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Abstract — A novel method to compute time eigenvalues of neutron transport problems is presented based
on solutions to the time-dependent transport equation. Using these solutions, we use the dynamic mode
decomposition to form an approximate transport operator. This approximate operator has eigenvalues that
are mathematically related to the time eigenvalues of the neutron transport equation. This approach works
for systems of any level of criticality and does not require the user to have estimates for the eigenvalues.
Numerical results are presented for homogeneous and heterogeneous media. The numerical results indicate
that the method finds the eigenvalues that contribute the most to the change in the solution over a given time
range, and the eigenvalue with the largest real part is not necessarily important to the system evolution at
short and intermediate times.

Keywords — Time eigenvalues, neutron transport, time-dependent transport, dynamic mode decomposition.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

In scientific computing we are used to taking a known
operator and making approximations to it. Usually, these
approximations arise from the continuous operator and
restrict it to some discrete representation. This is what is
done in common methods for particle transport such as
discrete ordinates where the continuous transport equation
is replaced with equations for particular directions that are
coupled through scattering via a quadrature rule.

Alternatively, it is possible to use the action of
the operator to generate approximations rather than use
the operator itself. This is what is done in, for example,
Krylov subspace methods for solving linear systems

where the action of a matrix is used to create subspaces
of increasing size that are used to find approximations to
the solution. The use of the known action of an operator,
even if the operator is not known, is the basis for dynamic
mode decomposition1,2 (DMD).

The main idea behind DMD is that if we have
a sequence of vectors generated by successively apply-
ing an operator, we can estimate properties of that
operator. In fluid dynamics, DMD is used to find impor-
tant modes in the evolution of a system, even when the
system does not have an interesting steady state.2,3

Additionally, because one does not need the operator,
DMD can be applied to experimental measurements and
quantitively compared to the DMD modes of
a simulation.4

In this paper, we use DMD to find time eigenvalues,
also known as alpha eigenvalues, of the neutron transport
equation using only the time-dependent solution for the
angular flux. The calculation of alpha eigenvalues has
traditionally been accomplished using iterative search
procedures where an eigenvalue is determined by finding
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the value of α that makes the equivalent k-eigenvalue
problem exactly critical.5 This is accomplished by
subtracting α divided by the neutron speed from the
total interaction term. Unfortunately, if the alpha
eigenvalue is negative, a negative total interaction term
can result, leading to instabilities in most solution algo-
rithms. Recently, there have been improvements to deter-
ministic alpha-eigenvalue computation techniques that
use specialized solvers to find positive and negative
eigenvalues6–8 or form the full discretization matrices to
find eigenvalues.9 Most of these methods either find only
the eigenvalue with the largest real part (the rightmost
eigenvalue in the complex plane) or require an accurate
estimate to find other eigenvalues. Additionally, Monte
Carlo can be used to find these eigenvalues with the
transition rate matrix method.10,11

The benefit of using the DMD method is that one can
use standard transport solvers12 to find any eigenvalues
that are excited in a given calculation. The cost of the
calculation, beyond the transport simulation, is the
formation of a singular value decomposition (SVD) on
the solution at several time steps. No development of
transport solvers is required, and off-the-shelf linear
algebra routines can be used to find the SVD. DMD
will find the eigenvalues/eigenvectors that are the largest
contributors to the dynamics of the system in a given
time-dependent problem: This is a feature and not a bug.
In many subcritical systems, the rightmost eigenvalue
will be unimportant to the system behavior in a given
experiment. For instance, if we consider a subcritical
system struck by a pulse of neutrons, such as those in
Ref. 13, there will be eigenmodes corresponding to the
slowest neutrons traveling across the system14,15 that will
not impact the experiment. We will see an example of this
later.

This paper is organized as follows. We begin with the
presentation of the DMD in Sec. II and apply the method
to time-eigenvalue problems in Sec. III. Numerical results
are presented for a bare sphere in Sec. IV and for
heterogeneous systems in Sec. V before presenting
conclusions and future work in Sec. VI.

II. DYNAMIC MODE DECOMPOSITION

Consider an evolution equation over time that can be
written in the generic form

qy
qt

¼ AðrÞyðr; tÞ ; ð1Þ

where yðr; tÞ is a function of a set of variables denoted by r,
which could be space, angle, energy, etc., and time t. Consider
the solution to the equation at a sequence of equally spaced
times, yðr; t0Þ; yðr; t1Þ; . . . ; yðr; tN�1Þ; yðr; tNÞ, separated by
a time Δt. These solutions are formally determined using the
exponential of the operator AðrÞ via the relationship

yðr; tnÞ ¼ e AΔtyðr; tn�1Þ; n ¼ 1; . . . ;N :

We can write a single equation relating the solutions at
each time level as

½yðr; tNÞ; yðr; tN�1Þ; . . . ; yðr; t1Þ�
¼ e AΔt½yðr; tN�1Þ; yðr; tN�2Þ; . . . ; yðr; t0Þ� : ð2Þ

If we constrain ourselves to finite-dimensional problems,
the solution is now a vector, and the operator is a matrix.
In this case, the original equation has the form

qy
qt

¼ AyðtÞ : ð3Þ

We will say that yn is of length M > N and A is an M �
M matrix. In this case, the solutions are related through
the matrix exponential:

½yN ; yN�1; . . . ; y1� ¼ eAΔt½yN�1; yN�2; . . . ; y0� : ð4Þ

In shorthand, we can define the N X M matrices

Yþ ¼ ½yN ; yN�1; . . . ; y1�

and

Y� ¼ ½yN�1; yN�2; . . . ; y0�

as the matrices formed by appending the column vectors
yn. This leads to the relation

Yþ ¼ eAΔtY� : ð5Þ

Equation (5) is exact; however, the matrix A may be too
large to compute the exponential eAΔt. Therefore, we desire
to use just the solution to estimate the eigenvalues of eAΔt.

To this end, we will use the solution vectors collected
in Yþ and Y� to produce an approximation to A. We
compute the thin SVD of the matrix Y�:

Y� ¼ UΣV� ; ð6Þ

where
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U = M � N unitary matrix

V = N � N unitary matrix

Σ = N � N diagonal matrix with nonnegative elements,

and the asterisk (*) denotes the conjugate transpose of
a matrix.

Typically, some of the diagonal elements of Σ are
effectively zero. Therefore, we make Σ the r � r matrix
that contains all r values greater than some small,
positive �.

Substituting Eq. (6) into Eq. (5), we get

Yþ ¼ eAΔtUΣV� :

Rearranging Eq. (6) gives

U�YþVΣ�1 ¼ U�eAΔtU ; eS : ð7Þ

It has been shown16 that an eigenvalue of eS is also an
eigenvalue of eAΔt. To see this, we consider an eigenvalue

λ and eigenvector v of eS. By definition, we have eSv ¼ λv;
which is equivalent to U�eAΔtUv ¼ λv: Left multiplying
this equation by U; we get

eAΔtUv ¼ λUv ;

which shows that λ is an eigenvalue of eAΔt.
Additionally, bv ¼ Uv is the associated eigenvector of
eAΔt to eigenvalue λ.

The matrix eS is much smaller than that for eAΔt; and

we can form eS without forming A. To create eS; we need
to know the result of eAΔt applied to an initial condition
several times in succession. Then, we need to compute
the SVD of the data matrix Y�. A direct computation
requires OðM2NÞ operations, though iterative methods
for computing the SVD exist.17 As a comparison, the
QR factorization of eAΔt requires OðM3Þ operations.
Our formulation here requires a constant time step size,
though this can be relaxed as shown by Tu et al.16

III. ALPHA EIGENVALUES OF THE TRANSPORT OPERATOR

We will now demonstrate that we can estimate the
alpha eigenvalues of a nuclear system by computing
several time steps of a time-dependent transport equation
and using the DMD theory presented above to form and

compute the eigenvalues of eS. We begin by defining the
alpha-eigenvalue transport problem without delayed
neutrons.

Consider the time-dependent transport equation18

qψ
qt

¼ Aψ ; ð8Þ

where ψðx;Ω;E; tÞ is the angular flux at position x 2 R
3,

in direction Ω 2 S2, at energy E and time t. The transport
operator A is given by

A ¼ vðEÞð�Ω � �þ�σt þ S þ FÞ ;

with S and F the scattering and fission operators:

Sψ ¼
ð
4π
dΩ 0

ð1
0
dE 0σsðΩ 0 ! Ω;E 0 ! EÞ

� ψðx;Ω 0;E 0; tÞ ð9Þ

and

Fψ ¼ χðEÞ
4π

ð1
0
dE 0 νσf ðE 0Þϕðx;Ω 0;E 0; tÞ ; ð10Þ

where

σsðΩ 0 ! Ω;E 0 ! EÞ = double-differential scattering
cross section from direction
Ω 0 and energy E 0 to direction
Ω and energy E

νσf ðE 0Þ = fission cross section times the
expected number of fission
neutrons at energy E 0

χðEÞ = probability of a fission neutron
being emitted with energy E.

The scalar flux ϕðx;Ω 0;E 0; tÞ is defined as the
integral of the angular flux over the unit sphere:

ϕðx;E; tÞ ¼
ð
4π
dΩψðx;Ω;E; tÞ : ð11Þ

Above, we used a continuous formulation of the transport
problem. For our calculations later, we will use a discretized
transport equation using the multigroup method18 in energy,
discrete ordinates in angle, and a spatial discretization. In
this case the time-dependent transport equation can be
written as a system of differential equations:

qΨ
qt

¼ AΨ ; ð12Þ
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where Ψ is a vector and A is a matrix that represents the
discrete transport operator.

To define alpha eigenvalues and eigenfunctions,
consider a solution of the form bψðx;Ω;EÞeαt, which,
using Eq. (8), leads to the relation

αbψ ¼ Abψ :

The values of α where this relation holds are called alpha
eigenvalues and bψ are the alpha eigenfunctions. In
discrete form the alpha eigenvalue problem is

Abψ ¼ αbψ ;

where Ψ has the form bψeαt. In general, the eigenvalues of
the discrete problem are not the same as those for the
continuous problem due to discretization. From here on,
we consider the discrete problem.

In the alpha-eigenvalue problem, we are interested in
the eigenvalues of A. We can use the DMD decomposition

to form the operator eS and compute its eigenvalues and, as
a result, the eigenvalues of eAΔt. To do this, we begin with
an initial condition and compute the solution at N time
steps. Then, we can form Yþ and Y�, compute the SVD,
and get the eigenvalues of eAΔt.

We need a way to relate the eigenvalues of eAΔt to the
alpha eigenvalues. The relationship is if ðα; vÞ is an
eigenvalue/eigenvector pair of A; then eαΔt is an eigenvalue
of eAΔt with eigenvector v. These facts can be seen through
the definition of the matrix exponential. Consider an
eigenvalue α with eigenvector v for the matrix A. Using the
definition of an eigenvector, we can show that

A,v ¼ A,�1ðαvÞ ¼ A,�2ðα2vÞ ¼ . . . ¼ α,v :

The definition of the matrix exponential gives

eAΔtv ¼
X1
,¼0

Δt,

,!
A,

 !
v

¼
X1
,¼0

Δt,

,!
α,

 !
v

¼ eαΔtv ; ð13Þ

where the last equality uses the Taylor series of the
exponential function expðαΔtÞ around 0.

Therefore, if λ is an eigenvalue of eS and, by
construction, an eigenvalue of eAΔt, then

α ¼ log λ
Δt

ð14Þ

is an alpha eigenvalue of the discrete transport operator.
The discussion above suggests the following

algorithm for estimating alpha eigenvalues of the discrete
transport equation:

1. Compute N time-dependent steps starting from ψ0

using a numerical method of choice and fixed Δt.

2. Compute the SVD of the resulting data matrix

Y�, and form eS.
3. Compute the eigenvalues/eigenvectors of eS, and

calculate the alpha eigenvalues from Eq. (14).

This is an approximate method because the time
steps typically will not be computed using the matrix
exponential; rather, a time integration technique such as
the backward Euler method will be used. The backward
Euler algorithm estimates the matrix exponential as

eAΔt � ðI� ΔtAÞ�1 :

When we use the DMD method on a data matrix gener-
ated by the backward Euler method, we are computing

eigenvalues of ðI� ΔtAÞ�1: To relate these eigenvalues
to the alpha eigenvalues, we use the relation

α � 1

Δt
1� 1

λ

� �
:

This approximation will improve at first order as Δt ! 0.

III.A. Comparison with Existing Methods

Standard techniques for computing alpha eigenvalues
require solving a series of k-eigenvalue problems.5 The
basis for these methods is that the alpha eigenvalues
make the equivalent k-eigenvalue problem exactly critical
when the total cross section is replaced with

σtðEÞ þ αvðEÞ�1. This approach will have problems
when α is negative as it can cause negative absorption
to arise in lower-energy groups.

To address this problem, other methods have been
developed such as Rayleigh quotient methods,6 the
Arnoldi method,7,19 and Newton-Krylov methods.20 In
these approaches, the equations that need to be solved
are typically different from those required to solve
time-dependent transport problems. The DMD method
allows one to get both the time-dependent solution and
eigenvalues as part of one calculation. Moreover, DMD
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provides an estimate for multiple eigenvalues based on
the number of modes excited in the system and the
number of steps used.

IV. RESULTS FOR PLUTONIUM SPHERE

Here, we present results for the prompt neutron
solution for a sphere of 99 at. % 239Pu and 1 at. % natural
carbon using 12-group cross sections and a simple
buckling model for leakage so that we can solve an
infinite medium problem. The group structure is detailed
in Table I. We will consider subcritical and supercritical
systems by adjusting the radius of the sphere. Because we
use a simple buckling model for this problem, we can
directly form the matrix for the transport operator and
compute exact eigenvalues for this model. For DMD, the
time steps are computed using the backward Euler
discretization for time integration. In this and subsequent
sections, we consider only prompt neutrons.

IV.A. Subcritical Case

We consider a sphere of radius 4.77178 cm with an
associated keff in our model of 0.95000. The fundamental
mode for this reactor is shown in Fig. 1a along with
several alpha eigenmodes. The alpha eigenvalues for this
system have a fast-decaying mode with a large number of
neutrons in the fastest energy group, and the most slowly
decaying mode closely follows the fundamental mode.

To test the DMD estimation of alpha eigenvalues, we
run a time-dependent problem where at time zero the
system has 1000 neutrons in the energy group

corresponding to 14.1 MeV. This is a crude approximation
to an experiment where a pulse of deuterium-tritium (D-T)
fusion neutrons irradiates the sphere. The problem is run in
time-dependent mode out to various final times with
uniform time steps, and the time steps are used in the
DMD procedure to estimate alpha eigenvalues. The alpha
eigenvalues computed by DMD are shown in Table II and
compared to the exact eigenvalues computed from the
matrices generated by the buckling approximation. The
number of neutrons in the system as a function of time is
shown in Fig. 2, where one can see that subcritical
multiplication is happening in the first 0.002 μs of the
problem. As we argue next, DMD finds the eigenvalues
that are important in the time-dependent solution over
the timescales considered and that are resolved by the
time-step size.

From Table II, we can see that during the phase where
subcritical multiplication is occurring (before t ¼ 0:002 μs),
DMD accurately computes to six digits the alpha eigenmode
that corresponds to a large population of 14.1-MeV
neutrons. This is the mode most excited by the initial
condition. It also accurately computes the eigenvalues with
magnitudes larger than 200 to several digits. However, we
note that the dominant or most slowly decaying eigenmode
is not detected by the DMD algorithm, indicating that its
contribution at this early time is insignificant or cannot be
distinguished from other slowly decaying modes. This
indicates an important phenomenon in time-dependent
transport: The most slowly decaying eigenvalue may not
be important in a given problem.

As we look at simulations run to later time, more
eigenvalues are identified using DMD. Running the
simulation to intermediate times, 0.02 and 0.2 μs,
we see that DMD finds all of the eigenvalues in the problem
to several digits of accuracy. In both of these solutions, DMD
does not find the eigenvalue near �28:85 μs�1. This
eigenmode has more neutrons in the energy ranges in the
thermal and epithermal energy ranges relative to the other
modes. Given that this problem has very little thermalization
due to the small amount of carbon, this mode is not important
at these intermediate times relative to other modes.

At a much later time, 2 μs, DMD identifies all of the
slowly decaying modes but cannot find the rapidly
decaying modes. This is because the larger time steps
used make it so that the solution cannot resolve the
timescale where these modes are important. As
a result, DMD estimates a pair of complex eigenvalues
with a real part that does not correspond to an actual
eigenvalue. There are versions of DMD that allow
variable time steps to be used,16 and the use of adaptive
time stepping should be investigated in future work in

TABLE I

The Group Edges and Centers for the 12-Group
Calculations in This Study

g Eg (MeV) Eg (MeV)

0 17
1 13.5 15.25
2 10 11.75
3 6.07 8.035
4 2.865 4.4675
5 1.353 2.109
6 0.5 0.9265
7 0.184 0.342
8 0.0676 0.1258
9 0.0248 0.0462
10 0.00912 0.01696
11 0.00335 0.006235
12 0.000454 0.001902
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order to estimate the fast-decaying and slowly decaying
modes.

IV.B. Supercritical Case

We consider a sphere of radius 5.029636 cm with an
associated prompt keff in our model of 1.000998; the
eigenvectors for this problem are shown in Fig. 1b. We
perform the same calculations as performed before on

the subcritical sphere. Table III compares the
eigenvalues computed with DMD with the eigenvalues
computed by solving the equivalent infinite medium
problem. At an early time (0.002 μs), the DMD
computation does not identify the exponentially
increasing mode. Upon inspection of Fig. 2, we see
that at this time the supercritical and subcritical systems
have neutron populations that are very similar. The
subcritical multiplication observed in the smaller sphere

Fig. 1. Fundmental k-eigenmode, and several alpha eigenmodes for the bare plutonium sphere problem with 12 groups in
subcritical and supercritical configurations. The alpha eigenvalues are in units of inverse microsecond.
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where modes associated with the fusion neutrons
contributed to the growth of the neutron population is
also present in this supercritical system. However, there
are very few neutrons emitted in the fusion energy range
from fission (χ1 � 1:37� 10�4), so these modes decay
away.

As the solution time increases, the DMD-estimated
eigenvalues agree well with the true values. This is
most evident in the solution computed up to 0:2 μs,

where 11 of 12 eigenvalues are computed accurately to
two digits. The exponentially growing mode is
correctly estimated at later times; for the simulation
run to the latest time, the eigenvalue is estimated
accurately to six digits by DMD. At very late times,
the rapidly decaying modes are not correctly estimated,
and a complex eigenvalue is estimated, as we saw
before in the subcritical case, but this is likely due to
the large time step used.

TABLE II

Alpha Eigenvalues for the Subcritical Sphere Computed Using DMD Using the Solution
Obtained with Different Values of Δt and Final Times*

Exact tfinal = 0.002 μs tfinal = 0.02 μs tfinal = 0.2 μs tfinal = 2 μs

−17.7439 – −17.5504 −17.7588 −17.7437
−28.8533 −24.5669 – – −28.8628
−34.4201 – −35.7281 −34.1948 −34.3999
−48.4269 – −46.6817 −48.0231 −48.4613
−75.0701 – −75.7798 −75.2787 −74.9998
−132.352 – −132.183 −132.197 −132.587
−261.942 −262.78 −261.974 −262.127 −260.218
−547.732 −531.575 −547.719 −547.11 −585.536
−893.385 −893.314 −893.399 −895.262 −763.974

−1368.92 −1335.16 −1368.90 −1362.45 –
−1732.99 −1721.75 −1733.01 −1725.84 −1708 ± 381i
−1957.42 −1957.42 −1957.41 −1957.42 –

Δt = 0.0002 μs 0.0002 μs 0.001 μs 0.01 μs

*The alpha eigenvalues are in units of inverse microseconds.

Fig. 2. The number of neutrons in the plutonium sphere in subcritical and supercritical configurations as a function of time.
Because of subcritical multiplication, the peak number occurs about 0.002 μs into the simulation of the subcritical configuration.
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V. HETEROGENEOUS MEDIA

The plutonium sphere example required computing
only the solution to infinite medium problems. We will
now investigate how the DMD approach to estimating
eigenvalues performs on heterogeneous problems in slab
geometry. Our numerical solutions are computed using
the discrete ordinates (SN) method with diamond differ-
ence for the spatial discretization and backward Euler for
time integration.12

V.A. Heterogeneous, One-Speed Slab Problem

The first heterogeneous problem we solve is based on
benchmark problems published by Kornreich and
Parsons21 as solved by the Green’s function method
(GFM). Their work defines a slab problem for single-

speed neutrons (i.e., one group) consisting of an absorber
surrounded by a moderator and fuel; see Fig. 3. They
define configurations of this problem that are symmetric
and asymmetric, as well as subcritical and supercritical
versions. In the symmetric version of the problem, the
total width of the slab is 9, whereas in the asymmetric
version, the width is 9.1. The total cross section is one
throughout the problem, and the scattering cross sec-
tions are

σsðxÞ ¼
0:8 x 2 fuel or moderator

0:1 x 2 absorber :

�

The value of νσf in the fuel is either 0:3 or 0:7 for the
subcritical and supercritical cases, respectively.

We solve this problem using DMD with 200 cells per
mean free path and a 196-angle Gauss-Legendre quad-
rature set. We use a time step size of Δt ¼ 0:1 and run the
problem for 500 time steps to a time of t ¼ 50. For initial
conditions, we used two approaches: a symmetric initial
condition where the solution is nonzero and inwardly
directed in the outermost cells in the problem, and
a random initial condition. In Table IV, results from the
DMD calculations are compared with the GFM results.
We use the nomenclature of “Fundamental” for the alpha
eigenvalue that is rightmost in the complex plane to
coincide with the published results; the “Second” eigen-
value in Table IV is the eigenvalue that is just left of the
fundamental eigenvalue in the complex plane. The results
in Table IV show that the DMD results were able to

TABLE III

Alpha Eigenvalues for the Supercritical Sphere Computed Using DMD Using the Solution
Obtained with Different Values of Δt and Final Times*

Exact tfinal = 0.002 μs tfinal = 0.02 μs tfinal = 0.2 μs tfinal = 2 μs

0.354439 −4.02079 0.332366 0.354291 0.354439
−28.2933 – – – −28.2932
−33.1095 – −32.8048 −33.1151 –
−46.0832 – −45.3512 −45.817 −46.0703
−70.7945 – −70.4805 −70.9448 −70.8261

−124.497 – −124.568 −124.38 −124.381
−247.14 −247.914 −247.127 −247.281 −248.057
−521.689 −506.467 −521.693 −521.216 −507.684
−853.58 −853.733 −853.577 −855.008 –
−1309.4 −1279.91 −1309.4 −1305.12 −1050 þ 23i
−1659.02 −1649.68 −1659.02 −1655.16 –
−1872.99 −1872.99 −1872.99 −1872.98 −2059.43

Δt = 0.0002 μs 0.0002 μs 0.001 μs 0.01 μs

*The alpha eigenvalues are in units of inverse microseconds.

Fig. 3. Layout for the multiregion slab problem from
Kornreich and Parsons.21 The total width of the problem,
X , can be either 9 or 9:1.
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reproduce the GFM eigenvalues within 10�5 (1 pcm).
Except for the second eigenvalue in the symmetric case,
all the DMD eigenvalues agreed to greater than 1 pcm
precision using both initial conditions.

The DMD results in Table IV for the fundamental
eigenvalue were the same for both initial conditions to six
significant digits. We also have found that the eigenvalues
found in the solution are insensitive to the number of time
steps used in the DMD procedure, as long as any initial
transients have died out (about 5 mean free times in this
problem). Using 400 or 100 time steps in the eigenvalue
estimate gave the same eigenvalue estimates to six
significant digits. However, the second eigenvalue was not
present in the solution for the symmetric initial condition on
the symmetric problems. This is because the second
eigenmode is asymmetric in space, and therefore, this mode
is not excited by the symmetric initial condition. The DMD
eigenvectors for the four configurations of this problem are
shown in Figs. 4 and 5. The fundamental and second
eigenvectors match the published plots for the νσf ¼ 0:7
within the width of the lines. In the DMD results, we found
a third, real-valued eigenvalue, α ¼ �1:02158875. This
eigenvalue is part of the continuum spectrum for the transport
operator for this problem. The fact that it is found by DMD is
an artifact of the approximations made in the method.

We note that in the original paper by Kornreich and
Parsons21 they give results from the PARTISN discrete
ordinates code22 using 96 quadrature points (about half of
what we used) and 2000 mesh cells per mean free path
(ten times higher resolution than in our case). The
PARTISN results agreed with the GFM results to within
0.1 pcm using this much finer spatial grid. Nevertheless,
PARTISN was not able to estimate the second eigenvalue
in the asymmetric cases, whereas the DMD results are as
expected. Furthermore, the MCNP Monte Carlo transport
code23 was not able to estimate eigenvalues for any of the
νσf ¼ 0:3 cases. Recently, Betzler et al.10 published
Monte Carlo results for these cases using the Monte
Carlo Markov Transition Rate Matrix Method.

V.B. Multiregion, 70-Group System

As a final demonstration, we solve a problem
consisting of two slabs of 239Pu with high-density
polyethylene (HDPE) between them and a reflector of
HDPE on the outside. The initial condition has a pulse of
D-T fusion neutrons striking the outer surface of the
reflector, implemented as the angular flux for each angle
directed toward the center being set to 1 in the outermost
cell on each side for the initial condition. See Fig. 6 for

TABLE IV

Eigenvalues for the Benchmark as Computed via the GFM and the Difference Between the GFM and DMD Estimates in pcm (10�5)

Geometry νσfuelf

Fundamental α
(GFM)

αGFM � αDMD

(pcm) Second α (GFM)
αGFM � αDMD

(pcm)

Symmetric 0.3 −0.3196537 0.639 −0.3229855 0.694
0.7 −0.006156369 0.7711 −0.006440766 0.7724

Asymmetric 0.3 −0.2932468 0.535 −0.3213939 0.666
0.7 0.03759991 0.64 −0.006298843 0.7717

Fig. 4. Fundamental and second eigenmodes for the one-group slab problem in the symmetric configurations.
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a schematic of the problem. The system is subcritical when
the fuel regions are each 1.125 cm thick with a resulting
keff � 0:97 and isotropic scattering is assumed. The
fundamental mode has a large number of thermal neutrons
in the middle of the problem as well as a fast peak in the
fuel region.

Running this problem out to a time of 1 μs with
a time step size of 10�4 μs, S8 quadrature, and 400 spatial
zones, we use DMD to compute eigenvalues present in
the solution over three different time windows: 0.002 to
0.004 μs, 0.09 to 0.1 μs, and 0.99 to 1 μs. These
eigenvalues are shown in Fig. 7. The eigenvalues
estimated by DMD at early time (0.002 to 0.004 μs)
have a large imaginary component except for the
rightmost value. As time progresses, the imaginary part
of the eigenvalues decreases, and the real part moves
rightward. This demonstrates a feature of the DMD

method: Early in time there are many modes present in
the solution, and the fast-decaying ones are governing the
solution behavior early in time. As time goes on, only the
slowly decaying modes are present, and DMD finds these
later in time.

The behavior of the neutron population in time, as
well as the three time intervals over which the eigenvalues
were estimated, is shown in Fig. 8a. The time interval from
0.002 to 0.004 μs is during the subcritical multiplication
phase of the simulation. It makes sense that during this
phase the slowly decaying modes are not important in the
solution. Later in time, these slowly decaying modes will
dominate because the subcritical multiplication must end at
some point given that the system is subcritical and does
not have a fixed source.

In Fig. 8, we show the neutron spectrum at several points
in space. The spectra shown are computed using time steps

HDPE

239Pu 239Pu

1.125 cm

25.25 cm

14.1 MeV 

Neutron pulse

Fig. 6. Problem layout for the 70-group test problem.

Fig. 5. Fundamental and second eigenmodes for the one-group slab problem in the asymmetric configurations.

NEUTRON TRANSPORT EQUATION TIME EIGENVALUES · McCLARREN 863

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 193 · AUGUST 2019



Fig. 7. Alpha eigenvalues for the 70-group test problem estimated by DMD over three different time intervals.

Fig. 8. Neutron population and spectra in the outer reflector, fuel, and moderator averaged over the three time intervals.
The time intervals are denoted by black lines in (a), and the fundamental k-eigenvalue spectra are shown
in (b) through (d).
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from the indicated time ranges. From Fig. 8, we can see that
early in the time, the solution is dominated by the presence of
14.1-MeV neutrons, though fission neutrons are present in
the fuel and outer reflector. At late times, near 1 μs, the
spectrum in the fuel and the reflector is close to the
fundamental eigenmode of the k-eigenvalue problem.
Nevertheless, the central moderator in the problem has not
reached the fundamental k eigenmode, as there has not been
enough time to fully thermalize the neutrons. Additionally,
the eigenvalue for the most slowly decaying mode is
associated with the travel time of the slowest neutrons
crossing the moderator. This suggests that the problem
would need to be run longer to relax to this mode.
Moreover, it indicates that if this system were involved in
an experiment, the neutrons produced in the firstmicrosecond
would give little information about the spectrum of the k-
eigenvalue problem.

Figure 9 shows the spatial distribution of neutrons.
From Fig. 9, we see that at different times for the most
slowly decaying mode, the DMD estimates correspond to
the modes that are important to the dynamics during
a time interval. Early in time, fast neutrons dominate;
these fast neutrons then decay as more thermal neutrons
are created from scattering. Nevertheless, near 1 μs, the
the neutron density of epithermal neutrons is still larger
than the density of thermal neutrons.

VI. DISCUSSION

Dynamic mode decomposition allows for the
approximation of the eigenvalues present in a time-
dependent transport system from the solution at
different times without a separate eigenvalue solve.

Fig. 9. Spatial distribution of neutrons for the fundamental mode of the k-eigenvalue problem, and the eigenvector for the
rightmost alpha eigenvalue as estimated by DMD over different time intervals. Note that the alpha eigenvectors are not positive,
so we plot the absolute value. In this figure thermal neutrons have energy below 5 eV, fast neutrons are above 0.5 MeV, and
epithermal neutrons are in between.
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The decomposition works for subcritical and critical
systems and can give highly accurate (sub-pcm)
estimates of eigenvalues. Our results from a variety of
problem types indicate that the method is useful for
general estimation of system eigenvalues, especially if
one is interested in the modes driving the dynamics
over a particular time interval. The problems we
presented did not include delayed neutrons, but adding
these to the DMD method is straightforward. Because
DMD uses the solution from time-dependent transport
to estimate eigenvalues, the time interval considered
and the time-step size affect the eigenvalues found.
For instance, at early times of the simulation, there
may be different modes present than at later times.
DMD will not be able to accurately estimate modes
that decay much more quickly than the time step size
used to generate the time-dependent solution.

We note that DMD can be applied to nonlinear problems
in the same fashion as we applied it to the linear problem of
neutron transport. This could be useful for the situationwhere
the neutron population dynamics are nonlinear. For instance,
if we consider a systemwith negative feedback with regard to
temperature, the dynamics of the neutron population would
affect the temperature and the cross sections of the material.
One could apply DMD to this problem, though the
interpretation of the resulting eigenvalues would necessarily
be different. Previous work,1,24 has shown that the modes
computed by DMD will be eigenfunctions of the Koopman
operator, and the application of this type of analysis could be
fruitful for understanding nuclear systems.
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