
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tmph20

Molecular Physics
An International Journal at the Interface Between Chemistry and
Physics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tmph20

A new density for transition properties within
the similarity transformed equation of motion
approach

Soumen Ghosh , Achintya Kumar Dutta , Bernardo de Souza , Romain
Berraud-Pache & Róbert Izsák

To cite this article: Soumen Ghosh , Achintya Kumar Dutta , Bernardo de Souza , Romain
Berraud-Pache & Róbert Izsák (2020) A new density for transition properties within the similarity
transformed equation of motion approach, Molecular Physics, 118:19-20, e1818858, DOI:
10.1080/00268976.2020.1818858

To link to this article:  https://doi.org/10.1080/00268976.2020.1818858

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

View supplementary material 

Published online: 14 Sep 2020. Submit your article to this journal 

Article views: 316 View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tmph20
https://www.tandfonline.com/loi/tmph20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00268976.2020.1818858
https://doi.org/10.1080/00268976.2020.1818858
https://www.tandfonline.com/doi/suppl/10.1080/00268976.2020.1818858
https://www.tandfonline.com/doi/suppl/10.1080/00268976.2020.1818858
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00268976.2020.1818858
https://www.tandfonline.com/doi/mlt/10.1080/00268976.2020.1818858
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2020.1818858&domain=pdf&date_stamp=2020-09-14
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2020.1818858&domain=pdf&date_stamp=2020-09-14


MOLECULAR PHYSICS
2020, VOL. 118, NOS. 19–20, e1818858 (11 pages)
https://doi.org/10.1080/00268976.2020.1818858

JÜRGEN GAUSS

A new density for transition properties within the similarity transformed
equation of motion approach

Soumen Ghosha, Achintya Kumar Duttab, Bernardo de Souzac, Romain Berraud-Pache a and Róbert Izsák a

aMax-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany; bIndian Institute of Technology Bombay, Mumbai, India; cFAccTs
GmbH, Köln, Germany

ABSTRACT
Similarity transformed equation of motion coupled cluster theory offers an efficient way of comput-
ingexcited state energies bydecoupling the spaceof singles fromhigher excitations. However,when
computing properties with this method, one is left with a choice between an expensive method
involving a transformation into the space of the singles and the doubles, or methods that approx-
imate the full density. In this paper, we present a rigorous expectation value formulation of the
density to compute transition properties and discuss its relation to other existing techniques. We
confirm that the configuration interaction singles approximation we used in earlier studies oscilla-
tor strength values is a reliable one, but also that the current formulation provides a cost efficient
improvement on it.
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1. Introduction

The coupled cluster (CC) approach is one of the most
accurate and systematically improvable method of quan-
tum chemistry [1,2]. The last 70 years has seen tremen-
dous progress in the development of black-box single
reference coupled cluster methods, now available in a
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wide variety of commercial as well as free of charge quan-
tum chemistry software packages for calculating energy
values and properties. Extensions capable of handling
multi-reference systems [3–6] and excited states [2] have
also been achieved.

The single reference CCmethod is generally extended
to excited states using the equation of motion (EOM)
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approach [7,8], typically truncated at the level of single
and double excitations (CCSD) which scales as O(N6)
with the number of basis functions N and has an O(N4)
scaling storage requirement. Thus, the development of
lower scaling modifications to EOM-CCSD is a very
active field of research [9]. The strategies available to
reduce the computational cost of coupled cluster based
excited state methods can be broadly classified into
four categories. The first category consists of pertur-
bative approximations of the ground and excited state
coupled cluster wave-function parameters, such as CC2
[10] and EOM-CCSD(2) [11–13]. These methods have a
close relationship to the so-called polarisation propagator
methods [14,15]. The second category of approximations
involves approximating the two electron repulsion inte-
grals in EOM-CCSD calculations using density fitting
[16,17] and/or semi-numerical approximations [18,19].
The third category, which has became very popular in
recent times, is the truncation of the wave-function using
local and natural orbitals [20–28].

Nooijen and Bartlett have proposed a fourth approach
[29] in which a second similarity transformation is per-
formed to decouple the single excitations from the space
of higher order excitations. Consequently, in the similar-
ity transformed EOM-CCSD (STEOM-CCSD) method
one can obtain the excitation energy just by diago-
nalising the singles block of the Hamiltonian which
leads to significant reduction of the computational cost
without much loss of accuracy. The STEOM-CCSD
method is closely related to the so-called Fock-space
coupled cluster (FSCC) method [30–34]. The renewed
interest in the STEOM-CCSD method over the last
few years has produced an efficient new implementa-
tion [21], an automatic active space selection scheme
[35,36], an implementation including explicit correla-
tion [37] and spin orbit coupling effects [38], an exten-
sion to open-shell systems [39] and semi-conductor
solids [40].

However, the calculation of excitation energies is just
one part of the theoretical treatment of excited state
phenomena, and the simulation of experimental spectra
also require the calculation of transition properties. Since
coupled cluster is a non-variational method, the Hell-
mann–Feynmann theorem does not apply. Therefore, it
is not straightforward to calculate properties within the
framework of coupled cluster methods. Nevertheless, the
method of Lagrange multipliers [41,42] can be used to
introduce a new set of parameters and to define an energy
functional which is stationary with respect to the exter-
nal perturbation. Gauss and co-workers have played a
fundamental role in developing the theory of molec-
ular properties [43], methods applicable to open shell
systems and analytic derivatives within the framework

of the coupled cluster method for ground [44–46] and
excited states [47,48], to name only a few areas. The first
implementation of the EOM-CCSD properties by Stan-
ton and Bartlett used an expectation value formalism
[8]. Later exact analytic first derivatives for EOM-CCSD
were implemented by Gauss and Stanton using the so-
called Z-vector technique [49]. Koch and co-workers
[50] have implemented the transition moments and
excited state properties for coupled cluster based excited
state methods within the linear response approach. Ana-
lytic second derivatives for the EOM-CCSD method
were reported by Krylov and co-workers [51], while
Pal and co-workers [52] have reported the implemen-
tation of transition moments for the Fock space multi-
reference coupled cluster (FSMRCC) method. The tran-
sition moment for STEOM-CC method was originally
implemented by Nooijen and Bartlett using an EOM-
CCSD like approximation [29]. Analytic gradients for
various flavours of STEOM-CCSD have also been imple-
mented by Nooijen and co-workers [53,54]. Landau has
developed [55] a general theoretical framework for the
calculation of response properties within STEOM-CC
but no numerical results were reported.

For the practical applications of STEOM-CCSD to
large molecules one needs to develop a scheme for cal-
culating the transition moment which requires very little
effort beyond the energy calculation and is compati-
ble with the both canonical and localised orbital based
implementations. Up to this point, we have been using
a simple configuration interaction singles (CIS) formula
for this purpose [56]. The aim of this paper is to develop
an efficient scheme for the calculation of transition prop-
erties with the framework of STEOM-CCSD in a more
rigorous way. It should be noted that the formulation we
propose here is aimedmainly at transition properties, and
to the extent it is developed here, it yields no improve-
ment over the CIS formula for excited state rather than
transition properties, such as the excited state dipole
moment. The formulation of Nooijen and Bartlett [29]
and Landau [55] offers a better description of these and
may serve as the basis of more efficient implementations
in the future.

2. Theory

2.1. Coupled cluster for excited states

The CC wave-function ansatz takes the form of an expo-
nential operator, eT̂ , acting on a reference function,which
in the single reference CC case is typically the ground
state closed shell Hartree–Fock determinant |0〉. In prac-
tice, T̂ and the corresponding energy are obtained by
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satisfying the projection conditions

〈0|H̄|0〉 = E, 〈�ab...
ij... |H̄|0〉 = 0, (1)

in which �ab...
ij... is a member of the excitation manifold

and

H̄ = e−T̂ĤeT̂ (2)

is the similarity transformed coupled cluster (CC)Hamil-
tonian. The operator T̂ contains the ground state CC
amplitudes, which in the CC singles and doubles (CCSD)
level can be written as

T̂ = tldE
d
l +

1
2
tklcdE

d
l E

c
k, (3)

in which the operators Edl are generators of the unitary
group. The labels i, j, k . . . denote occupied, a, b, c . . . vir-
tual orbitals. Once the ground state solution is known, the
equation of motion (EOM) approachmakes it possible to
calculate excited states as an eigenproblem of H̄.

Similarity transformed equation of motion (STEOM)
theory is a modification of the EOM approach to com-
pute excited state energies and properties. It relies on the
following doubly similarity transformed Hamiltonian,

Ĝ = {eŜ}−1H̄{eŜ}, (4)

where the curly braces {} indicate normal ordering with
respect to the reference Hartree–Fock (HF) determinant.
The labels m and e are reserved for active occupied and
active virtual orbitals, respectively, while p, q, . . . may
denote any orbital. The operator Ŝ consists of two parts
Ŝ = Ŝ+ + Ŝ−, which can be written as

Ŝ− = sjkmc{EckEmj } → Ŝ− = sjkmcEck(E
m
j − 2δmj ), (5)

Ŝ+ = sekbc{EckEbe } → Ŝ+ = sekbcE
c
kE

b
e , (6)

where the normal ordered expressions have been con-
verted into equivalent expressions without normal order-
ing. Here, we have neglected the singles contributions,
since they do not change the spectrum of Ĝ.

The STEOMHamiltonian is diagonalised in the space
of single excitations to yield the right and left hand side
eigenvectors,

R̂ = r0 + 1√
2
riaE

a
i = r0 + R̂1, (7)

L̂† = l0 + 1√
2
lfnEnf = l0 + L̂†

1, (8)

where the notation L̂1, R̂1 are reserved for the singles
part of the operator, without the constant term. Note
that unlike R̂, the left vectors also have a significant
doubles component, but we leave that discussion for

a later section. Consider now the action of the trans-
formation operator on the reference and singly excited
determinants,

Ŝ|0〉 = 0, 〈0|Ŝ = 0, (9)

ŜR̂|0〉 → |D〉, 〈0|L̂†Ŝ = 0, (10)

{Ŝ2}R̂|0〉 → |T〉, 〈0|L̂†{Ŝ2} = 0, (11)

in which |D〉 and |T〉 denote doubly and triply excited
determinants.

2.2. The STEOMdensity in the space of single
excitations

The use of the normal ordered operator {eŜ} leads to
the complication that {eŜ}−1 �= {e−Ŝ}. To overcome this
problem, Nooijen and Bartlett [29] write the connected
part of the STEOMHamiltonian in the form

ĜC = (H̄{eŜ})C + ({eŜ − 1}Ĝ)C. (12)

Apart from the constant energy term, the operator Ĝ
can be assumed to be equivalent with ĜC. Furthermore,
since Ĝ is to be represented in the space of the reference
and single excitations, the second term can be neglected.
Since we are interested in computing the one electron
reduced density matrix (1-RDM), γ p

q , it also sufficient to
consider terms that are linear in Ŝ. Thus, defining

Ẽpq = {eŜ}−1e−T̂EpqeT̂{eŜ}, (13)

the 1-RDM can be written as

γ
p
q = 〈L̂†ẼpqR̂〉 = 〈0|L̂†

(
Epq + [Epq, T̂]+ 1

2
[[Epq, T̂], T̂]

+ [Epq, Ŝ−]+ [Epq, Ŝ+]
)
R̂|0〉, (14)

since all other contributions are zero. Note, in particular,
that contributions from {Ŝ2} vanish for the 1-RDM, as the
quadratic terms only contribute to higher order reduced
density matrices.

We may now systematically evaluate the necessary
expressions, starting with

〈Ẽpq〉 = 〈0|Epq + [Epq, T̂]|0〉 = 2δpqδkp + 2δpl δ
d
q t

l
d. (15)

Then,

〈ẼpqR̂〉 = r0〈Ẽpq〉 + 〈[Ẽpq, R̂1]〉, (16)

in which

〈[Ẽpq, R̂1]〉 = 〈0|[Epq, R̂1]|0〉 =
√
2δpi δ

a
qr

i
a. (17)

It is worth noting that this is equivalent to the con-
figuration interaction singles (CIS) result for the same
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expression, in which case r0 would be also zero. For the
left hand side,

〈[L̂†, Ẽpq]〉 = l0〈Ẽpq〉 + 〈[L̂†
1, Ẽ

p
q]〉, (18)

in which

〈[L̂†
1, Ẽ

p
q]〉 = 〈0|[L̂†

1,E
p
q]+ [L̂†

1, [E
p
q, T̂]]

+ 1
2
[L̂†

1, [[E
p
q, T̂], ]T̂]|0〉

= √2δpf δnq l
f
n +
√
2δpf δ

d
q l
f
ntnd −

√
2δpl δ

n
q l
f
ntlf

+√2δpl δdq l
f
nt̃nlfd −

√
2δpl δ

d
q l
f
ntndt

l
f . (19)

Here, and in the following the tilde on an ampli-
tude denotes t̃ijab = 2tijab − tijba. The resulting expression is
equivalent to the ground state CC 1-RDM in the space of
the singles. Finally,

〈L̂†ẼpqR̂〉 = δLR〈Ẽpq〉 + l0〈[Ẽpq, R̂1]〉 + r0〈[L̂†
1, Ẽ

p
q]〉

+ 〈[L̂†
1, [Ẽ

p
q, R̂1]]〉, (20)

where δLR survives if L̂ and R̂ correspond to the same
state. We may write

〈[L̂†
1, [Ẽ

p
q, R̂1]]〉 = 〈0|[L̂†

1, [E
p
q, R̂1]]+ [L̂†

1, [[E
p
q, T̂], R̂1]]

+ [L̂†
1, [[E

p
q, Ŝ−], R̂1]]

+ [L̂†
1, [[E

p
q, Ŝ+], R̂1]]|0〉, (21)

and

〈[L̂†
1, [Ẽ

p
q, R̂1]]〉 = δ

p
f δ

a
ql
f
nrna − 2δpi δ

n
q l
f
nrif + δ

p
l δ

a
ql
f
ntlf r

n
a

− 2δpi δ
d
q l
f
ntndr

i
f − δ

p
kδ

c
ql
f
j s̃
jk
mcrma

− δ
p
kδ

a
ql
c
j s̃
kj
mcrma + δ

p
kδ

c
ql
b
i s̃

ek
bcr

i
e

+ δ
p
i δ

c
ql
b
ks̃

ek
cbr

i
e. (22)

Collecting all terms together, we have

γ
p
q = δLR(2δ

p
qδ

k
p + 2δpl δ

d
q t

l
d)+
√
2δpi δ

a
ql
0ria

+√2δpf δnq l
f
nr0 +

√
2δpf δ

d
q l
f
ntndr0 −

√
2δpl δ

n
q l
f
ntlf r0

+√2δpl δdq l
f
nt̃nlfdr0 −

√
2δpl δ

d
q l
f
ntndt

l
f r0

+ δ
p
f δ

a
ql
f
nrna − δ

p
i δ

n
q l
f
nrif + δ

p
l δ

a
ql
f
ntlf r

n
a − δ

p
i δ

d
q l
f
ntndr

i
f

− δ
p
kδ

c
ql
f
j s̃
jk
mcrmf − δ

p
kδ

a
ql
c
j s̃
kj
mcrma + δ

p
kδ

c
ql
b
i s̃

ek
bcr

i
e

+ δ
p
i δ

c
ql
b
ks̃

ek
cbr

i
e. (23)

We will refer to this result as the full STEOM density
within the space of single excitations. The CIS approxi-
mation to the full density can be obtained from this by
assuming that the t and s amplitudes are zero.

It remains to discuss how the quantities that enter
Equation (23) are obtained. Once the STEOM itera-
tions converge, the T̂, the Ŝ± and R̂1 for the excited
states amplitudes become available. The r0 contribution
to excited states can also be determined simply as [29]

r0 =
√
2gai r

i
a

ωk
,

gai =
1
2
〈ĜEai 〉 = f̃ ai − δmi s

jk
mcg̃acjk + δae s

ek
bcg̃

bc
ik ,

f̃ ai = f ai + tldg̃
ad
il . (24)

For the ground state, r0 = 1 and R̂1 = 0. The excited state
L̂1 can be obtained as a general inverse one R̂1 is known,
while l0 = 0 for excited states. For the ground state left
vector, l0 = 1, while remaining parts can be related to the
ground state lambda equations or be approximated by the
T̂ amplitudes. Thus, our formulation also yields results
for the ground state density, although the ground state
CC density is preferred for this purpose. We will discuss
this latter issue further in the next section.

2.3. Contributions to the STEOMdensity from
double excitations

So far, only the singles contributions to the density were
considered. While this is a good approximation for the
right hand state vector Equation (7), the same compact-
ness is not achieved for the left hand side, which has
significant components in the space of doubles. For the
discussion in this section, the left hand side operator in
Equation (25) will be rewritten to include the doubles,

L̂† = l0 + 1√
2
lfnEnf +

1
2
lefmnEme E

n
f = l0 + L̂†

1 + L̂†
2. (25)

Nooijen andBartlett [29] proceed to derive a perturbative
formula for L̂2, and then evaluate the 1-RDM with this
extended left hand state. They even go one step further
and recover the EOM eigenvectors L̄ and R̄ by expanding
the exponent in

R̄|0〉 = {eŜ}R̂|0〉, (26)

and

〈0|L̄† = 〈0|L̂†{eŜ}−1. (27)

In the letter case, L̂ now contains the doubles. While the
issue of the inverse normal ordered operator has to be
addressed, the details need not concern us here. It is suf-
ficient to summarise the results that emerge from this
transformation,

R̄0 = R̂0, L̄0 = L̂0, R̄1 = R̂1, L̄2 = L̂2. (28)

The term L̄1 is equal to the sum of L̂1 and terms aris-
ing from contractions between L̂2 and Ŝ, which we will
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discuss inmore detail below. There is also a doubles com-
ponent of the right hand vector, R̄2|0〉 = ŜR̂1|0〉, which
yields R̄2 = r̄ijabE

a
i E

b
j , where

r̄ijab =
1√
2
(1+ PijPab)(s

ej
abr

i
e − sijmbr

m
a ). (29)

Note that these contributions appear automatically in
Equation (23). Following the same procedure a triples
correction also arises in the EOM picture, but we will not
investigate this in any further detail. With these defini-
tions, Nooijen and Bartlett are able to use the usual EOM
expectation value formula for property calculations,

γ
p
q = 〈L̄ĒpqR̄〉, Ēpq = eT̂Epqe−T̂ . (30)

To evaluate the doubles correction, we must next con-
sider the contributions from the L̂2 and R̂1.

Since our goal is to find a good approximation as close
to CIS as possible, we will introduce further simplifica-
tions. For the ground state left hand side, we will assume
[57,58] that

L̄1 ≈ L̂1 ≈
√
2T̂1, L̄2 ≈ L̂2 ≈ T̂2, (31)

while for the excited states, the singles are given by

L̄1 ≈ L̂1, (32)

after neglecting the terms from L̂2 and Ŝ amplitudes. The
doubles are obtained from the analogue of Equation (29),

l̄ijab =
1√
2
(1+ PijPab)(s

ej
abl

i
e − sijmbl

m
a ). (33)

These might be regarded as first order approximations,
and leave the results of the previous section for the sin-
gles unchanged. To capture the most important doubles
effects from the left hand side, let us consider its interac-
tion with the singles of the right hand side,

〈L̄†
2Ē

p
qR̄1〉 ≈ 〈L̂†

2E
p
qR̂1〉. (34)

Here, we have truncated the commutator expansion of Ēpq
in Equation (30), introducing what might be called a CI
approximation. Using these notations, we may rewrite 1-
RDM in Equation (23) as follows

γ
p
q = δLR(2δ

p
qδ

k
p + 2δpl δ

d
q t

l
d)+
√
2δpi δ

a
ql
0ria

+√2δpf δnq l
f
nr0 +

√
2δpf δ

d
q l
f
ntndr0

−√2δpl δnq l
f
ntlf r0 +

√
2δpl δ

d
q l
f
nt̃nlfdr0

−√2δpl δdq l
f
ntndt

l
f r0 + δ

p
f δ

a
ql
f
nrna

− δ
p
i δ

n
q l
f
nrif + δ

p
l δ

a
ql
f
ntlf r

n
a − δ

p
i δ

d
q l
f
ntndr

i
f

+√2δpl δdq l
f
n ˜̄rnlfd +

√
2δpl δ

d
q
˜̄lfdnlrld. (35)

We will refer to this variant as the full STEOM den-
sity with the L2 correction. The fact that T̂2 appears in
Equation (23), while the corresponding (ground state) L̂2
does not, introduces a source of imbalance that is com-
pensated by the presence of L̂2 in Equation (35). We will
investigate the effect of this contribution in the discussion
below.

While the formulation above should account for
the most important contributions to the transition
dipole moment, it is possible to consider further sim-
ple improvements using the quantities above. One is to
update the L̂1 amplitudes with the terms neglected in
Equation (32),

L̄†
1 = L̂†

1 − L̂†
2Ŝ. (36)

Furthermore, wemay consider the interaction of the dou-
bles in the EOM picture, and truncate the commutator
expansion again,

〈L̄†
2Ē

p
qR̄2〉 ≈ 〈L̄†

2E
p
qR̄2〉, (37)

which yields a further contribution to the density

γ
p
q ← 2˜̄l cdkl r̄klcaδ

p
dδ

a
q − 2˜̄l cdkl r̄kicdδ

p
i δ

l
q. (38)

We will collectively refer to these improvements as the
STEOM-DD density (DD for doubles-doubles). Espe-
cially the last terms considered are quite expensive to
store and compute. However, we expect that their contri-
bution is small and they will be used primarily to check
the quality of the L2 density.

2.4. The STEOM transition dipolemoment

The calculation of oscillator strength requires the
transition dipole Tk,

fk = 2
3
ωk|Tk|2, |Tk|2 = TR

k T
L
k , (39)

where ωk is the excitation energy of state k. If
Dp
q = 〈p|	r|q〉 is the dipole integral,

TR
k = (γ R

k )
p
qD

q
p, TL

k = (γ L
k )

p
qD

q
p, (40)

and

(γ R
k )

p
q = 〈L̂†

0Ẽ
p
qR̂k〉, (γ L

k )
p
q = 〈L̂†

kẼ
p
qR̂0〉. (41)

In other words, the transition dipole can be obtained
using the density in Equation (23) or Equation (35) and
substituting the left and right hand solutions correspond-
ing to the ground state (L̂0, R̂0) and the kth excited state
(L̂k, R̂k). Since the states are different, the terms with
δLR do not contribute. With the definition of the oscil-
lator strength, we now have all the quantities necessary
to benchmark the various methods in the next section.
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Table 1. Excitation energy (ω in eV) and oscillator strength (f in a.u.) values calculated at the STEOM levels of theory using
the full STEOM density, L2 indicating the presence of the correction term.

ω(STEOM)/f (STEOM) ω(STEOM)/f (STEOM) ω(STEOM)/f (STEOM) ω(STEOM)/f (STEOM)
Molecule State NR = 30, NG = 30 NR = 30, NG = 60 NR = 5, NG = 60 NR = 30, NG = 60, L2

Ethene 1B1u (π → π∗) 8.31/0.492 8.31/0.491 8.31/0.512 8.31/0.405
E-butadiene 1Bu (π → π∗) 6.65/0.973 6.65/0.975 6.65/0.993 6.65/0.816
All-E-hexatriene 1Bu (π → π∗) 5.64/1.496 5.65/1.472 5.65/1.502 5.65/1.257
All-E-octatetraene 1Bu (π → π∗) 4.98/2.019 4.99/2.012 4.99/2.050 4.99/1.750
Norbornadiene 1B2 (π → π∗) 7.65/0.269 7.65/0.269 7.65/0.275 7.65/0.197
s-Tetrazine 1B1u (π → π∗) 7.82/0.539 7.83/0.497 7.83/0.497a 7.83/0.389
s-Tetrazine 1B2u (π → π∗) 8.64/0.575 8.50/0.483 8.50/0.498a 8.50/0.364

Notes: NR is the number of roots requested, and NG is the number of CIS guess states from which the active space of orbitals is determined. The
superscript a refers to a calculation with NR = 15, NG = 60.

3. Computational details

To determine the accuracy of the STEOM density
describe above and to compare it to the accuracy of the
CIS formula we have been using so far, we have inves-
tigated a total of 92 singlet states from Thiel’s test set
[59]. To facilitate comparison with previous studies using
this test set [60,61], we used TZVP basis set [62] and the
reference values for the excitation energies and oscilla-
tor strengths were calculated at the CC3 level of theory
[63]. The SCFCONV12 settings were used to minimise
the effect of numerical noise on the molecular orbitals
and other quantities entering the STEOM calculation.
All STEOM-CCSD calculations were performed using a
development version of the ORCA quantum chemistry
package [64].

STEOM calculations require an appropriate choice of
active orbital spaces. An automatic active space selec-
tion procedure using configuration interaction singles
(CIS) natural orbitals [35,36]. By default, the number of
STEOM roots (NR) is the same as the number of CIS
states (NG), but in this paper we usedNR = 30,NG = 60,
unless otherwise specified. During the optimisation IP or
EA states with a single excitation character less than 80%
are also discarded.

4. Results and discussion

First, we examine the effect of various parameters on the
STEOMcalculation. For this purpose, we selected a num-
ber of states from Thiel’s test set. The polyenes have a
bright first excited state with a large oscillator strength
andwe have also included a few of themore difficult cases
from the test set, see the data in Table 1. Once the number
of STEOM roots NR is chosen, the number of CIS roots
NG must be greater or equal to that number. Since in our
earlier study [35] it turned out that the excitation energy
is not very sensitive to the ratio of these two, by default
we setNG = NR. This conclusion is also valid when com-
paring the first two columns of data in Table 1, except
for the 1B2u state of s-tetrazine. However, this state is not

fully converged with respect to the active space parame-
ters, and in this case the largerNG value is to be preferred.
Furthermore, the oscillator strength values are more sen-
sitive to changing NG (up to 20%), even in cases when
the energy doesn’t change much. Thus, we will use the
setting NR = 30, NG = 60 in the following. The oscilla-
tor strength values may also depend onNR directly, since
the left states are obtained by the general inverse method
[58]. However, the data in the third column (NR = 5,
NG = 60) indicates that this effect amounts to a few per-
cent only. Finally, the fourth column contains data on the
effect of the L2 correction, which may be as large as 30%.
Thus, all further oscillator values using the full density
will contain this correction.

The main results of our paper are summarised in
Tables 2 and 3. Table 2 contains 74 singlet states of
small molecules from the Thiel set, mostly of a π → π∗
or an n→ π∗ character, and also a few σ → π∗ states.
Although Rydberg states are not correctly described
without diffuse functions, we have also kept a total of
three of these (n→ R) for numerical comparison. As in
the earlier work of Sous et al. [60], only states with a sin-
gles component larger than 87% at the CC3 level were
evaluated for the present comparison, since the meth-
ods involved are appropriate for only for such states.
In Table 3, the selection criteria was relaxed to include
all states for which CC3 oscillator strength values were
available [61], but even in these cases, the singles com-
ponent is larger than 81% in all cases. The latter table
contains results for the subset of nucleobases, consist-
ing of π → π∗ and n→ π∗ excitations. While previous
studies report the excitation energies [59–61] and oscil-
lator strength values [61] for CC3 and othermethods, the
STEOM-CCSD values are reported here for the first time
for molecules within the Thiel set.

For the total set of 92 states, the CC3 and STEOM
excitation energy values are in good agreement, the
mean error and standard deviation of the STEOM results
being −0.02± 0.10 eV, with a maximum absolute error
of 0.32 eV. It should be remarked that two of the Ryd-
berg states produce an error larger than 0.15 eV, although
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Table 2. Excitation energy (ω in eV) andoscillator strength (f in a.u.) values calculated at the CC3, CIS and STEOM levels of theory
for the small molecules in Thiel’s test set.

molecule state ω(CC3) f (CC3) ω(STEOM) f (CIS) f (STEOM) f (STEOM-DD)

Ethene 1B1u (π → π∗) 8.37 0.389 8.31 0.607 0.405 0.399
E-butadiene 1Bu (π → π∗) 6.58 0.726 6.65 1.138 0.816 0.791
All-E-hexatriene 1Bu (π → π∗) 5.58 1.129 5.65 1.646 1.257 1.210
All-E-octatetraene 1Bu (π → π∗) 4.94 1.549 4.99 2.179 1.750 1.686
Cyclopropene 1B1 (σ → π∗) 6.90 0.001 6.95 0.002 0.001 0.001

1B2 (π → π∗) 7.10 0.083 7.09 0.164 0.087 0.087
Cyclopentadiene 1B2 (π → π∗) 5.73 0.095 5.70 0.162 0.103 0.099

1A1 (π → π∗) 8.69 0.596 8.62 1.005 0.630 0.600
Norbornadien 1A2 (π → π∗) 5.64 0.000 5.55 0.000 0.000 0.000

1B2 (π → π∗) 6.49 0.027 6.49 0.064 0.034 0.031
1B2 (π → π∗) 7.64 0.185 7.65 0.368 0.197 0.188
1A2 (π → π∗) 7.71 0.000 7.64 0.000 0.000 0.000

Benzene 1B1u (π → π∗) 6.68 0.000 6.72 0.000 0.000 0.000
1E1u (π → π∗) 7.45 0.630 7.41 1.089 0.690 0.650

Naphthalene 1B2u (π → π∗) 5.03 0.085 5.10 0.184 0.104 0.098
1B3u (π → π∗) 6.33 1.325 6.30 2.217 1.520 1.439
1B2u (π → π∗) 6.57 0.239 6.61 0.514 0.304 0.285
1B1g (π → π∗) 6.79 0.000 6.76 0.000 0.000 0.000

Furan 1B2 (π → π∗) 6.60 0.155 6.67 0.241 0.155 0.149
1A1 (π → π∗) 8.53 0.450 8.53 0.812 0.504 0.471

Pyrrole 1B2 (π → π∗) 6.71 0.167 6.73 0.243 0.155 0.148
1A1 (π → π∗) 8.17 0.478 8.17 0.829 0.526 0.485

Imidazole 1A′ (π → π∗) 6.58 0.081 6.49 0.064 0.044 0.043
1A′′ (n→ π∗) 6.83 0.004 6.73 0.008 0.005 0.005
1A′ (π → π∗) 7.10 0.082 7.04 0.169 0.108 0.103
1A′′ (n→ π∗) 7.94 0.005 7.88 0.007 0.004 0.004
1A′ (π → π∗) 8.45 0.410 8.46 0.576 0.413 0.380

Pyridine 1B1 (n→ π∗) 5.06 0.005 5.01 0.007 0.006 0.006
1A2 (n→ π∗) 5.51 0.000 5.50 0.000 0.000 0.000
1A1 (π → π∗) 6.85 0.014 6.91 0.018 0.012 0.011
1B2 (π → π∗) 7.59 0.482 7.59 0.915 0.581 0.552
1A1 (π → π∗) 7.70 0.526 7.66 0.980 0.613 0.575
1B2 (n→ R) 9.11 0.114 9.26 0.100 0.104 0.095

Pyrazine 1B3u (n→ π∗) 4.25 0.007 4.21 0.010 0.008 0.007
1Au (n→ π∗) 5.05 0.000 5.08 0.000 0.000 0.000
1B1u (π → π∗) 7.07 0.070 7.17 0.113 0.074 0.073
1B2u (π → π∗) 8.05 0.376 8.05 0.787 0.489 0.456
1B1u (π → π∗) 8.06 0.407 8.03 0.813 0.476 0.460

Pyrimidine 1B1 (n→ π∗) 4.51 0.006 4.44 0.009 0.007 0.007
1A2 (n→ π∗) 4.93 0.000 4.85 0.000 0.000 0.000
1A1 (π → π∗) 7.06 0.043 7.14 0.055 0.037 0.035
1A1 (π → π∗) 7.74 0.391 7.72 0.780 0.509 0.481
1B2 (π → π∗) 8.01 0.415 7.95 0.859 0.548 0.512

Pyridazine 1B1 (n→ π∗) 3.93 0.006 3.85 0.010 0.007 0.007
1B2 (π → π∗) 6.93 0.012 7.00 0.033 0.019 0.019
1B2 (π → π∗) 7.55 0.340 7.60 0.817 0.499 0.475
1A1 (π → π∗) 7.82 0.433 7.86 0.883 0.534 0.503

s-Triazine 1A′′2 (n→ π∗) 4.76 0.016 4.80 0.024 0.019 0.019
1A′′1 (n→ π∗) 4.78 0.000 4.75 0.000 0.000 0.000
1E′′ (n→ π∗) 4.82 0.000 4.67 0.000 0.000 0.000
1A′1 (π → π∗) 7.41 0.000 7.49 0.000 0.000 0.000
1E′′ (n→ π∗) 7.82 0.000 7.89 0.000 0.000 0.000
1E′ (π → π∗) 8.04 0.386 8.02 0.754 0.509 0.480

s-Tetrazine 1B3u (n→ π∗) 2.54 0.007 2.47 0.011 0.008 0.009
1Au (π → π∗) 3.80 0.000 3.80 0.000 0.000 0.000
1Au (n→ π∗) 5.46 0.000 5.40 0.000 0.000 0.000
1B1u (π → π∗) 7.45 0.002 7.62 0.007 0.001 0.001
1B1u (π → π∗) 7.79 0.349 7.83 0.668 0.387 0.373
1B2u (π → π∗) 8.51 0.307 8.50 0.648 0.364 0.337

Formaldehyde 1A2 (n→ π∗) 3.95 0.000 3.82 0.000 0.000 0.000
1B1 (σ → π∗) 9.19 0.003 9.02 0.004 0.003 0.003
1A1 (π → π∗) 10.45 0.342 10.33 0.366 0.337 0.319

Acetone 1A2 (n→ π∗) 4.40 0.000 4.26 0.000 0.000 0.000
1B1 (σ → π∗) 9.17 0.000 9.00 0.000 0.000 0.000
1A1 (π → π∗) 9.65 0.245 9.68 0.309 0.255 0.241

p-Benzoquinone 1B3g (π → π∗) 4.59 0.000 4.70 0.000 0.000 0.000
1B1u (π → π∗) 5.62 0.485 5.69 0.820 0.594 0.554
1B3g (π → π∗) 7.28 0.000 7.35 0.000 0.000 0.000

(continued).
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Table 2. Continued.

molecule state ω(CC3) f (CC3) ω(STEOM) f (CIS) f (STEOM) f (STEOM-DD)

Formamide 1A′′ (n→ π∗) 5.66 0.001 5.48 0.001 0.001 0.000
1A′ (π → π∗) 7.24 0.030 7.46 0.011 0.012 0.011
1A′ (n→ R)a 8.27 0.386 8.34 0.319 0.328 0.303
1A′ (n→ R) 8.47 0.125 8.66 0.123 0.142 0.128

Acetamide 1A′′ (n→ π∗) 5.70 0.001 5.49 0.001 0.001 0.000
Propanamide 1A′′ (n→ π∗) 5.72 0.000 5.56 0.001 0.000 0.000

Note: CIS heremeans the approximate STEOMdensity discussed in themain text. For almost all calculations, the number of rootsNR is 30 and the number of guess
states is NG = 30, while the superscript a refers to a calculation with NR = 20, NG = 40.

Table 3. Excitation energy (ω in eV) and oscillator strength (f in a.u.) values calculated at the CC3, CIS and STEOM levels of theory for
the nucleobases in Thiel’s test set.

molecule state ω(CC3) f (CC3) ω(STEOM) f (CIS) f (STEOM) f (STEOM-DD)

Cytosine 1A′ (π → π∗) 4.72 0.046 4.48 0.077 0.055 0.052
1A′′ (n→ π∗) 5.16 0.001 5.12 0.002 0.002 0.002
1A′′ (n→ π∗) 5.52 0.001 5.66 0.001 0.000 0.000
1A′ (π → π∗) 5.61 0.130 5.57 0.289 0.256 0.235
1A′′ (n→ π∗) 5.97 0.000 5.97 0.000 0.000 0.000
1A′ (π → π∗) 6.61 0.520 6.40 0.694 0.590 0.549

Thymine 1A′′ (n→ π∗) 4.94 0.000 4.88 0.000 0.000 0.000
1A′ (π → π∗) 5.34 0.172 5.14 0.279 0.212 0.202
1A′ (π → π∗) 6.34 0.072 6.42 0.135 0.120 0.108
1A′′ (n→ π∗) 6.59 0.000 6.27 0.000 0.000 0.000
1A′ (π → π∗)a 6.71 0.197 6.69 0.339 0.309 0.291

Uracil 1A′′ (n→ π∗) 4.90 0.000 4.89 0.000 0.000 0.000
1A′ (π → π∗) 5.44 0.174 5.21 0.281 0.214 0.197
1A′ (π → π∗) 6.29 0.046 6.42 0.109 0.100 0.096
1A′′ (n→ π∗) 6.32 0.000 6.20 0.000 0.000 0.000
1A′ (π → π∗) 6.84 0.152 6.84 0.269 0.232 0.213

Adenine 1A′′ (n→ π∗) 5.34 0.001 5.25 0.001 0.001 0.001
1A′′ (n→ π∗) 5.96 0.002 5.86 0.002 0.002 0.002

Note: CIS here means the approximate STEOM density discussed in the main text. For almost all calculations, the number of roots NR is 30 and the number of
guess states is NG = 30, while the superscript a refers to a calculation with NR = 25, NG = 50.

these are by no means the only large errors in the test set,
the largest one corresponding to an n→ π∗ excitation
of thymine. To characterise the oscillator strengths com-
puted at the various levels, they are plotted against each
other in Figure 1 and the various linear regression results
are provided in Table 4. Plotting the STEOM-CIS results
against the CC3 ones, it is immediately clear that this
approximation overestimates the CC3 densities by about
59% on average. However, the linear fit is quite good even
in this case (R2 = 0.965), and since the intercept param-
eter b is very small, this amounts effectively to a scaling of

theCC3 values. Since in applications it is often the relative
intensities that matter, we conclude that the CIS approx-
imation to the STEOM density that we have used so far
can be expected to yield reliable results for relative inten-
sities. Turning to the full STEOM density, the extent of
the overestimation is reduced to about 14%, and the qual-
ity of the fit is somewhat better (R2 = 0.990). This is in
excellent agreement with CC3 results, especially consid-
ering the much reduced cost of an STEOM calculation
when compared to CC3. Plotting the two STEOM densi-
ties against each other, it turns out that the full STEOM

Figure 1. Comparison of oscillator strength values computed at the CIS, STEOM-CCSD and CC3 levels.
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Figure 2. The spectra of two selected species from Thiel’s test set.

density yields an oscillator strength that is on average 70%
of theCIS approximation and the correlation between the
two is also very good (R2 = 0.980). Nevertheless, the full
density with the L2 correction is a significant improve-
ment over the simple CIS formula and is set as the new
default for STEOM calculations in ORCA. Finally, the
last columns of Tables 2 and 3 also contain data on
the more expensive STEOM-DD correction. Computing
the linear regression parameters for STEOM-DD shows a
slightly better agreement with CC3 values, the oscillator
strength values being about 8% overestimated with R2 =
0.990. The STEOM-DDvalues for the ground state dipole
moments are tabulated in the supplementary material,
and also yield good agreement with reference values. The
improvement over the full STEOM density with the L2
correction is however negligible for transition dipoles,
while the additional costs are considerable. Thus, espe-
cially for large molecules, we recommend skipping the
DD correction since the increase in cost can be especially
large. An intermediate solution is to update the L1 ampli-
tudes only according to Equation (36). While this still
requires the explicit construction of the L2 amplitudes,
the contractions involved are cheaper, and according to
the oscillator strength values tabulated in the supple-
mentary material, essentially all the improvements of
STEOM-DD can be recovered by correcting L1 only.
Thus, this correctionmay be recommended, if affordable.

To illustrate the performance of the CIS approxima-
tion and the full density, two theoretical spectra are
shown in Figure 2. The spectrum of formamide is an
example for which using the full density has a relatively
small effect, the CIS and full density spectra are close to
each other and to the CC3 curve also. On the other hand,
the case of s-tetrazine demonstrates the impact of the full

Table 4. Linear regression results (y = ax+ b) corresponding to
Figure 1, Table 2 and Table 3.

x y a b R2

f (CC3) f (CIS) 1.5851 0.0162 0.9653
f (CC3) f (STEOM) 1.1359 0.0041 0.9903
f (CIS) f (STEOM) 0.7006 −0.0026 0.9805
f (CC3) f (STEOM-DD) 1.0826 0.0025 0.9908

density well. In this case, the full density and CC3 curves
are close to one another while the CIS curve significantly
overestimates the intensity.

5. Conclusions

In this study,we have derived and implemented a STEOM
density that improves on the simplest CIS approximation
for computing transition properties, without demanding
the same cost as a density calculation within the space of
the singles and the doubles. We concluded that although
the CIS formula is a good approximation in may prac-
tical applications, the full STEOM density with the L2
correction offers an improvement without much addi-
tional cost. The oscillator strength values obtained from
this density correlate well with CC3 results, and thus the
STEOM method not only yields reliable results for the
excitation energy, but it can be used to reproduce and
interpret experimental spectra.
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