ωð Þ þ Σt rð Þψ 2ð Þ

2;m1
r;Ωð Þ

h i
þ P 2ð Þ u 2ð Þ; ψ 2ð Þ

m1

� �
: ð52Þ

Equation (52) indicates that the components of the adjoint operator A 2ð Þ are A 2ð Þ
11 ψ

1ð Þ ¼Δ Ω � �ψ 2ð Þ
1;m1

r;Ωð Þ þ
Σt rð Þψ 2ð Þ

1;m1
r;Ωð Þ ; A 2ð Þ

12 ¼ A 2ð Þ
21 ; 0 and A 2ð Þ

22 δφ ¼Δ �Ω � �ψ 2ð Þ
2;m1

r;Ωð Þ þ Σt rð Þψ 2ð Þ
2;m1

r;Ωð Þ :

5. Use the boundary conditions shown in Eqs. (18) and (48), and impose on ψ 2ð Þ
m1 r;Ωð Þ ¼Δ ψ 2ð Þ

1;m1
r;Ωð Þ;ψ 2ð Þ

2;m1
r;Ωð Þ

h iy
the boundary conditions ψ 2ð Þ

1;m1
r;Ωð Þ ¼ 0; rs 2 qV ;Ω � n < 0, and ψ 2ð Þ

1;m2
r;Ωð Þ ¼ 0; rs 2 qV ;Ω � n > 0, to cause the

bilinear concomitant P 2ð Þ u 2ð Þ; ψ 2ð Þ
m1

� �
in Eq. (52) to vanish.

6. Identify the right side of Eq. (52) with the indirect-effect term defined in Eq. (46) to obtain the following form of

the 2nd-LASS to be used for computing the functions ψ 2ð Þ
1;m1

r;Ωð Þ and ψ 2ð Þ
2;m1

r;Ωð Þ, m1 ¼ 1; : : : ;Nα, which will

ultimately be used to evaluate Eq. (46):

Ω � �ψ 2ð Þ
1;m1

r;Ωð Þ þ Σt rð Þψ 2ð Þ
1;m1

r;Ωð Þ ¼
XNm

k¼1

qQk αð Þ
qαm1

gk rð Þ � φ r;Ωð Þ
XNm

k¼1

qCk αð Þ
qαm1

fk rð Þ ; ð53Þ

ψ 2ð Þ
1;m1

rs;Ωð Þ ¼ 0; rs 2 qV ;Ω � n < 0 ; ð54Þ

�Ω � �ψ 2ð Þ
2;m1

r;Ωð Þ þ Σt rð Þψ 2ð Þ
2;m1

r;Ωð Þ ¼
XNd

k¼1

qμk αð Þ
qαm1

hk r;Ωð Þ � ψ 1ð Þ r;Ωð Þ
XNm

k¼1

qCk αð Þ
qαm1

fk rð Þ ; ð55Þ

and

ψ 2ð Þ
2;m1

rs;Ωð Þ ¼ 0 ; rs 2 qV ;Ω � n > 0 : ð56Þ

7. Use Eqs. (51) and (52) together with Eqs. (45), (46), (19), (20), and (21) in Eq. (44) to obtain the following

expression for δS 1ð Þ
m1 ðφ;α;ψ 1ð Þ;ψ 2ð Þ

1;m1
; ψ 2ð Þ

2;m1
; δαÞ:

δS 1ð Þ
m1
ðφ;α;ψ 1ð Þ;ψ 2ð Þ

1;m1
; ψ 2ð Þ

2;m1
; δαÞ ¼ δS 1ð Þ

m1
ðφ;α; ψ 1ð Þ; δαÞ

n o
dir

�
XNα

m2¼1

XNm

j¼1

qCj αð Þ
qαm2

δαm2

ð
dV

ð
4π
dΩ ψ 2ð Þ

1;m1
r;Ωð Þψ 1ð Þ r;Ωð Þ þ ψ 2ð Þ

2;m1
r;Ωð Þφ r;Ωð Þ

h i
fj rð Þ
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þ
XNα

m2¼1

XNm

j¼1

qQj αð Þ
qαm2

δαm2

ð
dV

ð
4π
dΩψ 2ð Þ

2;m1
r;Ωð Þgj rð Þ

þ
XNα

m2¼1

XNd

j¼1

qμj αð Þ
qαm2

δαm2

ð
dV

ð
4π
dΩψ 2ð Þ

1;m1
r;Ωð Þhj r;Ωð Þ; m1 ¼ 1; : : : ;Nα : ð57Þ

The second-order mixed partial sensitivities S 2ð Þ
m1;m2 ¼Δ

q2R
qαm1qαm2

; m1;m2 ¼ 1; : : : ;Nα; of the response with respect

to the model parameters are determined by identifying in Eq. (57) the expressions multiplying the variations δαm2 . This
identification yields

S 2ð Þ
m1;m2

¼Δ q2R
qαm1qαm2

¼
XNm

j¼1

qQj αð Þ
qαm2

ð
dV

ð
4π
dΩψ 2ð Þ

2;m1
r;Ωð Þgj rð Þ

þ
XNm

j¼1

q2Qj αð Þ
qαm1qαm2

ð
dV

ð
4π
dΩ ψ 1ð Þ r;Ωð Þgj rð Þ

þ
XNd

j¼1

qμj αð Þ
qαm2

ð
dV

ð
4π
dΩψ 2ð Þ

1;m1
r;Ωð Þhj r;Ωð Þ þ

XNd

j¼1

q2μj αð Þ
qαm1qαm2

ð
dV

ð
4π
hj r;Ωð Þφ r;Ωð ÞdΩ

�
XNm

j¼1

qCj αð Þ
qαm2

ð
dV

ð
4π
dΩ ψ 2ð Þ

1;m1
r;Ωð Þψ 1ð Þ r;Ωð Þ þ ψ 2ð Þ

2;m1
r;Ωð Þφ r;Ωð Þ

h i
fj rð Þ

�
XNm

j¼1

q2Cj αð Þ
qαm1qαm2

ð
dV

ð
4π
dΩ ψ 1ð Þ r;Ωð Þφ r;Ωð Þfj rð Þ; m1;m2 ¼ 1; : : : ;Nα : ð58Þ

In Secs. IV.A through IV.D, Eq. (58) will be specialized for the particular case described by Eqs. (40) through (43).

IV.A. Computation of the Second-Order Sensitivities S 2ð Þ
i; j ¼Δ q2R

qNiqαj
; i ¼ 1; : : : ;Nm; j ¼ 1; : : : ;Nα

The second-order sensitivities S 2ð Þ
i; j ¼Δ q2R

qNiqαj
; i ¼ 1; : : : ;Nm; j ¼ 1; : : : ;Nα are obtained by computing the

G-differential of the first-order sensitivities defined in Eq. (40), which yields

δS 1ð Þ
i ðφ;α; ψ 1ð Þ; δαÞ ¼ δS 1ð Þ

i ðφ;α; ψ 1ð Þ; δαÞ
n o

dir
þ δS 1ð Þ

i ðφ;α; ψ 1ð Þ; δαÞ
n o

ind
; i ¼ 1; : : : ;Nm ; ð59Þ

where

δS 1ð Þ
i ðφ;α; ψ 1ð Þ; δαÞ

n o
dir

¼Δ � δσi

ð
dV

ð
4π
dΩ fi rð Þψ 1ð Þ r;Ωð Þφ r;Ωð Þ

þ δqi

ð
dV

ð
4π
dΩ ψ 1ð Þ r;Ωð Þgi rð Þ; i ¼ 1; : : : ;Nm ð60Þ

and

δS 1ð Þ
i ðφ;α; ψ 1ð Þ; δαÞ

n o
ind

¼Δ � σi

ð
dV

ð
4π
dΩ fi rð Þ δψ 1ð Þ r;Ωð Þφ r;Ωð Þ þ ψ 1ð Þ r;Ωð Þδφ r;Ωð Þ

h i

þ qi

ð
dV

ð
4π
dΩ δψ 1ð Þ r;Ωð Þgi rð Þ; i ¼ 1; : : : ;Nm : ð61Þ
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Comparing Eqs. (60) and (61) to Eqs. (45) and (46), respectively, and following the general procedure outlined in the
foregoing [which led to the general result given in Eq. (57)] yields the following expression for the right side of Eq. (59):

δS 1ð Þ
i ðφ;α; ψ 1ð Þ;ψ 2ð Þ

1;i ;ψ
2ð Þ
2;i ; δαÞ ¼ �

ð
dV

ð
4π
dΩ ψ 2ð Þ

1;i r;Ωð Þψ 1ð Þ r;Ωð Þ þ ψ 2ð Þ
2;i r;Ωð Þφ r;Ωð Þ

h i
δΣt rð Þ

þ
ð
dV

ð
4π
dΩψ 2ð Þ

1;i r;Ωð ÞδΣd r;Ωð Þ þ
ð
dV

ð
4π
dΩψ 2ð Þ

2;i r;Ωð Þδq rð Þ

� δσi

ð
dV

ð
4π
dΩ fi rð Þψ 1ð Þ r;Ωð Þφ r;Ωð Þ þ δqi

ð
dV

ð
4π
dΩ gi rð Þψ 1ð Þ r;Ωð Þ;

i ¼ 1; : : : ;Nm ; ð62Þ
where the second-level adjoint functions ψ 2ð Þ

1;i r;Ωð Þ and ψ 2ð Þ
2;i r;Ωð Þ are the solutions of the following 2nd-LASS:

Ω � �ψ 2ð Þ
1;i r;Ωð Þ þ Σt rð Þψ 2ð Þ

1;i r;Ωð Þ ¼ �σifi rð Þφ r;Ωð Þ þ qigi rð Þ; i ¼ 1; : : : ;Nm ; ð63Þ

ψ 2ð Þ
1;i rs;Ωð Þ ¼ 0; rs 2 qV ;Ω � n < 0 ; ð64Þ

�Ω � �ψ 2ð Þ
2;i r;Ωð Þ þ Σt rð Þψ 2ð Þ

2;i r;Ωð Þ ¼ �σifi rð Þψ 1ð Þ r;Ωð Þ; i ¼ 1; : : : ;Nm ; ð65Þ
and

ψ 2ð Þ
2;i rs;Ωð Þ ¼ 0; rs 2 qV ;Ω � n > 0 : ð66Þ

Replacing Eqs. (36), (37), and (38) in Eq. (62) and identifying the expressions multiplying the variations δNj, δσj,
δqj, and δλj yields the following expressions for (part of) the second-order mixed partial sensitivities of the response
with respect to the model parameters:

S 2ð Þ
i; j ¼Δ q2R

qNiqNj
¼ �σj

ð
dV

ð
4π
dΩ ψ 2ð Þ

1;i r;Ωð Þψ 1ð Þ r;Ωð Þ þ ψ 2ð Þ
2;i r;Ωð Þφ r;Ωð Þ

h i
fj rð Þ

þ qj

ð
dV

ð
4π
dΩψ 2ð Þ

2;i r;Ωð Þgj rð Þ; i; j ¼ 1; : : : ;Nm ; ð67Þ

S 2ð Þ
i; jþNm

¼Δ q2R
qNiqσj

¼ �Nj

ð
dV

ð
4π
dΩ ψ 2ð Þ

1;i r;Ωð Þψ 1ð Þ r;Ωð Þ þ ψ 2ð Þ
2;i r;Ωð Þφ r;Ωð Þ

h i
fj rð Þ

� δij

ð
dV

ð
4π
dΩ fi rð Þψ 1ð Þ r;Ωð Þφ r;Ωð Þ; i; j ¼ 1; : : : ;Nm ; ð68Þ

S 2ð Þ
i; jþ2Nm

¼Δ q2R
qNiqqj

¼ Nj

ð
dV

ð
4π
dΩψ 2ð Þ

2;i r;Ωð Þgj rð Þ þ δijNj

ð
dV

ð
4π
dΩ gi rð Þψ 1ð Þ r;Ωð Þ ;

i; j ¼ 1; : : : ;Nm ;

ð69Þ

and

S 2ð Þ
i; jþ3Nm

¼Δ q2R
qNiqλj

¼
ð
dV

ð
4π
dΩψ 2ð Þ

1;i r;Ωð Þhj r;Ωð Þ; i ¼ 1; : : : ;Nm; j ¼ 1; : : : ;Nd : ð70Þ

IV.B. Computation of the Second-Order Sensitivities S 2ð Þ
iþNm;j

¼Δ q2R
qσiqαj

; i ¼ 1; : : : ;Nm; j ¼ 1; : : : ;Nα

The second-order sensitivities S 2ð Þ
iþNm;j

¼Δ q2R
qσiqαj

; i ¼ 1; : : :;Nm; j ¼ 1; : : :;Nα are obtained by computing the

G-differential of the first-order sensitivities defined in Eq. (41), which yields
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δS 1ð Þ
iþNm

ðφ;α; ψ 1ð Þ; δαÞ ¼ δS 1ð Þ
iþNm

ðφ;α; ψ 1ð Þ; δαÞ
n o

dir
þ δS 1ð Þ

iþNm
ðφ;α; ψ 1ð Þ; δαÞ

n o
ind
; i ¼ 1; : : :;Nm ; ð71Þ

where

δS 1ð Þ
iþNm

ðφ;α; ψ 1ð Þ; δαÞ
n o

dir
¼Δ �δNi

ð
dV

ð
4π
dΩ fi rð Þψ 1ð Þ r;Ωð Þφ r;Ωð Þ; i ¼ 1; : : :;Nm ð72Þ

and

δS 1ð Þ
iþNm

ðφ;α; ψ 1ð Þ; δαÞ
n o

ind
¼Δ �Ni

ð
dV

ð
4π
dΩ fi rð Þδψ 1ð Þ r;Ωð Þφ r;Ωð Þ

�Ni

ð
dV

ð
4π
dΩ fi rð Þψ 1ð Þ r;Ωð Þδφ r;Ωð Þ; i ¼ 1; : : :;Nm : ð73Þ

Comparing Eqs. (72) and (73) to Eqs. (45) and (46), respectively, and following the general procedure outlined in the
foregoing [which led to the general result given in Eq. (57)] yields the following expression for the right side of Eq. (71):

δS 1ð Þ
iþNm

ðφ;α; ψ 1ð Þ;ψ 2ð Þ
1;iþNm

;ψ 2ð Þ
2;iþNm

; δαÞ ¼ � δNi

ð
dV

ð
4π
dΩ fi rð Þψ 1ð Þ r;Ωð Þφ r;Ωð Þ

�
ð
dV

ð
4π
dΩ ψ 2ð Þ

1;iþNm
r;Ωð Þψ 1ð Þ r;Ωð Þ þ ψ 2ð Þ

2;iþNm
r;Ωð Þφ r;Ωð Þ

h i
δΣt rð Þ

þ
ð
dV

ð
4π
dΩψ 2ð Þ

1;iþNm
r;Ωð ÞδΣd r;Ωð Þ

þ
ð
dV

ð
4π
dΩψ 2ð Þ

2;iþNm
r;Ωð Þδq rð Þ; i ¼ 1; : : : ;Nm : ð74Þ

The second-level adjoint functions ψ 2ð Þ
1;iþNm

and ψ 2ð Þ
2;iþNm

are the solutions of the following 2nd-LASS:

Ω � �ψ 2ð Þ
1;iþNm

r;Ωð Þ þ Σt rð Þψ 2ð Þ
1;iþNm

r;Ωð Þ ¼ �Ni fi rð Þφ r;Ωð Þ; i ¼ 1; : : :;Nm ; ð75Þ

ψ 2ð Þ
1;iþNm

rs;Ωð Þ ¼ 0; rs 2 qV ; Ω � n < 0 ; ð76Þ

�Ω � �ψ 2ð Þ
2;iþNm

r;Ωð Þ þ Σt rð Þψ 2ð Þ
2;iþNm

r;Ωð Þ ¼ �Nifi rð Þψ 1ð Þ r;Ωð Þ; i ¼ 1; : : :;Nm ; ð77Þ

and

ψ 2ð Þ
2;iþNm

rs;Ωð Þ ¼ 0; rs 2 qV ;Ω � n > 0 : ð78Þ

Replacing Eqs. (36), (37), and (38) in Eq. (74) and identifying the expressions multiplying the variations δNj, δσj,
δqj, and δλj yields

S 2ð Þ
iþNm; j

¼Δ q2R
qσiqNj

¼ �σj

ð
dV

ð
4π
dΩ ψ 2ð Þ

1;iþNm
r;Ωð Þψ 1ð Þ r;Ωð Þ þ ψ 2ð Þ

2;iþNm
r;Ωð Þφ r;Ωð Þ

h i
fj rð Þ

þ qj

ð
dV

ð
4π
dΩψ 2ð Þ

2;iþNm
r;Ωð Þgj rð Þ � δij

ð
dV

ð
4π
dΩ fi rð Þψ 1ð Þ r;Ωð Þφ r;Ωð Þ; i; j ¼ 1; : : : ;Nm ; ð79Þ

S 2ð Þ
iþNm; jþNm

¼Δ q2R
qσiqσj

¼ � Nj

ð
dV

ð
4π
dΩ ψ 2ð Þ

1;iþNm
r;Ωð Þψ 1ð Þ r;Ωð Þ þ ψ 2ð Þ

2;iþNm
r;Ωð Þφ r;Ωð Þ

h i
fj rð Þ; i; j ¼ 1; : : : ;Nm ; !ð80Þ



S 2ð Þ
iþNm;jþ2Nm

¼Δ q2R
qσiqqj

¼ Nj

ð
dV

ð
4π
dΩψ 2ð Þ

2;iþNm
r;Ωð Þgj rð Þ;

i; j ¼ 1; : : : ;Nm ; ð81Þ

and

S 2ð Þ
iþNm;jþ3Nm

¼Δ q2R
qσiqλj

¼
ð
dV

ð
4π
dΩψ 2ð Þ

1;iþNm
r;Ωð Þhj r;Ωð Þ;

i ¼ 1; : : :;Nm; j ¼ 1; : : :;Nd : ð82Þ

IV.C. Computation of the Second-Order Sensitivities

S 2ð Þ
iþ2Nm; j

¼Δ q2R
qqiqαj

; i ¼ 1; : : : ;Nm; j ¼ 1; : : : ;Nα

The second-order sensitivities S 2ð Þ
iþ2Nm;j

¼Δ q2R
qqiqαj

; i ¼
1; : : :;Nm; j ¼ 1; : : : ;Nα are obtained by computing the
G-differential of Eq. (42), which yields the following
expression:

δS 1ð Þ
iþ2Nm

ðφ;α; ψ 1ð Þ; δαÞ ¼ δS 1ð Þ
iþ2Nm

ðφ;α; ψ 1ð Þ; δαÞ
n o

dir

þ δS 1ð Þ
iþ2Nm

ðφ;α; ψ 1ð Þ; δαÞ
n o

ind
; i ¼ 1; : : :;Nm ;

ð83Þ

where

δS 1ð Þ
iþNm

ðφ;α; ψ 1ð Þ; δαÞ
n o

dir

¼Δ δNi

ð
dV

ð
4π
dΩ ψ 1ð Þ r;Ωð Þgi rð Þ; i ¼ 1; : : : ;Nm

ð84Þ

and

δS 1ð Þ
iþ2Nm

ðφ;α; ψ 1ð Þ; δαÞ
n o

ind

¼ Ni

ð
dV

ð
4π
dΩ δψ 1ð Þ r;Ωð Þgi rð Þ; i ¼ 1; : : :;Nm :

ð85Þ

Comparing Eqs. (84) and (85) to Eqs. (45) and (46),
respectively, and following the general procedure out-
lined in the foregoing [which led to the general result
given in Eq. (57)] yields the following expression for the
right side of Eq. (85):

δS 1ð Þ
iþ2Nm

ðα; ψ 1ð Þ;ψ 2ð Þ
1;iþ2Nm

; δαÞ
n o

ind
¼

�
ð
dV

ð
4π
dΩψ 2ð Þ

1;iþ2Nm
r;Ωð Þψ 1ð Þ r;Ωð ÞδΣt rð Þ

þ
ð
dV

ð
4π
dΩψ 2ð Þ

1;iþ2Nm
r;Ωð ÞδΣd r;Ωð Þ ; ð86Þ

where the second-level adjoint function ψ 2ð Þ
1;iþ2Nm

is the

solution of the following 2nd-LASS:

Ω � �ψ 2ð Þ
1;iþ2Nm

r;Ωð Þ þ Σt rð Þψ 2ð Þ
1;iþ2Nm

r;Ωð Þ
¼ Ni gi rð Þ; i ¼ 1; : : :;Nm ð87Þ

and

ψ 2ð Þ
1;iþ2Nm

rs;Ωð Þ ¼ 0; rs 2 qV ;Ω � n < 0 : ð88Þ

Note also that ψ 2ð Þ
2;iþ2Nm

; 0. Replacing Eqs. (36),

(37), and (38) in Eq. (86) and identifying the expres-
sions multiplying the variations δNj, δσj, δqj, and δλj
yields

S 2ð Þ
iþ2Nm; j

¼Δ q2R
qqiqNj

¼

� σj

ð
dV

ð
4π
dΩψ 2ð Þ

1;iþ2Nm
r;Ωð Þψ 1ð Þ r;Ωð Þfj rð Þ

þ δij

ð
dV

ð
4π
dΩ ψ 1ð Þ r;Ωð Þgi rð Þ;

i; j ¼ 1; : : : ;Nm ; ð89Þ

S 2ð Þ
iþ2Nm; jþNm

¼Δ q2R
qqiqσj

¼

� Nj

ð
dV

ð
4π
dΩψ 2ð Þ

1;iþ2Nm
r;Ωð Þψ 1ð Þ r;Ωð Þfj rð Þ;

i; j ¼ 1; : : : ;Nm ; ð90Þ

S 2ð Þ
iþ2Nm; jþ2Nm

¼Δ q2R
qqiqqj

¼ 0; i; j ¼ 1; : : : ;Nm ; ð91Þ

and

S 2ð Þ
iþ2Nm;jþ3Nm

¼Δ q2R
qqiqλj

¼ð
dV

ð
4π
dΩψ 2ð Þ

1;iþ2Nm
r;Ωð Þhj r;Ωð Þ;

i ¼ 1; : : : ;Nm; j ¼ 1; : : : ;Nd : ð92Þ
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IV.D. Computation of the Second-Order Sensitivities

S 2ð Þ
iþ3Nm;j

¼Δ q2R
qλiqαj

; i ¼ 1; : : : ; Nd; j ¼ 1; : : : ;Nα

Note from Eq. (43) that the sensitivities

S 1ð Þ
iþ3Nm

ðφ;αÞ do not display explicit dependence on the

model parameters. The second-order sensitivities

S 2ð Þ
iþ3Nm;j

¼Δ q2R
qλiqαj

; i ¼ 1; : : : ; Nd; j ¼ 1; : : : ; Nα are obtai-

ned by computing the G-differential of Eq. (43), which
yields the following expression:

δS 1ð Þ
iþ3Nm

ðα;δφ;δαÞ ¼
ð
dV

ð
4π
dΩ δφ r;Ωð Þhi r;Ωð Þ;

i ¼ 1; : : : ; Nd : ð93Þ

Comparing Eq. (93) to Eq. (41) indicates that, by
following the procedure outlined in Secs. IV.A, IV.B,
and IV.C, the indirect-effect term in Eq. (93) will ulti-
mately have the expression:

δS 1ð Þ
iþ3Nm

ðα; φ;ψ 2ð Þ
2;iþ3Nm

;δαÞ ¼

�
ð
dV

ð
4π
dΩψ 2ð Þ

2;iþ3Nm
r;Ωð Þφ r;Ωð ÞδΣt rð Þ

þ
ð
dV

ð
4π
dΩψ 2ð Þ

2;iþ3Nm
r;Ωð Þδq rð Þ ; ð94Þ

where the second-level adjoint function ψ 2ð Þ
2;iþ3Nm

is the

solution of the following 2nd-LASS:

�Ω � �ψ 2ð Þ
2;iþ3Nm

r;Ωð Þ þ Σt rð Þψ 2ð Þ
2;iþ3Nm

r;Ωð Þ
¼ hi r;Ωð Þ; i ¼ 1;: : : ; Nd ð95Þ

and

ψ 2ð Þ
2;iþ3Nm

rs;Ωð Þ ¼ 0; rs 2 qV ;Ω � n > 0 : ð96Þ

Note that ψ 2ð Þ
1;iþ3Nm

; 0. Replacing Eqs. (36), (37), and

(38) in Eq. (94) and identifying the expressions multiply-
ing the variations δNj, δσj, δqj, and δλj yields

S 2ð Þ
iþ3Nm; j

¼Δ q2R
qλiqNj

¼

� σj

ð
dV

ð
4π
dΩψ 2ð Þ

2;iþ3Nm
r;Ωð Þφ r;Ωð Þfj rð Þ

þ qj

ð
dV

ð
4π
dΩψ 2ð Þ

2;iþ3Nm
r;Ωð Þgj rð Þ ;

i ¼ 1;: : :;Nd; j ¼ 1;: : :; Nm ; ð97Þ

S 2ð Þ
iþ3Nm; jþNm

¼Δ q2R
qλiqσj

¼ � Nj

ð
dV

ð
4π
dΩψ 2ð Þ

2;iþ3Nm
r;Ωð Þφ r;Ωð Þfj rð Þ;

i ¼ 1; : : :;Nd; j ¼ 1;: : :; Nm ; ð98Þ

S 2ð Þ
iþ3Nm; jþ2Nm

¼Δ q2R
qλiqqj

¼ Nj

ð
dV

ð
4π
dΩψ 2ð Þ

2;iþ3Nm
r;Ωð Þgj rð Þ;

i ¼ 1;: : :; Nd; j ¼ 1;: : :; Nm ; ð99Þ

and

S 2ð Þ
iþ3Nm; jþ3Nm

¼Δ q2R
qλiqλj

¼ 0; i ¼ 1;: : :; Nd; j ¼ 1;: : :; Nd :

ð100Þ

IV.E. Discussion

The following conclusions can be drawn based on the
results that have been presented in this section:

1. As is well known, a single 1st-LASS needs to be
solved in order to compute all first-order response sensi-
tivities to all Nα model parameters.

2. For each model parameter, a single 2nd-LASS
needs to be solved for computing the corresponding
mixed second-order sensitivities. Hence, computing all
of the Nα Nα þ 1ð Þ=2 second-order sensitivities could
require solving at most Nα 2nd-LASSs.

3. The solution of each of the 2nd-LASSs is a two-
component vector-valued second-level adjoint function,
except for the 2nd-LASS that corresponds to parameters
that appear linearly in the response under consideration,
in which case the vector-valued second-level adjoint
function may have a null component.
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4. Solving each of the 2nd-LASSs involves the
inversion of the same operators as need to be inverted
for solving the original transport equation and/or the 1st-
LASS. Only the various source terms on the right sides of
the 2nd-LASSs differ from each other, and they form the
forward and/or 1st-LASS. Therefore, the same software
can be used to solve both the 1st-LASS and the 2nd-
LASS.

5. The computation of the second-order sensitiv-
ities involves the evaluations of integrals of the same
form as those needed for computing the first-order sensi-
tivities. Therefore, the same software can be used for
computing both the first-order and second-order
sensitivities.

6. Each of the mixed second-order sensitivities is
computed twice, using two distinct second-level adjoint
functions. Consequently, the 2nd-ASAM possesses an
inherent solution verification mechanism that enables
and ensures the accuracy verification of the solutions of
all of the 2nd-LASSs.

7. As expected, the angular flux solution of the
uncollided-flux problem is separately linear in the source
strengths and detector interaction coefficients. This fact
has been confirmed by the vanishing of the respective
second-order unmixed sensitivities, as demonstrated by
the results presented in Eqs. (91) and (100), respectively.
In such cases, each of the respective vector-valued second-
level adjoint functions will have an identically null com-
ponent. Similar results have been obtained by Cacuci2 for a
benchmark problem modeling the linear neutron diffusion
equation.

V. SPHERICAL TEST PROBLEM (ANALYTIC)

The analytic homogeneous spherical test problem is
described generically in Sec. V.A and specific values
used in this paper are given in Sec. V.B. Analytic values
of the derivatives are presented in Sec. V.C. Derivatives
computed by solving the 2nd-LASS using PARTISN are
compared with the analytic values in Sec. V.D.
Sensitivities given in Secs. IV.A, IV.B, and IV.C were
computed and are presented in this section; sensitivities
to the detector parameters (Sec. IV.D) were not
computed.

V.A. Problem Setup

Consider a homogeneous sphere of radius a. The
material consists of two isotopes with number densities

N1 and N2. The microscopic cross sections for the two
isotopes are σ1 and σ2. Isotope 1 is a decay gamma–ray
source; the line emission rate (per atom of isotope 1 per
second) is q1. Isotope 2 may emit gamma rays, but not in
the same line as isotope 1; q2 is zero. Gamma rays are
emitted isotropically.

The macroscopic cross-section Σ of the material is

Σ ¼ σ1N1 þ σ2N2 : ð101Þ

The line source rate density q is

q ¼ q1N1 : ð102Þ

The isotopic number densities are related to the
material mass density ρ via

Ni ¼ ρwiNA

Ai
; i ¼ 1 ; 2 ; ð103Þ

where

wi = weight fraction of isotope i

Ai = atomic weight of isotope i

NA = Avogadro’s number.

The weight fractions satisfy the normalization
w1 þ w2 ¼ 1. Whenever the mass density is perturbed in
this problem, both number densities are perturbed accord-
ing to Eq. (103). Weight fraction perturbations are not
considered in this problem.

The uncollided escape probability P is6,10

P ¼ 3

8ðΣaÞ3 2ðΣaÞ2 � 1þ ð1þ 2ΣaÞe�2Σa
h i

: ð104Þ

The uncollided leakage from the sphere is the escape
probability multiplied by the total source rate.7 The total
source rate Q is the source rate density q of Eq. (102)
multiplied by the volume V of the sphere:

Q ¼ qV ¼ q1N1V : ð105Þ

The uncollided leakage L is

L ¼ QP : ð106Þ

We will need derivatives of P with respect to Σ. The
first derivative is
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qP
qΣ

¼ 3ð�3Þ
8ðΣaÞ3Σ 2ðΣaÞ2 � 1þ ð1þ 2ΣaÞe�2Σa

h i

þ 3

8ðΣaÞ3 4Σa2 þ 2ae�2Σa � 2að1þ 2ΣaÞe�2Σa
	 


¼ � 3

Σ
P� 1

2Σa
1� e�2Σa
� �� �

: ð107Þ

The second derivative of P with respect to Σ is

q2P

qΣ2 ¼
3

Σ2 P � 3

Σ
qP
qΣ

� 3

Σ3a
1� e�2Σa
� �þ 3

Σ2 e
�2Σa

¼ 3

Σ2 P� 3

Σ
qP
qΣ

� 3

Σ3a
1� e�2Σa � Σae�2Σa
� �

¼ 3

Σ2 P � Σ
qP
qΣ

� 1

Σa
1� 1þ Σað Þe�2Σa
	 
� �

:

ð108Þ

Derivatives of the leakage [Eq. (106)] with respect to
atom density, cross section, and source emission rate are
derived in the Appendix.

The detector response function for this problem is a
modification of Eq. (5):

Σd r;Ωð Þ ¼ Ω � nδ r� rsð Þ ; rs 2 qV ; ð109Þ

where n is the outward unit normal at each rs.

V.B. Problem Parameters

The material in the sphere has the parameters shown
in Table I. Isotope 1 is 239Pu and isotope 2 is 240Pu. The
total macroscopic cross sections and source rate density
from Eqs. (1) and (102), respectively, for the material are
also shown in Table I. The cross sections and source rate
correspond to the 646-keV gamma-ray line from 239Pu.
The cross sections were obtained from the MCPLIB04
ACE-formatted photon cross-section library, which is
distributed with MCNP, and do not contain coherent
scattering. The source emission rate q1 is from Gunnick
et al.11

The sphere radius is a = 3.794 cm.

V.C. Analytic Results

The escape probability, its derivatives, and the leak-
age are shown in Table II.

Derivatives of the leakage with respect to atom den-
sities, cross sections, source emission rates, and the mate-
rial density are shown in Tables III, IV, V, and VI,

respectively. The mixed derivatives are shown in
Table VII.

V.D. PARTISN Results Compared to Analytic Results

The equations of the 2nd-LASS derived in Sec. III
were also solved using PARTISN (Ref. 8), an off-the-
shelf discrete-ordinates code. These equations [namely,
Eqs. (63) through (66), (75) through (78), (87), (88), (95),
and (96)] have sources that are the angular flux solutions

TABLE I

Sphere and Material Parameters*

Parameter Value

a 3.794 cm
ρ 15.8 g/cm3

w1 0.94
w2 0.06
N1 3.74142E–02 atoms/(b∙cm)
N2 2.37817E–03 atoms/(b∙cm)
σ1 5.27263E+01 b
σ2 5.27263E+01 b
q1 1.341E+05 γ/(1024 atoms∙s)
q2 0 γ/(atom∙s)
Σ 2.09810E+00/cm
q 5.01724E+03 γ/(cm3∙s)

*All numerical results used more digits for atom densities and
cross sections than are presented here.

TABLE II

Escape Probability, Its Derivatives, and the Leakage

Parameter Value

P 9.34752E–02
qP=qΣ –4.38435E–02 cm
q2P=qΣ2 4.07803E–02 cm2

L 1.07286E+05 γ/s

TABLE III

Derivatives of the Leakage with Respect to Atom Densities

Parameter Value

qL=qN1 2.14263E+05 γ/s/[atoms/(b∙cm)]
q2L=qN2

1
–1.17096E+07 γ/s/[atoms/(b∙cm)]2

qL=qN2 –2.65325E+06 γ/s/[atoms/(b∙cm)]
q2L=qN2

2
1.30122E+08 γ/s/[atoms/(b∙cm)]2

q2L=qN1qN2 5.92062E+07 γ/s/[atoms/(b∙cm)]2
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of the 1st-LASS [i.e., Eqs. (1), (2), (28), and (29), which
coincide for the linear transport equation with the usual
forward and adjoint transport equations]. PARTISN is
unable to accept angular fluxes as volumetric sources—
only moments expansions are accepted.8 However, when
anisotropic source moments are input, an anisotropic
scattering expansion of (at least) the order of the source
expansion is required. Thus, to use PARTISN on this
problem requires inputting anisotropic scattering cross
sections where no scattering is desired. (PARTISN allows
negative sources and handles negative fluxes correctly if
the negative flux fix-up is turned off.12)

To solve this problem, we used an L’th-order scatter-
ing expansion and set the isotropic (0’th-order) scattering
cross section and the L’th-order scattering cross section to

10–24 times the total cross section. We set all other scat-
tering cross-section moments to zero.

The MCPLIB04 cross sections were entered in the
PARTISN input file using the ODNINP format.8 A mesh
spacing of 0.005 cm was used (759 meshes in 3.794 cm).

The results presented in this section used a P31 scattering
expansion and S2048 angular quadrature. With this quadrature
order, the ratio of the leakage computed in the forward and
adjoint calculations in the 1st-LASS was 1.00000270.

The difference between PARTISN results and analy-
tic results for the leakage and derivatives of the mass
density are shown in Table VIII. Density derivatives are
obtained from PARTISN results using the chain rule:

qL
qρ

¼
X2
i¼1

qL
qNi

qNi

qρ

¼ N1

ρ
qL
qN1

þ N2

ρ
qL
qN2

ð110Þ

TABLE IV

Derivatives of the Leakage with Respect to Cross Sections

Parameter Value

qL=qσ1 –1.88273E+03 γ/s/b
q2L=qσ21 6.55191E+01 γ/s/b2

qL=qσ2 –1.19673E+02 γ/s/b
q2L=qσ22 2.64718E–01 γ/s/b2

q2L=qσ1qσ2 4.16462E+00 γ/s/b2

TABLE V

Derivatives of the Leakage with Respect to
Source Emission Rates

Parameter Value

qL=qq1 8.00043E−01 γ/s/[γ/(1024 atoms∙s)]
q2L=qq21 0 γ/s/[γ/(1024 atoms∙s)]2

qL=qq2 0 γ/s/[γ/(1024 atoms∙s)]
q2L=qq22 0 γ/s/[γ/(1024 atoms∙s)]2

q2L=qq1qq2 0 γ/s/[γ/(1024 atoms∙s)]2

TABLE VI

Derivatives of the Leakage with Respect to Material Density

Parameter Value

qL=qρ 1.08011E+02 γ/s/(g/cm3)
q2L=qρ2 –2.05068E+01 γ/s/(g/cm3)2

TABLE VIII

Difference Between Adjoint and Analytic Results for the
Leakage and Mass Density Derivatives

Quantity Difference

L 0.000%
qL=qρ –0.002%
q2L=qρ2 –0.002%

TABLE VII

Mixed Derivatives of the Leakage*

Parameter Value

q2L=qN1qσ1 –8.30901E+03 γ/s/cm–1

q2L=qN1qσ2 2.67044E+03 γ/s/cm–1

q2L=qN2qσ1 9.23334E+04 γ/s/cm–1

q2L=qN2qσ2 –4.44522E+04 γ/s/cm–1

q2L=qN1qq1 1.59779E+00 γ/s/[γ/(cm3∙s)]

q2L=qN2qq1 –1.97856E+01 γ/s/[γ/(cm3∙s)]

q2L=qσ1qq1 –1.40397E–02 γ/s/[b∙γ/(1024 atoms∙s)]2

q2L=qσ2qq1 –8.92413E–04 γ/s/[b∙γ/(1024 atoms∙s)]2

q2L=qρqN1 –1.88165E+04 γ/s/[(g/cm3)(atoms/{b∙cm})]

q2L=qρqN2 1.59785E+05 γ/s/[(g/cm3)(atoms/{b∙cm})]

q2L=qρqσ1 –5.77782E+00 γ/s/[g/(cm3∙b)]

q2L=qρqσ2 –3.67258E–01 γ/s/[g/(cm3∙b)]

q2L=qρqq1 8.05453E–04 γ/s/[g∙γ/cm3/(1024 atoms∙s)]

*All derivatives with respect to q2 are zero.
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and

q2L
qρ2

¼
X2
i¼1

X2
j¼1

q2L
qNiqNj

qNi

qρ
qNj

qρ

¼ N1

ρ

� 2 q2L
qN2

1

þ 2
N1

ρ
N2

ρ
q2L

qN1qN2
þ N2

ρ

� 2 q2L
qN2

2

:

ð111Þ

These density derivatives are constant-volume partial
derivatives.9 Mixed derivatives involving the mass den-
sity are obtained similarly.

The difference between PARTISN results and analy-
tic results for isotopic first derivatives are shown in
Table IX.

The difference between PARTISN results and analy-
tic results for isotopic second derivatives (including
mixed derivatives) are shown in Table X.

The difference between PARTISN results and analy-
tic results for isotopic mixed second derivatives that
include the mass density are shown in Table XI. Again,
these are obtained from the PARTISN results using the
chain rule [Eq. (A.30)], where α represents the isotopic
density, cross section, or source emission rate for either
isotope.

When a P3 scattering expansion was used (still with
an S2048 angular quadrature), errors in the isotopic second

derivatives were up to 3%, except for q2L=qq1qNj and

q2L=qq1qσj, which were still basically zero because the
2nd-LASS equations for those derivatives use only the
physical source emission rate density, which is isotropic.
Errors in the derivatives that include the mass density
were larger, up to 7%.

Using many scattering moments was crucial to hav-
ing PARTISN solve this problem correctly, but the choice
of the scattering cross section is not important as long as
it is very small. The first-order relative sensitivities of the
leakage to the 0’th- and L’th-order 239Pu scattering cross
sections is 7E–25%/% and 5E–31%/%, respectively, and
the sensitivities to the 240Pu scattering cross sections are
an order of magnitude smaller.

V.E. Impact of Second-Order Sensitivities on Response
Expected Value, Variance, and Skewness

In a second-order analysis, the expected value of a
response R is2

EðRÞ ¼ Rðα0Þ þ 1

2

XNα

i¼1

q2R
qα2i

s2i ; ð112Þ

where si is the standard deviation of input parameter αi.
The variance of response R is

varðRÞ ¼
XNα

i¼1

qR
qαi

� 2

s2i þ
1

2

XNα

i¼1

q2R
qα2i

� 2

s4i : ð113Þ

The skewness γ1 of response R is

γ1ðRÞ ¼
μ3ðRÞ

varðRÞ½ �
3=2

; ð114Þ

where the third central moment μ3ðRÞ is

μ3ðRÞ ¼ 3
XNα

i¼1

qR
qαi

� 2 q2R
qα2i

s4i : ð115Þ

Knowledge of the second-order sensitivities is required to
compute these quantities.

To illustrate the importance of these calculations,
various relative standard deviations were assumed for the
atom densities of 239Pu and 240Pu, the plutonium cross
section, and the source emission rate of the 646-keV line.
All of these parameters were assumed to have (simulta-
neously) relative standard deviations of 1%, 5%, or 10%.
[The 239Pu and 240Pu cross sections σ1 and σ2 are perfectly
correlated. They are identical and their uncertainties are
identical. To account for this correlation, Eq. (101) is
replaced with Σ ¼ σ1ðN1 þ N2Þ before the derivatives are
computed.] The individual parameter contribution to the
variance and skewness of the distribution of the total
leakage, as well as the relative contribution of the second

TABLE IX

Difference Between Adjoint and Analytic Results for Isotopic
First Derivatives

i qL=qNi

1 (239Pu) 0.000%
2 (240Pu) 0.000%

i qL=qσi

1 (239Pu) 0.000%
2 (240Pu) 0.000%

i qL=qqi

1 (239Pu) 0.000%
2 (240Pu) N/Aa

aNot applicable as all derivatives with respect to q2 are zero.
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term to the total variance and expected value, are shown in
Table XII. The combined values due to all uncertain para-
meters are given as the Total in the last three rows.

As expected,2 the second-order sensitivities cause the
expected value of the response to differ from the com-
puted nominal value; they contribute somewhat to the
overall variance; and most importantly, they constitute
the only contribution to the asymmetry of the response
distribution (skewness).

VI. CYLINDRICAL TEST PROBLEM

A two-dimensional (2-D) (r-z) cylindrical test problem
is described in Sec. VI.A. Derivatives computed by solving
the 1st- and 2nd-LASS using PARTISN are compared with
values estimated using central differences in Sec. VI.B.
Sensitivities given in Secs. IV.A, IV.B, and IV.C were

computed and are presented in this section; sensitivities
to the detector parameters (Sec. IV.D) were not computed.

VI.A. Problem Setup

The geometry corresponds to a measurement that was
performed at Oak Ridge National Laboratory.13 A poly-
ethylene bottle containing depleted uranium (DU) in
nitric acid solution was shielded by an aluminum disk
from a high-purity germanium gamma-ray detector aimed
at the bottom of the bottle. The quantity of interest in
Ref. 13 was the uncollided flux or photopeak count rate
in the detector of the various lines emitted from uranium.
The quantity of interest in the present application is the
total uncollided leakage rate of the 1.001-MeV line from
the entire system pictured in Fig. 1. The materials in the
model are specified in Table XIII.

The polyethylene bottle is modeled with outer radius
2.4 cm, radial wall thickness 0.1 cm, outside height
6.6 cm, and top and bottom wall thicknesses 0.2 cm. The
height of the solution above the bottle is 4.0 cm. The
radius and thickness of the aluminum shield are 4.0 and
1.0 cm, respectively. Unfilled regions on Fig. 1 are voids.

The cross sections were obtained from the MCPLIB04
ACE-formatted photon cross-section library and do not
contain coherent scattering. The source emission rate for
the 1.001-MeV line is 4.033E+04 γ/(1024 atoms 238U)/s

TABLE X

Difference Between Adjoint and Analytic Results for Isotopic Second Derivatives

i j q2L=qNiqNj q2L=qNiqσj q2L=qNiqqj

1 (239Pu) 1 (239Pu) –0.001% –0.002% –0.002%
2 (240Pu) 0.000% 0.000% N/Aa

2 (240Pu) 1 (239Pu) 0.000% 0.000% 0.000%
2 (240Pu) 0.000% 0.000% N/Aa

i j q2L=qσiqNj q2L=qσiqσj q2L=qσiqqj

1 (239Pu) 1 (239Pu) –0.001% 0.000% 0.000%
2 (240Pu) 0.000% 0.000% N/Aa

2 (240Pu) 1 (239Pu) 0.000% 0.000% 0.000%
2 (240Pu) 0.000% 0.000% N/Aa

i j q2L=qqiqNj q2L=qqiqσj q2L=qqiqqj

1 (239Pu) 1 (239Pu) 0.000% 0.000% N/Aa

2 (240Pu) 0.000% 0.000% N/Aa

2 (240Pu) 1 (239Pu) N/Aa N/Aa N/Aa

2 (240Pu) N/Aa N/Aa N/Aa

aNot applicable as all derivatives with respect to q2 are zero.

TABLE XI

Difference Between Adjoint and Analytic Results for Mixed
Second Derivatives that Include Mass Density

j q2L=qρqNj q2L=qρqσj q2L=qρqqj

1 (239Pu) –0.001% –0.002% –0.002%
2 (240Pu) 0.000% –0.002% N/Aa

aNot applicable as all derivatives with respect to q2 are zero.
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from Gunnick and Tinney.14 (The line is actually from
234mPa, a daughter of 238U in secular equilibrium with it.)

The PARTISN calculations used S128 square
Chebyshev-Legendre angular quadrature. They also used

a P31 Legendre scattering expansion as discussed in
Sec. V.D. With these parameters, the ratio of the leakage
computed in the forward and adjoint calculations in the
1st-LASS was 1.00000355. The total uncollided leakage
was 62.034780/s.

The detector response function for this problem is
Eq. (109).

VI.B. Results

Counting 1H once for each material in which it
appears, there are seven isotopes in this problem
(Table XIII). Counting three material mass densities, the
atom density, and total cross section for each isotope, and
one source emission rate, this problem has 18 first-order
sensitivities and 224 second-order sensitivities to com-
pare. (Second derivatives of the mass density are
included, but mixed partial derivatives that include the
mass density are not.)

The results obtained using the 1st- and 2nd-LASS
formulas presented in Sec. IV were compared with
central-difference sensitivity estimates for each of the
242 sensitivities. There were 877 PARTISN calculations
needed (including the base-case forward calculation) to
compute the central differences, and this number does not
include the additional calculations that were required to
find appropriate values of the perturbations to use for the

TABLE XII

Variance, Skewness, and Expected Value of the Leakage for the Analytic Sphere

Relative Standard
Deviation var(L)a

Contribution of
Second Term to

var(L)a Skewnessb

Contribution of
Second Term to

E(L)c

N1 1% 6.42773E+03 0.021% –6.13217E–02 –0.001%
5% 1.61499E+05 0.520% –3.04316E–01 –0.019%

10% 6.56072E+05 2.048% –5.94666E–01 –0.076%
N2 1% 3.98148E+03 0.000% 3.49894E–03 0.000%

5% 9.95387E+04 0.002% 1.74943E–02 0.001%
10% 3.98175E+05 0.007% 3.49858E–02 0.003%

σ1 1% 1.11491E+06 0.019% 5.85286E–02 0.010%
5% 2.80001E+07 0.474% 2.90649E–01 0.240%

10% 1.13592E+08 1.869% 5.69121E–01 0.960%
q1 1% 1.15102E+06 0.000% 0.00000E+00 0.000%

5% 2.87756E+07 0.000% 0.00000E+00 0.000%
10% 1.15102E+08 0.000% 0.00000E+00 0.000%

Total 1% 2.27634E+06 0.009% 2.00529E–02 0.009%
5% 5.70367E+07 0.234% 9.99268E–02 0.222%

10% 2.29749E+08 0.930% 1.97767E–01 0.887%

aEquation (113).
bEquation (114).
cEquation (112).

Fig. 1. Cross-section (r-z) of the cylindrical geometry.
(Scales in centimeters.)
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central differences. The 1st- and 2nd-LASS formulas
required just 12 PARTISN calculations.

Table XIV presents results for a small subset of the
computed sensitivities: the second derivatives involving
238U (isotope 2). The agreement is generally within 0.3%,

except for q2L=qσ2qN1 and q2L=qσ2qσ1, for which the
difference is –29%. The central differences for these
derivatives are extremely difficult to calculate: Changing
the 238U cross section by ±90% and the 235U density and
cross section by ±99% yielded changes of only 0.12%

(in magnitude) in the total leakage rate. In Table XIV, the
derivatives computed using the 2nd-LASS are more accu-
rate than those computed by central differences.

VI.C. Impact of Second-Order Sensitivities on Response
Expected Value, Variance, and Skewness

The mass densities of the three materials were
assumed to have (simultaneously) relative standard devia-
tions of 1%, 5%, or 10%. The individual parameter

TABLE XIV

Difference Between Adjoint and Central Differences for Isotopic Second Derivatives Involving 238U

j q2L=qN2qNj q2L=qN2qσj q2L=qN2qqj

1 (235U) –0.296% –0.296% N/Aa

2 (238U) 0.020% 0.005% 0.000%
3 (16O) 0.000% 0.000% N/Aa

4 (1H)(b) 0.001% 0.001% N/Aa

5 (1H)(b) –0.001% –0.001% N/Aa

6 (C) 0.005% 0.005% N/Aa

7 (27Al) –0.003% –0.003% N/Aa

j q2L=qσ2qNj q2L=qσ2qσj q2L=qσ2qqj

1 (235U) –28.6% –28.6% N/Aa

2 (238U) 0.006% –0.547% –0.024%
3 (16O) –0.079% –0.079% N/Aa

4 (1H)b 0.271% 0.271% N/Aa

5 (1H)b –0.269% –0.269% N/Aa

6 (C) –0.264% –0.264% N/Aa

7 (27Al) –0.058% –0.058% N/Aa

j q2L=qq2qNj q2L=qq2qσj q2L=qq2qqj

1 (235U) –0.090% –0.090% N/Aa

2 (238U) 0.000% –0.025% N/Ac

3 (16O) 0.000% 0.000% N/Aa

4 (1H)b 0.000% 0.000% N/Aa

5 (1H)b 0.005% 0.005% N/Aa

6 (C) 0.000% 0.001% N/Aa

7 (27Al) –0.001% –0.001% N/Aa

aNot applicable as all derivatives with respect to qj are zero for j ≠ 2.
bIsotope 4 is 1H in the nitric acid solution. Isotope 5 is 1H in polyethylene.
cNot applicable: q2L=qq22 ¼ 0.

TABLE XIII

Materials in the Cylindrical Test Problem

Index Material Composition (Weight Fraction) Density (g/cm3)

1 DU in Nitric Acid 235U 0.000033959; 238U 0.00996604; 16O 0.883106; 1H 0.106894 1.025a

2 Polyethylene 1H 0.143716; C 0.856284 0.93
3 Aluminum 27Al 1 2.7

aIncorrectly given as 0.998 g/cm3 in Ref. 13.
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contribution to the variance and skewness of the distribu-
tion of the total leakage, as well as the relative contribu-
tion of the second term to the total variance and expected
value, are shown in Table XV. The combined values due
to all uncertain parameters are given as the Total in the
last three rows. Here the second-order effects on the
expected value of the response and the variance are
minimal, but the second-order effects constitute the only
contribution to the asymmetry of the response distribu-
tion (skewness).

VII. SPHERICAL TEST PROBLEM (NONANALYTIC)

A two-region one-dimensional spherical test pro-
blem is described in Sec. VII.A. Derivatives computed
by solving the 1st- and 2nd-LASS using PARTISN are
compared with values estimated using central differ-
ences in Sec. VII.B. Sensitivities given in Secs. IV.A
through IV.D were computed and are presented in this
section.

VII.A. Problem Setup

The problem is a simplified version of the Beryllium-
Reflected Plutonium (BeRP) ball15,16 reflected by 3.81 cm
of polyethylene. The materials are specified in Table XVI.
The radius of the inner sphere containing α-phase pluto-
nium was r1 = 3.794 cm and the radius of the outer shell
containing polyethylene was r2 = 7.604 cm.

The quantity of interest R was the total reaction rate
of the 646-keV gamma-ray line from 239Pu in the carbon
of the polyethylene shell. Thus the response function used
in Eq. (3) was

Σd r;Ωð Þ ¼ 0; 0 � r < r1
NCσC; r1 � r � r2 ;

�
ð116Þ

where NC and σC are the atom density of carbon in the
material and the microscopic total cross section of carbon
at 646 keV. Also, λk of Eq. (35) is ΣC ¼ NCσC. Recall
from Secs. II, III, and IV that the sensitivities of R to the

TABLE XVI

Materials in the Simplified BeRP Ball

Index Material Composition (Weight Fraction) Density (g/cm3)

1 α-phase plutonium 239Pu 0.938039; 240Pu 0.0594113; 69Ga 0.00151516; 70Ga 0.00103465 19.6
2 Polyethylene C 0.856299; 1H 0.143701 0.95

TABLE XV

Variance, Skewness, and Expected Value of the Leakage for the Cylinder

Relative Standard
Deviation var(L)a

Contribution of
Second Term to

var(L)a Skewnessb

Contribution of
Second Term to

E(L)c

ρ1 1% 2.92283E–01 0.000% –7.99062E–03 –0.001%
5% 7.30769E+00 0.009% –3.99480E–02 –0.029%

10% 2.92386E+01 0.035% –7.98641E–02 –0.116%
ρ2 1% 6.07983E–05 0.000% 5.51151E–04 0.000%

5% 1.51996E–03 0.000% 2.75575E–03 0.000%
10% 6.07984E–03 0.000% 5.51149E–03 0.000%

ρ3 1% 7.90354E–04 0.000% 7.31610E–03 0.000%
5% 1.97603E–02 0.007% 3.65766E–02 0.001%

10% 7.90587E–02 0.030% 7.31287E–02 0.006%
Total 1% 2.93134E–01 0.000% –7.95482E–03 –0.001%

5% 7.32898E+00 0.009% –3.97690E–02 –0.028%
10% 2.93237E+01 0.035% –7.95063E–02 –0.110%

aEquation (113).
bEquation (114).
cEquation (112).
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detector response function assume that perturbations in
the detector response function do not affect the gamma-
ray flux. Therefore, changing the polyethylene density or
composition does not change the response function.

VII.B. Results

The reaction rate R = 2.574052 × 104/s. The first and
second derivatives of R with respect to the mass densities
of the materials are shown in Table XVII. These quanti-
ties were calculated using the 1st- and 2nd-LASS equa-
tions as well least-squares fits from the second-order
polynomials shown in Fig. 2. The fits were used because
the second derivatives are small and extremely difficult to
calculate using a finite difference. A more accurate and
efficient direct method could be used, but the point here
is that the 2nd-LASS gives the second-order sensitivities
efficiently and exactly without the difficulties associated
with finite differences.

The mixed partial derivatives q2R=qΣCqNi are com-
pared with finite differences in Table XVIII. The agree-
ment is excellent, but only after significant effort was

expended in trial-and-error to determine appropriate
values to perturb the response function and the atom
densities for the finite differences. (The final perturbation
amounts are shown on Table XVIII.) Again, this effort is
avoided when the 2nd-LASS is used.

VII.C. Impact of Second-Order Sensitivities on
Response Expected Value, Variance, and
Skewness

The microscopic cross sections of the six isotopes
were assumed to have (simultaneously) a relative stan-
dard deviation of 1%. Because the 239Pu and 240Pu cross
sections are perfectly correlated and the 69Ga and 71Ga
cross sections are perfectly correlated, the sums of the
first derivatives and the sums of the second derivatives
for the isotopes were used. The individual parameter
contribution to the variance and skewness of the distri-
bution of the total leakage, as well as the relative con-
tribution of the second term to the total variance and
expected value, are shown in Table XIX. The combined
values due to all uncertain parameters are given as the

Fig. 2. Reaction rate as a function of (relative) material densities.

TABLE XVII

Derivatives of the Reaction Rate with Respect to Mass Densities

Derivative Fit Adjoint Difference

qR=qρPu 1.70204E+01 1.69813E+01 –0.230%
qR=qρPoly –4.94965E+03 –4.94952E+03 –0.003%
q2R=qρ2Pu –2.55237E+00 –2.54190E+00 –0.410%
q2R=qρ2Poly 1.34067E+03 1.33640E+03 –0.319%
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Total in the last three rows. The second-order effects on
the expected value of the response and the variance are
minimal, but the second-order effects constitute the only
contribution to the asymmetry of the response distribu-
tion (skewness).

Note that the second-order sensitivity of R to the
detector response function contributes nothing to the
quantities of Table XIX [Eq. (100)].

VIII. SUMMARY AND CONCLUSIONS

In this paper, Cacuci’s 2nd-ASAM was applied to
derive second-order sensitivities of a detector response to
uncollided particles with respect to isotopic number den-
sities, microscopic cross sections, source emission rates,
and detector response parameters. These exact second-
order sensitivities are computed using 2nd-LASS, which
differ from the original forward Boltzmann equation and
its adjoint only by the sources on the right sides of the 2nd-
LASS equations. In the absence of the 2nd-ASAM, sec-
ond-order sensitivities would need to be computed by
many hundreds of recomputations in conjunction with

inexact finite-difference approximations. The equations
of the 2nd-LASS were solved using the PARTISN
discrete-ordinates code, and the solutions were subse-
quently used to compute second-order sensitivities for
three test problems: a homogeneous spherical system, an
inhomogeneous 2-D (r-z) cylindrical system, and a two-
region sphere. The exact sensitivities computed using the
2nd-ASAM were compared with the values that would
have been obtained by using finite differences.

The ability to use an off-the-shelf discrete-ordinates
code, PARTISN, for the transport calculations indicates
the general applicability of the 2nd-ASAM. It is easier if
the chosen transport code can handle negative sources
and negative fluxes, but the sources can always be split
and the results subtracted as necessary.12 But the para-
mount reason for applying the 2nd-ASAM is the signif-
icant reduction, by orders of magnitude, of the number
of large-scale computations needed for obtaining the
first- and second-order sensitivities of system responses
to system parameters. Ongoing research aims at general-
izing the 2nd-ASAM to enable the computation of arbi-
trarily high-order response sensitivities along with
applications to large-scale problems.

TABLE XVIII

Derivatives of the Reaction Rate with Respect to ΣC and Ni

Index Finite Difference p(ΣC), p(Ni) (%) Adjoint Difference

1 6.38450E+05 15, 3 6.38610E+05 –0.025%
2 –8.13718E+06 10, 20 –8.13920E+06 –0.025%
3 –1.26141E+06 50, 90 –1.26178E+06 –0.029%
4 –1.26381E+06 50, 90 –1.26178E+06 0.161%
5 –1.36642E+06 3.5, 10 –1.36560E+06 0.060%
6 –2.27506E+05 5, 40 –2.27618E+05 –0.049%

TABLE XIX

Variance, Skewness, and Expected Value of the Reaction Rate for the Reflected BeRP Ball

Isotope var(R)a

Contribution of
Second Term to

var(R)a Skewnessb
Contribution of

Second Term to E(R)c

239Pu + 240Pu 6.43896E+04 0.015% 5.21958E–02 0.009%
69Ga + 71Ga 1.18914E–01 0.000% 4.15670E–05 0.000%

1H 1.24360E+03 0.000% 5.77124E–03 0.000%
C 1.38198E+02 0.000% 1.92389E–03 0.000%

Total 6.57715E+04 0.015% 5.05747E–02 0.009%

aEquation (113).
bEquation (114).
cEquation (112).
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APPENDIX

DERIVATIVES OF THE LEAKAGE FOR THE
HOMOGENEOUS SPHERE

A.I. DERIVATIVES WITH RESPECT TO ATOM DENSITIES

The first derivative of the leakage with respect to
N1 is

qL
qN1

¼ qQ
qN1

Pþ Q
qP
qN1

¼ q1VPþ Q
qP
qΣ

qΣ
qN1

¼ q1VPþ Qσ1
qP
qΣ

: ðA:1Þ

The first derivative of the leakage with respect to
N2 is

qL
qN2

¼ qQ
qN2

P þ Q
qP
qN2

¼ Q
qP
qΣ

qΣ
qN2

¼ Qσ2
qP
qΣ

: ðA:2Þ

The second derivative of the leakage with respect to
N1 is

q2L
qN2

1

¼ q1V
qP
qN1

þ qQ
qN1

σ1
qP
qΣ

þ Qσ1
q

qN1

qP
qΣ

� 

¼ q1V
qP
qΣ

qΣ
qN1

þ q1Vσ1
qP
qΣ

þ Qσ1
q
qΣ

qP
qΣ

� 
qΣ
qN1

¼ 2q1Vσ1
qP
qΣ

þ Qσ21
q2P
qΣ2 : ðA:3Þ

The second derivative of the leakage with respect to N2 is

q2L
qN2

2

¼ qQ
qN2

σ2
qP
qΣ

þ Qσ2
q

qN2

qP
qΣ

� 

¼ Qσ2
q
qΣ

qP
qΣ

� 
qΣ
qN2

¼ Qσ22
q2P

qΣ2 : ðA:4Þ

The mixed partial derivative of the leakage with
respect to N1 and N2, by differentiating Eq. (A.2) with
respect to N1, is

q2L
qN1qN2

¼ qQ
qN1

σ2
qP
qΣ

þ Qσ2
q

qN1

qP
qΣ

� 

¼ q1Vσ2
qP
qΣ

þ Qσ2
q
qΣ

qP
qΣ

� 
qΣ
qN1

¼ q1Vσ2
qP
qΣ

þ Qσ1σ2
q2P

qΣ2 : ðA:5Þ

Differentiating Eq. (A.1) with respect to N2 also gives
Eq. (A.5).

A.II. DERIVATIVES WITH RESPECT TO CROSS SECTIONS

The first derivative of the leakage with respect to
σ1 is

qL
qσ1

¼ qQ
qσ1

P þ Q
qP
qσ1

¼ Q
qP
qΣ

qΣ
qσ1

¼ QN1
qP
qΣ

: ðA:6Þ

The first derivative of the leakage with respect to σ2 is

qL
qσ2

¼ qQ
qσ2

P þ Q
qP
qσ2

¼ Q
qP
qΣ

qΣ
qσ2

¼ QN2
qP
qΣ

: ðA:7Þ

The second derivative of the leakage with respect to
σ1 is

q2L
qσ21

¼ qQ
qσ1

N1
qP
qΣ

þ QN1
q
qσ1

qP
qΣ

� 

¼ QN1
q
qΣ

qP
qΣ

� 
qΣ
qσ1

¼ QN2
1

q2P

qΣ2 : ðA:8Þ

The second derivative of the leakage with respect to σ2 is
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q2L
qσ22

¼ qQ
qσ2

N2
qP
qΣ

þ QN2
q
qσ2

qP
qΣ

� 

¼ QN2
q
qΣ

qP
qΣ

� 
qΣ
qσ2

¼ QN2
2
q2P
qΣ2 : ðA:9Þ

The mixed partial derivative of the leakage with respect
to σ1 and σ2, by differentiating Eq. (A.7) with respect to σ1, is

q2L
qσ1qσ2

¼ qQ
qσ1

N2
qP
qΣ

þ QN2
q
qσ1

qP
qΣ

� 

¼ QN2
q
qΣ

qP
qΣ

� 
qΣ
qσ1

¼ QN1N2
q2P
qΣ2 : ðA:10Þ

Differentiating Eq. (A.6) with respect to σ2 also gives
Eq. (A.10).

A.III. DERIVATIVES WITH RESPECT TO SOURCE EMISSION
RATES

The first derivative of the leakage with respect to q1 is

qL
qq1

¼ qQ
qq1

Pþ Q
qP
qq1

¼ N1VP :

ðA:11Þ

The first derivative of the leakage with respect to q2 is
zero.

The second derivative of the leakage with respect to
q1 is

q2L
qq21

¼ N1V
qP
qq1

¼ 0 : ðA:12Þ

The second derivative of the leakage with respect to q2 is
zero.

The mixed partial derivative of the leakage with
respect to q1 and q2 is zero.

A.IV. DERIVATIVES WITH RESPECT TO MATERIAL MASS
DENSITY

The material mass density ρ is also a quantity of
interest. Using Eq. (103) in Eqs. (1) and (105), the
cross section and total source rate can be written as

Σ ¼ ρ
ρ0

Σ0 ðA:13Þ

and

Q ¼ ρ
ρ0

Q0 ; ðA:14Þ

respectively, where subscript 0 represents the initial,
unperturbed configuration.

The first derivative of the leakage with respect to ρ is

qL
qρ

¼ qQ
qρ

P þ Q
qP
qρ

¼ qQ
qρ

Pþ Q
qP
qΣ

qΣ
qρ

: ðA:15Þ

Using Eqs. (A.13) and (A.14) yields

qL
qρ

¼ Q0

ρ0
P þ Q

Σ0

ρ0

qP
qΣ

: ðA:16Þ

Rearranging Eqs. (A.13) and (A.14), Eq. (A.16) can be
written in the notation of the rest of this paper:

qL
qρ

¼ Q
ρ

P þ Σ
qP
qΣ

� 
: ðA:17Þ

From Eq. (A.16), the second derivative of the leakage
with respect to ρ is

q2L
qρ2

¼ Q0

ρ0

qP
qρ

þ qQ
qρ

Σ0

ρ0

qP
qΣ

þ Q
Σ0

ρ0

q
qρ

qP
qΣ

� 

¼ Q0

ρ0

qP
qΣ

qΣ
qρ

þ qQ
qρ

Σ0

ρ0

qP
qΣ

þ Q
Σ0

ρ0

q
qΣ

qP
qΣ

� 
qΣ
qρ

¼ 2
Q0

ρ0

Σ0

ρ0

qP
qΣ

þ Q
Σ0

ρ0

� 2 q2P

qΣ2 : ðA:18Þ

Again, rearranging Eqs. (A.13) and (A.14), Eq. (A.18) can
be written in the notation of the rest of this paper:

q2L
qρ2

¼ 2
Q
ρ
Σ
ρ
qP
qΣ

þ Q
Σ
ρ

� 2 q2P

qΣ2

¼ Q
ρ2

2Σ
qP
qΣ

þ Σ2 q
2P

qΣ2

� 
: ðA:19Þ

These density derivatives are constant-volume partial
derivatives.9
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A.V. MIXED DERIVATIVES: ATOM DENSITIES AND CROSS
SECTIONS

The mixed partial derivative of the leakage with respect
toN1 and σ1, by differentiating Eq. (A.6) with respect toN1, is

q2L
qN1qσ1

¼ qQ
qN1

N1
qP
qΣ

þ Q
qP
qΣ

þ QN1
q

qN1

qP
qΣ

� 

¼ q1VN1
qP
qΣ

þ Q
qP
qΣ

þ QN1
q
qΣ

qP
qΣ

� 
qΣ
qN1

¼ 2Q
qP
qΣ

þ QN1σ1
q2P

qΣ2 : ðA:20Þ

The mixed partial derivative of the leakage with respect toN1

and σ2, by differentiating Eq. (A.7) with respect to N1, is

q2L
qN1qσ2

¼ qQ
qN1

N2
qP
qΣ

þ QN2
q

qN1

qP
qΣ

� 

¼ q1VN2
qP
qΣ

þ QN2
q
qΣ

qP
qΣ

� 
qΣ
qN1

¼ q1VN2
qP
qΣ

þ QN2σ1
q2P
qΣ2 : ðA:21Þ

Differentiating Eq. (A.1) with respect to σ1 and (sepa-
rately) σ2 also gives Eqs. (A.20) and (A.21).

The mixed partial derivative of the leakage with respect
toN2 and σ1, by differentiating Eq. (A.6) with respect toN2, is

q2L
qN2qσ1

¼ qQ
qN2

N1
qP
qΣ

þ QN1
q

qN2

qP
qΣ

� 

¼ QN1
q
qΣ

qP
qΣ

� 
qΣ
qN2

¼ QN1σ2
q2P
qΣ2 : ðA:22Þ

The mixed partial derivative of the leakage with respect
to N2 and σ2, by differentiating Eq. (A.7) with respect to
N2, is

q2L
qN2qσ2

¼ qQ
qN2

N2
qP
qΣ

þ Q
qP
qΣ

þ QN2
q

qN2

qP
qΣ

� 

¼ Q
qP
qΣ

þ QN2
q
qΣ

qP
qΣ

� 
qΣ
qN2

¼ Q
qP
qΣ

þ QN2σ2
q2P
qΣ2 : ðA:23Þ

Differentiating Eq. (A.2) with respect to σ1 and (sepa-
rately) σ2 also gives Eqs. (A.22) and (A.23).

These density derivatives are constant-volume partial
derivatives.9

A.VI. MIXED DERIVATIVES: ATOM DENSITIES AND SOURCE
EMISSION RATES

The mixed partial derivative of the leakage with
respect to N1 and q1, by differentiating Eq. (A.11) with
respect to N1, is

q2L
qN1qq1

¼ VPþ N1V
qP
qN1

¼ VP þ N1V
qP
qΣ

qΣ
qN1

¼ VP þ N1Vσ1
qP
qΣ

: ðA:24Þ

The mixed partial derivative of the leakage with respect
to N1 and q2 is zero. Differentiating Eq. (A.1) with
respect to q1 also gives Eq. (A.24).

The mixed partial derivative of the leakage with respect
to N2 and q1, by differentiating Eq. (A.11) with respect to
N2, is

q2L
qN2qq1

¼ N1V
qP
qN2

¼ N1V
qP
qΣ

qΣ
qN2

¼ N1Vσ2
qP
qΣ

: ðA:25Þ

The mixed partial derivative of the leakage with respect
to N2 and q2 is zero. Differentiating Eq. (A.2) with
respect to q1 also gives Eq. (A.25).

These density derivatives are constant-volume partial
derivatives.9

A.VII. MIXED DERIVATIVES: CROSS SECTIONS AND
SOURCE EMISSION RATES

The mixed partial derivative of the leakage with respect
toσ1 and q1, by differentiatingEq. (A.11)with respect toσ1, is

q2L
qσ1qq1

¼ N1V
qP
qσ1

¼ N1V
qP
qΣ

qΣ
qσ1

¼ N2
1V

qP
qΣ

: ðA:26Þ
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The mixed partial derivative of the leakage with respect
to σ1 and q2 is zero. Differentiating Eq. (A.6) with respect
to q1 also gives Eq. (A.26).

The mixed partial derivative of the leakage with
respect to σ2 and q1, by differentiating Eq. (A.11) with
respect to σ2, is

q2L
qσ2qq1

¼ N1V
qP
qσ2

¼ N1V
qP
qΣ

qΣ
qσ2

¼ N1N2V
qP
qΣ

:

ðA:27Þ

The mixed partial derivative of the leakage with respect
to σ2 and q2 is zero. Differentiating Eq. (A.7) with respect
to q1 also gives Eq. (A.27).

A.VIII. MIXED DERIVATIVES: ATOM DENSITIES AND
MATERIAL DENSITY

The mixed partial derivative of the leakage with
respect to N1 and ρ, by differentiating Eq. (A.1) with
respect to ρ, is

q2L
qρqN1

¼ q1V
qP
qρ

þ qQ
qρ

σ1
qP
qΣ

þ Qσ1
q
qρ

qP
qΣ

� 

¼ q1V
qP
qΣ

qΣ
qρ

þ Q0

ρ0
σ1

qP
qΣ

þ Qσ1
q
qΣ

qP
qΣ

� 
qΣ
qρ

¼ q1V
Σ
ρ
þ Q

ρ
σ1

� 
qP
qΣ

þ Qσ1
Σ
ρ
q2P

qΣ2 : ðA:28Þ

The mixed partial derivative of the leakage with respect
to N2 and ρ, by differentiating Eq. (A.2) with respect to
ρ, is

q2L
qρqN2

¼ qQ
qρ

σ2
qP
qΣ

þ Qσ2
q
qρ

qP
qΣ

� 

¼ Q0

ρ0
σ2

qP
qΣ

þ Qσ2
q
qΣ

qP
qΣ

� 
qΣ
qρ

¼ Q
ρ
σ2

qP
qΣ

þ Qσ2
Σ
ρ
q2P

qΣ2 : ðA:29Þ

Differentiating Eq. (A.16) or (A.17) with respect to N1

and (separately) N2 also yields Eqs. (A.28) and (A.29).
Another way to do this that recognizes that atom

densities and material density are not independent is to
apply the chain rule:

q2L
qρqα

¼
X2
i¼1

q
qNi

qL
qα

� 
qNi

qρ
: ðA:30Þ

The atom density of Eq. (103) can be written as

Ni ¼ ρNi;0

ρ0
; i ¼ 1 ; 2 : ðA:31Þ

Using Eq. (A.31) and α = N1 yields

q2L
qρqN1

¼ q2L
qN2

1

qN1

qρ
þ q2L
qN1qN2

qN2

qρ

¼ N1;0

ρ0

q2L
qN2

1

þ N2;0

ρ0

q2L
qN1qN2

: ðA:32Þ

Using Eq. (A.31) and α = N2 yields

q2L
qρqN2

¼ q2L
qN1qN2

qN1

qρ
þ q2L
qN2

2

qN2

qρ

¼ N1;0

ρ0

q2L
qN1qN2

þ N2;0

ρ0

q2L
qN2

2

: ðA:33Þ

Rearranging Eq. (A.31) and using Eqs. (A.3) through
(A.5), it can be shown that Eqs. (A.32) and (A.33) are
equal to Eqs. (A.28) and (A.29), respectively.

These density derivatives are constant-volume partial
derivatives.9

A.IX. MIXED DERIVATIVES: CROSS SECTIONS AND
MATERIAL DENSITY

Using Eq. (A.31), the mixed partial derivative of
the leakage with respect to σ1 and ρ, by differentiating
Eq. (A.6) with respect to ρ, is

q2L
qρqσ1

¼ qQ
qρ

N1
qP
qΣ

þ Q
qN1

qρ
qP
qΣ

þ QN1
q
qρ

qP
qΣ

� 

¼ Q0

ρ0
N1

qP
qΣ

þ Q
N1;0

ρ0

qP
qΣ

þ QN1
q
qΣ

qP
qΣ

� 
qΣ
qρ

¼ QN1

ρ
2
qP
qΣ

þ Σ
q2P

qΣ2

� 
: ðA:34Þ

The mixed partial derivative of the leakage with respect
to σ2 and ρ, by differentiating Eq. (A.7) with respect to
ρ, is
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q2L
qρqσ2

¼ qQ
qρ

N2
qP
qΣ

þ Q
qN2

qρ
qP
qΣ

þ QN2
q
qρ

qP
qΣ

� 

¼ Q0

ρ0
N2

qP
qΣ

þ Q
N2;0

ρ0

qP
qΣ

þ QN2
q
qΣ

qP
qΣ

� 
qΣ
qρ

¼ QN2

ρ
2
qP
qΣ

þ Σ
q2P

qΣ2

� 
: ðA:35Þ

Differentiating Eq. (A.16) or Eq. (A.17) with respect to
σ1 and (separately) σ2 also yields Eqs. (A.34) and (A.35).

These density derivatives are constant-volume partial
derivatives.9

A.X. MIXED DERIVATIVES: SOURCE EMISSION RATES AND
MATERIAL DENSITY

Using Eq. (A.31), the mixed partial derivative of
the leakage with respect to q1 and ρ, by differentiating
Eq. (A.11) with respect to ρ, is

q2L
qρqq1

¼ qN1

qρ
VP þ N1V

qP
qρ

¼ N1;0

ρ0
VP þ N1V

qP
qΣ

qΣ
qρ

¼ N1V
ρ

P þ Σ
qP
qΣ

� 
: ðA:36Þ

The mixed partial derivative of the leakage with respect
to q2 and ρ is zero. Differentiating Eq. (A.16) or
Eq. (A.17) with respect to q1 also yields Eq. (A.36).

These density derivatives are constant-volume partial
derivatives.9
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