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ABSTRACT
The Coupled-Cluster (CC) theory is one of the most successful high precision methods used to solve
the stationary Schrödinger equation. In this article, we address the mathematical foundation of this
theory with focus on the advances made in the past decade. Rather than solely relying on spectral
gap assumptions (non-degeneracy of the ground state), we highlight the importance of coerciv-
ity assumptions – Gårding type inequalities – for the local uniqueness of the CC solution. Based on
local strong monotonicity, different sufficient conditions for a local unique solution are suggested.
One of the criteria assumes the relative smallness of the total cluster amplitudes (after possibly
removing the single amplitudes) compared to the Gårding constants. In the extended CC theory the
Lagrange multipliers are wave function parameters and, by means of the bivariational principle, we
here derive a connection between the exact cluster amplitudes and the Lagrange multipliers. This
relation might prove useful when determining the quality of a CC solution. Furthermore, the use of
an Aubin–Nitsche duality type method in different CC approaches is discussed and contrasted with
the bivariational principle.
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1. Introduction

One of the most successful high accuracy ab initio
computational schemes is the Coupled-Cluster (CC)
approach [1]. It goes back to Coester [2], who in 1958
suggested using an exponential parametrisation of the
wave function. This parametrisation was derived inde-
pendently by Hubbard [3] and Hugenholtz [4] in 1957
as an alternative to summing many-body perturbation
theory (MBPT) contributions order by order. At that
time, Coester was not able to come up with working
equations that one might try to solve. Those were pre-
sented by Čížek [5] after the relevant concepts had been
introduced in the context of quantum chemistry. In this
work, Čížek mentioned the projective approach of the
equations, which is exploited in all conventional CC
methods until today. Firstly, in [5] the working ampli-
tudes and energy equationswere derivedwhen the cluster
operator is approximated by merely double excitations
(CCD). Secondly, the CC theory was compared with

CONTACT A. Laestadius andre.laestadius@kjemi.uio.no Hylleraas Centre for QuantumMolecular Sciences, Department of Chemistry, University of
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MBPT, configuration interaction (CI), and the pair clus-
ter expansions of Sinanoğlu [6]. Thirdly, the first ever
CCD and linearised CCD computations were reported
for nitrogen and a model of benzene. For a more detailed
description of the CC history, we refer to reviews by pio-
neers of the theory. For example, Kümmel [7] and Čížek
[8] wrote such articles within the workshop ’Coupled
Cluster Theory of ElectronCorrelation’. Furthermore, see
the articles by Bartlett [9], Paldus [10], Arponen [11] and
Bishop [12].

Unlike the CI method, the CC formalism does not
arise from the Rayleigh–Ritz variational principle and is
therefore said to be non-variational in that sense. This
yields the well-known fact that the CC energy is in gen-
eral not equal to the expectation value of theHamiltonian
and in general not an upper bound to the ground-state
energy. The reliability of quantum chemical methods is
in most cases based on benchmarking, and the results’
physical and chemical consistency with existing theory.
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The gold standard of quantum chemistry – the CCSD(T)
method [13,14] – is no exception of this. It is the impor-
tance of sharp statements of an ab initiomethod’s reliabil-
ity that is themotivation of this work. Here, we build on a
local analysis [15] of the CC theory that also holds in the
exact, so-called continuous, formulation with infinitely
many one-particle basis functions [16,17].

There is a rich history of mathematical investigations
addressing CC methods prior to the local analyses in
[15–17]. To give a complete historical account is beyond
the scope of this article. We therefore limit ourselves and
mention only a few important results. As a system of
polynomial equations, the CC equations can have real
or if the cluster operator is truncated, complex solutions.
Furthermore, using quasi-Newton–Raphson methods to
compute solutions of non-linear equations can lead to
divergence since the approximated Jacobianmay become
singular. This is, in particular, the case when strongly cor-
related systems are considered. These and other related
aspects of theCC theory have been addressed byŽivković
and Monkhorst [18,19] and Piecuch et al. [20]. Sig-
nificant advances in the understanding of the nature
of multiple solutions of single-reference CC have been
made by Živković and Monkhorst [19], Kowalski and
Jankowski [21], and by Piecuch and Kowalski [22]. An
interesting attempt to address the existence of a clus-
ter operator and cluster expansion in the open-shell case
was done by Jeziorski and Paldus [23]. We would also
like to mention the coupled-electron pair approxima-
tion (CEPA) [24–27]. This approach was introduced as
a size-consistent alternative to the CISDmethod that was
achieved bymodifying (through topological factors [28])
the CI equations to account for higher excitations. This
makes CEPA non-variational (for an adapted variational
formulation of CEPA see [29]). CEPA can be regarded
as an approximation of the CC method and does not
form a truncation hierarchy that converges to the full-CI
limit [30].

Mathematical analysis is a well-established part of
many natural sciences. Plenty examples show how vari-
ous fields benefit frommathematical rigor and thatmath-
ematical analysis can define a framework of the method’s
applicability. This work takes off from recent develop-
ments of local analyses of CC methods, including the
single-reference CC, the extended CC, the tailored CC
(TCC) and its special case the CC method tailored by
tensor network states (TNS–TCC) [15–17,31,32]. In the
spirit of Robert Parr’s fundamental approach to quan-
tum chemistry, which was honored during the 58th Sani-
bel Symposium, we here present some mathematical
concepts used to analyseCCmethods in a functional ana-
lytic framework. These yield rigorous analytical results
that are independent of benchmarks and interpretations

but rather based onmathematical assumptions. Adapting
these assumptions to cover the computations performed
in practice remains a challenge and is subject of future
work. The local analysis puts as a sufficient – but not nec-
essary – condition that the cluster amplitudes are small
relative to other constants. We discuss a possible way out
of this restriction motivated by the fact that CC calcu-
lations are known to work for large (single) amplitudes
as well. We furthermore address the t1-diagnostic [33]
and mathematically derive a more sophisticated strategy
that includes all cluster amplitudes and offers a sufficient
condition of a locally unique and quasi-optimal solution
(after possibly rotating out the single amplitudes) rather
than rejection based on just large single amplitudes. We
furthermore complement the literature by a detailed dis-
cussion on spectral gap assumptions. In this context,
spectrum refers to the point spectrum, i.e. the eigen-
values of relevant operators. Although a gap between
the highest occupied molecular orbital and the lowest
unoccupiedmolecular orbital (HOMO–LUMOgap), or a
spectral gap of the exact Hamiltonian Ĥ (non-degenerate
ground state), is crucial for the analysis, we highlight the
importance of coercivity conditions, either for Ĥ or the
Fock operator F̂. Additionally, we derive an optimal con-
stant in the monotonicity proof of the CC function for
the finite dimensional case, i.e. the projected CC theory.
Comparing theCCLagrangianwith the extendedCC for-
mulation [31], we propose by means of the bivariational
principle an alternative to measure the quality of the
Lagrange multipliers, here interpreted as wave function
parameters.

This article is structured as follows: In Section 2, a brief
summary of the CC theory is presented. We introduce
the set of admissible wave functions andmoreover define
cluster operators, the CC function, and the CC energy
(for a full scope treatment of the mathematical formula-
tion of CC theory presented here we refer to [16,17]). In
Section 3, we discuss the use of local analysis within dif-
ferentCCmethods. Key concepts here are (see Section 3.1
for definitions) local strong monotonicity and local Lips-
chitz continuity of the CC function f, which – if fulfilled
– are sufficient conditions for a locally unique solution of
f =0 by Zarantonello’s theorem. In particular, the impor-
tance of so-called Gårding inequalities is demonstrated.
This is done both for the Hamiltonian, Section 3.2.1,
and for the Fock operator, Section 3.2.2. We conclude
in Section 3.3 with an overview of the Aubin-Nitsche
method and the bivariational principle as they are used
in CCmethods for estimating the truncation error of the
energy.

The authors are thankful to the organisers of the 58th
Sanibel Symposium under which many ideas presented
here took form.Moreover, the anonymous referee greatly
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improved a previous draft of this article – especially
putting the local analysis, under consideration here, into
the context of the rich quantum chemistry literature on
CC methods. This work was supported by the European
Research Council (ERC-STG-2014) through the Grant
No. 639508, and furthermore supported by the Norwe-
gian Research Council through the CoE Hylleraas Cen-
tre for Quantum Molecular Sciences Grant No. 262695.
AL and FMF thank Simen Kvaal and Thomas Bondo
Pedersen for useful comments and discussions.

2. Wave functions on an exponential manifold

The aim of electronic many-body methods, such as the
CC approach, is to solve the electronic Schrödinger
equation (SE) Ĥψ = E0ψ of anN-electron system. Here,
E0 is the ground-state energy and Ĥ the self-adjoint
Coulomb Hamiltonian. In this work, we restrict our
attention to real Hamiltonians and wave functions. We
emphasise that the mathematical framework of Hermi-
tian operators is not sufficient to support the necessary
spectral theory for quantum mechanics. Thirring exem-
plified this with the radial momentum operator P̂r =
−i�(∂/∂r) on D(P̂r) = {ψ ∈ L2((0,∞)) : ψ(r = 0) =
0 and P̂rψ ∈ L2((0,∞))} [34].

From a mathematical viewpoint the Coulomb Hamil-
tonian, like most differential operators, is studied in its
weak form to allow a larger variety of solutions. Set � =
R3 × {± 1

2 } (or any other appropriate region in space and
number of spin states) and let

∫
�N dτ denote both inte-

gration and summation over spatial and spin degrees of
freedom.Multiplying the SE on both sides with a smooth
and compactly supported function φ ∈ C∞

c (�
N), a so-

called test function, and integrating by parts yields (∇ =
(∇r1 , . . . ,∇rN ))

1
2

∫
�N

∇ψ · ∇φ dτ +
∫
�N
ψ V̂C φ dτ = E0

∫
�N
ψφ dτ ,

(1)
where V̂C denotes the Coulomb operator (containing
both the Coulomb attraction and repulsion) and ψ a
solution of the SE. It follows immediately that the l.h.s. of
Equation (1) defines a bilinear form a(·, ·) : C∞

c × C∞
c →

K with K being the underlying algebraic field. Bound-
edness and ellipticity of this bilinear form, however, are
non-trivial consequences that go back to Hardy–Rellich
inequalities proving that V̂C : C∞

c → L2 is bounded (for
a general introduction see [35]). Note that this treatment
of the SE extends the set of admissible wave functions to
the set of antisymmetric L2-functions ψ of finite kinetic
energyK(ψ), i.e.

‖ψ‖22 :=
∫
�N

|ψ |2 dτ < +∞

and

K(ψ) := 1
2

N∑
i=1

∫
�N

|∇riψ |2 dτ < +∞ .

We denote this space H1(�N) and impose the norm

‖ · ‖ : H1 → R;ψ �→
√

‖ψ‖22 + 2K(ψ).

In this topology C∞
c (�

N) ⊆ H1(�N) is dense. Hence,
the bilinear form a(·, ·) is continuously extendable to
H1(�N). We define the operator

Ĥw : H1 → (H1)′;ψ �→ Ĥwψ = a(ψ , ·),
where (H1)′ is dual space of H1, which we shall denote
H−1 from now on. Note that Ĥw maps indeed into
H−1 since boundedness and ellipticity are preserved
under continuous extensions. Furthermore, the r.h.s. of
Equation (1) can be generalised to the dual pairing allow-
ing to reformulate the SE as an operator equation: Find
ψ ∈ H1 such that Ĥwψ = E0ψ ′, with ψ ′ being the Riesz
representation of ψ . This general approach to the SE
was to the best of our knowledge not considered in the
mathematical analyses of CC theory prior to the work
of Schneider and Rohwedder [15–17]. Subsequently, we
consider this weak formulation and for simplicity write
Ĥw = Ĥ.

Different parameterisations of ψ lead to different
approximation schemes, subject of this article is the CC
scheme, i.e. we parameterise ψ on an exponential man-
ifold. We assume that the solution ψ∗ can be written
ψ∗ = φ0 + ψ⊥, where φ0 is a reference determinant of
N one-electron functions andψ⊥ is an element of {φ0}⊥,
the L2-orthogonal complement of φ0. We denote the L2-
inner product by 〈·|·〉 and follow the quantum chemistry
notation for expectation values of operators, i.e. 〈ψ |Â|ψ〉.
In particular, assuming that Ĥ supports a ground state,
which is always the case for Coulomb systems [36], the
Rayleigh–Ritz variational principle reads

E0 = min
ψ �=0

〈ψ |Ĥ|ψ〉
〈ψ |ψ〉 =: min

ψ �=0
R(ψ),

withψ ∈ H1. Note that although we assumeψ to be nor-
malisable (L2-summable), we do not impose ‖ψ‖2 = 1,
but rather ‖φ0‖2 = 1. Furthermore, by construction of
the solution ψ∗, we assume intermediate normalisation
〈φ0|ψ〉 = 1.

Next, let {χk} ⊂ H1(�) be an L2(�)-orthonormal
one-electron basis of the space of admissible one-electron
wave functions. Unless we explicitly write {χk}Kk=1 we
refer to the infinite dimensional setting. We construct
from this set an L2(�N)-orthonormal Slater basis in the
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usual fashion denoted {φμ}. Note that the N-particle
basis functions {φμ} span the infinite dimensional space
of all possible excitations with respect to the reference
determinant φ0. In this notation we have ψ = φ0 +
ψ⊥ = φ0 + ∑

μ sμφμ, where {sμ} are the L2-weights of
ψ in the given Slater basis, i.e. sμ = 〈φμ|ψ〉. We formally
define the cluster operators by Ŝ = ∑

μ sμX̂μ, where X̂μ
excites the reference state φ0 to the state φμ. We obtain
ψ = (Î + Ŝ)φ0 with Î denoting the identity operator.
The coefficients sμ are called cluster amplitudes and we
say that s = {sμ} is a set of admissible cluster ampli-
tudes if Ŝφ0 ∈ L2 and K(Ŝφ0) < +∞. Due to the one-
to-one relationship between cluster amplitudes and lin-
early parametrised wave functions, a natural choice for a
norm on the space of admissible cluster amplitudes is the
corresponding wave function norm of Ŝφ0 [15,16], i.e.

‖s‖2 = ‖Ŝφ0‖2 = ‖Ŝφ0‖22 + K(Ŝφ0).

2.1. The exponential ansatz

The CC theory is based on an exponential parametrisa-
tion of wave functions. This is an alternative and, assum-
ing full excitation rank (explained below) of the cluster
operators, equivalent description of the full CI (FCI)
wave function. Since its introduction byHubbard [3] and,
independently, Hugenholtz [4], the unique parametri-
sation of a wave function ψ by the exponential ψ =
eT̂φ0 was assumed to be true and motivated from for-
mal manipulations. However, the unique representation
of functions in aHilbert space is by nature amathematical
problem and was rigorously proven for the exponen-
tial parametrisation in the infinite dimensional case by
Rohwedder [16].

A key element in deriving the exponential parameteri-
sation from the mathematical viewpoint is the well-
definedness of the exponential of T̂ (or equivalently the
logarithm of Î + Ŝ), which is subject of functional cal-
culus. We emphasise that the applicability of functional
calculus depends strongly on the operator’s domain since
different domains may imply different properties of the
operator, e.g. boundedness, essential self-adjointness,
sectorial spectrum, etc. By the fact that Rohwedder [16]
showed the H1-continuity of cluster operators in a con-
tinuous setting, the functional calculus for bounded
operators was proven to be applicable.

In the finite dimensional case this result was known
in the quantum chemistry community, see, e.g. Živković
and Monkhorst [19]. However, this result was revisited
by Schneider [15] using the Cauchy–Dunford calculus.
To the best of our knowledge, the subtleties addressed
in [15,16] have not been part of previous considerations

in mathematical analysis of CC theory. These impor-
tant results demonstrate how quantum chemistry bene-
fits from mathematics on a very fundamental level. The
continuous CC theory amounts to the exact formulation
where the set {χk} forms a basis (in the strict math-
ematical sense) of the one particle space H1(�). In a
for this article appropriate form, we recall Rohwedder’s
result [16]:

(i) Let φ0 denote a reference determinant, e.g. the
Hartree–Fock solution. Given a wave function ψ⊥ ∈
{φ0}⊥ ∩ L2, i.e. 〈ψ⊥|φ0〉 = 0, set S = Sψ⊥ where Sψ⊥φ0 =
ψ⊥ and note that S ∈ B(L2, L2), i.e. a bounded linear
operator from L2 into L2. Then, ψ⊥ ∈ H1 if and only if
S ∈ B(H1,H1). Furthermore, there exists a constant C
independent of ψ⊥ such that

‖ψ⊥‖ ≤ ‖S‖ ≤ C‖ψ⊥‖.
An equivalent statement holds for the L2-adjoint of S.

(ii) The exponential map T̂ �→ eT̂ is a C∞ isomor-
phism between C := {T̂ : T̂ ∈ B(H1,H1)} and I + C :=
{Î + T̂ : T̂ ∈ B(H1,H1)}. In particular, for any ψ ∈ H1

with 〈φ0|ψ〉 = 1 there exists a unique T̂ such that ψ =
eT̂φ0.

Note that this result holds for any orthonormal set of
N-particle basis functions spanning the space of selected
excitations with respect to the reference determinant φ0.
However, it is required that the excitation rank of the
cluster operators remains untruncated, i.e. T̂ = ∑N

k=1 T̂k,
where T̂1 corresponds to single excitations, T̂2 to double
excitations, . . . , T̂N to N-fold excitations. Consequently,
we have

ψ = exp(T̂1 + · · · + T̂N)φ0 (2)

in the case of full excitation rank.
The usual identification between the linear and expo-

nential parametrisation holds [37]:Write Ŝ = Ŝ1 + · · · +
ŜN and suppose that the linear parametrisation is given
by

ψ = (Î + Ŝ1 + · · · + ŜN)φ0. (3)

Expanding the exponential in Equation (2), and compar-
ing with Equation (3), then yields

T̂1 = Ŝ1, T̂2 = Ŝ2 − 1
2
Ŝ21, · · ·

and for the amplitudes

tai = cai /c0, tabij = cabij /c0 − (cai c
b
j − caj c

b
i )/c

2
0, · · · ,

where c0 is the FCI coefficient of the reference determi-
nant (here c0 = 1). This shows a one-to-one relation for
untruncated linear and exponential parameterisations.
Restricting the parametrisation on the sub-manifold of
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excitation rank k<N, this one-to-one relationship is in
general not true (see Remark 2 in [31]): Consider CCSD
for N>2 particles, i.e. ψ = eT̂1+T̂2φ0. Expanding the
exponential yields

T̂1 + T̂2 + (T̂1 + T̂2)
2

2
+ · · · + (T̂1 + T̂2)

N

N!
= Ŝ,

which is not a CISD parametrisation, unless for the trivial
case T̂1 = T̂2 = 0.

2.2. The CC energy

Being able to express anywave function inH1 on an expo-
nential manifold, it is straightforward to derive the linked
CC equations [37]:

E(t) = 〈φ0| e−T̂Ĥ eT̂ |φ0〉,
(f (t))μ = 〈φμ| e−T̂Ĥ eT̂ |φ0〉 = 0, for all φμ. (4)

Here, φ0 and all the (visavi φ0) excited determinants φμ
are assumed to form a basis of the anti-symmetric part
ofH1. Note that the above equation defines the CC func-
tion f and the CC energy function E . Theorem 5.3 from
[16] demonstrates that the CC theory provides a wave
function that satisfiesR(ψ∗) = E0 = E(t∗):

The continuous (and with full excitation rank) CC
amplitudes t∗ solve f (t∗) = 0 fulfilling E(t∗) = E0 if and
only if the corresponding function ψ∗ = eT̂∗φ0 solves the
SE Ĥψ∗ = E0ψ∗.

By this fact and with E0 = E(t∗), if t∗ solves f (t∗) = 0
the SE yields

〈ψ∗|Ĥ|ψ∗〉 = E0〈ψ∗|ψ∗〉.

Hence, the CC amplitudes describe a function ψ∗ that
provides the system’s energy in the usual quantum
mechanical setting, i.e.R(ψ∗) = E(t∗).

In practice, computations are carried out using a finite
basis {χk}Kk=1 and furthermore with a truncated excita-
tion rank T̂(n) = T̂1 + · · · T̂n, n<N. The total truncation
level can then be denoted by d = (K, n), and where we
solve f =0 on V (d) to obtain f (td) = 0, Ed = E(td). We
note the following from the literature:

(i) Given a finite one-electron basis {χk}Kk=1, we
denote the span of the corresponding Slater basis by
H1
K . With full excitation rank (n=N) Proposition 4.7

in [15] gives: f (td) = 0 and EK = E(td) if ψd = eT̂dφ0
solves the SE on H1

K , i.e. Ĥ eT̂dφ0 = EK eT̂dφ0. By the
argument of Monkhorst in [38] we can establish the
reverse: Assume f (td) = 0 and set EK = E(td), then since
ÎK = |φ0〉〈φ0| + ∑

μ |φμ〉〈φμ| we obtain (Equation (38)

in [38])

〈φ0| eT̂
†
d eT̂d |φ0〉R(eT̂dφ0)

= 〈φ0| eT̂
†
d eT̂d ÎK e−T̂d Ĥ eT̂d |φ0〉

= 〈φ0| eT̂
†
d eT̂d |φ0〉E(td)+

∑
μ

〈φ0| eT̂
†
d eT̂d |φμ〉f (td) .

From this we can concludeR(eT̂dφ0) = E(td) = EK , i.e.
theCCwave function gives the energywhen inserted into
theRayleigh–Ritz quotient. Furthermore,we have (where
Cd denotes the truncated version of C)

inf{R(ψ) : ψ = eT̂φ0, T̂ ∈ Cd}
= inf{R(ψ) : ψ
= (Î + Ŝ)φ0, Ŝ ∈ Cd} = EK ,

by the equivalence between linear and exponential
parametrisation as long as full excitation rank is kept.
Consequently, ψd = eT̂dφ0 solves the SE on H1

K , which
establishes the reversed implication in Proposition 4.7
in [15].

(ii) However, for n<N we have in general (see for
instance Remark 4.9 in [15])

Evard := inf{R(ψ) : ψ = eT̂φ0, T̂ ∈ Cd} �= Ed, n < N,

which gives the well-known result that the computed Ed
is not an upper bound to EK . Hence, Ed �= R(eT̂dφ0)
where f (td) = 0 and Ed = E(td).

(iii) By (ii), strictly speaking, CCmethods do not com-
pute wave functions, as ψd does not provide the system’s
energy and therewith does not fulfill the Copenhagen
interpretation’s first principle [39]. However, as math-
ematical analyses in [15–17,31,32] have demonstrated,
CCmethods do provide approximate wave functions that
converge to the solution of the SE (as K → ∞, n →
N). The Copenhagen interpretation is formulated for full
systems, which correspond to the continuous CC formu-
lation, and does not contain any statement about approxi-
mative solutions. This raises the fundamental question of
what properties should be demanded for approximative
solutions.

(iv) To contrast with the next section, we would also
like to point out the work [19] where, for a finite basis, the
CC equations were analysed in a perturbational setting.
Writing

eT̂
(n) = Î + T̂1 + · · · + T̂n + λ

(
T̂n+1(n)+ T̂n+2(n)

)
,

where we followed the notation in [19] (see Equa-
tions (A9) and (A10)), the CI equations are obtained at
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λ = 0 and λ = 1 corresponds to the CC case. From this
and under the assumption of a finite one-electron basis,
both the reality and multiplicity of the CC solutions were
investigated with respect to pole and branch cut singu-
larities in the complex plane. The emergence of multi-
ple solutions is certainly interesting and worth pursuing,
however, the local analysis studied here instead deals with
the establishment of a locally unique solution under cer-
tain assumptions. Note that the local behaviour of a solu-
tion is important for the applicability and convergence of
Newton–Rhapson and quasi-Newton methods.

3. Local analysis in CC theory

The CC equations (linked and unlinked) can be for-
mulated as a non-linear Galerkin scheme, which is a
well-established framework in numerical analysis to con-
vert the continuous Schrödinger equation to a discrete
problem. Instead of solving the full problem, Galerkin
methods solve the CC equations in a finite dimen-
sional subspace Hd ⊆ H1. Note that the CC equations
remain the same, only the space spanned by the con-
sidered {φμ} has changed. Reducing the problem to a
finite-dimensional vector subspace allows to numerically
compute an approximate solution via Newton–Rhapson
or quasi-Newton methods. Galerkin methods allow a
local analysis, which is useful for CC theory due to
the manifold of solutions [18–23] and the use of quasi-
Newton methods that require certain local behaviour of
the solutions. Local analysis furthermore allows reliable
statements about the existence and local uniqueness of
Galerkin solutions as well as quantitative statements on
the basis-truncation error. Its backbone is formed by a
local version of Zarantonello’s theorem [40]:

Let f : X → X′ be a map between a Hilbert space
(X, 〈·, ·〉, ‖ · ‖) and its dual X′, and let x∗ ∈ Bδ be a root,
f (x∗) = 0, where Bδ is an open ball of radius δ around
x∗. Assume that f is Lipschitz continuous and strongly
monotone in Bδ with constants L>0 and γ > 0, respec-
tively. Then the root x∗ is unique in Bδ . Indeed, there is
a ball Cε ⊂ X′ with 0 ∈ Cε such that the solution map
f−1 : Cε → X exists and is Lipschitz continuous, imply-
ing that the equation f (x∗ + x) = y has a unique solution
x = f−1(y)− x∗, depending continuously on y,with norm
‖x‖ ≤ δ.Moreover, let X(d) ⊂ X be a closed subspace such
that x∗ can be approximated sufficiently well, i.e. the dis-
tance d(x∗,X(d)) is small. Then, the projected problem
fd(xd) = 0 has a unique solution xd ∈ X(d) ∩ Bδ and

‖x∗ − xd‖ ≤ L
γ
d(x∗,X(d)),

i.e. xd is a quasi-optimal solution.

The concept of quasi optimality was introduced in
Jean Céa’s dissertation [41] in 1964 for linear Galerkin
schemes and got extended over the years to the non-
linear case. It ensures that the Galerkin solution in a fixed
approximative space is, up to a multiplicative constant,
the closest element to the exact solution. For obvious rea-
sons this is a desired property for CC schemes. The differ-
ent CC methods vary, however, in more than just minor
details, which makes this property a conceptual different
and challenging task to establish for each method.

3.1. Local unique solutions and quasi-optimality

We start by elaborating on the assumptions of Zaran-
tonello’s theorem in a more demonstrative way. Here, the
notation 〈s, t〉 = ∑

μ sμtμ is used for sequences s = {sμ}
and t = {tμ}. In the context of the CC theory, the CC
function f from Equation (4) is said to be strongly mono-
tone if for sets of cluster amplitudes t = {tμ} and t′ = {t′μ}
there exists a γ > 0 such that

〈f (t)− f (t′), t − t′〉 ≥ γ ‖t − t′‖2. (5)

If this inequality is true for all t, t′ ∈ Bδ(t∗) then f is said
to be locally strongly monotone. The CC function f is
further said to be Lipschitz continuous if there exists a
constant L>0 such that

‖f (t)− f (t′)‖ ≤ L‖t − t′‖. (6)

In direct analogy with local strong monotonicity, we
define local Lipschitz continuity if Equation (6) is fulfilled
for all cluster amplitudes t, t′ inside some ball.

To exemplify these concepts in a simple way we con-
sider a smooth function f : R → R. By the Cauchy–
Schwarz inequality, the strong monotonicity implies that
the derivative f ′(t) ≥ γ , i.e. f is a strictly monotoni-
cally increasing function. Note that strictly monotone
functions are injective (one-to-one), which implies local
invertibility. Hence, this already ensures local uniqueness
of the function’s root t∗, if supported. Lipschitz conti-
nuity on the other hand implies that −L ≤ f ′(t) ≤ L.
Hence, the assumptions in Zarantonello’s theorem are
restrictions to the function’s slope, namely

0 < γ ≤ f ′(t) ≤ L.

By introducing normed operator spaces, these restric-
tions can be generalised to vector valued and even infinite
dimensional functions f.

Returning to the general case, the Lipschitz continuity
is key to derive the quasi-optimality in case of Galerkin
solutions. We assume that X(d) � X is the considered
approximation space supporting theGalerkin solution td,
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i.e. 〈f (td), s〉 = 0 for all s ∈ X(d). Then, f (t∗)− f (td) ∈
(X(d))⊥, i.e. 〈f (t∗)− f (td), u〉 = 0 for all u ∈ X(d), in par-
ticular for u = td. Starting from the strongmonotonicity,
we deduce for any u ∈ X(d) that

γ ‖t∗ − td‖2 ≤ 〈f (t∗)− f (td), t∗ − td〉
= 〈f (t∗)− f (td), t∗ − u〉
≤ L‖t∗ − td‖‖t∗ − u‖.

Because u ∈ X(d) was chosen arbitrarily, the above esti-
mate holds for all u, which implies the quasi optimality:

‖t∗ − td‖ ≤ L/γ min
u∈X(d)

‖t∗ − u‖. (7)

To apply Zarantonello’s theorem to CC methods, the
main challenge is to demonstrate a strictly positive γ in
Equation (5) such that strong monotonicity holds locally
around the solution that corresponds to the ground state.
The original idea in [15] to obtain such a result in
the finite-dimensional projected CC theory assumed the
existence of an HOMO–LUMO gap. Further, more tech-
nical assumptions on the Fock operator F̂ (see Gårding
inequality below) were needed to achieve a generalisa-
tion to the continuous CC setting [17], which also has a
counterpart for Ĥ. We refer the reader to [15–17,31,32]
for the detailed proofs and made assumptions, not only
within the traditional CC formalism, but also for the
TCC and extended CC methods. However, we remark
that these assumptions are sufficient conditions but not
necessary. One example is given by metals: Despite their
typically small or negligible HOMO–LUMO gaps, the
single-reference CCmethod can computemetallic effects
often quite well. This suggests that the HOMO–LOMO
gap assumption, which limits the results’ applicability,
can be lifted in the case of non-multi-configuration sys-
tems [32]. See also [23] for a CC theory that considers
open-shell systems where no HOMO–LUMO gap exists.

Here, we extend the results in [15–17,31,32] by opti-
mising the strong monotonicity constant γ , which yields
lesser restrictions on the solution’s cluster amplitudes
t∗ = {(t∗)μ}. Further investigations need to be under-
taken before the presented analysis can lead to practical
results of the reliability of the CC approach. However, we
suggest an estimate on theCCamplitudes that is sufficient
to guarantee the existence of a locally unique CC solu-
tion (see Equation (13)) and contrast it with the single
amplitudes diagnostic of [33].

3.2. Local strongmonotonicity of the CC function

In the literature there are two different proofs that
the infinite dimensional (continuous) CC function f
is locally strongly monotone [17] (see also [31] for

the extended CC function). Even though spectral-gap
assumptions enter the arguments, it is the so-calledGård-
ing constants that give a sufficient condition for the local
strongmonotonicity, as will be demonstrated below. This
fact emerges from the analysis in [17] but was noted
and elaborated within the analysis of the extended CC
method in [31]. We here furthermore improve the exist-
ing analysis by optimising the constants. We start by
defining the Gårding inequality that will be used exten-
sively in the sequel:

An operator Â fulfills a Gårding inequality if there exists
a real constant e such that Â + e is coercive, i.e. there
exists a constant c>0 that depends on e (we denote this
dependence by c(e)) such that

〈ψ |Â + e|ψ〉 ≥ c(e)‖ψ‖2.

The coercivity above describes a particular growth
behaviour of Â + e as the lower bound becomes large
when the wave function is at the extreme of the space, e.g.
wave functions with a large kinetic energy. Subsequently,
we denote the l.h.s. of Equation (5) by�, i.e. for two sets
of CC amplitudes t = {tμ} and t′ = {t′μ} we have

� = 〈f (t)− f (t′), t − t′〉.

We further set �T̂ = T̂ − T̂′, which yields by the CC
equations in Equation (4) the equality

� = 〈�T̂φ0| e−T̂Ĥ eT̂ − e−T̂′
ĤeT̂

′ |φ0〉. (8)

Next, we elaborate on Gårding inequalities for two dif-
ferent operators that imply local strong monotonicity of
the CC function, by bounding the r.h.s. of Equation (8).
Interestingly, for the finite-dimensional (projected) CC
method, only the latter approach has a counterpart (using
the particular structure of the Fock operator F̂).

3.2.1. A Gårding inequality for the hamiltonian
We here assume a spectral gap γ∗ of Ĥ, i.e. for all ψ
that are L2-orthogonal to the ground state ψ∗ we have
R(ψ)− E0 ≥ γ∗, for some γ∗ > 0, i.e. we assume a non-
degenerate ground state. We also assume that φ0 is a
good approximation of the exact wave function, i.e. ε =
‖ψ∗ − φ0‖2 is small. It then holds (see Lemma 11 in [31])

〈T̂φ0|Ĥ − E0|T̂φ0〉 ≥ γ∗(ε)‖T̂φ0‖22, (9)

with γ∗(ε) = γ∗(1 − 4ε + O(ε2)). Thus, γ∗(ε) is close to
γ∗ and strictly positive, if ε is sufficiently close to zero.
Using the argument in [17,31] (see proof of Theorem 3.4
in [17], and also Equation (16)with 
̂∗ = 0 togetherwith
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the proof of Theorem 16 in [31]), we obtain

� ≥ 〈�T̂φ0|Ĥ − E0|�T̂φ0〉
− (‖ e−T̂†

∗ − Î‖ + ‖ e−T̂†
∗ ‖‖ eT̂∗ − Î‖)‖�T̂φ0‖2.

(10)

In [17], the first term of Equation (10) was bounded by
a constant times ‖�T̂φ0‖2, achieved by combining the
Gårding inequality with Equation (9).

From Lemma 11 in [31], it follows that

〈�T̂φ0|Ĥ − E0|�T̂φ0〉 ≥ γ∗(ε)
γ∗(ε)+ e + E0

c(e)‖�T̂φ0‖2.

However, this can be further strengthened to

〈�T̂φ0|Ĥ − E0|�T̂φ0〉 ≥ ηopt(ε)‖�T̂φ0‖2,

with the optimal constant

ηopt(ε) := max
e>0

γ∗(ε)
γ∗(ε)+ e + E0

c(e).

From this we conclude

� ≥
(
ηopt(ε)− ‖ e−T̂†

∗ − Î‖

− ‖ e−T̂†
∗ ‖‖ eT̂∗ − Î‖

)
‖t − t′‖2, (11)

which yields the following sufficient condition for the local
strong monotonicity of f, namely

ηopt(ε) > ‖ e−T̂†
∗ − Î‖ + ‖ e−T̂†

∗ ‖‖ eT̂∗ − Î‖. (12)

Given γ∗ > 0, we observe that a sufficiently small ε and
t∗, such that ‖T̂∗‖ is small enough relative to ηopt(ε),
guarantees that Equation (12) is fulfilled. (Recall that ‖t‖
and ‖T̂‖ are equivalent, see Section 2.1.)

To finalise this section, we offer the following inter-
pretation of Equation (11), providing a more descriptive
approach to Equation (12).We see as e tends to−E0 from
above, the quotient γ∗(ε)/(γ∗(ε)+ e + E0) goes to one
from below. Furthermore, assume that c(e) goes to zero
from above as e approaches−E0 from above. This suggest
an optimal value of eopt > −E0. For instance, choosing
en = −E0 + γ∗(ε)/n implies

γ∗(ε)
γ∗(ε)+ e + E0

c(en) = 1
1 + 1/n

c(en)

such that γ∗(ε) is eliminated from the expression.
Assuming further that eopt corresponds to an nopt � 1
yields ηopt ≈ c(eopt). In conclusion, as long as γ∗(ε) >
0, the Gårding constant c(eopt) offers a direct estimate
of the monotonicity constant γ ≈ c(eopt)− 2‖T̂∗‖ +

O(‖T̂∗‖2). We therefore obtain the following (approxi-
mate) sufficient condition for local strong monotonicity

c(eopt) > 2‖T∗‖. (13)

Note that ‖T̂‖ ≥ K‖t‖, for some constant K. However,
a sharp estimate for this constant is object of current
research. Thus, for Zarantonello’s theorem to guarantee a
locally unique solution, the exact amplitudes t∗ = {(t∗)μ}
cannot be too large relative to c(eopt). We remark that by
an appropriate choice of the reference determinant φ0,
the single amplitudes t1 = {(t1)μ} do not contribute to
(the overall) ‖t‖. Thus, if ‖t‖ is too large then this is a
consequence of t2, t3, . . . (doubles, triples, etc.). Numer-
ical investigations are left for future work but we can
already compare this mathematically derived sufficient
condition for locally unique CC solutions with the t1-
diagnostics of [33]. Given the truncation level n of the
excitation rank, here the proposed diagnostic uses all
cluster amplitudes t1, t2, . . . , tn and not just the single
amplitudes t1. This is a clear advantage since, as men-
tioned above, orbital rotations can be used to rotate out
the single amplitudes. However, our diagnostic offers
only a sufficient and not a necessary criterion for a local
unique solution, i.e. for large t2, t3, . . . the current diag-
nostic is agnostic about local uniqueness and only states
that local strong monotonicity cannot be inferred from
this particular analysis. We hope that future work will
clarify the situation further.

3.2.2. A Gårding inequality for the fock operator
On the other hand, assume an HOMO–LUMO gap
γ0 > 0 of the Fock operator F̂ and that φ0 is the
Hartree–Fock solution, i.e. F̂φ0 = 
0φ0 with

〈ψ |F̂ −
0|ψ〉 ≥ γ0‖ψ‖22, for all ψ ⊥ φ0.

The HOMO–LUMO gap thus corresponds to a spectral
gap of the Fock operator andwe regard
0 as the ground-
state energy of F̂. Let F̂ = ∑N

i=1 f̂ (ri) and choose {χk} as
eigenbasis of f̂ , i.e. f̂χk = λkχk for all k. We observe that

0 = ∑N

i=1 λi, γ0 = λN+1 − λN > 0 and F̂φμ = (
0 +
εμ)φμ with εμ = ∑

l≤|μ| λal − λil . The argument prov-
ing that the CC function f is locally strongly monotone
can then be outlined as follows.

The considered Fock operator is assumed to fulfill a
Gårding inequality. Thus there exists a constant e such
that F̂ + e is coercive, i.e.

〈ψ |F̂ + e|ψ〉 ≥ c(e)‖ψ‖2.

For the sake of simplicity we use the same symbols for
the Gårding constants of F̂ as for the Hamiltonian. In
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complete analogy with Ĥ, the argument in [15,31] shows
that

〈ψ |F̂ −
0|ψ〉 ≥ max
e>0

γ0

γ0 + e +
0
c(e)‖ψ‖2 (14)

and we moreover define

η
(0)
opt := max

e>0

γ0

γ0 + e +
0
c(e). (15)

Following [17], for a fixed φ0 we define the map from
the space of cluster amplitudes into the space of wave
functions Oφ0 : t �→ Ô(t)φ0, with Ô : t �→ [[F̂, T̂], T̂] +
e−T̂ŴeT̂ . Hence,

e−T̂Ĥ eT̂φ0 = e−T̂(F̂ + Ŵ) eT̂φ0

= (F̂ + [F̂, T̂])φ0 + Ô(t)φ0, (16)

where Ĥ = F̂ + Ŵ, and assume that for some L>0 (not
too large)

〈�T̂φ0|Ô(t)− Ô(t′)|φ0〉 ≥ −L‖t − t′‖2. (17)

As a technical remark, the assumption in [17] is the
stronger requirement that t �→ Ô(t)φ0 is Lipschitz con-
tinuous as a map from the space of cluster amplitudes
to H−1. However, we here note that Equation (17) is
sufficient to derive the CC function’s local strong mono-
tonicity, as will be evident shortly. Inserting the identity
(a consequence of Equation (16) and F̂φ0 = 
0φ0)

e−T̂Ĥ eT̂φ0 = (F̂ + (F̂ −
0)T̂)φ0 + Ô(t)φ0

into Equation (8), as well as using Equations (14)
and (17), we obtain

� = 〈�T̂φ0|F̂ −
0|�T̂φ0〉
+ 〈�T̂φ0|Ô(t)− Ô(t′)|φ0〉

≥ (η
(0)
opt − L)‖t − t′‖2. (18)

Consequently, local strong monotonicity holds if η(0)opt >

L. Repeating the argument presented in the previous
section, with the obvious adaptations, we obtain

c(eopt) > L (19)

as a sufficient condition for f to be locally stronglymono-
tone. Here, no explicit assumption on ‖t∗‖ enters. The
main drawback of the assumption in Equation (19) is
that the constant L of the inequality in Equation (17)
has to be determined. Further analysis of this constant
is postponed for later work.

Before we conclude this section we exemplify how the
Gårding constant c can be chosen in the finite dimen-
sional setting. In this case the commutator [F̂, T̂] is an

excitation operator (which implies [[F̂, T̂], T̂] = 0) and
Ô(t) is simply the similarity transformation of the fluctu-
ation potential Ŵ. This offers the following insight into
the optimal constant η(0)opt in Equation (14) for the trun-
cated case. As in [15], we define the norm on {φ0}⊥
by

‖T̂φ0‖2F =
∑
μ

εμt2μ = ‖t‖2F .

It follows that

〈�T̂φ0|F̂ −
0|�T̂φ0〉 =
∑
μ

εμ(�t)2μ = ‖�T̂φ0‖2F .

Using ‖T̂φ0‖F instead of ‖T̂φ0‖ andmaking the assump-
tion in Equation (17) also for the truncated theory
(denoting the Lipschitz constant in this new topology by
L′), we obtain

� =
∑
μ

εμ(�t)2μ + 〈�T̂φ0|Ô(t)− Ô(t′)|φ0〉

= ‖t − t′‖2F + 〈�T̂φ0|Ô(t)− Ô(t′)|φ0〉
≥ (1 − L′)‖t − t′‖2F . (20)

Comparing the local strong monotonicity estimates
Equations (18) and (20) suggests that the finite-
dimensional version of η(0)opt equals one. Furthermore, at
first glance it appears that the estimate in Equation (20)
is obtained without imposing a Gårding inequality. A
key observation here is that the choice of the norm
makes F̂ on {φ0}⊥ fulfill a Gårding inequality with eopt =
−
0 and c(eopt) = 1. Indeed, the inequality is saturated,
meaning that equality holds. It follows then immedi-
ately from Equation (15) that η(0)opt = c(eopt) = 1. Thus,
in agreement with Equation (19) we have obtained the
condition η(0)opt − L′ > 0.

To conclude this section, we note that we have formu-
lated an alternative to the diagnostic in Equation (13):
Assume a finite one-electron basis and suppose that Ô(t)
satisfies Equation (17) with the norm ‖ · ‖F and L′ <
1 locally around the solution amplitudes. Then local
strong monotonicity implies a locally unique CC solu-
tion. Whether Equation (17) with L′ < 1 holds without
the assumption of a small ‖t∗‖ is an interesting and
still open question. Furthermore, the above analysis can
be generalised to any single particle operator fulfilling
certain properties (see [15,32]).

3.3. The CCmethod’s numerical analysis

As computational schemes, the convergence behaviour
of CC methods is one of the main objects of study. This
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covers whether or not the method converges towards the
exact solution as well as how fast it converges. We note
that the quasi optimality as given in Equation (7) yields
td → t∗ as d → ∞ (for increasing approximation spaces
X(d)). Furthermore, in the case of the CC method one
studies the CC-energy residual

|E(t∗)− E(t)|.
Amajor difference between the CI andCCmethod is that
the CC formalism is not variational in the Rayleigh–Ritz
sense. Consequently, it is not evident that the CC energy
error decays quadratically with respect to the error of
the wave function or cluster amplitudes. In the sequel we
present two approaches that were used in previous math-
ematical analyses of different CCmethods to derive such
quadratic error bounds [17,31,32].

3.3.1. The Aubin–Nitsche duality method
The Aubin–Nitsche duality method is a standard tool
for deriving a priori error estimates for finite element
methods. It was introduced independently byAubin [42],
Nitsche [43] and Oganesyan–Ruchovets [44]. We here
elaborate the Aubin–Nitsche duality type method used
in [15,17,32] to derive a quadratic error bound for the
CC method and the closely related TNS-TCC method,
a special case of the tailored CC method [45]. This
approach exploits the mathematical framework intro-
duced by Bangerth and Rannacher [46]. The untruncated
Euler–Lagrange method gives the Lagrangian L(t, s) =
E(t)− 〈f (t), s〉 with f and E from Equation (4). The
corresponding Gâteaux derivative in direction (u, v) is
denoted L′(·, ·)(u, v) and we study (t∗, s∗) fulfilling

L′(t∗, s∗)(u, v) =
{E ′(t∗)u − 〈f ′(t∗)u, s∗〉

−〈f (t∗), v〉
}

= 0, (21)

for all pairs of CC amplitude vectors (u, v). Under the
assumption that f is locally strongly monotone inside
a ball around t∗, there exists a unique s∗ determined
by t∗ such that (t∗, s∗) solves Equation (21). Note, that
the assumptions imposed to ensure local strong mono-
tonicity are different for the single-reference CC method
[15,17] and the TNS-TCC method [32]. Moreover, there
exists a solution sd to the corresponding discretisation of
the problem that approximates s∗ quasi optimally [17,32].
Equipped with these so called dual solutions, the energy-
error characterisation given by Bangerth and Rannacher
[46] yields

2(E(t∗)− E(td)) = R(3)
d + ρ(td)(s∗ − υd)

+ ρ∗(td, sd)(t∗ − wd),

with arbitrarily chosen discrete CC amplitudes υd,wd.
The given remainder termR(3)

d is cubic in the primal and

dual error, i.e. e = t∗ − td and e∗ = s∗ − sd. Using this
energy-error characterisation, a quadratic energy-error
bound for the single-reference CC method [15,17] and
the TNS-TCC method [32] follows.

3.3.2. The bivariational approach
The extended version of the CC method rests on Arpo-
nen’s bivariational approach [47,48]. This unconven-
tional formulation of the CC method parametrises two
independent wave functions and thus makes use of
two sets of cluster amplitudes t = {tμ} and λ = {λμ}.
It gained recent attention in the study [31] and has a
major advantage as far as the error analysis is concerned,
namely, the energy itself is stationary, i.e. the solution
(t∗, λ∗) is a critical point of the bivariational energy, see
Equation (22). Consequently, when the corresponding
Galerkin solution (td, λd) is close to the exact solution, a
quadratic error estimate is guaranteed. Subsequently, we
elaborate on this further.

Consider the Rayleigh–Ritz quotient, we write

E0 = R(ψ∗) = min
ψ �=0

R(ψ).

Hence, ψ∗ is a stationary point ofR, i.e.R′(ψ∗) = 0. By
Taylor expanding R around ψ∗ we obtain the quadratic
error estimation for the Rayleigh–Ritz quotient

|R(ψ)− R(ψ∗)| ≤ 1
2
‖R′′(ψ∗)‖ ‖ψ − ψ∗‖2

+ O(‖ψ − ψ∗‖3).

As mentioned before, the CC formalism does not arise
from the Rayleigh–Ritz variational principle. However, it
can be described by Arponen’s bivariational approach, as
follows. Let the bivariate quotient be

B(ψ , ψ̃) = 〈ψ̃ |Ĥ|ψ〉
〈ψ̃ |ψ〉 . (22)

Equation (22) can be seen as a generalisation of the
Rayleigh–Ritz quotient where a stationary point (ψ∗, ψ̃∗)
is given by a left and right eigenvector of Ĥ with cor-
responding eigenvalue E = B(ψ , ψ̃). Note that B is no
longer a below bounded functional, hence critical points
do not necessarily correspond to extremal points as
they do for R. In the extended CC theory, the bivari-
ational quotient is studied indirectly by means of the
so-called flipped gradient [31]. Following [47], we assume
〈φ0|ψ〉 = 〈ψ |ψ̃〉 = 1 and note that there exists T̂ such
that ψ = eT̂φ0 (cf. Section 2.1). Then 1 = 〈ψ |ψ̃〉 =
〈φ0| eT̂† |ψ̃〉 and consequently there exists a cluster oper-
ator 
̂ so that eT̂

†
ψ̃ = e
̂φ0. This defines a smooth

coordinate map� from cluster amplitudes (t, λ) to wave



2372 A. LAESTADIUS AND F. M. FAULSTICH

functions (ψ , ψ̃). The flipped gradient is then given by
F(t, λ) := R̂∇B(�(t, λ)), where we introduced the flip-
ping map

R̂ =
(
0 Î
Î 0

)
.

Under certain assumptions, F is locally strongly mono-
tone [31]. By the extended CC approach [31], ψ̃∗ =
e−T̂†

∗e
̂∗φ0 and ψ∗ = eT̂∗φ0 solve the SE if and only if
F(t∗, λ∗) = 0. Note that F(t∗, λ∗)= 0 implies

∇B(�(t∗, λ∗)) = 0

and therewith a quadratic energy error.
Furthermore, by identifying e
̂ = Î + Ŝ we obtain

from Equation (22) the CC Lagrangian, i.e.

B(eT̂φ0, e−T̂†
e
̂φ0) = 〈φ0| e−T̂Ĥ eT̂ |φ0〉

+
∑
μ

sμ〈φμ| e−T̂Ĥ eT̂ |φ0〉 =: L(t, s). (23)

Introducing the Lagrangian is a general method for opti-
misation with constraints. In the special case of CC the-
ory with fixed orbitals, as in this article, Equation (23)
demonstrates the equivalence to Arponen’s bivariational
method [47]. In the context of obtaining an efficient
evaluation of CC energy gradient, the derivative of the
variational functional was obtained by Bartlett [49].
The functional itself (Equation (23)) was first used in
quantum chemistry by Helgaker and Jørgensen [50] to
derive CC energy derivatives. We would also like to
mention the related extended CC work of Piecuch and
Bartlett [51]. Note that their assumption that the ref-
erence determinant φ0 is both a left- and right eigen-
vector of the doubly similarity transformed Ĥ can be
rigorously proven in the continuous case (see Lemma 13
in [31]).

Denoting the dual solution s∗ = {(s∗)μ} as in Section
3.3.1, it can then be seen that s∗ also describes cluster
amplitudes parameterising thewave function ψ̃∗. Indeed,
using the relation e
̂∗ = Î + Ŝ∗, we obtain that ψ̃∗ =
e−T̂†

∗ (Î + Ŝ∗)φ0 together with ψ∗ = eT̂∗φ0 solve the SE
corresponding to the same energy B(ψ∗, ψ̃∗). Assuming
non-degeneracy and using the constraint 〈ψ̃∗|ψ∗〉 = 1,
we arrive at the condition

e−T̂†
∗ (Î + Ŝ∗)φ0 = 1

‖ eT̂∗φ0‖2
eT̂∗φ0

for the primal and dual solutions t∗ and s∗. Thus, from
the extended CC theory we have obtained a constraint
relating s∗ to t∗ for the traditional CC method.

4. Conclusion

In this article, we have introduced the reader to a local
analysis of the CC method and its variations. In partic-
ular, we have demonstrated that the Gårding inequali-
ties for F̂ and Ĥ are key as far as a better understand-
ing of the sufficient conditions for a locally unique and
quasi-optimal solution of the CC equations is concerned.
Moreover, these investigations are geared towards an a
posteriori criterion of assessing the CC amplitudes from
a given computation. This is a mathematical approach
that is alternative to the controversial diagnostic sug-
gested in [33]. Indeed, the mathematically derived cri-
teria in Equations (12) and (13) use the total ‖t‖ and
not just the single amplitudes t1. Since the single ampli-
tudes could be removed by an appropriate choice of the
reference determinant (i.e. an ideal choice of the basis
functions), the sufficient condition for a locally unique
solution given by Equation (13) puts constraints on the
remaining amplitudes (t2, t3, . . .). However, it is not yet
a rejection criterion since it only implies locally unique
and quasi-optimal solutions under certain conditions. As
outlined, the upper bound in Equation (13) is funda-
mentally different fromprevious heuristic and potentially
misleading diagnostics [33] since the former is derived
in a rigorous mathematical framework, where not just
the singles amplitudes are taken into consideration. We
have also shown that the condition on the two particle
operator in Equation (17) implies a locally unique CC
solution. Here, the condition does not explicitly depend
on the amplitude norm and might offer a broader under-
standing of the reliability of a CC solution. Moreover,
the derived condition is independent of the chosen sin-
gle particle operator. In connectionwith the extendedCC
formalism, we have set up a constraint for the exact CC
Lagrange multipliers s∗ = {(s∗)μ}, relating them to the
exact CC amplitudes t∗ = {(t∗)μ}. Numerical investiga-
tions are left for future work.
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