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Abstract — This work presents an application of the Second-Order Adjoint Sensitivity Analysis Methodology
(2nd-ASAM) to the neutron transport Boltzmann equation that models a multiplying subcritical system comprising
a nonfission neutron source to compute efficiently and exactly all of the first- and second-order functional
derivatives (sensitivities) of a detector’s response to all of the model’s parameters, including isotopic number
densities, microscopic cross sections, fission spectrum, sources, and detector response function. As indicated by the
general theoretical considerations underlying the 2nd-ASAM, the number of computations required to obtain the
first and second orders increases linearly in augmented Hilbert spaces as opposed to increasing exponentially in
the original Hilbert space. The results presented in this work are currently being implemented in several
production-oriented three-dimensional neutron transport code systems for analyzing specific subcritical systems.

Keywords — Second-Order Adjoint Sensitivity Analysis Methodology, neutron transport in multiplying
systems with source, reaction rate detector response, first-order response sensitivities, second-order
response sensitivities.

I. INTRODUCTION

The computation of second-order response sensitivities
to model parameters is motivated by the need to overcome
the linearization limitation that is implicit in the use of
first-order sensitivities. During the 1970s, the field of reactor
physics provided pioneering works1–5 for computing
selected second-order response sensitivities of the system’s
effective multiplication factor and reaction rate ratios using
the adjoint neutron transport and/or diffusion equations.
These works generally indicated that the second-order
sensitivities of such responses to cross-section perturbations
were computationally expensive to obtain, requiring O N2

α

� �

large-scale computations per response for a system compris-
ing Nα model parameters, and were smaller than the corre-
sponding first-order sensitivities. Such indications may have
led to a diminishing interest in developing efficient methods
for computing second-order response sensitivities for
nuclear engineering systems.

While the interest in computing second-order response
sensitivities practically vanished in the nuclear engineering
field in the 1990s, interest in this topic became increasingly
evident in other fields, driven mostly by the knowledge
that second-order (Hessian) sensitivity information
accelerates the convergence of optimization algorithms. In
structural mechanics,6 for example, interest has been
focused primarily on the developing adjoint methods for
computing second-order sensitivity of structural responses
to variations of structural stiffness parameters. In
atmospheric sciences,7,8 second-order adjoint models were
used to compute products between the Hessian of the cost
functional and a vector (representing a perturbation in
sensitivity analysis, a search direction in optimization, an
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eigenvector, etc.) to perform sensitivity analysis of the cost
function with respect to distributed observations, to study
the evolution of the condition number (the ratio of the
largest to smallest eigenvalues) of the Hessian during mini-
mization, and for sensitivity studies in three-dimensional
atmospheric chemical transport models. In the context of
parametric circuit analysis and optimization,9 second-order
sensitivities for linear circuits were also computed, albeit
approximately. The availability (or unavailability) of
exactly computed second-order sensitivities affects
significantly many fields (e.g., optimization, data
assimilation/adjustment, model calibration and validation,
predictive modeling, and convergence of many numerical
methods).

Themethods used in theworksmentioned abovewere all
developed for specific, rather than general, applications for
which they usually estimated, rather than computed exactly
and inclusively, second-order response sensitivities to the
model’s parameters. Since the availability (or unavailability)
of exactly computed second-order sensitivities affects signif-
icantly many fields (e.g., optimization, data assimilation/
adjustment, model calibration and validation, predictive
modeling, and convergence of many numerical methods),
Cacuci10–12 developed the generally applicable Second-
Order Adjoint Sensitivity Analysis Methodology
(2nd-ASAM). The 2nd-ASAM computes exactly and most
efficiently all of the second-order functional derivatives of
model responses to parameters and simultaneously verifies
them intrinsically by computing all of the mixed partial
sensitivities twice, using independently derived formulations.
The application of the 2nd-ASAM for nonlinear systems11

has been illustrated by means of a nonlinear heat conduction
benchmark problem.13 Furthermore, the 2nd-ASAM for
linear systems10,12was applied to an illustrative linear neutron
diffusion problem14 aimed at highlighting the essential
contributions of the second-order sensitivities of a detector
response to changes in the underlying neutron cross sections.
This illustrative problem14 has shown that most of the
second-order relative detector sensitivities to cross sections
were actually larger than the corresponding first-order relative
sensitivities, contrary to the tacit assumption that
second-order sensitivities to cross sections are negligible in
neutron diffusion problems, which was prevalent in
sensitivity analysis works in the 1990s. In particular,
the second-order sensitivities were shown14 to be responsible
for causing (a) asymmetries in the response distribution and
(b) the expected value of the response to differ from the
computed nominal value of the response. Neglecting
the second-order sensitivities would nullify the third-order
response correlations and hence would nullify the skewness
of the response distribution. Consequently, any events

occurring in a response’s long and/or short tails, which are
characteristic of rare but decisive events (e.g.,major accidents
and catastrophes), would likely be missed.

The 2nd-ASAM for linear systems10,12 has also been
applied15,16 to compute the second-order sensitivities of the
temperature distributions within a model of a test section
comprising a heated rod surrounded by lead-bismuth
eutectic coolant. For this model, the 6 first-order
sensitivities and 21 distinct second-order sensitivities for
the temperature distribution at any location within the
heated rod (and/or on its surface), and a similar number of
first- and second-order sensitivities for the temperature
distribution at any location within the coolant, were
computed using only seven independent 2nd-ASAM
computations. For the thermal-hydraulic parameters used
in the test section benchmark, having mean values and
standard deviations typical of the conditions computed in
the preliminary conceptual design of the G4M reactor,16

the second-order sensitivities caused the temperature
distributions within the rod, on the rod’s surface, and in
the coolant to become non-Gaussian, asymmetric, and
skewed toward temperatures higher than the respective
mean temperatures, as all three temperature distributions
turned out to have positive skewnesses. In particular, the
temperature distribution in the heated rod was skewed
significantly toward higher temperatures, indicating that
the conventional Gaussian-based metrics are not applicable
for performing conventional risk analysis for this important
safety margin indicator.

The 2nd-ASAM for linear systems10,12 has also been
applied by Cacuci and Favorite17 to compute the
second-order sensitivities of uncollided particle
contributions to radiation detector responses, demonstrating
once again its efficiency and accuracy. For a multiregion
two-dimensional cylindrical benchmark problem, all of the
benchmark’s 18 first-order sensitivities and 224 second-order
sensitivities of a detector’s response with respect to the
system’s isotopic number densities, microscopic cross
sections, source emission rates, and detector response
function were obtained exactly by requiring only 12 adjoint
large-scale transport computations. In contradistinction, 877
large-scale transport computations would have been needed
to compute the respective sensitivities using central finite
differences, and this number does not include the additional
calculations that would have been required to find
appropriate values of the parameter perturbations to use for
the respective central difference expressions.

The present work extends significantly the results
presented in Ref. 17 by applying the 2nd-ASAM to the
neutron transport equation that models a multiplying
subcritical system comprising a nonfission neutron
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source. Section II of this work recalls succinctly the
Boltzmann transport equation describing the transport of
neutrons within a finite multiplying medium with an
internal nonfission source, defining this physical system’s
parameters and responses. Section III presents the
construction of the First-Level Adjoint Sensitivity
System (1st-LASS) for the transport equation. The
1st-LASS is used for the efficient computation of the
first-order response sensitivities to variations in model
parameters, and it serves as the basis for the construction
of the Second-Level Adjoint Sensitivity System
(2nd-LASS). The actual construction of the 2nd-LASS
for the transport equation is presented in Sec. IV, which
also presents the specific expressions for computing
exactly and efficiently all of the second-order response
sensitivities to variations in model parameters.
Section V summarizes and concludes this work.

II. THE NEUTRON TRANSPORT EQUATION MODELING
A MULTIPLYING SYSTEM WITH AN EXTERNAL SOURCE

The physical system considered in this work is a finite
medium of convex volume V that contains fission and
nonfission sources of neutrons. The system’s outer boundary,
denoted as qV , is considered to be perfectly well known, and
the system is considered to be placed in vacuum in order to
simplify the mathematical treatment by disregarding possible
effects of boundary perturbations; such perturbations will be
considered in subsequent work. The distribution of neutrons
in such a system is modeled using the standard form of the
time-independent integro-differential Boltzmann transport
equation:

L αð Þφ r;Ω;Eð Þ ¼Δ Ω � �φ r;Ω;Eð Þ þ Σt t; r;Eð Þφ r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 Σs s; r;E
0 ! E;Ω 0 ! Ωð Þφ r;Ω 0;E 0ð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 χ p; r;E 0 ! Eð ÞνΣf f; r;E 0ð Þφ r;Ω 0;E 0ð Þ

¼ Q q; r;Ω;Eð Þ ; ð1Þ

subject to the customary vacuum boundary condition,
which specifies that there is no incoming flux of particles:

φ rs;Ω;Eð Þ ¼ 0; rs 2 qV ;Ω � n < 0; 0 < E < 1 ; ð2Þ

where n denotes the unit outward normal vector at any
point rs 2 qV on the body’s outer surface qV .

The macroscopic cross sections Σt t; r;Eð Þ,
Σs s; r;E 0 ! E;Ω 0 ! Ωð Þ, and νΣf f; r;Eð Þ; the neutron
fission spectrum χ p; r;E 0 ! Eð Þ; and the source
Q q; r;Ω;Eð Þ generally depend not only on the spatial
variable r, on the energy variable E, and possibly on the
solid angle Ω but also on imperfectly known scalar-valued
model parameters such as atomic number densities,
microscopic cross sections, and weighting functions.
Specifically, the macroscopic total cross section Σt t; r;Eð Þ
is considered to depend on Jt imprecisely known
scalar-valued model parameters denoted as ti; i ¼
1; � � � ; Jt; which are considered to be the components of
a vector of model parameters defined as

t ¼Δ t1; :::; tJt½ �y : ð3Þ

Throughout this work, the dagger symbol yð Þ is used to
denote transposition. Similarly, the macroscopic scattering
cross section Σs s;E 0 ! E;Ω 0 ! Ωð Þ is considered to
depend on Js imprecisely known scalar-valued model
parameters denoted as si; i ¼ 1; :::; Js; while the effective
macroscopic fission cross section νΣf f; r;E 0ð Þ is considered
to depend on Jf imprecisely known scalar-valued model
parameters denoted as fi; i ¼ 1; :::; Jf ; which are considered
to be the components of two vectors defined, respectively, as
follows:

s ¼Δ s1; :::; sJs½ �y ð4Þ

and

f ¼Δ f1; :::; fJf
� �y

: ð5Þ

Furthermore, the fission spectrum χ p; r;E 0 ! Eð Þ is
considered to depend on Jp imprecisely known
scalar-valued parameters denoted as pi; i ¼ 1; :::; Jp; while
the sourceQ q; r;Ω;Eð Þ is considered to depend on Jq impre-
cisely known scalar-valued parameters denoted as
qi; i ¼ 1; :::; Jq; which are considered to be the component
two vectors of model parameters defined, respectively, as
follows:

p ¼Δ p1; :::; pJp
� �y ð6Þ

and

q ¼Δ q1; :::; qJq
� �y

: ð7Þ
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The system response considered in this work is
a scalar-valued linear functional of the flux, denoted
as R α;φð Þ, which models a detector response of the
form

R α;φð Þ ¼Δ
ð
dV

ð
4π

dΩ

ð1
0

dE Σd d; r;Ω;Eð Þφ r;Ω;Eð Þ ; ð8Þ

where Σd d; r;Ω;Eð Þ denotes a (macroscopic cross-
section–like) function that models the interaction of
the detector with the incident particles and where the
vector α will be defined in Eq. (12). In general,
Σd d; r;Ω;Eð Þ depends not only on the independent
variables r;Ω;E but also on Jd imprecisely known
scalar-valued model parameters that are considered
to be components of the vector d, defined as

d ¼Δ d1; :::; dJd½ �y : ð9Þ

System responses of particular interest are (1) the scalar
flux at a spatial location rd , in which case

Σd d; r;Ω;Eð Þ ¼ δ r� rdð Þ ; ð10Þ

where rd represents the detector’s location, and (2) the
partial current density at a spatial location rd , in which
case

Σd d; r;Ω;Eð Þ ¼ Ω � nδ r� rdð Þ : ð11Þ

Since the response R α;φð Þ defined in Eq. (8) depends
explicitly and/or implicitly, through the flux φ r;Ω;Eð Þ;
on all of the imprecisely known model parameters
defined in Eqs. (3) through (9), it will be convenient for
subsequent mathematical derivations to consider these
imprecisely known scalar-valued model parameters as
the components of a vector of model parameters, denoted
as α and defined as follows:

α ¼Δ α1; :::; αJα½ �y ¼Δ t; s; f; p; q; d½ �y;
Jα ¼Δ Jt þ Js þ Jf þ Jp þ Jq þ Jd ; ð12Þ

where Jα denotes the total number of imprecisely known
scalar model parameters.

The nominal values of the model parameters will be

denoted as α0 ¼Δ α01; :::; α
0
Jα

h iy
. Throughout this work, the

superscript 0 will be used, as needed, to denote nominal or
mean values. The nominal value of the flux, denoted as

φ0 r;Ω;Eð Þ ; is obtained by solving Eqs. (1) and (2) using
the nominal parameter values α0. The nominal value of the
detector response, denoted as R φ0;α0

� �
, is obtained by

evaluating Eq. (8) at the nominal flux and parameter values.

III. THE FIRST-LEVEL FORWARD AND ADJOINT SENSITIVITY
SYSTEMS FOR COMPUTING FIRST-ORDER RESPONSE
SENSITIVITIES TO VARIATIONS IN MODEL PARAMETERS

The total sensitivity, denoted as δR α0;φ0; δφ; δα
� �

,
of the detector response defined in Eq. (8) to variations

δα ¼Δ δα1; :::; δαNα½ �y in the model parameters, around the
nominal values α0, is obtained by applying the definition
of the Gateaux- (G-) differential to Eq. (8) at the nominal
parameter and flux values, to obtain

δR α0;φ0; δφ; δα
� � ¼Δ d

dε

ð
dV

ð
4π
dΩ

�

�
ð1
0

dE Σ0
d d0; r;Ω;E
� �þ εδΣd r;Ω;Eð Þ� �

� φ0 r;Ω;Eð Þ þ εδφ r;Ω;Eð Þ� �
ε ¼ 0

¼ δR α0;φ0; δα
� �� �

dir þ δR α0;φ0; δφ
� �� �

ind; ð13Þ

where the direct-effect term is defined as

δR α0;φ0; δα
� �� �

dir ¼
Δ
ð
dV

ð
4π

dΩ

ð1
0

dE

� φ0 r;Ω;Eð Þ δΣd r;Ω;Eð Þ½ � ; ð14Þ

and where the indirect-effect term is defined as

δR α0;φ0; δα
� �� �

ind ¼
Δ
ð
dV

ð
4π

dΩ

ð1
0

dE

� Σ0
d d0; r;Ω;E
� �

δφ r;Ω;Eð Þ : ð15Þ

Since the nominal value φ0 r;Ω;Eð Þ of the flux is known
after having solved Eqs. (1) and (2) using the nominal
parameter values α0, it follows that the direct-effect term
defined in Eq. (14) can already be computed at this stage.
In contradistinction, however, the indirect-effect term defined
in Eq. (15) can be computed only after having determined the
flux variation δφ r;Ω;Eð Þ, which is the solution of the
First-Level Forward Sensitivity System10–12,18,19

(1st-LFSS), which is derived, in turn, by G-differentiating
Eqs. (1) and (2) to obtain
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L 1ð Þ α0
� �

δφ r;Ω;Eð Þ ¼ Q 1ð Þ α0;φ0; δα
� �

; ð16Þ

together with boundary condition

δφ rs;Ω;Eð Þ ¼ 0; rs 2 qV ;Ω � n < 0; 0 < E < 1 : ð17Þ

The operator L 1ð Þ α0
� �

and the source termQ 1ð Þ α0;φ0; δα
� �

,
which appear in Eq. (16), are defined as follows:

L 1ð Þ α0
� �

δφ r;Ω;Eð Þ ¼Δ Ω � � δφ r;Ω;Eð Þ½ � þ Σ0
t t0; r;E
� �

� δφ r;Ω;Eð Þ½ � �
ð
4π

dΩ 0
ð1
0

dE 0Σ0
s s0; r;E 0! E;Ω 0! Ω
� �

� δφ r;Ω 0;E 0ð Þ½ � �
ð
4π

dΩ 0
ð1
0

dE 0 χ0 p0; r;E 0 ! E
� �

� ν0Σ0
f f0; r;E 0� �h i

δφ r;Ω 0;E 0ð Þ½ � ð18Þ

and

Q 1ð Þ α0;φ0; δα
� � ¼Δ δQ q; r;Ω;Eð Þ � δΣt t; r;Eð Þφ0 r;Ω;Eð Þ

þ
ð
4π

dΩ 0
ð1
0

dE 0 φ0 r;Ω 0;E 0ð Þ δΣs s; r;E
0 ! E;Ω 0 ! Ωð Þ½ �

þ
ð
4π

dΩ 0
ð1
0

dE 0 δχ p; r;E 0 ! Eð Þφ0 r;Ω 0;E 0ð Þ

� ν0Σ0
f f; r;E 0ð Þ

h i
þ
ð
4π

dΩ 0
ð1
0
dE 0 χ0 p; r;E 0 ! Eð Þ

� φ0 r;Ω 0;E 0ð Þδ νΣf f; r;E 0ð Þ� �
: ð19Þ

Although L 1ð Þ α0
� �

; L α0
� �

, as expected, and as confirmed
by comparing Eqs. (18) and (1), solving the 1st-LFSS
defined by Eqs. (16) and (17) is computationally
expensive since the 1st-LFSS would need to be solved
anew for every variation δαi; i ¼ 1; :::;Nα in the model

parameters, which affects the source term Q 1ð Þ α0;φ0; δα
� �

.
The computationally expensive evaluation of the indirect-
effect term by using Eq. (15) can be avoided10–12,18,19 by
expressing this indirect-effect term in terms of the solution of
the 1st-LASS, which is constructed by implementing the
following sequence of steps:

Step 1: In the space L2 V �Ω� Eð Þ of square-integrable
functions, define the inner product hu r;Ω;Eð Þ; v r;Ω;Eð Þi 1ð Þ
of two functions u r;Ω;Eð Þ 2 L2 V �Ω� Eð Þ and
v r;Ω;Eð Þ 2 L2 V � Ω� Eð Þ as follows:

hu r;Ω;Eð Þ; v r;Ω;Eð Þi 1ð Þ

¼Δ
ð
dV

ð
4π

dΩ

ð1
0

dE u r;Ω;Eð Þv r;Ω;Eð Þ : ð20Þ

Step 2: Denote the Hilbert space endowed with the inner
product defined inEq. (20) asH 1ð Þ, and form the inner product

of Eq. (18) with a yet undefined function ψ 1ð Þ r;Ω;Eð Þ to
obtain

ψ 1ð Þ; L 1ð Þ α0
� �

δφ
D E

1ð Þ
¼ ψ 1ð Þ r;Ω;Eð Þ;
D
Q 1ð Þ α0;φ0; δα

� �E
1ð Þ
: ð21Þ

Step 3: In the Hilbert space H 1ð Þ, define the formal adjoint

operator, denoted as A 1ð Þ αð Þ, of L 1ð Þ αð Þ, through
relationship

hψ 1ð Þ; L 1ð Þ α0
� �

δφi 1ð Þ ¼ hδφ; A 1ð Þ α0
� �

ψ 1ð Þi 1ð Þ

þ P 1ð Þ δφ; ψ 1ð Þ
h i

; ð22Þ

where

A 1ð Þ αð Þψ 1ð Þ ¼Δ �Ω � �ψ 1ð Þ r;Ω;Eð Þ þ Σt t; r;Eð Þψ 1ð Þ r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 Σs s; r;E ! E 0;Ω ! Ω 0ð Þψ 1ð Þ r;Ω 0;E 0ð Þ

� νΣf f; r;Eð Þ
ð
4π

dΩ 0
ð1
0

dE 0χ p; r;E ! E 0ð Þψ 1ð Þ r;Ω 0;E 0ð Þ ;

ð23Þ

and where the bilinear concomitant P 1ð Þ δφ; ψ 1ð Þ� �
is defined

on the phase-space boundary qV � qΩð Þ as follows:

P 1ð Þ δφ; ψ 1ð Þ
h i

¼Δ
ð1
0

dE

ð
Ω � n < 0

dΩ

ð
qV

Ω � nj jδφ

� r;Ω;Eð Þψ 1ð Þ r;Ω;Eð ÞdA�
ð1
0

dE

ð
Ω � n > 0

dΩ

ð
qV

Ω � nδφ

� r;Ω;Eð Þψ 1ð Þ r;Ω;Eð ÞdA : ð24Þ

In order to simplify the notation, the superscript 0 denoting
nominal values will be omitted henceforth. This
simplification should not cause any loss of clarity since it
will become clear from the context which quantities are to
be evaluated/computed using the nominal values for the
model parameters.
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Step 4: Identify the term on the left side of Eq. (22)
with the indirect-effect term defined in Eq. (15), and use
Eq. (22) in conjunction with the boundary conditions
given in Eq. (17) to construct the following 1st-LASS

for the first-level adjoint function ψ 1ð Þ r;Ωð Þ:
A 1ð Þ α0
� �

ψ 1ð Þ r;Ω;Eð Þ ¼ Σd d0; r;Ω;E
� �

; ð25Þ

together with adjoint boundary condition

ψ 1ð Þ rs;Ω;Eð Þ ¼ 0 ; rs 2 qV ;Ω � n > 0 ; ð26Þ

which is selected in order to cause the bilinear concomitant

P 1ð Þ δφ; ψ 1ð Þ� �
in Eq. (24) to vanish.

Step 5: Use the 1st-LFSS defined by Eqs. (25) and (26)
together with Eqs. (21) and (22) to obtain expression for the
indirect-effect term [see Eq. (15)], in terms of the first-level

adjoint function ψ 1ð Þ r;Ω;Eð Þ:

δRðα;φ; ψ 1ð Þ; δαÞ
n o

ind
¼ ψ 1ð Þ r;Ω;Eð Þ; Q 1ð Þ α0;φ0; δα

� �D E
1ð Þ

:

ð27Þ

The Hilbert space H 1ð Þ, endowed with the customary inner
product defined in Eq. (20), yields the customary adjoint
Boltzmann operator shown in Eq. (23). The use ofH 1ð Þ allows
the 1st-LASS to be solved by only slightly modifying the
numerical methods used for solving the original
Eqs. (1) and (2), namely, by reversing the sign of the solid
angle and reversing the order of integration over the energy
variable. As is also well known, the 1st-LASS is independent
of parameter variations, so it needs to be solved just once for
each particular form of the source term Σd d; r;Ω;Eð Þ to
obtain the corresponding first-level adjoint function

ψ 1ð Þ r;Ω;Eð Þ. Subsequently, the indirect-effect term is

computed efficiently, once ψ 1ð Þ r;Ω;Eð Þ is available, by per-
forming the integrations (quadratures) indicated in Eq. (27).

Replacing Eqs. (27) and (14) in Eq. (13) yields the
following expression for the total first-order response
sensitivity in terms of the first-level adjoint

function ψ 1ð Þ r;Ω;Eð Þ:

δRðα;φ; ψ 1ð Þ; δαÞ ¼
ð
dV

ð
4π

dΩ

ð1
0

dE δΣd r;Ω;Eð Þφ r;Ω;Eð Þ

þ ψ 1ð Þ r;Ω;Eð Þ; Q 1ð Þ α0;φ0; δα
� �D E

1ð Þ

¼Δ
XNα

m1¼1

qR α;φ; ψ 1ð Þ� �
qαm1

δαm1
: ð28Þ

The partial first-order response sensitivities, denoted as

qR α;φ; ψ 1ð Þ� �
=qαm1 ,m1 ¼ 1; :::;Nα; to a generic

parameter αm1, are obtained from Eq. (28) by identifying
the quantities that multiply the various parameter
variations δαm1 have the following expressions:

For j ¼ 1; :::; Jt :
qR α;φ; ψ 1ð Þ� �

qαj
¼Δ qR α;φ; ψ 1ð Þ� �

qtj

¼ �
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þφ r;Ω;Eð Þ

� qΣt t; r;Eð Þ
qtj

; ð29Þ

For j ¼ 1; :::; Js :
qR α;φ; ψ 1ð Þ� �

qαJtþj
¼Δ qR α;φ; ψ 1ð Þ� �

qsj

¼
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π
dΩ 0

�
ð1
0

dE 0 qΣs s; r;E 0! E;Ω 0! Ωð Þ
qsj

φ r;Ω 0;E 0ð Þ ;

ð30Þ

For j ¼ 1; :::; Jf :
qR α;φ; ψ 1ð Þ� �

qαJtþJsþj
¼Δ qR α;φ; ψ 1ð Þ� �

qfj

¼
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π
dΩ 0

ð1
0

dE 0

� χ p; r;E 0! Eð Þ q νΣf f; r;E 0ð Þ� �
qfj

φ r;Ω 0;E 0ð Þ ;

ð31Þ

For j ¼ 1; :::; Jp :
qR α;φ; ψ 1ð Þ� �
qαJtþJsþJfþj

¼Δ qR α;φ; ψ 1ð Þ� �
qpjð

dV

ð
4π

dΩ

ð1
0
dE ψ 1ð Þ r;Ω;Eð Þ

ð
4π
dΩ 0

�
ð1
0
dE 0 qχ p; r;E 0 ! Eð Þ

qpj
νΣf f; r;E 0ð Þ

� φ r;Ω 0;E 0ð Þ ; ð32Þ
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For j ¼ 1; :::; Jq :
qR α;φ; ψ 1ð Þ� �
qαJtþJsþJfþJpþj

¼Δ qR α;φ; ψ 1ð Þ� �
qqj

¼
ð
dV

ð
4π

dΩ

ð1
0

dE
qQ q; r;Ω;Eð Þ

qqj
ψ 1ð Þ r;Ω;Eð Þ ; ð33Þ

and

For j ¼ 1; :::; Jd :
qR α;φ; ψ 1ð Þ� �

qαJtþJsþJfþJpþJqþj
¼Δ qR α;φ; ψ 1ð Þ� �

qdj
¼
ð
dV

ð
4π

dΩ

ð1
0

dE
qΣd d; r;Ω;Eð Þ

qdj
φ r;Ω;Eð Þ : ð34Þ

The same model parameter could appear in the definitions of more than one macroscopic cross section. For example,
the isotopic number density of some element, generically denoted as Ni, could be an imprecisely known model
parameter that might appear in the definitions of the total, scattering, and fission macroscopic cross sections, as well
as in the source term Q q; r;Ω;Eð Þ. In such a case, the sensitivity of the response to the model parameter Ni would be
the sum of the corresponding partial sensitivities computed from Eqs. (29), (30), (31), and (33), namely,

qR α;φ; ψ 1ð Þ� �
qNi

¼Δ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þφ r;Ω;Eð Þ qQ q; r;Ω;Eð Þ
qNi

�
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þφ r;Ω;Eð Þ qΣt t; r;Eð Þ
qNi

þ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π
dΩ 0

ð1
0
dE 0 qΣs s; r;E 0 ! E;Ω 0 ! Ωð Þ

qNi
φ r;Ω 0;E 0ð Þ

þ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π
dΩ 0

ð1
0
dE 0 q νΣf f; r;E 0ð Þ� �

qNi
χ p; r;E 0 ! Eð Þφ r;Ω 0;E 0ð Þ : ð35Þ

IV. THE SECOND-LEVEL FORWARD AND ADJOINT SENSITIVITY SYSTEMS FOR COMPUTING SECOND-ORDER RESPONSE
SENSITIVITIES TO VARIATIONS IN MODEL PARAMETERS

The second-order response sensitivities will be obtained by applying the 2nd-ASAM developed by
Cacuci,10–12 which relies on the construction of a 2nd-LASS for each of the first-order sensitivities defined
by Eqs. (29) through (34).

IV.A. Computation of the Second-Order Sensitivities ∂2R (α,φ;ψ(1))/ ∂tj ∂αm2
, j = 1,..., Jt ; m2 = 1,..., Jα

The second-order sensitivities q2R α;φ; ψ 1ð Þ� �	
qtj
� �

qαm2ð Þ; j ¼ 1; :::; Jt; m2 ¼ 1; :::; Jα, are obtained by determining
the G-differential of the first-order sensitivity given in Eq. (29), which yields the following expression:

δ
qR α;φ; ψ 1ð Þ� �

qtj

" #
¼ δ

qR α;φ; ψ 1ð Þ� �
qtj

" #( )
dir

þ δ
qR α;φ; ψ 1ð Þ� �

qtj

" #( )
ind

; j ¼ 1; :::; Jt ; ð36Þ

where

δ
qR α;φ; ψ 1ð Þ� �

qtj

" #( )
dir

¼Δ �
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þφ r;Ω;Eð Þ
XJt
m2¼1

q2Σt t; r;Ω;Eð Þ
qtjqtm2

δtm2 j ¼ 1; :::; Jt ð37Þ



and

δ
qR α;φ; ψ 1ð Þ� �

qtj

" #( )
ind

¼Δ �
ð
dV

ð
4π

dΩ

ð1
0

dE

� δψ 1ð Þ r;Ω;Eð Þ
h i

φ r;Ω;Eð Þ qΣt t; r;Eð Þ
qtj

�
ð
dV

ð
4π

dΩ

ð1
0

dE δφ r;Ω;Eð Þ½ � ψ 1ð Þ r;Ω;Eð Þ

� qΣt t; r;Eð Þ
qtj

; j ¼ 1; :::; Jt : ð38Þ

The direct-effect term defined in Eq. (37) can be
computed immediately. On the other hand, the
indirect-effect term defined in Eq. (38) can be
computed only after having obtained the solution
δφ r;Ω;Eð Þ of the 1st-LFSS and the variation

δψ 1ð Þ r;Ω;Eð Þ in the first-level adjoint function

ψ 1ð Þ r;Ω;Eð Þ. It has already been discussed in Sec. III
that it is computationally expensive to obtain
δφ r;Ω;Eð Þ since the 1st-LFSS would need to be
solved anew for every variation in the model

parameters. Furthermore, the function δψ 1ð Þ r;Ω;Eð Þ
is the solution of the system of equations obtained
by G-differentiating the 1st-LASS [see Eqs. (25) and
(26)], namely,

A 1ð Þ α0
� �

δψ 1ð Þ r;Ω;Eð Þ ¼ Q 2ð Þ α0;ψ 1ð Þ; δα

 �

ð39Þ

and

δψ 1ð Þ rs;Ω;Eð Þ ¼ 0 ; rs 2 qV ;Ω � n > 0 ; ð40Þ

where

Q 2ð Þ α0;ψ 1ð Þ; δα

 �

¼Δ δΣd r;Ω;Eð Þ � δΣt r;Eð Þψ 1ð Þ r;Ω;Eð Þ

þ
ð
4π

dΩ 0
ð1
0

dE 0 δΣs r;E ! E 0;Ω ! Ω 0ð Þ½ �ψ 1ð Þ r;Ω 0;E 0ð Þ

þ δ νΣf r;Eð Þ� � ð
4π

dΩ 0
ð1
0

dE 0 χ p; r;E ! E 0ð Þψ 1ð Þ

� r;Ω 0;E 0ð Þ þ νΣf f; r;Eð Þ
h i ð

4π

dΩ 0
ð1
0

dE 0

� δχ p; r;E ! E 0ð Þψ 1ð Þ r;Ω 0;E 0ð Þ : ð41Þ

It is evident from Eqs. (39) and (40) that the evaluation of the

function δψ 1ð Þ r;Ω;Eð Þ is just as expensive computationally
as determining the variation δφ r;Ω;Eð Þ by solving the
1st-LFSS. The system comprising Eqs. (39) and (40) is
called10–12 the Second-Level Forward Sensitivity System
(2nd-LFSS). To avoid the need for solving the 2nd-LFSS,
the indirect-effect term defined in Eq. (38) will be expressed
in terms of a 2nd-LASS, whichwill be constructed by follow-
ing the general principles introduced byCacuci,10–12 compris-
ing the following sequence of steps.

Step 1: Define an inner product u 2ð Þ r;Ω;Eð Þ;�
v 2ð Þ r;Ω;Eð Þ 2ð Þ of two vector-valued functions

u 2ð Þ r;Ω;Eð Þ ¼Δ u 2ð Þ
1 r;Ω;Eð Þ; u 2ð Þ

2 r;Ω;Eð Þ
h iy

and

v 2ð Þ r; Ω; Eð Þ ¼Δ v 2ð Þ
1 r; Ω; Eð Þ; v 2ð Þ

2 r; Ω; Eð Þ
h iy

, with

u 2ð Þ
1 r; Ω; Eð Þ 2 L2 V � Ω � Eð Þ, u 2ð Þ

2 ðr; Ω; EÞ
2 L2 V �Ω� Eð Þ; v 2ð Þ

1 r;Ω;Eð Þ 2 L2 V �Ω� Eð Þ, and

v 2ð Þ
2 r;Ω;Eð Þ 2 L2 V �Ω� Eð Þ, as follows:

hu 2ð Þ r;Ω;Eð Þ; v 2ð Þ r;Ω;Eð Þi 2ð Þ

¼Δ
X2
j¼1

ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
j r;Ω;Eð Þv 2ð Þ

j r;Ω;Eð Þ : ð42Þ

Step 2: Define a Hilbert space, denoted as H 2ð Þ,
which is endowed with the inner product defined
in Eq. (42). For a matrix-valued linear operator

L 2ð Þ ¼Δ L 2ð Þ
11 L 2ð Þ

12

L 2ð Þ
21 L 2ð Þ

22

 !
, define its formal adjoint

operator, denoted as A 2ð Þ ¼Δ A 2ð Þ
11 A 2ð Þ

12

A 2ð Þ
21 A 2ð Þ

22

 !
, through

the following relationship:

hv 2ð Þ; L 2ð Þu 2ð Þi 2ð Þ ¼ hu 2ð Þ; A 2ð Þv 2ð Þi 2ð Þ þ P 2ð Þ u 2ð Þ; v 2ð Þ
h i

;

ð43Þ

where P 2ð Þ u 2ð Þ; v 2ð Þ� �
denotes the corresponding bilinear

concomitant on the boundary qV � qΩ� qEð Þ.
Step 3: Apply the definition provided in Eq. (42) to form

the inner product of Eqs. (39) and (16) with a yet undefined

function ψ 2ð Þ
j r;Ω;Eð Þ ¼Δ ψ 2ð Þ

1; j r;Ω;Eð Þ;ψ 2ð Þ
2; j r;Ω;Eð Þ

h iy
,

where ψ 2ð Þ
1; j r;Ω;Eð Þ 2 L2 V �Ω� Eð Þ and ψ 2ð Þ

2; j r;Ω;Eð Þ
2 L2 V �Ω� Eð Þ, to obtain

562 CACUCI · COMPUTING SENSITIVITIES OF FLUX FUNCTIONALS

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 193 · JUNE 2019



ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1; j r;Ω;Eð ÞA 1ð Þ αð Þδψ 1ð Þ r;Ω;Eð Þ

þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
2; j r;Ω;Eð ÞL 1ð Þ αð Þδφ r;Ω;Eð Þ

¼
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1; j r;Ω;Eð ÞQ 2ð Þ α;ψ 1ð Þ; δα


 �

þ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 2ð Þ
2; j r;Ω;Eð ÞQ 1ð Þ α;φ; δαð Þ : ð44Þ

Step 4: Use the relation shown in Eq. (43) to recast the
left side of Eq. (44) in the following form:

ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1; j r;Ω;Eð ÞA 1ð Þ αð Þδψ 1ð Þ r;Ω;Eð Þ

þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
2; j r;Ω;Eð ÞL 1ð Þ αð Þδφ r;Ω;Eð Þ

¼
ð
dV

ð
4π

dΩ

ð1
0

dE δψ 1ð Þ r;Ω;Eð Þ A 1ð Þ αð Þ
h i�

ψ 2ð Þ
1; j r;Ω;Eð Þ

þ
ð
dV

ð
4π

dΩ

ð1
0

dE δφ r;Ωð Þ L 1ð Þ αð Þ
h i�

ψ 2ð Þ
2; j r;Ω;Eð Þ

þ P 2ð Þ δφ; δψ 1ð Þ; ψ 2ð Þ
1; j ;ψ

2ð Þ
2; j

h i
; ð45Þ

where the symbol ½ �� indicates adjoint and

P 2ð Þ δφ; δψ 1ð Þ; ψ 2ð Þ
1; j;ψ

2ð Þ
2; j

h i
denotes the corresponding

bilinear concomitant on the domain’s boundary, similar
to the bilinear concomitant shown in Eq. (24).

Step 5: Use the boundary conditions shown in Eqs. (17)

and (40), and impose on the function ψ 2ð Þ
j r;Ω;Eð Þ ¼Δ

ψ 2ð Þ
1; j r;Ω;Eð Þ;ψ 2ð Þ

2; j r;Ω;Eð Þ
h iy

the boundary conditions

ψ 2ð Þ
1; j rs;Ω;Eð Þ¼ 0; rs 2 qV ;Ω � n> 0 and ψ 2ð Þ

2; j rs;Ω;Eð Þ =
0, rs 2 qV ;Ω � n > 0, to cause the bilinear concomitant

P 2ð Þ δφ; δψ 1ð Þ; ψ 2ð Þ
1; j;ψ

2ð Þ
2; j

j k
in Eq. (45) to vanish.

Step 6: Noting that A 1ð Þ αð Þ� �� ¼ L 1ð Þ αð Þ ¼ L αð Þ and

L 1ð Þ αð Þ� �� ¼ A 1ð Þ αð Þ and identifying the right side of
Eq. (45) with the indirect-effect term defined in Eq. (38)
yield Eqs. (46) through (49):

L α0
� �

ψ 2ð Þ
1; j r;Ω;Eð Þ ¼Δ Ω � �ψ 2ð Þ

1; j r;Ω;Eð Þ

þ Σ0
t t0; r;E
� �

ψ 2ð Þ
1; j r;Ω;Eð Þ �

ð
4π

dΩ 0
ð1
0

dE 0

� Σ0
s s0; r;E 0 ! E;Ω 0 ! Ω
� �

ψ 2ð Þ
1; j r;Ω;E 0ð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 χ0 p0; r;E 0 ! E
� �

ν0Σ0
f f0; r;E 0� �h i

� ψ 2ð Þ
1; j r;Ω;E 0ð Þ ¼ �φ0 r;Ω;Eð Þ qΣt t; r;Eð Þ

qtj
;

j ¼ 1; :::; Jt ; ð46Þ

subject to boundary condition

ψ 2ð Þ
1;j rs;Ω;Eð Þ ¼ 0; rs 2 qV ;Ω � n < 0;

j ¼ 1; :::; Jt ð47Þ

and

A 1ð Þ α0
� �

ψ 2ð Þ
2; j r;Ω;Eð Þ ¼Δ �Ω � �ψ 2ð Þ

2; j r;Ω;Eð Þ
þ Σ0

t t0; r;E
� �

ψ 2ð Þ
2; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 Σ0
s s0; r;E ! E 0;Ω ! Ω 0� �

� ψ 2ð Þ
2; j r;Ω

0;E 0ð Þ � ν0Σ0
f f0; r;E
� �h i ð

4π

dΩ 0

�
ð1
0

dE 0 χ0 p0; r;E ! E 0� �
ψ 2ð Þ
2; j r;Ω

0;E 0ð Þ

¼ �ψ 1ð Þ r;Ω;Eð Þ qΣt t0; r;E
� �
qtj

; j ¼ 1; :::; Jt ; ð48Þ

subject to the following boundary condition

ψ 2ð Þ
2; j rs;Ω;Eð Þ ¼ 0 ; rs 2 qV ;Ω � n > 0;

j ¼ 1; :::; Jt : ð49Þ

Equations (46) through (49) constitute the 2nd-LASS for

the second-level adjoint function ψ 2ð Þ
j r;Ω;Eð Þ ¼Δ

ψ 2ð Þ
1; j r;Ω;Eð Þ ; ψ 2ð Þ

2; j r;Ω;Eð Þ
h i

; j ¼ 1; :::; Jt ; which will

be used to evaluate the indirect-effect term defined in Eq. (38).

Step 7: Use Eqs. (46) and (48) together with
Eqs. (41) through (45) in Eq. (38) to obtain the
following expression for the indirect-effect term:
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δ
qR α;φ; ψ 1ð Þ� �

qtj

" #( )
ind

¼
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 2ð Þ
1; j r;Ω;Eð ÞQ 2ð Þ α;ψ 1ð Þ; δα


 �
þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
2; j r;Ω;Eð Þ

� Q 1ð Þ α;φ; δαð Þ; j ¼ 1; :::; Jt : ð50Þ

Step 8: Replacing the expressions of Q 2ð Þ α0;ψ 1ð Þ; δα
� �

and Q 1ð Þ α;φ; δαð Þ, respectively, in Eq. (50) and subsequently
using Eqs. (50) and (37) in Eq. (36) yields

δ
qR α;φ; ψ 1ð Þ� �

qtj

" #
¼ �

ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þφ r;Ω;Eð Þ
XJt
m2¼1

q2Σt t; r;Ω;Eð Þ
qtjqtm2

δtm2

( )

þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1; j r;Ω;Eð Þ

XJd
m2¼1

qΣd d; r;Ω;Eð Þ
qdm2

δdm2

( )

�
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1; j r;Ω;Eð Þψ 1ð Þ r;Ω;Eð Þ

XJt
m2¼1

qΣt t; r;Ω;Eð Þ
qtm2

δtm2

( )

þ
ð
dV

ð
4π

dΩ

ð1
0
dEψ 2ð Þ

1; j r;Ω;Eð Þ
ð
4π
dΩ 0

ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ
XJs
m2¼1

qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsm2

δsm2

( )

þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1; j r;Ω;Eð Þ

XJf
m2¼1

q νΣf f; r;Eð Þ� �
qfm2

δfm2

( ) ð
4π

dΩ 0
ð1
0

dE 0 χ p; r;E ! E 0ð Þψ 1ð Þ r;Ω 0;E 0ð Þ

þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1; j r;Ω;Eð Þ νΣf f; r;Eð Þ� � ð

4π

dΩ 0
ð1
0

dE 0ψ 1ð Þ r;Ω 0;E 0ð Þ

�
XJp
m2¼1

qχ p; r;E ! E 0ð Þ
qpm2

δpm2

( )

þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
2;m1

r;Ω;Eð Þ
XJq
m2¼1

qQ q; r;Ω;Eð Þ
qqm2

δqm2

( )

�
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
2; j r;Ω;Eð Þφ r;Ω;Eð Þ

XJt
m2¼1

qΣt t; r;Ω;Eð Þ
qtm2

δtm2

( )

þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0φ r;Ω 0;E 0ð Þ
XJs
m2¼1

qΣs s; r;E 0 ! E;Ω 0 ! Ωð Þ
qsm2

δsm2

( )

þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 νΣf f; r;E 0ð Þ� �
φ r;Ω 0;E 0ð Þ

XJp
m2¼1

qχ p; r;E 0 ! Eð Þ
qpm2

δpm2

( )

þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0φ r;Ω 0;E 0ð Þχ p; r;E 0 ! Eð Þ
XJf
m2¼1

q νΣf f; r;E 0ð Þ� �
qfm2

δfm2

( )
;

j ¼ 1; :::; Jt : ð51Þ

The second-order partial sensitivities q2R α;φ; ψ 1ð Þ� �	
qtjqαm2 ; j ¼ 1; :::; Jt; m2 ¼ 1; :::; Jα; can now be determined by

identifying in Eq. (51) the quantities multiplying the parameter variations δαm2 , which yields the following expressions:



for j;m2 ¼ 1; :::; Jt :
q2R α;φ; ψ 1ð Þ;ψ 2ð Þ

j


 �
qtjqtm2

¼ �
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þφ r;Ω;Eð Þ q
2Σt t; r;Ω;Eð Þ

qtjqtm2

�
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 2ð Þ
1; j r;Ω;Eð Þψ 1ð Þ

h
r;Ω;Eð Þ þ ψ 2ð Þ

2; j r;Ω;Eð Þφ r;Ω;Eð Þ
i qΣt t; r;Ω;Eð Þ

qtm2

; ð52Þ

for j ¼ 1; :::; Jt; m2 ¼ 1; :::; Js :
q2R α;φ; ψ 1ð Þ;ψ 2ð Þ

j


 �
qtjqsm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ

� qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsm2

þ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0

�
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsm2

; ð53Þ

for j ¼ 1; :::; Jt; m2 ¼ 1; :::; Jf :
q2R α;φ; ψ 1ð Þ;ψ 2ð Þ

j


 �
qtjqfm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1; j r;Ω;Eð Þ q νΣf f; r;Eð Þ� �

qfm2

�
ð
4π

dΩ 0
ð1
0

dE 0χ p; r;E ! E 0ð Þψ 1ð Þ r;Ω 0;E 0ð Þ þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0

� φ r;Ω 0;E 0ð Þχ p; r;E ! E 0ð Þ q νΣf f; r;E 0ð Þ� �
qfm2

; ð54Þ

for j ¼ 1; :::; Jt; m2 ¼ 1; :::; Jp :
q2R α;φ; ψ 1ð Þ;ψ 2ð Þ

j


 �
qtjqpm2

¼ þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1; j r;Ω;Eð Þ νΣf f; r;Eð Þ� �

�
ð
4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qχ p; r;E ! E 0ð Þ
qpm2

þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
2; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 νΣf f; r;E 0ð Þ� �
φ r;Ω 0;E 0ð Þ qχ p; r;E 0 ! Eð Þ

qpm2

; ð55Þ

for j ¼ 1; :::; Jt; m2 ¼ 1; :::; Jq :
q2R α;φ; ψ 1ð Þ;ψ 2ð Þ

j


 �
qtjqqm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 2ð Þ
2; j r;Ω;Eð Þ qQ q; r;Ω;Eð Þ

qqm2

; ð56Þ

and

for j ¼ 1; :::; Jt; m2 ¼ 1; :::; Jd :
q2R α;φ; ψ 1ð Þ;ψ 2ð Þ

j


 �
qtjqdm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1; j r;Ω;Eð Þ qΣd d; r;Ω;Eð Þ

qdm2

: ð57Þ
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IV.B. Computation of the Second-Order Sensitivities
∂2R (α,φ;ψ(1))/ ∂sj ∂αm2

, j = 1,..., Js ; m2 = 1,..., Jα
The second-order sensitivities q2R α;φ; ψ 1ð Þ� �

=

qsj
� �

qαm2ð Þ: qsj
� �

qαm2ð Þ; j ¼ 1; :::; Js; m2 ¼ 1; :::; Jα are
obtained by determining the G-differential of the first-order
sensitivity defined in Eq. (30), which yields the following
expression:

δ
qR α;φ; ψ 1ð Þ� �

qsj

" #
¼ δ

qR α;φ; ψ 1ð Þ� �
qsj

" #( )
dir

þ δ
qR α;φ; ψ 1ð Þ� �

qsj

" #( )
ind

;

j ¼ 1; :::; Js ; ð58Þ

where for j ¼ 1; :::; Js :

δ
qR α;φ; ψ 1ð Þ� �

qsj

" #( )
dir

¼Δ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ

� r;Ω;Eð Þ
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ

�
XJs
m2¼1

q2Σs s; r;E 0 ! E;Ω 0 ! Ωð Þ
qsjqsm2

δsm2 ; ð59Þ

and where for j ¼ 1; :::; Js :

δ
qR α;φ; ψ 1ð Þ� �

qsj

" #( )
ind

¼Δ
ð
dV

ð
4π

dΩ

ð1
0

dE δψ 1ð Þ r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 qΣs s; r;E 0 ! E;Ω 0 ! Ωð Þ
qsj

φ r;Ω 0;E 0ð Þ

þ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π

dΩ 0

�
ð1
0

dE 0 qΣs s; r;E 0 ! E;Ω 0 ! Ωð Þ
qsj

δφ r;Ω 0;E 0ð Þ : ð60Þ

The direct-effect term defined in Eq. (59) can be computed
immediately. On the other hand, the indirect-effect term
defined in Eq. (60) can be computed only after having
obtained the solution δφ r;Ω;Eð Þ of the 1st-LFSS and the

solution δψ 1ð Þ r;Ω;Eð Þ of the 2nd-LFSS defined in
Eqs. (39) and (40). To avoid the need for solving the
1st-LFSS and the 2nd-LFSS, the indirect-effect term defined
in Eq. (60) will be expressed in terms of a 2nd-LASS, which

will be constructed by following the same sequence of steps
as previously outlined in Sec. IV.A. Thus, applying the
definition provided in Eq. (42) to form the inner product of
Eqs. (39) and (16) with a yet undefined function

θ 2ð Þ
j r;Ω;Eð Þ ¼Δ θ 2ð Þ

1; j r;Ω;Eð Þ; θ 2ð Þ
2; j r;Ω;Eð Þ

h iy
, where

θ 2ð Þ
1; j r;Ω;Eð Þ 2 L2 V �Ω� Eð Þ and θ 2ð Þ

2; j r;Ω;Eð Þ 2 L2
V �Ω� Eð Þ, yields a relation that is similar to Eq. (45),

except that the components of ψ 2ð Þ
j are replaced by the

corresponding components of θ 2ð Þ
j r;Ω;Eð Þ, namely,ð

dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
1; j r;Ω;Eð ÞA 1ð Þ αð Þδψ 1ð Þ r;Ω;Eð Þ þ

ð
dV

ð
4π

dΩ

�
ð1
0

dE θ 2ð Þ
2; j r;Ω;Eð ÞL 1ð Þ αð Þδφ r;Ω;Eð Þ ¼

ð
dV

ð
4π

dΩ

�
ð1
0

dE θ 2ð Þ
1; j r;Ω;Eð ÞQ 2ð Þ α;ψ 1ð Þ; δα


 �
þ
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
2; j

� r;Ω;Eð ÞQ 1ð Þ α;φ; δαð Þ ¼
ð
dV

ð
4π

dΩ

ð1
0

dE δψ 1ð Þ r;Ω;Eð Þ

� A 1ð Þ αð Þ
h i�

θ 2ð Þ
1; j r;Ω;Eð Þ þ

ð
dV

ð
4π

dΩ

ð1
0

dE δφ r;Ωð Þ

� L 1ð Þ αð Þ
h i�

θ 2ð Þ
2; j r;Ω;Eð Þ þ P 2ð Þ δφ; δψ 1ð Þ; θ 2ð Þ

1; j; θ
2ð Þ
2; j

h i
: ð61Þ

The bilinear concomitant Pð2Þ½δφ; δψð1Þ; ψð2Þ
1; j;ψ

ð2Þ
2; j� in

Eq. (61) will vanish by imposing the boundary conditions

θ 2ð Þ
1; j rs;Ω;Eð Þ ¼ 0; rs 2 qV ;Ω � n < 0 and θ 2ð Þ

2; j rs;Ω;Eð Þ ¼
0; rs 2 qV ;Ω � n > 0. Noting that A 1ð Þ αð Þ� �� ¼ L 1ð Þ αð Þ ¼
L αð Þ and L 1ð Þ αð Þ� �� ¼ A 1ð Þ αð Þ and identifying the rightmost
side of Eq. (61) with the indirect-effect term defined in Eq.
(60) yields the following 2nd-LASS for the components of

the second-level adjoint function θ 2ð Þ
j r;Ω;Eð Þ:

L α0
� �

θ 2ð Þ
1; j r;Ω;Eð Þ ¼Δ Ω � �θ 2ð Þ

1; j r;Ω;Eð Þ þ Σ0
t t0; r;E
� �

� θ 2ð Þ
1; j r;Ω;Eð Þ �

ð
4π

dΩ 0
ð1
0

dE 0 Σ0
s s0; r;E 0 ! E;Ω 0 ! Ω
� �

� θ 2ð Þ
1; j r;Ω;Eð Þ �

ð
4π

dΩ 0
ð1
0

dE 0 ν0Σ0
f f0; r;E 0� �h i

� χ0 p0; r;E 0 ! E
� �

θ 2ð Þ
1; j r;Ω;Eð Þ ¼

ð
4π

dΩ 0
ð1
0

dE 0

� qΣs s; r;E 0!E;Ω 0!Ωð Þ
qsj

φ r;Ω 0;E 0ð Þ; j¼1; :::; Js ð62Þ
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and

A 1ð Þ α0
� �

θ 2ð Þ
2; j r;Ω;Eð Þ ¼Δ �Ω � �θ 2ð Þ

2; j r;Ω;Eð Þ þ Σ0
t t0; r;E
� �

θ 2ð Þ
2; j r;Ω;Eð Þ �

ð
4π

dΩ 0
ð1
0

dE 0Σ0
s s0; r;E ! E 0;Ω ! Ω 0� �

� θ 2ð Þ
2; j r;Ω

0;E 0ð Þ � ν0Σ0
f f0; r;E
� �h i ð

4π

dΩ 0
ð1
0

dE 0χ0 p0; r;E ! E 0� �
θ 2ð Þ
2; j r;Ω

0;E 0ð Þ ¼
ð
4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ

� r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsj

; j ¼ 1; :::; Js ; ð63Þ

subject to the following boundary condition:

θ 2ð Þ
1; j rs;Ω;Eð Þ ¼ 0;Ω � n < 0; θ 2ð Þ

2;m1
rs;Ω;Eð Þ ¼ 0;Ω � n > 0; rs 2 qV ; j ¼ 1; :::; Js : ð64Þ

Using Eqs. (61) through (64) in Eq. (60) yields the following expression for the indirect-effect term:

δ
qR α;φ; ψ 1ð Þ� �

qsj

" #( )
ind

¼
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
1; j r;Ω;Eð ÞQ 2ð Þ α;ψ 1ð Þ; δα


 �
þ
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
2; j

� r;Ω;Eð ÞQ 1ð Þ α;φ; δαð Þ; j ¼ 1; :::; Js : ð65Þ

Replacing the expressions of Q 2ð Þ α0;ψ 1ð Þ; δα
� �

and Q 1ð Þ α;φ; δαð Þ from Eqs. (41) and (19), respectively, in Eq. (65);
replacing the resulting expression together with the direct-effect term from Eq. (59) into Eq. (58); and subsequently
identifying the quantities multiplying the parameter variations δαm2 ;m2 ¼ 1; :::; Jα ; in Eq. (58) yield the following

expressions for the second-order partial sensitivities q2R α;φ; ψ 1ð Þ; θ 2ð Þ
j


 �
= qsj
� �

qαm2ð Þ; j ¼ 1; :::; Js, m2 ¼ 1; :::; Jα:

For j ¼ 1; :::; Js; m2 ¼ 1; :::; Jt :
q2R α;φ; ψ 1ð Þ; θ 2ð Þ

j


 �
qsjqtm2

¼ �
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
1; j r;Ω;Eð Þψ 1ð Þ r;Ω;Eð Þ

h

þ θ 2ð Þ
2; j r;Ω;Eð Þφ r;Ω;Eð Þ

i qΣt t; r;Ω;Eð Þ
qtm2

; ð66Þ

For j ¼ 1; :::; Js; m2 ¼ 1; :::; Js :
q2R α;φ; ψ 1ð Þ; θ 2ð Þ

j


 �
qsjqsm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ q
2Σs s; r;E 0 ! E;Ω 0 ! Ωð Þ

qsjqsm2

þ
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
1; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsm2

þ
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
2; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsm2

; ð67Þ
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For j ¼ 1; :::; Js; m2 ¼ 1; :::; Jf :
q2R α;φ; ψ 1ð Þ; θ 2ð Þ

j


 �
qsjqfm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
1; j r;Ω;Eð Þ q νΣf f; r;Eð Þ� �

qfm2

�
ð
4π

dΩ 0
ð1
0

dE 0χ p; r;E ! E 0ð Þψ 1ð Þ r;Ω 0;E 0ð Þ þ
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
2; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þχ p; r;E 0 ! Eð Þ q νΣf f; r;E 0ð Þ� �
qfm2

; ð68Þ

For j ¼ 1; :::; Js; m2 ¼ 1; :::; Jp :
q2R α;φ; ψ 1ð Þ; θ 2ð Þ

j


 �
qsjqpm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
1; j r;Ω;Eð Þ νΣf f; r;Eð Þ� � ð

4π

dΩ 0

�
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qχ p; r;E ! E 0ð Þ
qpm2

þ
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
2; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 νΣf f; r;E 0ð Þ� �
φ r;Ω 0;E 0ð Þ qχ p; r;E 0 ! Eð Þ

qpm2

; ð69Þ

For j ¼ 1; :::; Js; m2 ¼ 1; :::; Jq :
q2R α;φ; ψ 1ð Þ; θ 2ð Þ

j


 �
qsjqqm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
2; j r;Ω;Eð Þ qQ q; r;Ω;Eð Þ

qqm2

; ð70Þ

and

For j ¼ 1; :::; Js; m2 ¼ 1; :::; Jd :
q2R α;φ; ψ 1ð Þ; θ 2ð Þ

j


 �
qsjqdm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
1; j r;Ω;Eð Þ qΣd d; r;Ω;Eð Þ

qdm2

: ð71Þ

It is important to note that the forward and adjoint
operators appearing on the left side of the 2nd-LASS
defined by Eqs. (62), (63), and (64) for the second-level

adjoint function θ 2ð Þ
j are the same operators as appearing on

the left side of the 2nd-LASS defined by Eqs. (46) through

(49) for the second-level adjoint function ψ 2ð Þ
j , the forward

operator being the same as on the left side of the original
transport Eq. (1), while the adjoint operator is the same as
that appearing in the 1st-LASS, namely, Eq. (25).
Furthermore, the forward and, respectively, adjoint func-
tions are subject to the same forward and, respectively,
adjoint (vacuum) boundary conditions. Only the source
terms on the left sides of the respective forward, 1st-
LASS, and 2nd-LASS differ from each other. Therefore,
the same forward and adjoint software packages can be used
for solving numerically the various equations underlying
the 1st-LASS and the 2nd-LASS. Furthermore, the formal
expression of the indirect-effect term defined in Eq. (50)

involving the function ψ 2ð Þ
j has the same formal expression

as the indirect-effect term defined in Eq. (65) involving the

function θ 2ð Þ
j . Therefore, these indirect-effect terms can be

evaluated numerically (quantitatively) using the same soft-
ware package, while inputting the corresponding second-

level adjoint functions ψ 2ð Þ
j and θ 2ð Þ

j . Consequently,

the second-order sensitivities shown in Eqs. (68) through
(71) have formally the same expressions as the second-order
sensitivities shown in Eqs. (54) through (57), respectively,

except that the second-level adjoint function θ 2ð Þ
j in Eqs.

(68) through (71) plays the role of the second-level adjoint

function ψ 2ð Þ
j in Eqs. (54) through (57). Thus, the software

package used for computing the sensitivities shown in Eqs.
(54) through (57) can also be used for computing the sensi-
tivities shown in Eqs. (68) through (71).

The expressions of the second-order sensitivities
computed using Eq. (66) must be identical to those
computed using Eq. (53).
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That is, for j ¼ 1; :::; Js; k ¼ 1; :::; Jt :

q2R α;φ; ψ 1ð Þ; θ 2ð Þ
j


 �
qsjqtk

¼ �
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
1; j r;Ω;Eð Þψ 1ð Þ r;Ω;Eð Þ þ θ 2ð Þ

2; j r;Ω;Eð Þφ r;Ω;Eð Þ
h i qΣt t; r;Ω;Eð Þ

qtk

¼
q2R α;φ; ψ 1ð Þ;ψ 2ð Þ

j


 �
qtkqsj

¼
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1;k r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ

� qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsj

þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
2;k r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsj

: ð72Þ

The relation shown in Eq. (72) provides an independent path for the mutual verification of the solutions ψ 2ð Þ
j and

θ 2ð Þ
j ; j ¼ 1; :::; Js ; of the respective 2nd-LASS.

IV.C. Computation of the Second-Order Sensitivities ∂2R (α, φ; ψ(1))/∂fj ∂αm2
, j = 1,..., Jf ; m2 = 1,..., Jα

The second-order sensitivities q2R α;φ; ψ 1ð Þ� �
= qfj
� �

qαm2ð Þ; j ¼ 1; :::; Jf ; m2 ¼ 1; :::; Jα are obtained by determining
the G-differential of the first-order sensitivity defined in Eq. (31), which yields the following expression:

δ
qR α;φ; ψ 1ð Þ� �

qfj

" #
¼ δ

qR α;φ; ψ 1ð Þ� �
qfj

" #( )
dir

þ δ
qR α;φ; ψ 1ð Þ� �

qfj

" #( )
ind

; j ¼ 1; :::; Jf ; ð73Þ

where for j ¼ 1; :::; Jf :

δ
qR α;φ; ψ 1ð Þ� �

qfj

" #( )
dir

¼Δ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þχ p; r;E 0 ! Eð Þ

�
XJf
m2¼1

q2 νΣf f; r;E 0ð Þ� �
qfjqfm2

δfm2 þ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π

dΩ 0

�
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ
XJp
m2¼1

qχ p; r;E 0 ! Eð Þ
qpm2

δpm2

q νΣf f; r;E 0ð Þ� �
qfj

; ð74Þ

and where for j ¼ 1; :::; Jf :

δ
qR α;φ; ψ 1ð Þ� �

qfj

" #( )
ind

¼Δ
ð
dV

ð
4π

dΩ

ð1
0

dE δψ 1ð Þ r;Ω;Eð Þ
h i ð

4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þχ p; r;E 0 ! Eð Þ

� q νΣf f; r;E 0ð Þ� �
qfj

þ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π

dΩ 0
ð1
0

dE 0 δφ r;Ω 0;E 0ð Þ½ �χ p; r;E 0 ! Eð Þ q νΣf f; r;E 0ð Þ� �
qfj

: ð75Þ
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The direct-effect term defined in Eq. (74) can be computed immediately. On the other hand, the
indirect-effect term defined in Eq. (75) can be computed only after having obtained the solution δφ r;Ω;Eð Þ of the

1st-LFSS and the solution δψ 1ð Þ r;Ω;Eð Þ of the 2nd-LFSS defined in Eqs. (39) and (40). To avoid the need for solving
the 1st-LFSS and the 2nd-LFSS, the indirect-effect term defined in Eq. (75) will be expressed in terms of the solution of a
2nd-LASS, which will be constructed by following the same sequence of steps as previously outlined in Secs. IV.A and IV.B.
Thus, applying the definition provided in Eq. (42) to form the inner product of Eqs. (39) and (17) with a yet undefined function

u 2ð Þ
j r;Ω;Eð Þ ¼Δ u 2ð Þ

1; j r;Ω;Eð Þ; u 2ð Þ
2; j r;Ω;Eð Þ

h iy
, where u 2ð Þ

1; j r;Ω;Eð Þ 2 L2 V �Ω� Eð Þ and u 2ð Þ
2; j r;Ω;Eð Þ 2 L2 V �Ωð �EÞ,

yields a relation that is similar to those shown in Eqs. (45) and (61), except that the components of ψ 2ð Þ
j or θ 2ð Þ

j r;Ω;Eð Þ,
respectively, are replaced by the corresponding components of u 2ð Þ

j r;Ω;Eð Þ, namely,

ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
1; j r;Ω;Eð ÞA 1ð Þ αð Þδψ 1ð Þ r;Ω;Eð Þ þ

ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
2; j r;Ω;Eð ÞL 1ð Þ αð Þδφ r;Ω;Eð Þ

¼
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
1; j r;Ω;Eð ÞQ 2ð Þ α;ψ 1ð Þ; δα


 �
þ
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
2; j r;Ω;Eð ÞQ 1ð Þ α;φ; δαð Þ

¼
ð
dV

ð
4π

dΩ

ð1
0

dE δψ 1ð Þ r;Ω;Eð Þ A 1ð Þ αð Þ
h i�

u 2ð Þ
1; j r;Ω;Eð Þ

þ
ð
dV

ð
4π

dΩ

ð1
0

dE δφ r;Ωð Þ L 1ð Þ αð Þ
h i�

u 2ð Þ
2; j r;Ω;Eð Þ þ P 2ð Þ δφ; δψ 1ð Þ; u 2ð Þ

1; j; u
2ð Þ
2; j

h i
: ð76Þ

The bilinear concomitant P 2ð Þ δφ; δψ 1ð Þ; u 2ð Þ
1; j; u

2ð Þ
2; j

h i
in Eq. (76) will vanish by imposing the boundary conditions

u 2ð Þ
1; j rs;Ω;Eð Þ ¼ 0; rs 2 qV ;Ω � n < 0 and u 2ð Þ

2; j rs;Ω;Eð Þ ¼ 0; rs 2 qV ;Ω � n > 0. Noting that A 1ð Þ αð Þ� �� ¼ L 1ð Þ αð Þ ¼
L αð Þ and L 1ð Þ αð Þ� �� ¼ A 1ð Þ αð Þ and identifying the rightmost side of Eq. (76) with the indirect-effect term defined in Eq.

(75) yields the following 2nd-LASS for the components of the second-level adjoint function u 2ð Þ
j r;Ω;Eð Þ:

L α0
� �

u 2ð Þ
1; j r;Ω;Eð Þ ¼Δ Ω � �u 2ð Þ

1; j r;Ω;Eð Þ þ Σ0
t t0; r;E
� �

u 2ð Þ
1; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 Σ0
s s0; r;E 0 ! E;Ω 0 ! Ω
� �

u 2ð Þ
1; j r;Ω;Eð Þ �

ð
4π

dΩ 0
ð1
0

dE 0χ0 p0; r;E 0 ! E
� �

� ν0Σ0
f f0; r;E 0� �h i

u 2ð Þ
1; j r;Ω;Eð Þ ¼

ð
4π

dΩ 0
ð1
0

dE 0 φ0 r;Ω 0;E 0ð Þχ0 p0; r;E 0 ! E
� � q νΣf f; r;E 0ð Þ� �

qfj
; j ¼ 1; :::; Jf ð77Þ

and

A 1ð Þ α0
� �

u 2ð Þ
2; j r;Ω;Eð Þ ¼Δ �Ω � �u 2ð Þ

2; j r;Ω;Eð Þ þ Σ0
t t0; r;E
� �

u 2ð Þ
2; j r;Ω;Eð Þ �

ð
4π

dΩ 0
ð1
0

dE 0Σ0
s s0; r;E ! E 0;Ω ! Ω 0� �

� u 2ð Þ
2; j r;Ω

0;E 0ð Þ � ν0Σ0
f f0; r;E
� �h i ð

4π

dΩ 0
ð1
0

dE 0χ0 p0; r;E ! E 0� �
u 2ð Þ
2; j r;Ω

0;E 0ð Þ

¼ q νΣf f; r;Eð Þ� �
qfj

ð
4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þχ0 p0; r;E ! E 0� �
; j ¼ 1; :::; Jf ; ð78Þ
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subject to the following boundary condition:

u 2ð Þ
2;m1

rs;Ω;Eð Þ ¼ 0 ;Ω � n > 0; u 2ð Þ
1; j rs;Ω;Eð Þ ¼ 0;Ω � n < 0; rs 2 qV ; j ¼ 1; :::; Jf : ð79Þ

Using Eqs. (76) through (79) in Eq. (75) yields the following expression for the indirect-effect term:

δ
qR α;φ; ψ 1ð Þ� �

qfj

" #( )
ind

¼
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
1; j r;Ω;Eð ÞQ 2ð Þ α;ψ 1ð Þ; δα


 �

þ
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
2; j r;Ω;Eð ÞQ 1ð Þ α;φ; δαð Þ; j ¼ 1; :::; Jf : ð80Þ

Replacing the expressions of Q 2ð Þ α0;ψ 1ð Þ; δα
� �

and Q 1ð Þ α;φ; δαð Þ from Eqs. (41) and (19), respectively, in Eq. (80);
replacing the resulting expression together with the direct-effect term from Eq. (74) into (73); and subsequently identifying
the quantities multiplying the parameter variations δαm2 , m2 ¼ 1; :::; Jα, in Eq. (73) yields the following expressions for

the second-order partial sensitivities q2R α;φ; ψ 1ð Þ;u 2ð Þ
j


 �
= qfj
� �

qαm2ð Þ; j ¼ 1; :::; Jf , m2 ¼ 1; :::; Jα:

For j ¼ 1; :::; Jf ; m2 ¼ 1; :::; Jt :
q2R α;φ; ψ 1ð Þ;u 2ð Þ

j


 �
qfjqtm2

¼ �
ð
dV

ð
4π

dΩ

ð1
0

dE

� u 2ð Þ
1; j r;Ω;Eð Þψ 1ð Þ r;Ω;Eð Þ þ u 2ð Þ

2; j r;Ω;Eð Þφ r;Ω;Eð Þ
h i qΣt t; r;Ω;Eð Þ

qtm2

: ð81Þ

For j ¼ 1; :::; Jf ; m2 ¼ 1; :::; Js :
q2R α;φ; ψ 1ð Þ; u 2ð Þ

j


 �
qfjqsm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
1; j r;Ω;Eð Þ

ð
4π

dΩ 0

�
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsm2

þ
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
2; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsm2

; ð82Þ

For j ¼ 1; :::; Jf ; m2 ¼ 1; :::; Jf :
q2R α;φ; ψ 1ð Þ;u 2ð Þ

j


 �
qfjqfm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þχ p; r;E 0 ! Eð Þ q
2 νΣf f; r;E 0ð Þ� �

qfjqfm2

þ
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
1; j r;Ω;Eð Þ q νΣf f; r;Eð Þ� �

qfm2

ð
4π

dΩ 0
ð1
0

dE 0χ p; r;E ! E 0ð Þψ 1ð Þ r;Ω 0;E 0ð Þ

þ
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ χ p; r;E 0 ! Eð Þ
4π

q νΣf f; r;E 0ð Þ� �
qfm2

; ð83Þ
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For j ¼ 1; :::; Jf ; m2 ¼ 1; :::; Jp :
q2R α;φ; ψ 1ð Þ;u 2ð Þ

j


 �
qfjqpm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ qχ p; r;E 0 ! Eð Þ
qpm2

q νΣf f; r;E 0ð Þ� �
qfj

þ
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
1; j r;Ω;Eð Þ νΣf f; r;Eð Þ� � ð

4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qχ p; r;E ! E 0ð Þ
qpm2

þ
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 νΣf f; r;E 0ð Þ� �
φ r;Ω 0;E 0ð Þ qχ p; r;E 0 ! Eð Þ

qpm2

; ð84Þ

For j ¼ 1; :::; Jf ; m2 ¼ 1; :::; Jq :
q2R α;φ; ψ 1ð Þ; u 2ð Þ

j


 �
qfjqqm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
2; j r;Ω;Eð Þ qQ q; r;Ω;Eð Þ

qqm2

; ð85Þ

and

For j ¼ 1; :::; Jf ; m2 ¼ 1; :::; Jd :
q2R α;φ; ψ 1ð Þ;u 2ð Þ

j


 �
qfjqdm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
1; j r;Ω;Eð Þ qΣd d; r;Ω;Eð Þ

qdm2

: ð86Þ

As discussed in Secs. IV.A and IV.B, it is important to note that the forward and adjoint operators appearing on the left

side of the 2nd-LASS defined by Eqs. (77), (78), and (79) for the second-level adjoint function u 2ð Þ
j are the same operators as

appearing on the left side of the 2nd-LASS for the second-level adjoint function θ 2ð Þ
j andψ 2ð Þ

j ; all of these second-level adjoint

functions are subject to the same boundary conditions. Only the source terms on the left sides of the respective 2nd-LASSs
differ from each other. Therefore, the same forward and adjoint software packages can be used for solving numerically the
various forward and adjoint equations underlying the 1st-LASS and the 2nd-LASS. Furthermore, the indirect-effect terms

defined in Eqs. (50), (65), and (80) involving the second-level adjoint functions ψ 2ð Þ
j , θ 2ð Þ

j , and u 2ð Þ
j have the same formal

expression. Therefore, these indirect-effect terms can be evaluated numerically (quantitatively) using the same software

package, while inputting the corresponding second-level adjoint functionsψ 2ð Þ
j , θ 2ð Þ

j , and u 2ð Þ
j , respectively. The expressions of

the second-order sensitivities computed using Eq. (81) must be identical to those computed using Eq. (54).

That is; for j ¼ 1; :::; Jf ; k ¼ 1; :::; Jt :
q2R α;φ; ψ 1ð Þ; u 2ð Þ

j


 �
qfj qtk

¼ �
ð
dV

ð
4π

dΩ

ð1
0

dE

� u 2ð Þ
1; j r;Ω;Eð Þψ 1ð Þ r;Ω;Eð Þ þ u 2ð Þ

2; j r;Ω;Eð Þφ r;Ω;Eð Þ
h i qΣt t; r;Ω;Eð Þ

qtk

¼
q2R α;φ; ψ 1ð Þ;ψ 2ð Þ

j


 �
qtkqfj

¼
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1;k r;Ω;Eð Þ q νΣf f; r;Eð Þ� �

qfj

ð
4π

dΩ 0
ð1
0

dE 0χ p; r;E ! E 0ð Þψ 1ð Þ r;Ω 0;E 0ð Þ

þ
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
2;k r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þχ p; r;E ! E 0ð Þ q νΣf f; r;E 0ð Þ� �
qfj

: ð87Þ

Also, expressions of the second-order sensitivities computed using Eq. (82) must be identical to those computed
using Eq. (68).
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That is; for j ¼ 1; :::; Jf ; k ¼ 1; :::; Js :
q2R α;φ; ψ 1ð Þ;u 2ð Þ

j


 �
qfjqsk

¼
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
1; j r;Ω;Eð Þ

ð
4π

dΩ 0

�
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsk

þ
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0

�
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsk

¼
q2R α;φ; ψ 1ð Þ; θ 2ð Þ

j


 �
qskqfj

¼
ð
dV

ð
4π

dΩ

�
ð1
0

dE θ 2ð Þ
1;k r;Ω;Eð Þ q νΣf f; r;Eð Þ� �

qfj

ð
4π

dΩ 0
ð1
0

dE 0χ p; r;E ! E 0ð Þψ 1ð Þ r;Ω 0;E 0ð Þ

þ
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
2;k r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þχ p; r;E 0 ! Eð Þ q νΣf f; r;Eð Þ� �
qfj

: ð88Þ

The relation shown in Eq. (87) provides an independent path for the mutual verification of the solutions u 2ð Þ
j and

ψ 2ð Þ
j while Eq. (88) provides an independent path for the mutual verification of the solutions u 2ð Þ

j and θ 2ð Þ
j .

IV.D. Computation of the Second-Order Sensitivities ∂2R (α, φ; ψ(1))/∂pj ∂αm2
, j = 1,..., Jp ; m2 = 1,..., Jα

The second-order sensitivities q2R α;φ; ψ 1ð Þ� �
= qpj
� �

qαm2ð Þ; j ¼ 1; :::; Jp; m2 ¼ 1; :::; Jα are obtained by computing
the G-differential of the first-order sensitivities defined in Eq. (32), which yields the following expression:

δ
qR α;φ; ψ 1ð Þ� �

qpj

" #
¼ δ

qR α;φ; ψ 1ð Þ� �
qpj

" #( )
dir

þ δ
qR α;φ; ψ 1ð Þ� �

qpj

" #( )
ind

; j ¼ 1; :::; Jp ; ð89Þ

where for j ¼ 1; :::; Jp : δ
qR α;φ; ψ 1ð Þ� �

qpj

" #( )
dir

¼Δ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π

dΩ 0
ð1
0

dE 0 νΣf f; r;E 0ð Þφ r;Ω 0;E 0ð Þ
XJp
m2¼1

q2χ p; r;E 0 ! Eð Þ
qpjqpm2

δpm2

þ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ qχ p; r;E 0 ! Eð Þ
qpj

XJf
m2¼1

q νΣf f; r;E 0ð Þ� �
qfm2

δfm2 ; ð90Þ

and where for j ¼ 1; :::; Jp : δ
qR α;φ; ψ 1ð Þ� �

qpj

" #( )
ind

¼Δ
ð
dV

ð
4π

dΩ

ð1
0

dE δψ 1ð Þ r;Ω;Eð Þ
h i ð

4π

dΩ 0

�
ð1
0

dE 0 φ r;Ω 0;E 0ð ÞνΣf f; r;E 0ð Þ qχ p; r;E 0 ! Eð Þ
qpj

þ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π
dΩ 0

�
ð1
0

dE 0 δφ r;Ω 0;E 0ð Þ½ �νΣf f; r;E 0ð Þ qχ p; r;E 0 ! Eð Þ
qpj

: ð91Þ
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The direct-effect term defined in Eq. (90) can be computed immediately. On the other hand, the
indirect-effect term defined in Eq. (91) can be computed only after having obtained the solution δφ r;Ω;Eð Þ of

the 1st-LFSS and the solution δψ 1ð Þ r;Ω;Eð Þ of the 2nd-LFSS defined in Eqs. (39) and (40). To avoid the need for
solving the 1st-LFSS and the 2nd-LFSS, the indirect-effect term defined in Eq. (91) will be expressed in terms
of the solution of a 2nd-LASS, which will be constructed by following the same sequence of steps as has been
outlined in Secs. IV.A, IV.B, and IV.C. Thus, applying the definition provided in Eq. (42) to form the inner

product of Eqs. (39) and (16) with a yet undefined function w 2ð Þ
j r;Ω;Eð Þ ¼Δ w 2ð Þ

1; j r;Ω;Eð Þ;w 2ð Þ
2; j r;Ω;Eð Þ

h iy
, where

w 2ð Þ
1; j r;Ω;Eð Þ 2 L2 V �Ω� Eð Þ and w 2ð Þ

2; j r;Ω;Eð Þ 2 L2 V �Ω� Eð Þ, yields the relation

ð
dV

ð
4π

dΩ

ð1
0

dEw 2ð Þ
1; j r;Ω;Eð ÞA 1ð Þ αð Þδψ 1ð Þ r;Ω;Eð Þ þ

ð
dV

ð
4π

dΩ

ð1
0

dEw 2ð Þ
2; j r;Ω;Eð ÞL 1ð Þ αð Þδφ r;Ω;Eð Þ

¼
ð
dV

ð
4π

dΩ

ð1
0

dEw 2ð Þ
1; j r;Ω;Eð ÞQ 2ð Þ α;ψ 1ð Þ; δα


 �
þ
ð
dV

ð
4π

dΩ

ð1
0

dEw 2ð Þ
2; j r;Ω;Eð ÞQ 1ð Þ α;φ; δαð Þ

¼
ð
dV

ð
4π

dΩ

ð1
0

dE δψ 1ð Þ r;Ω;Eð Þ A 1ð Þ αð Þ
h i�

w 2ð Þ
1; j r;Ω;Eð Þ

þ
ð
dV

ð
4π

dΩ

ð1
0

dE δφ r;Ωð Þ L 1ð Þ αð Þ
h i�

w 2ð Þ
2; j r;Ω;Eð Þ þ P 2ð Þ δφ; δψ 1ð Þ; w 2ð Þ

1; j;w
2ð Þ
2; j

h i
: ð92Þ

The bilinear concomitant P 2ð Þ δφ; δψ 1ð Þ; w 2ð Þ
1; j;w

2ð Þ
2; j

h i
in Eq. (92) will vanish by imposing the boundary conditions

w 2ð Þ
1; j rs;Ω;Eð Þ ¼ 0; rs 2 qV ;Ω � n < 0 and w 2ð Þ

2; j rs;Ω;Eð Þ ¼ 0; rs 2 qV ;Ω � n > 0. Noting that A 1ð Þ αð Þ� �� ¼ L 1ð Þ αð Þ ¼
L αð Þ and L 1ð Þ αð Þ� �� ¼ A 1ð Þ αð Þ and identifying the rightmost side of Eq. (76) with the indirect-effect term defined in Eq.

(91) yields the following 2nd-LASS for the components of the second-level adjoint function w 2ð Þ
j r;Ω;Eð Þ:

L α0
� �

w 2ð Þ
1; j r;Ω;Eð Þ ¼Δ Ω � �w 2ð Þ

1; j r;Ω;Eð Þ þ Σ0
t t0; r;E
� �

w 2ð Þ
1; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 Σ0
s s0; r;E 0 ! E;Ω 0 ! Ω
� �

w 2ð Þ
1; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 χ0 p0; r;E 0 ! E
� �

ν0Σ0
f f0; r;E 0� �h i

w 2ð Þ
1; j r;Ω;Eð Þ

¼
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð ÞνΣf f; r;E 0ð Þ qχ p; r;E 0 ! Eð Þ
qpj

; j ¼ 1; :::; Jp ð93Þ

and

A 1ð Þ α0
� �

w 2ð Þ
2; j r;Ω;Eð Þ ¼Δ �Ω � �w 2ð Þ

2; j r;Ω;Eð Þ þ Σ0
t t0; r;E
� �

w 2ð Þ
2; j r;Ω;Eð Þ �

ð
4π

dΩ 0
ð1
0

dE 0Σ0
s s0; r;E ! E 0;Ω ! Ω 0� �

� w 2ð Þ
2; j r;Ω

0;E 0ð Þ � ν0Σ0
f f0; r;E
� �h i ð

4π

dΩ 0
ð1
0

dE 0 χ0 p0; r;E ! E 0� �
w 2ð Þ
2; j r;Ω

0;E 0ð Þ

¼ νΣf f; r;Eð Þ
ð
4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qχ p; r;E ! E 0ð Þ
qpj

; j ¼ 1; :::; Jp ; ð94Þ
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subject to the following boundary condition:

w 2ð Þ
2;m1

rs;Ω;Eð Þ ¼ 0 ;Ω � n > 0;

w 2ð Þ
1; j rs;Ω;Eð Þ ¼ 0;Ω � n < 0;

rs 2 qV ; j ¼ 1; :::; Jp : ð95Þ
As in Secs. IV.A, IV.B, and IV.C, the operators

appearing on the left side of the 2nd-LASS defined by
Eqs. (93), (94), and (95) for the second-level adjoint

function w 2ð Þ
j r;Ω;Eð Þ are the same operators as

appearing on the respective left sides of the

2nd-LASS for the second-level adjoint function θ 2ð Þ
j ,

ψ 2ð Þ
j , and u 2ð Þ

j ; all of these second-level adjoint

functions are subject to the same boundary conditions.
Only the source terms on the left sides of the
respective 2nd-LASSs differ from each other.
Therefore, the same forward and adjoint software
packages can be used for solving numerically the
various forward and adjoint equations underlying
the 1st-LASS and the 2nd-LASS.

Using the 2nd-LASS defined by Eqs. (93), (94), and (95) together with Eq. (92) into Eq. (91) yields the following
expression for the indirect-effect term:

δ
qR α;φ; ψ 1ð Þ� �

qpj

" #( )
ind

¼
ð
dV

ð
4π

dΩ

ð1
0

dE w 2ð Þ
1; j r;Ω;Eð ÞQ 2ð Þ α;ψ 1ð Þ; δα


 �
þ
ð
dV

ð
4π

dΩ

�
ð1
0

dE w 2ð Þ
2; j r;Ω;Eð ÞQ 1ð Þ α;φ; δαð Þ; j ¼ 1; :::; Jp : ð96Þ

The indirect-effect term defined in Eq. (96) has the same formal expression as the indirect-effect terms defined in

Eqs. (50), (65), and (80) involving the second-level adjoint functionsψ 2ð Þ
j , θ 2ð Þ

j , and u 2ð Þ
j , respectively. Therefore, these indirect-

effect terms can all be evaluated numerically using the same software package, while inputting the corresponding second-level

adjoint functions ψ 2ð Þ
j , θ 2ð Þ

j ;u 2ð Þ
j , and w 2ð Þ

j , respectively.

Replacing the expressions of Q 2ð Þ α0;ψ 1ð Þ; δα
� �

and Q 1ð Þ α; φ; δαð Þ from Eqs. (41) and (19), respectively, in
Eq. (96); replacing the resulting expression together with the direct-effect term from Eq. (90) into (89); and
subsequently identifying the quantities multiplying the parameter variations δαm2 ; m2 ¼ 1; :::; Jα in Eq. yield the

following expressions for the second-order partial sensitivities q2R α;φ; ψ 1ð Þ;w 2ð Þ
j


 �
= qpj
� �

qαm2ð Þ;
j ¼ 1; :::; Jp, m2 ¼ 1; :::; Jα:

For j ¼ 1; :::; Jp; m2 ¼ 1; :::; Jt :
q2R α;φ; ψ 1ð Þ;w 2ð Þ

j


 �
qpjqtm2

¼ �
ð
dV

ð
4π

dΩ

ð1
0

dE

� w 2ð Þ
1; j r;Ω;Eð Þψ 1ð Þ

h
r;Ω;Eð Þ þ w 2ð Þ

2; j r;Ω;Eð Þφ r;Ω;Eð Þ� qΣt t; r;Ω;Eð Þ
qtm2

; ð97Þ

For j ¼ 1; :::; Jp; m2 ¼ 1; :::; Js :
q2R α;φ; ψ 1ð Þ;w 2ð Þ

j


 �
qpjqsm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE w 2ð Þ
1; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsm2

þ
ð
dV

ð
4π

dΩ

ð1
0

dE w 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsm2

; ð98Þ



For j ¼ 1; :::; Jp; m2 ¼ 1; :::; Jf :
q2R α;φ; ψ 1ð Þ;w 2ð Þ

j


 �
qpjqfm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π

dΩ 0

�
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ qχ p; r;E 0 ! Eð Þ
qpj

q νΣf f; r;E 0ð Þ� �
qfm2

þ
ð
dV

ð
4π

dΩ

ð1
0

dEw 2ð Þ
1; j r;Ω;Eð Þ q νΣf f; r;Eð Þ� �

qfm2

�
ð
4π

dΩ 0
ð1
0

dE 0χ p; r;E ! E 0ð Þψ 1ð Þ r;Ω 0;E 0ð Þ þ
ð
dV

ð
4π

dΩ

ð1
0

dEw 2ð Þ
2; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þχ p; r;E 0 ! Eð Þ q νΣf f; r;Eð Þ� �
qfm2

; ð99Þ

For j ¼ 1; :::; Jp; m2 ¼ 1; :::; Jp :
q2R α;φ; ψ 1ð Þ;w 2ð Þ

j


 �
qpjqpm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π

dΩ 0

ð1
0

dE 0 νΣf f; r;E 0ð Þφ r;Ω 0;E 0ð Þ q
2χ p; r;E 0 ! Eð Þ

qpjqpm2

þ
ð
dV

ð
4π

dΩ

ð1
0

dE w 2ð Þ
1; j r;Ω;Eð Þ νΣf f; r;Eð Þ� � ð

4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qχ p; r;E ! E 0ð Þ
qpm2

þ
ð
dV

ð
4π

dΩ

ð1
0

dE w 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 νΣf f; r;E 0ð Þ� �
φ r;Ω 0;E 0ð Þ qχ p; r;E 0 ! Eð Þ

qpm2

; ð100Þ

For j ¼ 1; :::; Jp; m2 ¼ 1; :::; Jq :
q2R α;φ; ψ 1ð Þ;w 2ð Þ

j


 �
qpjqqm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE w 2ð Þ
2; j r;Ω;Eð Þ qQ q; r;Ω;Eð Þ

qqm2

; ð101Þ

and

For j ¼ 1; :::; Jp; m2 ¼ 1; :::; Jd :
q2R α;φ; ψ 1ð Þ;w 2ð Þ

j


 �
qpjqdm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE w 2ð Þ
1; j r;Ω;Eð Þ qΣd d; r;Ω;Eð Þ

qdm2

: ð102Þ

The expressions of the second-order sensitivities computed using Eq. (97) must be identical to those computed using Eq. (55).

That is; For j ¼ 1; :::; Jp; k ¼ 1; :::; Jt :
q2R α;φ; ψ 1ð Þ;w 2ð Þ

j


 �
qpjqtk

¼ �
ð
dV

ð
4π

dΩ

ð1
0

dE w 2ð Þ
1; j r;Ω;Eð Þψ 1ð Þ r;Ω;Eð Þ

h

þ w 2ð Þ
2; j r;Ω;Eð Þφ r;Ω;Eð Þ

i qΣt t; r;Ω;Eð Þ
qtk

¼
q2R α;φ; ψ 1ð Þ;ψ 2ð Þ

j


 �
qtkqpj

¼
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1;k r;Ω;Eð Þ

� νΣf f; r;Eð Þ� � ð
4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qχ p; r;E ! E 0ð Þ
qpj

þ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 2ð Þ
2;k r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 νΣf f; r;E 0ð Þ� �
φ r;Ω 0;E 0ð Þ qχ p; r;E 0 ! Eð Þ

qpj
: ð103Þ
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The relation expressed by Eq. (103) provides an independent mutual verification of the second-level adjoint

functions w 2ð Þ
j and ψ 2ð Þ

j . Furthermore, the expressions of the second-order sensitivities computed using Eq. (98) must

be identical to those computed using Eq. (69).

That is; For j ¼ 1; :::; Jp; k ¼ 1; :::; Js :
q2R α;φ; ψ 1ð Þ;w 2ð Þ

j


 �
qpjqsk

¼
ð
dV

ð
4π

dΩ

ð1
0

dE w 2ð Þ
1; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsk

þ
ð
dV

ð
4π

dΩ

ð1
0

dE w 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsk

¼
q2R α;φ; ψ 1ð Þ; θ 2ð Þ

j


 �
qskqpj

¼
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
1;k r;Ω;Eð Þ νΣf f; r;Eð Þ� � ð

4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ

� qχ p; r;E ! E 0ð Þ
qpj

þ
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
2;k r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 νΣf f; r;E 0ð Þ� �
φ r;Ω 0;E 0ð Þ qχ p; r;E 0 ! Eð Þ

qpj
: ð104Þ

The relation expressed by Eq. (104) provides an independent mutual verification of the second-level adjoint

functions w 2ð Þ
j and θ 2ð Þ

j . Finally, the expressions of the second-order sensitivities computed using Eq. (99) must be

identical to those computed using Eq. (84).

That is;For j ¼ 1; :::; Jp; k ¼ 1; :::; Jf :
q2R α;φ; ψ 1ð Þ;w 2ð Þ

j


 �
qpjqfk

¼
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ

� qχ p; r;E 0 ! Eð Þ
qpj

q νΣf f; r;E 0ð Þ� �
qfk

þ
ð
dV

ð
4π

dΩ

ð1
0

dE w 2ð Þ
1; j r;Ω;Eð Þ q νΣf f; r;Eð Þ� �

qfk

�
ð
4π

dΩ 0
ð1
0

dE 0χ p; r;E ! E 0ð Þψ 1ð Þ r;Ω 0;E 0ð Þ þ
ð
dV

ð
4π

dΩ

ð1
0

dE w 2ð Þ
2; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þχ p; r;E 0 ! Eð Þ q νΣf f; r;Eð Þ� �
qfk

¼
q2R α;φ; ψ 1ð Þ; u 2ð Þ

j


 �
qfkqpj

¼
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ qχ p; r;E 0 ! Eð Þ
qpj

q νΣf f; r;E 0ð Þ� �
qfk

þ
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
1;k r;Ω;Eð Þ νΣf f; r;Eð Þ� � ð

4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qχ p; r;E ! E 0ð Þ
qpj

þ
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
2;k r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 νΣf f; r;E 0ð Þ� �
φ r;Ω 0;E 0ð Þ qχ p; r;E 0 ! Eð Þ

qpj
: ð105Þ
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The relation shown in Eq. (105) provides an
independent path for the mutual verification of the

solutions w 2ð Þ
j and u 2ð Þ

j .

IV.E. Computation of the Second-Order Sensitivities
∂2R (α, φ; ψ(1)) / ∂qj ∂αm2

, j = 1,..., Jq ; m2 =
1,..., Jα

The second-order sensitivities q2R α;φ; ψ 1ð Þ� �
=

� ðqqj
�
qαm2ð Þ; j ¼ 1; :::; Jq; m2 ¼ 1; :::; Jα are obtained

by computing the G-differential of the first-order sensitiv-
ities defined in Eq. (33), which yields the following
expression:

δ
qR α;φ; ψ 1ð Þ� �

qqj

" #
¼ δ

qR α;φ; ψ 1ð Þ� �
qqj

" #( )
dir

þ δ
qR α;φ; ψ 1ð Þ� �

qqj

" #( )
ind

;

j ¼ 1; :::; Jq ; ð106Þ
where for j ¼ 1; :::; Jq :

δ
qR α;φ; ψ 1ð Þ� �

qqj

" #( )
dir

¼Δ
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ

�
XJq
m2¼1

q2Q q; r;Ω;Eð Þ
qqjqqm2

δqm2 ð107Þ

and where for j ¼ 1; :::; Jq;

δ
qR α;φ; ψ 1ð Þ� �

qqj

" #( )
ind

¼Δ
ð
dV

ð
4π

dΩ

�
ð1
0

dE δψ 1ð Þ r;Ω;Eð Þ qQ q; r;Ω;Eð Þ
qqj

: ð108Þ

The direct-effect term defined in Eq. (107) can be
computed immediately. On the other hand, the indirect-
effect term defined in Eq. (108) can be computed only after

having obtained the solution δψ 1ð Þ r;Ω;Eð Þ of the 2nd-LFSS
defined in Eqs. (39) and (40). To avoid the need for solving
the 1st-LFSS and the 2nd-LFSS, the indirect-effect term
defined in Eq. (108) will be expressed in terms of the solution
of a 2nd-LASS, which will be constructed by following the
same sequence of steps as has been outlined in
Secs. IV.A through IV.D. In contradistinction to the situations
encountered in Secs. IV.A through IV.D, however, the
indirect-effect term defined in Eq. (108) does not depend on
the solution δφ r;Ω;Eð Þ of the 1st-LFSS. Consequently, the
2nd-LASS that needed to be constructed for the alternative
computation of the indirect-effect term defined in Eq. (108)
will turn out to consist of a single (rather than two) operator
equation to be satisfied by a second-level adjoint function that
will turn out to have just a single nonzero component.
Proceeding formally and applying the definition provided in
Eq. (42) to form the inner product of Eqs. (39) and (16) with

a yet undefined function g 2ð Þ
j r;Ω;Eð Þ ¼Δ g 2ð Þ

1; j r;Ω;Eð Þ;
h

g 2ð Þ
2; j r;Ω;Eð Þ

iy
, where g 2ð Þ

1; j r;Ω;Eð Þ 2 L2 V �Ω� Eð Þ
and g 2ð Þ

2; j r;Ω;Eð Þ 2 L2 V �Ω� Eð Þ yield the relation:

ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
1; j r;Ω;Eð ÞA 1ð Þ αð Þδψ 1ð Þ r;Ω;Eð Þ þ

ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
2; j r;Ω;Eð ÞL 1ð Þ αð Þδφ r;Ω;Eð Þ

¼
ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
1; j r;Ω;Eð ÞQ 2ð Þ α;ψ 1ð Þ; δα


 �
þ
ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
2; j r;Ω;Eð ÞQ 1ð Þ α;φ; δαð Þ

¼
ð
dV

ð
4π

dΩ

ð1
0

dE δψ 1ð Þ r;Ω;Eð Þ A 1ð Þ αð Þ
h i�

g 2ð Þ
1; j r;Ω;Eð Þ þ

ð
dV

ð
4π

dΩ

ð1
0

dE δφ r;Ωð Þ L 1ð Þ αð Þ
h i�

g 2ð Þ
2; j r;Ω;Eð Þ

þ P 2ð Þ δφ; δψ 1ð Þ; g 2ð Þ
1; j; g

2ð Þ
2; j

h i
: ð109Þ

The bilinear concomitant P 2ð Þ δφ; δψ 1ð Þ; g 2ð Þ
1; j; g

2ð Þ
2; j

h i
in Eq. (109) will vanish by imposing the boundary conditions

g 2ð Þ
1; j rs;Ω;Eð Þ ¼ 0; rs 2 qV ;Ω � n < 0 and g 2ð Þ

2; j rs;Ω;Eð Þ ¼ 0; rs 2 qV ;Ω � n > 0. Noting that A 1ð Þ αð Þ� �� ¼ L 1ð Þ αð Þ ¼
L αð Þ and L 1ð Þ αð Þ� �� ¼ A 1ð Þ αð Þ and identifying the rightmost side of Eq. (109) with the indirect-effect term defined in

Eq. (108) yield the following 2nd-LASS for the components of the second-level adjoint function g 2ð Þ
j r;Ω;Eð Þ:



L α0
� �

g 2ð Þ
1; j r;Ω;Eð Þ ¼Δ Ω � �g 2ð Þ

1; j r;Ω;Eð Þ

þ Σ0
t t0; r;E
� �

g 2ð Þ
1; j r;Ω;Eð Þ �

ð
4π

dΩ 0
ð1
0

dE 0 Σ0
s

� s0; r;E 0 ! E;Ω 0 ! Ω
� �

g 2ð Þ
1; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 χ0 p0; r;E 0 ! E
� �

ν0Σ0
f f0; r;E 0� �h i

� g 2ð Þ
1; j r;Ω;Eð Þ ¼ qQ q; r;Ω;Eð Þ

qqj
; j ¼ 1; :::; Jq ð110Þ

and

A 1ð Þ α0
� �

g 2ð Þ
2; j r;Ω;Eð Þ ¼Δ �Ω � �g 2ð Þ

2; j r;Ω;Eð Þ

þ Σ0
t t0; r;E
� �

g 2ð Þ
2; j r;Ω;Eð Þ �

ð
4π

dΩ 0
ð1
0

dE 0Σ0
s

� s0; r;E ! E 0;Ω ! Ω 0� �
g 2ð Þ
2; j r;Ω

0;E 0ð Þ

� ν0Σ0
f f0; r;E
� �h i ð

4π

dΩ 0
ð1
0

dE 0 χ0 p0; r;E ! E 0� �

� g 2ð Þ
2; j r;Ω

0;E 0ð Þ ¼ 0; j ¼ 1; :::; Jq ; ð111Þ

subject to the following boundary condition:

g 2ð Þ
2;m1

rs;Ω;Eð Þ ¼ 0 ;Ω � n > 0;

g 2ð Þ
1; j rs;Ω;Eð Þ ¼ 0;Ω � n < 0;

rs 2 qV ; j ¼ 1; :::; Jq : ð112Þ

It is evident that the unique solution of the homogeneous
linear Eq. (111) subject to the linear homogeneous bound-
ary condition Eq. (112) is

g 2ð Þ
2;m1

r;Ω;Eð Þ ; 0 ; j ¼ 1; :::; Jq : ð113Þ

The nonzero component g 2ð Þ
1; j r;Ω;Eð Þ of the second-level

adjoint function g 2ð Þ
j r;Ω;Eð Þ ¼Δ g 2ð Þ

1; j r;Ω;Eð Þ; 0
h iy

is

computed using the forward transport solver with the
source shown on the right side of Eq. (110). Using the
2nd-LASS defined by Eqs. (111) and (112) together with
Eq. (109) into Eq. (108) yields the following expression
for the respective indirect-effect term:

δ
qR α;φ; ψ 1ð Þ� �

qpj

" #( )
ind

¼
ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
1; j

� r;Ω;Eð ÞQ 2ð Þ α;ψ 1ð Þ; δα

 �

;

j ¼ 1; :::; Jq : ð114Þ

Replacing the expression of Q 2ð Þ α0;ψ 1ð Þ; δα
� �

from
Eq. (41) into Eq. (114); replacing the resulting expression
together with the direct-effect term from Eq. (107) into
(106); and subsequently identifying the quantities
multiplying the parameter variations δαm2 , m2 ¼ 1; :::; Jα,
in Eq. (106) yield the following expressions for the second-

order partial sensitivities q2R α;φ; ψ 1ð Þ; g 2ð Þ
j


 �
=

qqj
� �

qαm2ð Þ; j ¼ 1; :::; Jq, m2 ¼ 1; :::; Jα:

For j ¼ 1; :::; Jq; m2 ¼ 1; :::; Jt :
q2R α;φ; ψ 1ð Þ; g 2ð Þ

j


 �
qqjqtm2

¼ �
ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
1; j r;Ω;Eð Þψ 1ð Þ r;Ω;Eð Þ

� qΣt t; r;Ω;Eð Þ
qtm2

; ð115Þ

For j ¼ 1; :::; Jq; m2 ¼ 1; :::; Js :

q2R α;φ; ψ 1ð Þ; g 2ð Þ
j


 �
qqjqsm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
1; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ

� qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsm2

; ð116Þ

For j ¼ 1; :::; Jq; m2 ¼ 1; :::; Jf :
q2R α;φ; ψ 1ð Þ; g 2ð Þ

j


 �
qqjqfm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
1; j r;Ω;Eð Þ q νΣf f; r;Eð Þ� �

qfm2

�
ð
4π

dΩ 0
ð1
0

dE 0χ p; r;E ! E 0ð Þψ 1ð Þ r;Ω 0;E 0ð Þ ; ð117Þ
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For j ¼ 1; :::; Jq; m2 ¼ 1; :::; Jp :
q2R α;φ; ψ 1ð Þ; g 2ð Þ

j


 �
qqjqpm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
1; j r;Ω;Eð Þ νΣf f; r;Eð Þ� � ð

4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qχ p; r;E ! E 0ð Þ
qpm2

; ð118Þ

For j ¼ 1; :::; Jq; m2 ¼ 1; :::; Jq :
q2R α;φ; ψ 1ð Þ; g 2ð Þ

j


 �
qqjqqm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE ψ 1ð Þ r;Ω;Eð Þ q
2Q q; r;Ω;Eð Þ

qqjqqm2

; ð119Þ

and

For j ¼ 1; :::; Jq; m2 ¼ 1; :::; Jd :
q2R α;φ; ψ 1ð Þ; g 2ð Þ

j


 �
qqjqdm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
1; j r;Ω;Eð Þ qΣd d; r;Ω;Eð Þ

qdm2

: ð120Þ

The expressions of the second-order sensitivities computed using Eq. (115) must be identical to those computed
using Eq. (56).

That is; for j ¼ 1; :::; Jq; k ¼ 1; :::; Jt :
q2R α;φ; ψ 1ð Þ; g 2ð Þ

j


 �
qqjqtk

¼ �
ð
dV

ð
4π
dΩ

ð1
0

dE g 2ð Þ
1; j r;Ω;Eð Þψ 1ð Þ

� r;Ω;Eð Þ qΣt t; r;Ω;Eð Þ
qtk

¼
q2R α;φ; ψ 1ð Þ;ψ 2ð Þ

j


 �
qtkqqj

¼
ð
dV

ð
4π
dΩ

ð1
0

dEψ 2ð Þ
2;k r;Ω;Eð Þ qQ q; r;Ω;Eð Þ

qqj
: ð121Þ

The relation expressed by Eq. (121) provides an independent mutual verification of the second-level adjoint

functions g 2ð Þ
j and ψ 2ð Þ

j . The expressions of the second-order sensitivities computed using Eq. (116) must be identical

to those computed using Eq. (70).

That is; for j ¼ 1; :::; Jq; k ¼ 1; :::; Js :
q2R α;φ; ψ 1ð Þ; g 2ð Þ

j


 �
qqjqsk

¼
ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
1; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ

� qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsk

¼
q2R α;φ; ψ 1ð Þ; θ 2ð Þ

j


 �
qskqqj

¼
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
2;k r;Ω;Eð Þ qQ q; r;Ω;Eð Þ

qqj
: ð122Þ

The relation expressed by Eq. (122) provides an independent mutual verification of the second-level adjoint

functions g 2ð Þ
j and θ 2ð Þ

j . The expressions of the second-order sensitivities computed using Eq. (117) must be identical

to those computed using Eq. (85).

That is; for j ¼ 1; :::; Jq; k ¼ 1; :::; Jf :
q2R α;φ; ψ 1ð Þ; g 2ð Þ

j


 �
qqjqfk

¼
ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
1; j r;Ω;Eð Þ q νΣf f; r;Eð Þ� �

qfm2

�
ð
4π

dΩ 0
ð1
0

dE 0χ p; r;E ! E 0ð Þψ 1ð Þ r;Ω 0;E 0ð Þ ¼
q2R α;φ; ψ 1ð Þ;u 2ð Þ

j


 �
qfkqqj

¼
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
2;k r;Ω;Eð Þ qQ q; r;Ω;Eð Þ

qqj
: ð123Þ
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The relation shown in Eq. (123) provides an
independent path for the mutual verification of the

solutions g 2ð Þ
j and u 2ð Þ

j . The expressions of the second-

order sensitivities computed using Eq. (118) must be
identical to those computed using Eq. (101).

That is; for j ¼ 1; :::; Jq; k ¼ 1; :::; Jp :
q2R α;φ; ψ 1ð Þ; g 2ð Þ

j


 �
qqjqpk

¼
ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
1; j r;Ω;Eð Þ νΣf f; r;Eð Þ� �

�
ð
4π

dΩ 0
ð1
0

dE 0 ψ 1ð Þ r;Ω 0;E 0ð Þ qχ p; r;E ! E 0ð Þ
qpm2

¼
q2R α;φ; ψ 1ð Þ;w 2ð Þ

j


 �
qpkqqj

¼
ð
dV

ð
4π

dΩ

�
ð1
0

dE w 2ð Þ
2;k r;Ω;Eð Þ qQ q; r;Ω;Eð Þ

qqj
: ð124Þ

The relation shown in Eq. (124) provides an independent path

for the mutual verification of the solutions g 2ð Þ
j and w 2ð Þ

j .

IV.F. Computation of the Second-Order Sensitivities
∂2R (α, φ; ψ(1) ) /∂dj ∂αm2

, j = 1,..., Jd ;m2 = 1,..., Jα

The second-order sensitivities q2R α;φ; ψ 1ð Þ� �
=

qdj
� �

qαm2ð Þ; j ¼ 1; :::; Jd; m2 ¼ 1; :::; Jα; are obtained
by computing the G-differential of Eq. (34), which yields
the following expression:

δ
qR α;φ; ψ 1ð Þ� �

qdj

" #
¼ δ

qR α;φ; ψ 1ð Þ� �
qdj

" #( )
dir

þ δ
qR α;φ; ψ 1ð Þ� �

qdj

" #( )
ind

;

j ¼ 1; :::; Jd ; ð125Þ

where for j ¼ 1; :::; Jd :

δ
qR α;φ; ψ 1ð Þ� �

qdj

" #( )
dir

¼Δ
ð
dV

ð
4π

dΩ

ð1
0

dE φ r;Ω;Eð Þ

�
XJq
m2¼1

q2Σd d; r;Ω;Eð Þ
qdjqdm2

δdm2 ; ð126Þ

and where for j ¼ 1; :::; Jd :

δ
qR α;φ; ψ 1ð Þ� �

qdj

" #( )
ind

¼Δ
ð
dV

ð
4π

dΩ

ð1
0

dE δφ

� r;Ω;Eð Þ qΣd d; r;Ω;Eð Þ
qdj

: ð127Þ

The direct-effect term defined in Eq. (126) can be
computed immediately. On the other hand, the indirect-
effect term defined in Eq. (127) can be computed only
after having obtained the solution δφ r;Ω;Eð Þ of the 1st-
LFSS defined in Eqs. (16) and (17). To avoid the need for
solving the 1st-LFSS, the indirect-effect term defined in
Eq. (127) will be expressed in terms of the solution of
a 2nd-LASS, which will be constructed by following the
same sequence of steps as has been outlined in Secs. IV.A
through IV.E. As indicated in Eq. (127), the indirect-effect

term defined does not depend on the solution δψ 1ð Þ r;Ω;Eð Þ
of the 2nd-LFSS. Consequently, the 2nd-LASS that needed
to be constructed for the alternative computation of the
indirect-effect term defined in Eq. (127) will (also) turn
out to consist of a single operator equation, for a second-
level adjoint function that will turn out to have just a single
nonzero component. Proceeding formally and applying the
definition provided in Eq. (42) to form the inner product of
Eqs. (39) and (16) with a yet undefined function

h 2ð Þ
j r;Ω;Eð Þ ¼Δ h 2ð Þ

1; j r;Ω;Eð Þ;
h

h 2ð Þ
2; j r;Ω;Eð Þ�y, where

h 2ð Þ
1; j r;Ω;Eð Þ 2 L2 V �Ω� Eð Þ and h 2ð Þ

2; j r;Ω;Eð Þ 2
L2 V �Ω� Eð Þ yield the relation:ð

dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
1; j r;Ω;Eð ÞA 1ð Þ αð Þδψ 1ð Þ r;Ω;Eð Þ

þ
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
2; j r;Ω;Eð ÞL 1ð Þ αð Þδφ r;Ω;Eð Þ

¼
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
1; j r;Ω;Eð ÞQ 2ð Þ α;ψ 1ð Þ; δα


 �

þ
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
2; j r;Ω;Eð ÞQ 1ð Þ α;φ; δαð Þ

¼
ð
dV

ð
4π

dΩ

ð1
0

dE δψ 1ð Þ r;Ω;Eð Þ A 1ð Þ αð Þ
h i�

h 2ð Þ
1; j r;Ω;Eð Þ

þ
ð
dV

ð
4π

dΩ

ð1
0

dE δφ r;Ωð Þ L 1ð Þ αð Þ
h i�

h 2ð Þ
2; j r;Ω;Eð Þ

þ P 2ð Þ δφ; δψ 1ð Þ; h 2ð Þ
1; j; h

2ð Þ
2; j

h i
: ð128Þ
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The bilinear concomitant P 2ð Þ δφ; δψ 1ð Þ; h 2ð Þ
1; j; h

2ð Þ
2; j

h i
in Eq. (128) will vanish by imposing the boundary

conditions h 2ð Þ
1; j rs;Ω;Eð Þ ¼ 0; rs 2 qV ;Ω � n < 0 and h 2ð Þ

2; j rs;Ω;Eð Þ ¼ 0; rs 2 qV ;Ω � n > 0. Noting that A 1ð Þ αð Þ� �� ¼
L 1ð Þ αð Þ ¼ L αð Þ and L 1ð Þ αð Þ� �� ¼ A 1ð Þ αð Þ and identifying the rightmost side of Eq. (128) with the indirect-effect term
defined in Eq. (127) yield the following 2nd-LASS for the components of the second-level adjoint

function h 2ð Þ
j r;Ω;Eð Þ:

L α0
� �

h 2ð Þ
1; j r;Ω;Eð Þ ¼Δ Ω � �h 2ð Þ

1; j r;Ω;Eð Þ þ Σ0
t t0; r;E
� �

h 2ð Þ
1; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 Σ0
s s0; r;E 0 ! E;Ω 0 ! Ω
� �

h 2ð Þ
1; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0χ0 p0; r;E 0 ! E
� �

ν0Σ0
f f0; r;E 0� �h i

h 2ð Þ
1; j r;Ω;Eð Þ ¼ 0;

j ¼ 1; :::; Jq ð129Þ
and

A 1ð Þ α0
� �

h 2ð Þ
2; j r;Ω;Eð Þ ¼Δ �Ω � �h 2ð Þ

2; j r;Ω;Eð Þ þ Σ0
t t0; r;E
� �

h 2ð Þ
2; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0Σ0
s s0; r;E ! E 0;Ω ! Ω 0� �

h 2ð Þ
2; j r;Ω

0;E 0ð Þ

� ν0Σ0
f f0; r;E
� �h i ð

4π

dΩ 0
ð1
0

dE 0 χ0 p0; r;E ! E 0� �
h 2ð Þ
2; j r;Ω

0;E 0ð Þ

¼ qΣd d; r;Ω;Eð Þ
qdj

; j ¼ 1; :::; Jq ; ð130Þ

subject to the following boundary condition:

h 2ð Þ
1; j rs;Ω;Eð Þ ¼ 0;Ω � n < 0;

h 2ð Þ
2; j rs;Ω;Eð Þ ¼ 0 ;Ω � n > 0;

rs 2 qV ; j ¼ 1; :::; Jq : ð131Þ

It is evident that the unique solution of the
homogeneous linear Eq. (129) subject to the linear
homogeneous boundary condition shown in
Eq. (131) is

h 2ð Þ
1; j r;Ω;Eð Þ ; 0 ; j ¼ 1; :::; Jq : ð132Þ

The nonzero component h 2ð Þ
2; j r;Ω;Eð Þ of the second-level

adjoint function h 2ð Þ
j r;Ω;Eð Þ ¼Δ 0; h 2ð Þ

2; j r;Ω;Eð Þ
h iy

is

computed using the adjoint transport solver with the
source shown on the right side of Eq. (130). Using the

2nd-LASS defined by Eqs. (130) and (131) together with
Eq. (128) into Eq. (127) yields the following expression
for the respective indirect-effect term:

δ
qR α;φ; ψ 1ð Þ� �

qdj

" #( )
ind

¼
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
2; j

� r;Ω;Eð ÞQ 1ð Þ α;φ; δαð Þ;
j ¼ 1; :::; Jd : ð133Þ

Replacing the expression of Q 1ð Þ α;φ; δαð Þ from Eq. (19)
into Eq. (133); replacing the resulting expression together
with the direct-effect term from Eq. (126) into Eq. (125);
and subsequently identifying the quantities multiplying the
parameter variations δαm2 ,m2 ¼ 1; :::; Jα, in Eq. (125)
yields the following expressions for the second-order

partial sensitivities q2R
�
α;φ; ψ 1ð Þ;h 2ð Þ

j

�
= qdj
� �

qαm2ð Þ;
j = 1; :::; Jd ; m2 ¼ 1; :::; Jα:
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For j ¼ 1; :::; Jd; m2 ¼ 1; :::; Jt :
q2R α;φ; ψ 1ð Þ;h 2ð Þ

j


 �
qdjqtm2

¼ �
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
2; j r;Ω;Eð Þφ r;Ω;Eð Þ qΣt t; r;Ω;Eð Þ

qtm2

; ð134Þ

For j ¼ 1; :::; Jd; m2 ¼ 1; :::; Js :
q2R α;φ; ψ 1ð Þ;h 2ð Þ

j


 �
qdjqsm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
2; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsm2

; ð135Þ

For j ¼ 1; :::; Jd; m2 ¼ 1; :::; Jf :
q2R α;φ; ψ 1ð Þ;h 2ð Þ

j


 �
qdjqfm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
2; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þχ p; r;E 0 ! Eð Þ q νΣf f; r;E 0ð Þ� �
qfm2

; ð136Þ

For j ¼ 1; :::; Jd; m2 ¼ 1; :::; Jp :
q2R α;φ; ψ 1ð Þ;h 2ð Þ

j


 �
qdjqpm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
2; j r;Ω;Eð Þ

�
ð
4π

dΩ 0
ð1
0

dE 0 νΣf f; r;E 0ð Þ� �
φ r;Ω 0;E 0ð Þ qχ p; r;E 0 ! Eð Þ

qpm2

; ð137Þ

For j ¼ 1; :::; Jd; m2 ¼ 1; :::; Jq :
q2R α;φ; ψ 1ð Þ; h 2ð Þ

j


 �
qdjqqm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
2; j r;Ω;Eð Þ qQ q; r;Ω;Eð Þ

qqm2

; ð138Þ

and

For j ¼ 1; :::; Jd; m2 ¼ 1; :::; Jd :
q2R α;φ; ψ 1ð Þ; h 2ð Þ

j


 �
qdjqdm2

¼
ð
dV

ð
4π

dΩ

ð1
0

dE φ r;Ω;Eð Þ q
2Σd d; r;Ω;Eð Þ

qdjqdm2

: ð139Þ

The expressions of the second-order sensitivities computed using Eq. (134) must be identical to those computed
using Eq. (57).

That is; for j ¼ 1; :::; Jd; k ¼ 1; :::; Jt;
q2R α;φ; ψ 1ð Þ;h 2ð Þ

j


 �
qdjqtk

¼ �
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
2; j

� r;Ω;Eð Þφ r;Ω;Eð Þ qΣt t; r;Ω;Eð Þ
qtk

¼
q2R α;φ; ψ 1ð Þ;ψ 2ð Þ

j


 �
qtkqdj

¼
ð
dV

ð
4π

dΩ

ð1
0

dEψ 2ð Þ
1;k

� r;Ω;Eð Þ qΣd d; r;Ω;Eð Þ
qdj

: ð140Þ

The relation expressed by Eq. (140) provides an independent mutual verification of the second-level adjoint

functions h 2ð Þ
j and ψ 2ð Þ

j . The expressions of the second-order sensitivities computed using Eq. (135) must be identical

to those computed using Eq. (71).
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That is; for j ¼ 1; :::; Jd; k ¼ 1; :::; Js :
q2R α;φ; ψ 1ð Þ;h 2ð Þ

j


 �
qdjqsk

¼
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ

� qΣs s; r;E ! E 0;Ω ! Ω 0ð Þ
qsk

¼
q2R α;φ; ψ 1ð Þ; θ 2ð Þ

j


 �
qskqds

¼
ð
dV

ð
4π

dΩ

ð1
0

dE θ 2ð Þ
1;k r;Ω;Eð Þ qΣd d; r;Ω;Eð Þ

qds
: ð141Þ

The relation expressed by Eq. (141) provides an independent mutual verification of the second-level adjoint

functions h 2ð Þ
j and θ 2ð Þ

j .The expressions of the second-order sensitivities computed using Eq. (136) must be identical

to those computed using Eq. (86).

That is; for j ¼ 1; :::; Jd; k ¼ 1; :::; Jf :
q2R α;φ; ψ 1ð Þ; h 2ð Þ

j


 �
qdjqfk

¼
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 φ r;Ω 0;E 0ð Þ

� χ p; r;E 0 ! Eð Þ q νΣf f; r;Eð Þ� �
qfm2

¼
q2R α;φ; ψ 1ð Þ; u 2ð Þ

j


 �
qfkqdj

¼
ð
dV

ð
4π

dΩ

ð1
0

dE u 2ð Þ
1;k r;Ω;Eð Þ qΣd d; r;Ω;Eð Þ

qdj
: ð142Þ

The relation shown in Eq. (142) provides an independent path for the mutual verification of the solutions h 2ð Þ
j and

u 2ð Þ
j . The expressions of the second-order sensitivities computed using Eq. (137) must be identical to those computed

using Eq. (102).

That is; for j ¼ 1; :::; Jd; k ¼ 1; :::; Jp :
q2R α;φ; ψ 1ð Þ; h 2ð Þ

j


 �
qdjqpk

¼
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
2; j r;Ω;Eð Þ

ð
4π

dΩ 0
ð1
0

dE 0 νΣf f; r;E 0ð Þ� �
φ r;Ω 0;E 0ð Þ qχ p; r;E 0 ! Eð Þ

qpm2

¼
q2R α;φ; ψ 1ð Þ;w 2ð Þ

j


 �
qpkqdj

¼
ð
dV

ð
4π

dΩ

ð1
0

dE w 2ð Þ
1;k r;Ω;Eð Þ qΣd d; r;Ω;Eð Þ

qdj
: ð143Þ

The relation shown in Eq. (143) provides an independent path for the mutual verification of the solutions h 2ð Þ
j and

w 2ð Þ
j . The expressions of the second-order sensitivities computed using Eq. (138) must be identical to those computed

using Eq. (120).
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That is; for j ¼ 1; :::; Jd; k ¼ 1; :::; Jq :
q2R α;φ; ψ 1ð Þ;h 2ð Þ

j


 �
qdjqqk

¼
ð
dV

ð
4π

dΩ

ð1
0

dE h 2ð Þ
2; j r;Ω;Eð Þ qQ q; r;Ω;Eð Þ

qqk

¼
q2R α;φ; ψ 1ð Þ; g 2ð Þ

j


 �
qqkqdj

¼
ð
dV

ð
4π

dΩ

ð1
0

dE g 2ð Þ
1;k

� r;Ω;Eð Þ qΣd d; r;Ω;Eð Þ
qdj

: ð144Þ

The relation shown in Eq. (144) provides an inde-
pendent path for the mutual verification of the solutions

h 2ð Þ
j and g 2ð Þ

j .

IV.G. Impact of Second-Order Sensitivities on
Response Expected Value, Variance, and
Skewness

Knowledge of the first- and second-order sensitivities
is required to compute the following moments of the
response distribution:

1. The expected value of a response R:

EðRÞ ¼ R α0
� �þ 1

2

XNα

i¼1

q2R
qα2i

s2i ;

where si denotes the standard deviation of the model
parameter αi.

2. The variance of response:

varðRÞ ¼
XNα

i¼1

qR
qαi

� �2

s2i þ
1

2

XNα

i¼1

q2R
qα2i

� �2

s4i :

3. The skewness γ1 of response:

γ1ðRÞ ¼
μ3ðRÞ

varðRÞ½ �½3=2�
;

where μ3ðRÞ ¼ 3
XNα

i¼1

qR
qαi

� �2 q2R
qα2i

s4i denoted the third

central moment of the response distribution.

V. MULTIGROUP APPROXIMATION EXPRESSIONS OF THE
2ND-LASS AND SECOND-ORDER RESPONSE
SENSITIVITIES

In the standard multigroup approximation, the system
response defined in Eq. (8) takes on the following expression:

R α;φð Þ ¼
XG
g¼1

ð
dV

ð
4π

dΩ Σg
d dg; r;Ωð Þφg r;Ωð Þ ; ð145Þ

where
φg r;Ωð Þ = multigroup flux

G = total number of energy groups considered
for representing the physical system

Σg
d dg; r;Ωð Þ = multigroup approximation of the function

that models the interaction of the detector
with the incident particles,

and where each vector dg ¼Δ dg1 ; :::; d
g
Jdg

h iy
is considered

to comprise, as components, a total of Jdg imprecisely
known model parameters that characterize Σg

d dg; r;Ωð Þ,
within each group g ¼ 1; :::;G ; where G denotes the
total number of energy groups considered for
representing the physical system. In general, the number
of components of dg may vary from group to group.

The multigroup flux φg r;Ωð Þ appearing in Eq. (145)
is the solution of the standard multigroup approximation
of the forward neutron transport equation and vacuum
boundary condition defined in Eqs. (1) and (2), namely,

Lg αð Þφg r;Ωð Þ ¼ Qg qg; r;Ωð Þ; g ¼ 1; :::;G ð146Þ

and

φg rs;Ω;Eð Þ ¼ 0; rs 2 qV ;Ω � n < 0 ; ð147Þ

where Qg qg; r;Ωð Þ denotes the group source and the
operator Lg αð Þφg r;Ωð Þ is customarily defined as follows:

Lg αð Þφg r;Ωð Þ ¼Δ Ω � �φg r;Ωð Þ þ Σg
t tg; rð Þφg r;Ωð Þ

�
XG
g 0¼1

ð
4π

dΩ 0Σg 0!g
s sg

0g; r;Ω 0 ! Ω

 �

φg 0
r;Ω 0ð Þ

�
XG
g 0¼1

ð
4π

dΩ 0χg
0!g pg

0g; r

 �

νΣf

� �g 0
fg

0
; r


 �
φg 0

r;Ω 0ð Þ;

g ¼ 1; :::;G : ð148Þ
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The definition of the group total macroscopic cross
section Σg

t tg; rð Þ, the group fission macroscopic cross

section νΣf

� �g
fg; rð Þ, the multigroup scattering transfer

matrix Σg 0!g
s sg

0g; r;Ω 0 ! Ω
� �

, and the fission spectrum

matrix are defined in the customary way χg
0!g pg

0g; r
� �

.

Denoting the adjoint multigroup flux as ψ 1ð Þ; g r;Ωð Þ, the
multigroup approximation of the adjoint neutron transport
operator defined in Eq. (23) is customarily defined as

A 1ð Þ;g αð Þψ 1ð Þ;g r;Ωð Þ ¼Δ �Ω � �ψ 1ð Þ;g r;Ωð Þ

þ Σg
t tg; rð Þψ 1ð Þ;g r;Ωð Þ �

XG
g0¼1

ð
4π
dΩ0Σg!g0

s

� sgg
0
; r;Ω ! Ω0


 �
ψ 1ð Þ;g0 r;Ω0ð Þ

� νΣg
f fg; rð Þ

XG
g0¼1

ð
4π
dΩ0χg!g0 pgg

0
; r


 �

� ψ 1ð Þ;g0 r;Ω0ð Þ ; g ¼ 1; :::;G : ð149Þ

Just as for the multigroup detector cross section
Σg
d dg; r;Ωð Þ, which depends on the vector of model

parameters dg for each group g ¼ 1; :::;G; each
multigroup total macroscopic cross section Σg

t tg; rð Þ is

considered to depend on tg ¼Δ tg1 ; :::; t
g
Jtg

h iy
imprecisely

known model parameters, where Jtg denotes the total
number of model parameters that characterize Σg

t t g; rð Þ
in each group g ¼ 1; :::;G. Similarly, the multigroup

scattering transfer matrix Σg 0!g
s s g

0g; r;Ω 0 ! Ω
� �

is con-

sidered to depend on the vector sg
0g ¼Δ s g

0g
1 ; :::; s g

0g
Jsg 0g

h iy
,

comprising Jsg 0g imprecisely known model parameters
within each group g; g 0 ¼ 1; :::;G. The macroscopic

group fission cross section is denoted as νΣf

� �g
fg; rð Þ

and is considered to depend on the vector

f g ¼Δ f g
1; :::; f

g
Jfg

h iy
, comprising Jfg imprecisely known

model parameters within each group g ¼ 1; :::;G.
Furthermore, the fission spectrum matrix is defined as

χg
0!g pg

0g; r
� �

and is considered to depend on the vector

pg
0g ¼Δ p g 0g

1 ; :::; p g 0g
Jpg 0g

h iy
, comprising Jpg 0g imprecisely

known model parameters within each group
g; g 0 ¼ 1; :::;G. Finally, the group source is denoted as
Q g qg; r;Ωð Þ and is considered to depend on the vector

qg ¼Δ q g
1; :::; q

g
Jqg

h iy
, comprising Jqg imprecisely known

scalar-valued parameters within each group g ¼ 1; :::;G.

As in Secs. II, III, and IV, the total number of impre-
cisely known model parameters will be denoted by the

vector α ¼Δ α1; :::; αJα½ �y. To simplify the notation, the
superscripts g and g 0, which denote the group

dependence of the vectors dg, tg, s g
0g, fg, p g 0g, qg,

and of their components, will not be shown explicitly
in the multigroup derivations in the remainder of this
work.

In the multigroup approximation, the exact
expressions given in Eqs. (29) through (34) for the
first-order sensitivities take on the following approximate
expressions:

qR α;φ; ψ 1ð Þ� �
qtj

¼ �
XG
g¼1

ð
dV

ð
4π

dΩψ 1ð Þ; g r;Ωð Þ

� φg r;Ωð Þ qΣ
g
t t; r;Eð Þ
qtj

;

j ¼ 1; :::; Jt ; ð150Þ

qR α;φ; ψ 1ð Þ� �
qsj

¼
XG
g¼1

ð
dV

ð
4π

dΩ ψ 1ð Þ; g r;Ωð Þ

�
XG
g 0¼1

ð
4π

dΩ 0 qΣ
g 0!g
s s; r;Ω 0 ! Ωð Þ

qsj

� φg 0
r;Ω 0ð Þ; j ¼ 1; :::; Js ; ð151Þ

qR α;φ;ψ 1ð Þ� �
qfj

¼
XG
g¼1

ð
dV

ð
4π

dΩ ψ 1ð Þ; g r;Ωð Þ

�
XG
g 0¼1

ð
4π

dΩ 0
q νΣð Þg 0

f f; rð Þ
h i

qfj

� χg
0!g p; rð Þφg 0

r;Ω 0ð Þ;
j ¼ 1; :::; Jf ; ð152Þ

qR α;φ; ψ 1ð Þ� �
qpj

¼
XG
g¼1

ð
dV

ð
4π

dΩψ 1ð Þ; g r;Ωð Þ

�
XG
g 0¼1

ð
4π

dΩ 0 qχg
0!g p; rð Þ
qpj

� νΣf

� �g 0
f; rð Þφg 0

r;Ω 0ð Þ;
j ¼ 1; :::; Jp ; ð153Þ
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qR α;φ; ψ 1ð Þ� �
qqj

¼
XG
g¼1

ð
dV

ð
4π

dΩ
qQg q; r;Ωð Þ

qqj
ψ 1ð Þ; g r;Ωð Þ; j ¼ 1; :::; Jq ; ð154Þ

and

qR α;φ; ψ 1ð Þ� �
qdj

¼
XG
g¼1

ð
dV

ð
4π

dΩ
qΣg

d d; r;Ωð Þ
qdj

φg r;Ωð Þ; j ¼ 1; :::; Jd ; ð155Þ

where the vector-valued quantity ψ 1ð Þ r;Ωð Þ ¼Δ ψ 1ð Þ;1 r;Ωð Þ; :::;ψ 1ð Þ; g r;Ωð Þ; :::;ψ 1ð Þ;G r;Ωð Þ� �y
comprises as components

the multigroup adjoint fluxes ψ 1ð Þ; g r;Ωð Þ, which are obtained as the solutions of the multigroup approximation of the
1st-LASS given by Eqs. (25) and (26), namely,

A 1ð Þ; g αð Þψ 1ð Þ; g r;Ωð Þ ¼ Σg
d d0; r;Ω
� �

; g ¼ 1; :::;G ; ð156Þ
subject to adjoint boundary condition:

ψ 1ð Þ; g rs;Ωð Þ ¼ 0 ; rs 2 qV ;Ω � n > 0 : ð157Þ

V.A. Multigroup Expressions of ∂2R / ∂tj ∂αm2
, j = 1,..., Jt ; m2 = 1,..., Jα

For the sake of simplicity, the functional dependence of the response R will be omitted henceforth.

In the multigroup approximation, the expressions of q2R=qtj qαm2 ; j ¼ 1; :::; Jt; m2 ¼ 1; :::; Jα take on the following
forms:

For m2 ¼ 1; :::; Jt :
q2R

qtjqtm2

¼ �
XG
g¼1

ð
dV

ð
4π

dΩψ 1ð Þ; g r;Ωð Þφg r;Ωð Þ q
2Σg

t t; r;Ωð Þ
qtjqtm2

�
XG
g¼1

ð
dV

ð
4π

dΩ ψ 2ð Þ; g
1; j r;Ωð Þψ 1ð Þ; g r;Ωð Þ þ ψ 2ð Þ; g

2; j r;Ωð Þφg r;Ωð Þ
h i qΣg

t t; r;Ωð Þ
qtm2

; ð158Þ

For m2 ¼ 1; :::; Js :
q2R

qtjqsm2

¼
XG
g¼1

ð
dV

ð
4π

dΩψ 2ð Þ; g
1; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ qΣ

g!g 0
s s; r;Ω ! Ω 0ð Þ

qsm2

þ
XG
g¼1

ð
dV

ð
4π

dΩψ 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ qΣ

g!g 0
s s; r;Ω ! Ω 0ð Þ

qsm2

; ð159Þ

For m2 ¼ 1; :::; Jf :
q2R

qtjqfm2

¼
XG
g¼1

ð
dV

ð
4π

dΩψ 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ χg 0!g p; rð Þ

q νΣf

� �g 0
f; rð Þ

h i
qfm2

þ
XG
g¼1

ð
dV

ð
4π

dΩψ 2ð Þ; g
1; j r;Ωð Þ q νΣf

� �g
f; rð Þ� �

qfm2

XG
g 0¼1

ð
4π

dΩ 0χg!g 0
p; rð Þψ 1ð Þ;g 0

r;Ω 0ð Þ ; ð160Þ

For m2 ¼ 1; :::; Jp :
q2R

qtjqpm2

¼
XG
g¼1

ð
dV

ð
4π

dΩψ 2ð Þ; g
1; j r;Ωð Þ νΣf

� �g
f; rð Þ

XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ qχ

g!g 0
p; rð Þ

qpm2

þ
XG
g¼1

ð
dV

ð
4π

dΩψ 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 νΣf

� �g 0
f; rð Þφg 0

r;Ω 0ð Þ qχ
g 0!g p; rð Þ
qpm2

; ð161Þ
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For m2 ¼ 1; :::; Jq :
q2R

qtjqqm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ ψ 2ð Þ; g
2; j r;Ωð Þ qQ

g q; r;Ωð Þ
qqm2

; ð162Þ

and

For m2 ¼ 1; :::; Jd :
q2R

qtjqdm2

¼
XG
g¼1

ð
dV

ð
4π

dΩψ 2ð Þ; g
1; j r;Ωð Þ qΣg

d d; r;Ωð Þ
qdm2

; ð163Þ

where

φg r;Ωð Þ = solution of the multigroup approximation of the forward neutron transport Eqs. (146)
and (147)

ψ 1ð Þ; g r;Ωð Þ = solution of the multigroup approximation of the 1st-LASS represented by Eqs. (156) and
(157), respectively

ψ 2ð Þ; g
1; j and ψ 2ð Þ; g

2; j r;Ωð Þ = solutions of the multigroup approximation of the 2nd-LASS represented by Eqs. (164),
(165), and (166)

Lg αð Þψ 2ð Þ; g
1; j r;Ωð Þ ¼ �φg r;Ωð Þ qΣ

g
t t; rð Þ
qtj

; j ¼ 1; :::; Jt; g ¼ 1; :::;G ð164Þ

and

A 1ð Þ; g α0
� �

ψ 2ð Þ; g
2; j r;Ωð Þ ¼ �ψ 1ð Þ; g r;Ωð Þ qΣ

g
t t0; r
� �
qtj

; j ¼ 1; :::; Jt; g ¼ 1; :::;G ; ð165Þ

subject to the following boundary conditions:

ψ 2ð Þ; g
1; j rs;Ωð Þ ¼ 0;Ω � n < 0; ψ 2ð Þ; g

2; j rs;Ωð Þ ¼ 0 ;Ω � n > 0; rs 2 qV ; j ¼ 1; :::; Jt; g ¼ 1; :::;G : ð166Þ

V.B. Multigroup Expressions of ∂2R / ∂sj ∂αm2
, j = 1,..., Js ; m2 = 1,..., Jα

The approximate multigroup expressions of q2R=qsj qαm2 ; j ¼ 1; :::; Js; m2 ¼ 1; :::; Jα are as follows:

For m2 ¼ 1; :::; Jt :
q2R

qsjqtm2

¼ �
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
1; j r;Ωð Þψ 1ð Þ; g r;Ωð Þ þ θ 2ð Þ; g

2; j r;Ωð Þφg r;Ωð Þ
h i

� qΣg
t t; r;Ωð Þ
qtm2

; ð167Þ

For m2 ¼ 1; :::; Js :
q2R

qsjqsm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ ψ 1ð Þ; g r;Ωð Þ
XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ q

2Σg 0!g
s s; r;Ω 0 ! Ωð Þ

qsjqsm2

þ
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
1; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ qΣ

g!g 0
s s; r;Ω ! Ω 0ð Þ

qsm2

þ
XG
g¼1

ð
dV

ð
4π
dΩ θ 2ð Þ; g

2; j r;Ωð Þ
XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ qΣ

g!g 0
s s; r;Ω ! Ω 0ð Þ

qsm2

; ð168Þ
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For m2 ¼ 1; :::; Jf :
q2R

qsjqfm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
1; j r;Ωð Þ q νΣf

� �g
f; rð Þ� �

qfm2

ð
4π

dΩ 0XG
g 0¼1

χg!g 0
p; r;ð Þψ 1ð Þ;g 0

r;Ω 0ð Þ

þ
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
2; j r;Ωð Þ

ð
4π

dΩ 0XG
g 0¼1

φg 0
r;Ω 0ð Þχg 0!g p; rð Þ

q νΣf

� �g 0
f; rð Þ

h i
qfm2

; ð169Þ

For m2 ¼ 1; :::; Jp :
q2R

qsjqpm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
1; j r;Ωð Þ νΣf

� �g
f; rð Þ� � XG

g 0¼1

ð
4π

dΩ 0ψ 1ð Þ;g 0
r;Ω 0ð Þ qχ

g!g 0
p; rð Þ

qpm2

þ
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 νΣf

� �g 0
f; rð Þ

h i
φg 0

r;Ω 0ð Þ qχ
g 0!g p; rð Þ
qpm2

; ð170Þ

For m2 ¼ 1; :::; Jq :
q2R

qsjqqm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
2; j r;Ωð Þ qQ

g q; r;Ωð Þ
qqm2

; ð171Þ

and

For m2 ¼ 1; :::; Jd :
q2R

qsjqdm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
1; j r;Ωð Þ qΣ

g
d d; r;Ωð Þ
qdm2

: ð172Þ

In Eqs. (167) through (172), the functions θ 2ð Þ; g
1; j r;Ωð Þ and θ 2ð Þ; g

2; j r;Ωð Þ are the solutions of the following 2nd-LASS:

Lg α0
� �

θ 2ð Þ; g
1; j r;Ωð Þ ¼

XG
g 0¼1

ð
4π

dΩ 0 qΣ
g 0!g
s s; r;Ω 0 ! Ωð Þ

qsj
φg 0

r;Ω 0ð Þ ; j ¼ 1; :::; Js; g ¼ 1; :::;G ð173Þ

and

A 1ð Þ; g α0
� �

θ 2ð Þ; g
2; j r;Ωð Þ ¼

XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ qΣ

g!g 0
s s s; r;Ω ! Ω 0ð Þ

qsj
; j ¼ 1; :::; Js; g ¼ 1; :::;G ; ð174Þ

subject to the following boundary condition:

θ 2ð Þ; g
2;m1

rs;Ωð Þ ¼ 0 ;Ω � n > 0; θ 2ð Þ; g
1; j rs;Ωð Þ ¼ 0; Ω � n < 0; rs 2 qV ; j ¼ 1; :::; Js; g ¼ 1; :::;G : ð175Þ

The expressions of the second-order sensitivities computed using Eq. (167) must be identical to those computed using
Eq. (159).

That is; for j ¼ 1; :::; Js; k ¼ 1; :::; Jt :
q2R
qsjqtk

¼ �
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
1; j r;Ωð Þψ 1ð Þ; g r;Ωð Þ þ θ 2ð Þ; g

2; j r;Ωð Þφg r;Ωð Þ
h i

qΣg
t t; r;Ωð Þ
qtk

¼ q2R
qtkqsj

¼
XG
g¼1

ð
dV

ð
4π

dΩψ 2ð Þ; g
1;k r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ qΣ

g!g 0
s s; r;Ω ! Ω 0ð Þ

qsj

þ
XG
g¼1

ð
dV

ð
4π

dΩψ 2ð Þ; g
2;k r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ qΣ

g!g 0
s s; r;Ω ! Ω 0ð Þ

qsj
: ð176Þ
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V.C. Multigroup Expressions of ∂2R / ∂fj ∂αm2
, j = 1,..., Jf ; m2 = 1,..., Jα

The approximate multigroup expressions of q2R=qfj qαm2 ; j ¼ 1; :::; Jf ; m2 ¼ 1; :::; Jα are as follows:

For m2 ¼ 1; :::; Jt :
q2R

qfjqtm2

¼ �
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ; g
1; j r;Ωð Þψ 1ð Þ; g r;Ωð Þ þ u 2ð Þ; g

2; j r;Ωð Þφg r;Ωð Þ
h i qΣg

t t; r;Ωð Þ
qtm2

;

ð177Þ

For m2 ¼ 1; :::; Js :
q2R

qfjqsm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ; g
1; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ qΣ

g!g 0
s s; r;Ω ! Ω 0ð Þ

qsm2

þ
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ qΣ

g!g 0
s s; r;Ω ! Ω 0ð Þ

qsm2

; ð178Þ

For m2 ¼ 1; :::; Jf :
q2R

qfjqfm2

¼
XG
g¼1

ð
dV

ð
4π

dΩψ 1ð Þ; g r;Ωð Þ
XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þχg 0!g p; rð Þ

q2 νΣf

� �g 0
f; rð Þ

h i
qfjqfm2

þ
XG
g¼1

ð
dV

ð
4π

dΩu 2ð Þ; g
1; j r;Ωð Þ q νΣf f; r;Eð Þ� �

qfm2

XG
g 0¼1

ð
4π

dΩ 0 χg!g 0
p; r;ð Þψ 1ð Þ;g 0

r;Ω 0ð Þ

þ
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0Eð Þ χ

g 0!g p; rð Þ
4π

q νΣf

� �g 0
f; rð Þ

h i
qfm2

; ð179Þ

For m2 ¼ 1; :::; Jp :
q2R

qfjqpm2

¼
XG
g¼1

ð
dV

ð
4π

dΩψ 1ð Þ; g r;Ωð Þ
XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ qχ

g 0!g p; rð Þ
qpm2

q νΣf

� �g 0
f; rð Þ

h i
qfj

þ
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ; g
1; j r;Ωð Þ νΣf

� �g
f; rð Þ� �XG

g 0¼1

ð
4π

dΩ 0ψ 1ð Þ;g 0
r;Ω 0ð Þ qχ

g!g 0
p; rð Þ

qpm2

þ
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 νΣf

� �g 0
f; rð Þ

h i
φg 0

r;Ω 0ð Þ qχ
g 0!g p; rð Þ
qpm2

; ð180Þ

For m2 ¼ 1; :::; Jq :
q2R

qfjqqm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ; g
2; j r;Ωð Þ qQ

g q; r;Ωð Þ
qqm2

; ð181Þ

and

For m2 ¼ 1; :::; Jd :
q2R

qfjqdm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ
1; j r;Ω;Eð Þ qΣ

g
d d; r;Ωð Þ
qdm2

: ð182Þ

In Eqs. (177) through (182), the functions u 2ð Þ; g
1; j r;Ωð Þ and u 2ð Þ; g

2; j r;Ωð Þ are the solutions of the following

2nd-LASS:
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Lg α0
� �

u 2ð Þ; g
1; j r;Ωð Þ ¼

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þχg 0!g p0; r

� � q νΣf

� �g 0
f; rð Þ

h i
qfj

;

j ¼ 1; :::; Jf ; g ¼ 1; :::;G ð183Þ

and

A 1ð Þ; g α0
� �

u 2ð Þ; g
2; j r;Ωð Þ ¼ q νΣf

� �g
f; rð Þ� �

qfj

XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þχg!g 0

p0; r
� �

; j ¼ 1; :::; Jf ; g ¼ 1; :::;G ; ð184Þ

subject to the following boundary condition:

u 2ð Þ
2;m1

rs;Ωð Þ ¼ 0 ;Ω � n > 0; u 2ð Þ; g
1; j rs;Ωð Þ ¼ 0;Ω � n < 0; rs 2 qV ; j ¼ 1; :::; Jf ; g ¼ 1; :::;G : ð185Þ

The expressions of the second-order sensitivities computed using Eq. (177) must be identical to those computed
using Eq. (160).

That is; for j ¼ 1; :::; Jf ; k ¼ 1; :::; Jt :
q2R
qfj qtk

¼ �
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ; g
1; j r;Ωð Þψ 1ð Þ; g r;Ωð Þ þ u 2ð Þ; g

2; j r;Ωð Þφg r;Ωð Þ
h i

� qΣg
t t; r;Ωð Þ
qtk

¼ q2R
qtkqfj

¼
XG
g¼1

ð
dV

ð
4π

dΩ ψ 2ð Þ; g
2;k r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ χg 0!g p; rð Þ

�
q νΣf

� �g 0
f; rð Þ

h i
qfj

þ
XG
g¼1

ð
dV

ð
4π

dΩ ψ 2ð Þ; g
1;k r;Ωð Þ q νΣf

� �g
f; rð Þ� �

qfk

XG
g 0¼1

ð
4π

dΩ 0 χg!g 0
p; rð Þψ 1ð Þ;g 0

r;Ω 0ð Þ : ð186Þ

Also, expressions of the second-order sensitivities computed using Eq. (178) must be identical to those computed
using Eq. (169).

That is; for j ¼ 1; :::; Jf ; k ¼ 1; :::; Js :
q2R
qfjqsk

¼
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ; g
1; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ

� qΣg!g 0
s s; r;Ω ! Ω 0ð Þ

qsk
þ
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ qΣ

g!g 0
s s; r;Ω ! Ω 0ð Þ

qsk

¼ q2R
qskqfj

¼
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
1;k r;Ωð Þ q νΣf

� �g
f; rð Þ� �

qfj

ð
4π

dΩ 0XG
g 0¼1

χg!g 0
p; r;ð Þψ 1ð Þ;g 0

r;Ω 0ð Þ

þ
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
2;k r;Ωð Þ

ð
4π

dΩ 0XG
g 0¼1

φg 0
r;Ω 0ð Þχg 0!g p; rð Þ

q νΣf

� �g 0
f; rð Þ

h i
qfj

: ð187Þ

V.D. Multigroup Expressions of ∂2R / ∂pj ∂αm2
, j = 1,..., Jp ; m2 = 1,..., Jα

The approximate multigroup expressions of q2R=qpj qαm2 ; j ¼ 1; :::; Jp; m2 ¼ 1; :::; Jα are as follows:

For m2 ¼ 1; :::; Jt :
q2R

qpjqtm2

¼ �
XG
g¼1

ð
dV

ð
4π
dΩ w 2ð Þ; g

1; j r;Ωð Þψ 1ð Þ; g r;Ωð Þ þ w 2ð Þ; g
2; j r;Ωð Þφg r;Ωð Þ

h i
qΣg

t t; r;Ωð Þ
qtm2

; ð188Þ
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For m2 ¼ 1; :::; Js :
q2R

qpjqsm2

¼
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
1; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ

� qΣg!g 0
s s; r;Ω ! Ω 0ð Þ

qsm2

þ
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ

� qΣg!g 0
s s; r;Ω ! Ω 0ð Þ

qsm2

; ð189Þ

For m2 ¼ 1; :::; Jf :
q2R

qpjqfm2

¼
XG
g¼1

ð
dV

ð
4π

dΩψ 1ð Þ; g r;Ωð Þ
XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ qχ

g 0!g p; rð Þ
qpj

q νΣf

� �g 0
f; rð Þ

h i
qfm2

þ
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
1; j r;Ωð Þ q νΣf

� �g
f; rð Þ� �

qfm2

XG
g 0¼1

ð
4π

dΩ 0 χg!g 0
p; rð Þψ 1ð Þ;g 0

r;Ω 0ð Þ

þ
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þχg 0!g p; rð Þ

q νΣf

� �g 0
f; rð Þ

h i
qfm2

; ð190Þ

For m2 ¼ 1; :::; Jp :
q2R

qpjqpm2

¼
XG
g¼1

ð
dV

ð
4π

dΩψ 1ð Þ; g r;Ωð Þ
XG
g 0¼1

ð
4π

dΩ 0 νΣf

� �g 0
f; rð Þ

h i
φg 0

r;Ω 0ð Þ q
2χg

0!g p; rð Þ
qpjqpm2

þ
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
1; j r;Ωð Þ νΣf

� �g
f; rð Þ� �XG

g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ qχ

g!g 0
p; rð Þ

qpm2

þ
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 νΣf

� �g 0
f; rð Þ

h i
φg 0

r;Ω 0ð Þ qχ
g 0!g p; rð Þ
qpm2

; ð191Þ

For m2 ¼ 1; :::; Jq :
q2R

qpjqqm2

¼
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
2; j r;Ωð Þ qQ

g q; r;Ωð Þ
qqm2

; ð192Þ

and

For m2 ¼ 1; :::; Jd :
q2R

qpjqdm2

¼
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
1; j r;Ωð Þ qΣ

g
d d; r;Ωð Þ
qdm2

: ð193Þ

In Eqs. (188) through (193), the functions u 2ð Þ; g
1; j r;Ωð Þ and u 2ð Þ; g

2; j r;Ωð Þ are the solutions of the following

2nd-LASS:

Lg α0
� �

w 2ð Þ; g
1; j r;Ωð Þ ¼

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ νΣf

� �g 0
f; rð Þ qχ

g!g 0
p; rð Þ

qpj
;

j ¼ 1; :::; Jp; g ¼ 1; :::;G ð194Þ
and

A 1ð Þ; g α0
� �

w 2ð Þ; g
2; j r;Ωð Þ ¼ νΣf

� �g
f; rð Þ

XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ qχ

g!g 0
p; rð Þ

4πð Þqpj ; j ¼ 1; :::; Jp; g ¼ 1; :::;G ; ð195Þ
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subject to the following boundary condition:

w 2ð Þ; g
2;m1

rs;Ωð Þ ¼ 0 ;Ω � n > 0; w 2ð Þ; g
1; j rs;Ωð Þ ¼ 0;Ω � n < 0; rs 2 qV ; j ¼ 1; :::; Jp; g ¼ 1; :::;G : ð196Þ

The expressions of the second-order sensitivities computed using Eq. (188) must be identical to those computed using
Eq. (161).

That is; for j ¼ 1; :::; Jp; k ¼ 1; :::; Jt :
q2R
qpjqtk

¼ �
XG
g¼1

ð
dV

ð
4π

dΩ w 2ð Þ; g
1; j r;Ωð Þψ 1ð Þ; g r;Ωð Þ þ w 2ð Þ; g

2; j r;Ωð Þφg r;Ωð Þ
h i

� qΣg
t t; r;Ωð Þ
qtk

¼ q2R
qtkqpj

¼
XG
g¼1

ð
dV

ð
4π

dΩ ψ 2ð Þ; g
1;k r;Ωð Þ νΣf

� �g
f; rð Þ� �XG

g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ

� qχg!g 0
p; rð Þ

qpj
þ
XG
g¼1

ð
dV

ð
4π

dΩ ψ 2ð Þ; g
2;k r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 νΣf

� �g 0
f; rð Þ

h i
φg 0

r;Ω 0ð Þ qχ
g 0!g p; rð Þ
qpj

: ð197Þ

Furthermore, the expressions of the second-order sensitivities computed using Eq. (189) must be identical to those computed
using Eq. (170).

That is; for j ¼ 1; :::; Jp; k ¼ 1; :::; Js :
q2R

qpjqsk
¼
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
1; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ

� qΣg!g 0
s s; r;Ω ! Ω 0ð Þ

qsk
þ
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ qΣ

g!g 0
s s; r;Ω ! Ω 0ð Þ

qsk

¼ q2R
qskqpj

¼
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
1;k r;Ωð Þ νΣf

� �g
f; rð Þ� � XG

g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ qχ

g!g 0
p; rð Þ

qpj

þ
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
2;k r;Ω;Eð Þ

XG
g 0¼1

ð
4π

dΩ 0 νΣf

� �g 0
f; rð Þ

h i
φg 0

r;Ω 0ð Þ qχ
g 0!g p; rð Þ
qpj

: ð198Þ

Finally, the expressions of the second-order sensitivities computed using Eq. (190) must be identical to those computed using
Eq. (180).

That is; for j ¼ 1; :::; Jp; k ¼ 1; :::; Jf :
q2R
qpjqfk

¼
XG
g¼1

ð
dV

ð
4π

dΩ ψ 1ð Þ; g r;Ωð Þ
XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ

qχg
0!g p; rð Þ
qpj

q νΣf

� �g 0
f; rð Þ

h i
qfk

þ
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
1; j r;Ωð Þ q νΣf

� �g
f; rð Þ� �

qfk

XG
g 0¼1

ð
4π

dΩ 0 χg!g 0
p; rð Þψ 1ð Þ;g 0

r;Ω 0ð Þ

þ
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þχg 0!g p; rð Þ

q νΣf

� �g 0
f; rð Þ

h i
qfk

¼ q2R
qfkqpj

¼
XG
g¼1

ð
dV

ð
4π

dΩ ψ 1ð Þ; g r;Ωð Þ
XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ qχ

g 0!g p; rð Þ
qpj

q νΣf
� �g 0

f; rð Þ
h i

qfk

þ
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ; g
1;k r;Ωð Þ νΣf

� �g
f; rð Þ� �XG

g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ qχ

g!g 0
p; rð Þ

qpj

þ
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ; g
2;k r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 νΣf

� �g 0
f; rð Þ

h i
φg 0

r;Ω 0ð Þ qχ
g 0!g p; rð Þ
qpj

: ð199Þ
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V.E. Multigroup Expressions of ∂2R / ∂qj ∂αm2
, j = 1,..., Jq ; m2 = 1,..., Jα

Themultigroup formof the 2nd-LASS to be solved for the components g 2ð Þ; g
1; j r;Ωð Þ and g 2ð Þ; g

2; j r;Ωð Þ needed for computing

the multigroup expressions of the second-order sensitivities q2R=qqj qαm2 ; j ¼ 1; :::; Jq; m2 ¼ 1; :::; Jα is as follows:

Lg α0
� �

g 2ð Þ; g
1; j r;Ωð Þ ¼ qQg q; r;Ωð Þ

qqj
; j ¼ 1; :::; Jq; g ¼ 1; :::;G ð200Þ

and

A 1ð Þ; g α0
� �

g 2ð Þ; g
2; j r;Ωð Þ ¼ 0; j ¼ 1; :::; Jq; g ¼ 1; :::;G ; ð201Þ

subject to the following boundary condition:

g 2ð Þ; g
1; j rs;Ωð Þ ¼ 0;Ω � n < 0; g 2ð Þ; g

2; j rs;Ωð Þ ¼ 0;Ω � n > 0; rs 2 qV ; j ¼ 1; :::; Jq; g ¼ 1; :::;G : ð202Þ

It is evident that the unique solution of the homogeneous linear Eq. (201) subject to the linear homogeneous boundary
condition in Eq. (202) is

g 2ð Þ
2; j r;Ωð Þ ; 0 ; j ¼ 1; :::; Jq ; g ¼ 1; :::;G : ð203Þ

The approximate multigroup expressions of q2R=qqj qαm2 ; j ¼ 1; :::; Jq; m2 ¼ 1; :::; Jα are as follows:

For j ¼ 1; :::; Jq; m2 ¼ 1; :::; Jt :
q2R

qqjqtm2

¼ �
XG
g¼1

ð
dV

ð
4π

dΩ g 2ð Þ; g
1; j r;Ωð Þψ 1ð Þ; g r;Ωð Þ qΣ

g
t t; r;Ωð Þ
qtm2

; ð204Þ

For j ¼ 1; :::; Jq; m2 ¼ 1; :::; Js :
q2R

qqjqsm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ g 2ð Þ; g
1; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ

� qΣg!g 0
s s; r;Ω ! Ω 0ð Þ

qsm2

; ð205Þ

For j ¼ 1; :::; Jq; m2 ¼ 1; :::; Jf :
q2R

qqjqfm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ g 2ð Þ; g
1; j r;Ωð Þ q νΣf

� �g
f; rð Þ� �

qfm2

�
XG
g 0¼1

ð
4π

dΩ 0 χg!g 0
p; rð Þψ 1ð Þ;g 0

r;Ω 0ð Þ : ð206Þ

For j ¼ 1; :::; Jq; m2 ¼ 1; :::; Jp :
q2R

qqjqpm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ g 2ð Þ; g
1; j r;Ωð Þ νΣf

� �g
f; rð Þ� �

�
XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ qχ

g!g 0
p; rð Þ

qpm2

; ð207Þ

For j ¼ 1; :::; Jq; m2 ¼ 1; :::; Jq :
q2R

qqjqqm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ ψ 1ð Þ; g r;Ωð Þ q
2Qg q; r;Ωð Þ
qqjqqm2

; ð208Þ
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and

For j ¼ 1; :::; Jq; m2 ¼ 1; :::; Jd :
q2R

qqjqdm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ g 2ð Þ; g
1; j r;Ωð Þ qΣ

g
d d; r;Ωð Þ
qdm2

: ð209Þ

The expressions of the second-order sensitivities computed using Eq. (204) must be identical to those computed
using Eq. (162).

That is; for j ¼ 1; :::; Jq; k ¼ 1; :::; Jt :
q2R
qqjqtk

¼ �
XG
g¼1

ð
dV

ð
4π

dΩ g 2ð Þ; g
1; j r;Ωð Þψ 1ð Þ; g r;Ωð Þ qΣ

g
t t; r;Ωð Þ
qtk

¼ q2R
qtkqqj

¼
XG
g¼1

ð
dV

ð
4π

dΩ ψ 2ð Þ; g
2;k r;Ωð Þ qQ

g q; r;Ωð Þ
qqj

: ð210Þ

The expressions of the second-order sensitivities computed using Eq. (205) must be identical to those computed
using Eq. (171).

That is; for j ¼ 1; :::; Jq; k ¼ 1; :::; Js :
q2R

qqjqsk
¼
XG
g¼1

ð
dV

ð
4π

dΩ g 2ð Þ; g
1; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ

� qΣg!g 0
s s; r;Ω ! Ω 0ð Þ

qsk
¼ q2R

qskqqj
¼
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
2;k r;Ωð Þ qQ

g q; r;Ωð Þ
qqj

: ð211Þ

The expressions of the second-order sensitivities computed using Eq. (206) must be identical to those computed
using Eq. (181).

That is; for j ¼ 1; :::; Jq; k ¼ 1; :::; Jf :
q2R α;φ; ψ 1ð Þ; g 2ð Þ

j


 �
qqjqfk

¼
XG
g¼1

ð
dV

ð
4π

dΩ g 2ð Þ; g
1; j r;Ωð Þ q νΣf

� �g
f; rð Þ� �

qfk

�
XG
g 0¼1

ð
4π

dΩ 0 χg!g 0
p; rð Þψ 1ð Þ;g 0

r;Ω 0ð Þ ¼
q2R α;φ; ψ 1ð Þ; u 2ð Þ

j


 �
qfkqqj

¼
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ; g
2;k r;Ωð Þ qQ

g q; r;Ωð Þ
qqj

: ð212Þ

The expressions of the second-order sensitivities computed using Eq. (207) must be identical to those computed
using Eq. (192).

That is; for j ¼ 1; :::; Jq; k ¼ 1; :::; Jp :
q2R

qqjqpk
¼
XG
g¼1

ð
dV

ð
4π

dΩ g 2ð Þ; g
1; j r;Ωð Þ νΣf

� �g
f; rð Þ� �

�
XG
g 0¼1

ð
4π

dΩ 0 ψ 1ð Þ;g 0
r;Ω 0ð Þ qχ

g!g 0
p; rð Þ

qpk
¼ q2R

qpkqqj
¼
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
2;k r;Ωð Þ qQ

g q; r;Ωð Þ
qqj

: ð213Þ
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V.F. Multigroup Expressions of ∂2R / ∂dj ∂αm2
, j = 1,..., Jd ; m2 = 1,..., Jα

The multigroup form of the 2nd-LASS to be solved for the components h 2ð Þ; g
1; j r;Ωð Þ and h 2ð Þ; g

2; j r;Ωð Þ needed for

computing the multigroup expressions of the second-order sensitivities q2R=qdj qαm2 ; j ¼ 1; :::; Jd; m2 ¼ 1; :::; Jα is as
follows:

Lg α0
� �

h 2ð Þ; g
1; j r;Ωð Þ ¼ 0; j ¼ 1; :::; Jq; g ¼ 1; :::;G ð214Þ

and

A 1ð Þ; g α0
� �

h 2ð Þ; g
2; j r;Ωð Þ ¼ qΣg

d d; r;Ωð Þ
qdj

; j ¼ 1; :::; Jq; g ¼ 1; :::;G ; ð215Þ

subject to the following boundary condition:

h 2ð Þ; g
1; j rs;Ωð Þ ¼ 0;Ω � n < 0; h 2ð Þ; g

2; j rs;Ωð Þ ¼ 0 ;Ω � n > 0; rs 2 qV ; j ¼ 1; :::; Jq; g ¼ 1; :::;G : ð216Þ

It is evident that the unique solution of the homogeneous linear Eq. (214) subject to the linear homogeneous
boundary condition in Eq. (216) is

h 2ð Þ; g
1; j r;Ωð Þ;0 ; j ¼ 1; :::; Jq; g ¼ 1; :::;G : ð217Þ

The approximate multigroup expressions of q2R=qdj qαm2 ; j ¼ 1; :::; Jd; m2 ¼ 1; :::; Jα are as follows:

For m2 ¼ 1; :::; Jt :
q2R

qdjqtm2

¼ �
XG
g¼1

ð
dV

ð
4π

dΩ h 2ð Þ; g
2; j r;Ωð Þφg r;Ωð Þ qΣ

g
t t; r;Ωð Þ
qtm2

; ð218Þ

For m2 ¼ 1; :::; Js :
q2R

qdjqsm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ h 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ

� qΣg!g 0
s s; r;Ω ! Ω 0ð Þ

qsm2

; ð219Þ

For m2 ¼ 1; :::; Jf :
q2R

qdjqfm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ h 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þχg 0!g p; rð Þ

�
q νΣf

� �g 0
f; rð Þ

h i
qfm2

; ð220Þ

For m2 ¼ 1; :::; Jp :
q2R

qdjqpm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ h 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 νΣf

� �g 0
f; rð Þ

h i

� φg 0
r;Ω 0ð Þ qχ

g 0!g p; rð Þ
qpm2

; ð221Þ

For m2 ¼ 1; :::; Jq :
q2R

qdjqqm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ h 2ð Þ; g
2; j r;Ωð Þ qQ

g q; r;Ωð Þ
qqm2

; ð222Þ
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and

For m2 ¼ 1; :::; Jd :
q2R

qdjqdm2

¼
XG
g¼1

ð
dV

ð
4π

dΩ φg r;Ωð Þ q
2Σg

d d; r;Ωð Þ
qdjqdm2

: ð223Þ

The expressions of the second-order sensitivities computed using Eq. (218) must be identical to those computed
using Eq. (163).

That is; for j ¼ 1; :::; Jd; k ¼ 1; :::; Jt :
q2R
qdjqtk

¼ �
XG
g¼1

ð
dV

ð
4π

dΩ h 2ð Þ; g
2; j r;Ωð Þφg r;Ωð Þ qΣ

g
t t; r;Ωð Þ
qtk

¼ q2R
qtkqdj

¼
XG
g¼1

ð
dV

ð
4π

dΩ ψ 2ð Þ; g
1;k r;Ωð Þ qΣ

g
d d; r;Ωð Þ
qdj

: ð224Þ

The expressions of the second-order sensitivities computed using Eq. (219) must be identical to those computed
using Eq. (172).

That is; for j ¼ 1; :::; Jd; k ¼ 1; :::; Js :
q2R

qdjqsk
¼
XG
g¼1

ð
dV

ð
4π

dΩ h 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þ

� qΣg 0!g
s s; r;Ω 0 ! Ωð Þ

qsk
¼ q2R

qskqdj
¼
XG
g¼1

ð
dV

ð
4π

dΩ θ 2ð Þ; g
1;k r;Ωð Þ qΣ

g
d d; r;Ωð Þ
qdj

: ð225Þ

The expressions of the second-order sensitivities computed using Eq. (220) must be identical to those computed
using Eq. (182).

That is; for j ¼ 1; :::; Jd; k ¼ 1; :::; Jf :
q2R
qdjqfk

¼
XG
g¼1

ð
dV

ð
4π

dΩ h 2ð Þ; g
2; j r;Ωð Þ

XG
g 0¼1

ð
4π

dΩ 0 φg 0
r;Ω 0ð Þχg 0!g p; rð Þ

�
q νΣf

� �g 0
f; rð Þ

h i
qfk

¼ q2R
qfkqdj

¼
XG
g¼1

ð
dV

ð
4π

dΩ u 2ð Þ
1;k r;Ω;Eð Þ qΣ

g
d d; r;Ωð Þ
qdj

: ð226Þ

The expressions of the second-order sensitivities computed using Eq. (221) must be identical to those computed
using Eq. (193).

That is; for j ¼ 1; :::; Jd; k ¼ 1; :::; Jp :
q2R

qdjqpk
¼
XG
g¼1

ð
dV

ð
4π

dΩ h 2ð Þ; g
2; j r;Ωð Þ

�
XG
g 0¼1

ð
4π

dΩ 0 νΣf

� �g 0
f; rð Þ

h i
φg 0

r;Ω 0ð Þ qχ
g 0!g p; rð Þ
qpk

¼ q2R
qpkqdj

¼
XG
g¼1

ð
dV

ð
4π

dΩw 2ð Þ; g
1;k r;Ωð Þ qΣ

g
d d; r;Ωð Þ
qdj

: ð227Þ
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The expressions of the second-order sensitivities
computed using Eq. (222) must be identical to those
computed using Eq. (209).

That is; for j ¼ 1; :::; Jd; k ¼ 1; :::; Jq :
q2R

qdjqqk

¼
XG
g¼1

ð
dV

ð
4π

dΩ h 2ð Þ; g
2; j r;Ωð Þ qQ

g q; r;Ωð Þ
qqk

¼ q2R
qqkqdj

¼
XG
g¼1

ð
dV

ð
4π

dΩ g 2ð Þ; g
1;k r;Ωð Þ qΣ

g
d d; r;Ωð Þ
qdj

:

ð228Þ

V.G. Second-Order Derivatives of Typical Multigroup Cross
Sections with Respect to Typical Model Parameters

A generic macroscopic group cross section
Σg
x t; r;Ωð Þ for a neutron interaction of type x (e.g.,

absorption, scattering, fission, and total) can be typically
represented as follows:

Σg
x βgx ; r;Ω
� � ¼Δ XNm

j¼1

Cg
j a

g
j r;Ωð Þ ;

Cg
j ¼Δ

XI
i¼1

Ng;i
x;j σ

g;i
x;j ; ð229Þ

where for each energy group g ¼ 1; :::;G; the various
quantities are defined as follows:

σg;ix = imprecisely known microscopic cross section
for the neutron interaction of type x, for isotope
i, in group g

I = total number of distinct isotopes involved in the
neutron interaction of type x

Ng;i
x;j = imprecisely known isotopic atomic number

density of isotope i in group g, for the neutron
interaction of type x, in the j’th material con-
tained in the heterogeneous medium under
consideration

agj r;Ωð Þ = spatial variation, in group g, characterizing the
j’th material contained in the heterogeneous
medium under consideration, while Nm is the
total number of materials contained in this med-
ium; boundary and interface perturbations are
disregarded in this work, which means that
agj r;Ωð Þ is not subject to uncertainties, and
where

βgx ¼Δ Ng;i
x;1;

h
σg;1x;1 ; :::; Ng;I

x;1 ; σ
g;I
x;1;N

g;i
x;2; σ

g;1
x;2 ; :::; N

g;I
x;2 ;

σg;Ix;2; :::; Ng;1
Nm

; σg;1x;Nm
; :::; Ng;I

x;Nm
; σg;Ix;Nm

�y
denotes the vector of imprecisely known scalar-valued

model parameters for the neutron interaction of type x, in
group g, for all isotopes and all materials involved in the
definition of Σg

x βx; r;Ωð Þ.
The partial first-order derivatives of Σg

x βgx ; r;Ω
� �

can
be readily obtained from Eq. (229) as follows:

qΣg
x βgx ; r;Ω
� �
qNg;i

x;j

¼ σg;ix;ja
g
j r;Ωð Þ; i ¼ 1; :::; I;

j ¼ 1; :::; Nm ð230Þ

and

qΣg
x βgx ; r;Ω
� �
qσg;ix;j

¼ Ng;i
x;j a

g
j r;Ωð Þ; i ¼ 1; :::; I;

j ¼ 1; :::; Nm : ð231Þ

The nonzero partial second-order derivatives of
Σg
x βgx ; r;Ω
� �

can be readily obtained from Eqs. (230)
and (231) as follows:

q2Σg
x βgx ; r;Ω
� �

qNg;i
x;j


 �
qσg;ix;j


 � ¼ agj r;Ωð Þ; i ¼ 1; :::; I;

j ¼ 1; :::; Nm : ð232Þ

The macroscopic group absorption cross section can
typically be represented in the form given in Eq. (229).
Often, the macroscopic group fission cross section

νΣf

� �g
f; rð Þ� �

can also be represented in the form given
in Eq. (229), namely,

νΣf

� �g
f; rð Þ� � ¼Δ XNm

j¼1

XIf
i¼1

Ng;i
f ;j νσð Þg;if ;jb

g
j rð Þ ; ð233Þ

where If denotes the total number of fissionable isotopes
in energy group g and in the j’th material contained in the
heterogeneous medium under consideration. The partial

first- and second-order derivatives of νΣf

� �g
f; rð Þ� �

can
be readily obtained from Eq. (233) as follows:

q νΣf

� �g
f; rð Þ� �

qNg;i
f ;j

¼ νσð Þg;if ;jb
g
j rð Þ; i ¼ 1; :::; If ;

j ¼ 1; :::; Nm ; ð234Þ
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q νΣf

� �g
f; rð Þ� �

q νσð Þg;if ;j

¼ Ng;i
f ;j b

g
j r;Ωð Þ;

i ¼ 1; :::; If ; j ¼ 1; :::; Nm ; ð235Þ

and

q2 νΣf

� �g
f; rð Þ� �

qNg;i
f ;j


 �
qσg;if ;j


 � ¼ bgj r;Ωð Þ; i ¼ 1; :::; If ;

j ¼ 1; :::;Nm : ð236Þ

When the number of neutrons per fission ν and the respective
microscopic fission cross section σf are provided separately,
with accompanying uncertainties (e.g., standard deviations),
then the derivatives provided in Eqs. (234) through (236) are
to be expanded accordingly using the customary chain
derivation.

For the j’th material, and energy group g ¼ 1; :::;G ;

the material scattering cross section of order l can also be
written in the form shown in Eq. (229), namely,

Σg 0!g
s;l rð Þ ¼

XNm

j¼1

XIs
i¼1

Ng
s;i σ

g 0!g
s;l;i cgj rð Þ ; ð237Þ

where Is denotes the total number of scattering isotopes.
Often, the group source Qg q; r;Ωð Þ and Σg

d d; r;Ωð Þ can
also be represented in the form shown in Eq. (229).

VI. CONCLUSIONS

The following conclusions can be drawn based on the
results that have been presented in this work:

1. As is well-known,18,19 a single 1st-LASS needs to
be solved in order to compute all first-order response
sensitivities to all Nα model parameters.

2. For each model parameter, a single 2nd-LASS
needs to be solved for computing the corresponding
mixed second-order sensitivities. Hence, computing all
of the Nα Nα þ 1ð Þ=2 second-order sensitivities could
theoretically require solving at most Nα 2nd-LASSs. In
practice, however, the number of computations is much
less, as has been shown in Refs. 11 and 13 through 17. In
particular, the results in Ref. 17 show that only 12 large-
scale adjoint particle transport computations were
required by using the 2nd-ASAM to compute all of the
detector’s response to the flux of uncollided particles for
the 18 first-order sensitivities and 224 second-order

sensitivities, in contrast to the 877 large-scale forward
particle transport calculations needed to compute the
respective sensitivities using central finite differences,
and this number did not include the additional
calculations that were required to find appropriate
values of the perturbations to use for the central
differences.

3. The solution of each of the 2nd-LASSs is a two-
component vector-valued second-level adjoint function,
except for the 2nd-LASS that corresponds to model
parameters that appear linearly in the response under
consideration, in which case the vector-valued
second-level adjoint function may have a null
component.

4. Solving each of the 2nd-LASSs involves the
inversion of the same operators as need to be inverted
for solving the original transport equation and/or the 1st-
LASS. Only the various source terms on the right sides of
the 2nd-LASSs may differ from each other. Therefore,
the same software can be used to solve both the 1st-LASS
and the 2nd-LASS.

5. The computation of the second-order sensitivities
involves the evaluations of integrals of the same form
as those needed for computing the first-order sensitiv-
ities. Therefore, the same software can be used for
computing both the first-order and the second-order
sensitivities.

6. Each of the mixed second-order sensitivities is
computed twice, using two distinct second-level adjoint
functions. Consequently the 2nd-ASAM possesses an
inherent solution verification mechanism that enables
and ensures the accuracy verification of the solutions of
all of the 2nd-LASSs.

7. For the reaction rate (detector) response consid-
ered in this work, it may be advantageous to compute
the second-order sensitivities in the following order of
increasing computational demands:

a. computation of q2R α;φ; ψ 1ð Þ� �
=qdj qαm2 ; j ¼ 1;

:::; Jd, m2 ¼ 1; :::; Jα
b. computation of q2R α;φ; ψ 1ð Þ� �

=qqj qαm2 ; j ¼ 1;
:::; Jq; m2 ¼ 1; :::; Jα

c. computation of q2R α;φ; ψ 1ð Þ� �
= qtj
� �

qαm2ð Þ; j ¼
1; :::; Jt; m2 ¼ 1; :::; Jα

d. computation of q2R α;φ; ψ 1ð Þ� �
=qsj qαm2 ; j ¼

1; :::; Js; m2 ¼ 1; :::; Jα
e. computation of q2R α;φ; ψ 1ð Þ� �

=qfj qαm2 ;

j = 1; :::; Jf ; m2 ¼ 1; :::; Jα
f. computation of q2R α;φ; ψ 1ð Þ� �

=qpj qαm2 ; j ¼
1; :::; Jp; m2 ¼ 1; :::; Jα:
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