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NMR RELAXOMETRY AND RELATED METHODS

Theory of fast field-cycling NMR relaxometry of liquid systems undergoing
chemical exchange
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ABSTRACT
The time evolution of the nuclear magnetisation of chemically exchanging systems in liquids is
calculated for the pre-polarised fast field-cycling sequence of nuclear magnetic resonance (NMR)
relaxometry. The obtained parameter expressions of the magnetisation allow one to derive the lon-
gitudinal relaxation rates and the residence times of the exchanging sites from the experiment. In
the particular cases of slow and fast exchange, approximations leading to simple analytic expres-
sions are derived. The theory takes account of the delay time necessary to ensure that the field for
acquiring the signal is stable enough after its rapid jump from its relaxation value. The domains of
mono-exponential or bi-exponential relaxation of the magnetisation are displayed in a concise way
through 3D and 2D logarithmic plots of the population ratio of the exchanging sites and of their
intrinsic relaxation times. The influence of the acquisition delay on the fitted values of the popu-
lations, residence times, and intrinsic relaxation times of the sites is emphasised in the case of the
bi-exponential water proton relaxation observed in a tumour tissue.
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1. Introduction

Fast field-cycling (FFC) techniques [1,2] in both nuclear
magnetic resonance (NMR) and magnetic resonance
imaging (MRI) give unique information about the quan-
tum dynamics of spins and spatial motions of molecules
in liquids [3–9], in particular of water molecules in
the biomedical context [2–5,8–14]. These experiments
provide raw NMR relaxation data, that is the time
evolution of the longitudinal magnetisation of the water

CONTACT Pascal H. Fries pascal-h.fries@cea.fr INAC/MEM CEA, Univ. Grenoble Alpes, F-38054 Grenoble, France

protons across several orders ofmagnitude of the external
magnetic field B0. This time evolution probes the var-
ious sites, environments or compartments of the water
molecules such as the coordination sites ofmetal ions and
adsorption sites on macromolecules, the intra- or extra-
cellular space in biological tissues, the vascular space
in living organisms, and the bulk aqueous environment
[3–5,8–17]. In the context of MRI contrast agents, and
more generally of paramagnetic metal complexes in solu-
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tion, numerous FFC-NMR experiments were performed
to study the Brownian modulation of anisotropic elec-
tronic spin Hamiltonians, such as those related to the
zero-field splitting (ZFS), the hyperfine coupling, and the
g factor [3–6]. Usually, water molecules do not remain
confined in a given site, but exchange between adjacent
sites. The lifetimes or residence times τsite of a water
molecule in its various accessible sites (site = A, B) are
fundamental parameters which characterise these sites
and their interactions. The lifetimes τsite and the intrinsic
NMR relaxation ratesR1site of the sites can be determined
fromNMR relaxation data. In a protein aqueous solution,
where water exchanges between protein binding sites
and free bulk water sites, the rotational correlation time
τR [8,10] of the protein macromolecules can be derived
together with the parameters τsite and R1site from nuclear
magnetic relaxation dispersions (NMRD), provided that
τR is shorter than the lifetime of a water molecule bound
to a tumbling protein. The time τR is a key determinant
of the aggregation of the proteins, hence of the feasibil-
ity and quality of their NMR spectroscopy. The lifetimes
τsite can also allow one to distinguish between healthy
and diseased tissues. For instance, intracellular water life-
time can be used as a biomarker of tumours and of their
aggressiveness [14,16]. More generally, profiles of NMR
relaxation rates as a function of the field over several
decades are expected to yield completely new biomark-
ers of diseases, especially in the low and ultra-low field
domains [2,11–14,18].

In liquid systems, the influence of chemical exchange
between two sites on the evolution of the magnetisa-
tion of the nuclei of the exchanging species is a standard
problem at a fixed external magnetic field [19–21]. How-
ever, in an FFC-NMR or MRI experiment, the external
field takes very different values during the evolution of
the nuclear magnetisation. Then, the evolution of the
magnetisations of the two sites is no longer given by
the usual solution of the Bloch–McConnell equations.
The aim of this paper is to provide a theoretical frame-
work suitable to extract the lifetimes and intrinsic relax-
ation rates R1 of the sites at any value of the relaxation
field from the ultra-low regime below earth field up to
several T.

The article is organised as follows. Section 2 pro-
vides the solution of the Bloch–McConnell equations in a
form suitable to express the time evolution of the nuclear
magnetisation during any FFC sequence. The general
expression of the signal, which results from this time evo-
lution and can be observed at the end of the sequence,
is derived in Section 3 for the important pre-polarised
(PP) sequence. The limiting cases of slow and fast chem-
ical exchange lead to simple analytical expressions of
the signal which are detailed in Section 4. Finally, the

relaxometric exploration of systems undergoing chemi-
cal exchange is discussed in terms of the site populations
and intrinsic relaxation rates in Section 5.

2. Convenient expression of the solution of the
Bloch–McConnell equations

In a fixed external field B0 along the z-axis, consider
nuclear spins I of the same isotope. Through chem-
ical exchange, these spins alternately occupy two dif-
ferent relaxation sites A and B corresponding to dif-
ferent molecular environments. The spins of sites A,
B have population fractions pA, pB with pA + pB = 1.
Their residence times are τA, τB which verify the detailed
balance principle τB/τA = pB/pA. Their magnetic sus-
ceptibilities are χA = pAχ , χB = pBχ where χ = χA +
χB is the total magnetic susceptibility of the spins of the
two sites. Their time-dependent magnetisations along
the z axis are MAz = pAMz, MBz = pBMz, Mz being
the total magnetisation. In the field value Bv , they have
equilibrium magnetisationsMeq

Av = χABv ,M
eq
Bv = χBBv ,

intrinsic relaxation times T1Av , T1Bv , and intrinsic relax-
ation ratesR1Av = 1/T1Av ,R1Bv = 1/T1Bv . For any prop-
erty m with values mA, mB at sites A, B, the property
column is defined as m̃ = (mA

mB

)
. The Bloch–McConnell

equations read [19–21]

dMAz

dt
= − 1

T1Av

(MAz − Meq
Av) − MAz

τA
+ MBz

τB
,

dMBz

dt
= − 1

T1Bv

(MBz − Meq
Bv) − MBz

τB
+ MAz

τA
. (1)

Introduce the α relaxation parameters

αAv = 1
T1Av

+ 1
τA

, αBv = 1
T1Bv

+ 1
τB

(2)

and the relaxation matrix

Rv =
(

αAv −τ−1
B

−τ−1
A αBv

)
(3)

Using the detailed balance principle, the Bloch–
McConnell equations can be rewritten in matrix form in
terms of the magnetisation column M̃z =

(
MAz
MBz

)
and its

equilibrium value M̃eq
v =

(
Meq

Av

Meq
Bv

)
as

d
dt
M̃z = −Rv(M̃z − M̃eq

v ). (4)

Introduce the residual magnetisation column m̃vz =
M̃z − M̃eq

v . Equation (4) is equivalent to

d
dt
m̃vz = −Rvm̃vz. (5)
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The eigenvalues of the relaxation matrix Rv are the fast
and slow effective relaxation rates R+

v and R−
v , respec-

tively defined as

R±
v = 1

2

[
(αAv + αBv) ±

√
(αAv − αBv)

2 + 4τ−1
A τ−1

B

]
.

(6)
Introducing the coefficients

μ±
v = (αAv − R±

v )τB, (7)

their difference

Dv = μ−
v − μ+

v , (8)

and the enhancement factors

κ±
v = 1 + μ±

v , (9)

the matrix Pv of the eigenvectors associated to R+
v , R−

v

and its inverse P−1
v are

Pv =
(

1 1
μ+

v μ−
v

)
and P−1

v = 1
Dv

(
μ−

v −1
−μ+

v 1

)
,

(10)
where Dv is the determinant of Pv . The matrix Rv can be
rewritten as

Rv = Pv

(
R+

v 0
0 R−

v

)
P−1

v . (11)

At the initial time ti, assume that the magnetisation
column m̃zv is m̃zv(ti) =

(
mAzv(ti)
mBzv(ti)

)
. The general solution

of Equation (5) at time t ≥ ti is

m̃zv(t) = e−Rv(t−ti)m̃zv(ti), (12)

where the exponential relaxation matrix e−Rvu can be
expressed as

e−Rvu = Pv

(
e−R+

v u 0
0 e−R−

v u

)
P−1

v . (13)

Replacing Pv and P−1
v by their expressions of Equation

(10), Equation (13) can be rewritten as

e−Rvu = e−R+
v u�+

v + e−R−
v u�−

v (14)

with

�+
v = 1

Dv

(
μ−

v −1
μ+

v μ−
v −μ+

v

)
,

�−
v = 1

Dv

( −μ+
v 1

−μ−
v μ+

v μ−
v

)
. (15)

Note that the matrix-column product of�±
v by a column

m̃ = (mA
mB

)
is given by

�±
v m̃ = c±v [m̃]

(
1

μ±
v

)
, (16)

where the auxiliary linear functions c±v take scalar values
and are defined as

c±v [m̃] = c±v

(
mA
mB

)
= 1

Dv

(±μ∓
v mA ∓ mB). (17)

Then, the solution of Equations (1) or (4) is the image of
the initial magnetisation column M̃z(ti) by the evolution
operator Ev(t − ti) defined as the affine transformation

M̃z(t) = Ev(t − ti)M̃z(ti)

= χ̃Bv + e−Rv(t−ti)[M̃z(ti) − χ̃Bv], (18)

with χ̃ = ( χA
χB

)
and e−Rv(t−ti) given by Equations

(14)–(17).

3. Time evolution of the nuclear magnetisation
during the pre-polarised sequence and
observed signal

The PP sequence [1] is a typical FFC sequence of succes-
sive different field values which is sketched in Figure 1.
The PP sequence allows one to explore the evolution of
the nuclear magnetisation at low field and to derive the
intrinsic relaxation rates of the studied nuclei and their
lifetimes in their different sites.

Figure 1. Basic cycle of themagnetic field Bv(t) (continuous line)
in a pre-polarised (PP) sequence. The field Bv successively takes
the polarisation value Bp for a polarisation time tp, the relaxation
value Br for an evolution time τ , the signal acquisition value Ba
for an acquisition time ta, and the zero value for a repetition delay
taken to be equal to tp. The nuclear magnetisation Mz(t) (dotted
line) in arbitrary units tends to its instantaneous equilibrium value
χBv(t) so that it evolves as the field Bv(t) with some delay. The
time origin is conveniently taken to be at the start of the evolution
period τ .
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Turn to the description of the PP sequence and to
the related theoretical expression of the evolution of the
magnetisation column during this sequence. The applied
magnetic fieldBv successively takes the polarisation value
Bp, typically between 0.2 and 1T, for a fixed polarisation
duration tp, the relaxation value Br during the variable
evolution time τ , and the acquisition value Ba during the
fixed acquisition time ta taken to be somewhat longer
than the delay s required to ensure field stability. Since
relaxation at field Br is investigated by varying τ , the time
origin is taken to be the start of the evolution period. The
magnetisation column M̃z at time τ + s is calculated by
successive applications of the operators Ep(tp), Er(τ ), and
Ea(s). It reads

M̃z(τ + s) ≡
(
MAz(τ + s)
MBz(τ + s)

)

= Ea(s)Er(τ )Ep(tp)M̃z(ti = −tp). (19)

The observed signal is the free induction decay (FID)
obtained by applying a 90° pulse at the stabilised acquisi-
tion fieldBa after the acquisition delay s. It is proportional
to the total longitudinal magnetisation Mz(τ + s) =
MAz(τ + s) + MBz(τ + s). Finally, after recording the
FID, the applied magnetic field Bv is switched off to zero
during a fixed repetition delay td of the order of the
polarisation duration tp before repetition (cycling) of the
sequence. The repetition delay is chosen so that the mag-
netisations of both sites are zero before the start of a new
cycle. In Figure 1, note that the field Bv displays sudden
jumps at times ti = −tp, ti + tp = 0, ti + tp + τ = τ , and
after the acquisition of the FID, though field ramps occur
in practice. The magnetisations MAz(t), MBz(t) remain
constant across these ideal field jumps.

Assume that the polarisation period tp is longer
than 4max(T1Ap,T1Bp), where T1Ap, T1Bp are the intrin-
sic relaxation times in the polarisation field Bp. Then,
the magnetisation column M̃z reaches its equilibrium
value M̃eq

p = χ̃Bp at the end of the polarisation period
so that M̃z(0) = Ep(tp)M̃z(ti = −tp) = M̃eq

p . Replacing
Ea(s) and Er(τ ) by their affine expressions in Equation
(18) and setting

m̃zr(0) =
(
mAzr(0)
mBzr(0)

)
≡ m̃0

zr =
(
m0

Azr
m0

Bzr

)
= M̃z(0) − χ̃Br

=
(
MAz(0) − χABr
MBz(0) − χBBr

)
, (20)

Equation (19) simplifies to

M̃z(τ + s) = Ea(s)Er(τ )M̃z(0)

= Ea(s){χ̃Br + e−Rrτ [M̃z(0) − χ̃Br]}

= χ̃Ba + e−Rasχ̃(Br − Ba)

+ e−Rase−Rrτ m̃rz(0) (21)

Replacing e−Ras and e−Rrτ by their expressions in
Equation (14) with�±

v (v = r, s) given by Equations (16)
and (17), M̃z(τ + s) can be rewritten as

M̃z(τ + s) ≡
(
MAz(τ + s)
MBz(τ + s)

)
= C̃0(s)

+ e−R+
r τ C̃+(s) + e−R−

r τ C̃−(s) (22)

where the columns C̃0(s), C̃±(s) are defined as

C̃0(s) = χ̃Ba +
[
e−R+

a s
1
Da

(μ−
a χA − χB)

(
1

μ+
a

)

+ e−R−
a s

1
Da

(−μ+
a χA + χB)

(
1

μ−
a

)]
(Br − Ba)

C̃±(s) = c±r [m̃zr(0)]
[
e−R+

a s
1
Da

(μ−
a − μ±

r )

(
1

μ+
a

)

+ e−R−
a s

1
Da

(−μ+
a + μ±

r )

(
1

μ−
a

)]
(23)

with

c+r [m̃zr(0)] = 1
Dr

(μ−
r mAzr(0) − mBzr(0)),

c−r [m̃zr(0)] = 1
Dr

(−μ+
r mAzr(0) + mBzr(0)), (24)

and mAzr(0) = MAz(0) − χABr, mBzr(0) = MBz(0) −
χBBr.

The NMR signal is proportional to

Mz(τ + s) = MAz(τ + s) + MBz(τ + s)

= w0(s) + w+(s)e−R+
r τ + w−(s)e−R−

r τ ,
(25)

where the coefficients w0(s), w±(s) are defined as

w0(s) = χBa +
[
e−R+

a s
κ+
a
Da

(μ−
a χA − χB)

+ e−R−
a s

κ−
a
Da

(−μ+
a χA + χB)

]
(Br − Ba)

w±(s) = c±r [m̃zr(0)]
[
e−R+

a s
κ+
a
Da

(μ−
a − μ±

r )

+ e−R−
a s

κ−
a
Da

(−μ+
a + μ±

r )

]
, (26)

with κ±
a defined by Equation (9) and c±r [m̃zr(0)] given by

Equation (24).
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Turn to the limiting case s = 0. According to Equa-
tions (22) and (23), the column magnetisation becomes

M̃z(τ ) ≡
(
MzA(τ )

MzB(τ )

)
= C̃0(0) + e−R+

r τ C̃+(0)

+ e−R−
r τ C̃−(0), (27)

with the columns

C̃0(0) = χ̃Br, C̃±(0) = c±r [m̃zr(0)]
(

1
μ±
r

)
. (28)

Then, the NMR signal is proportional to

Mz(τ ) = w0(0) + w+(0)e−R+
r τ + w−(0)e−R−

r τ , (29)

with the coefficients

w0(0) = χBr,

w+(0) = κ+
r
Dr

[μ−
r mAzr(0) − mBzr(0)],

w−(0) = κ−
r
Dr

[−μ+
r mAzr(0) + mBzr(0)]. (30)

The expressions of the coefficients w±(0) can be
simplified. Introducing the discriminant �r =√

(R1Br −R1Ar + τ−1
B − τ−1

A )2 + 4τ−1
A τ−1

B , the coefficients
w±(0) in Equation (30) can be rewritten as rational frac-
tions in �r. Replacing �

2
r by its expression in terms of

R1Ar, R1Br, τ−1
A , τ−1

B and using the equality (pAτB)
−1 =

(pBτA)−1 = τ−1
A + τ−1

B , w±(0) simplify to

w±(0) = (Mz(0) − χBr)
1
2

×
[
1 ∓ (1 − 2pB)(R1Br − R1Ar) + τ−1

A + τ−1
B

�r

]
,

(31)

with τ−1
A = τ−1

B pB/(1 − pB). Following Ruggiero et al.
[14], consider the evolution of the magnetisation of the
hydrogen nuclei of water exchanging between intra- (in)
and extra- (ex) cellular compartments for the satura-
tion recovery sequence. Setting in = A, ex = B, vin =
pA, vex = pB, according to Equations (1) and (4) of the
Supporting Information of Ref. [14], the coefficients of
the decreasing exponentials e−R+

r τ and e−R−
r τ with the

shorter (S) and longer (L) apparent relaxation times are

aS = 1
2

[
1 − (1 − 2pB)(R1Br − R1Ar) + τ−1

A + τ−1
B

�r

]
,

(32)
and aL = 1 − aS, respectively. From Equation (31),
w+(0) = (Mz(0) − χBr)aS andw−(0) = (Mz(0) − χBr)

× aL are respectively proportional to aS and aL with
the same proportionality factor Mz(0) − χBr. Thus, the
changes ofMz(τ )with time of the PP sequence and satu-
ration recovery sequence are just proportional at any evo-
lution time τ . For immediate acquisition s = 0, the dif-
ference between the two sequences is the dynamic range
ofMz(τ ) which decreases fromMz(0) to χBr for the PP
sequence and increases from 0 to χBr for the saturation
recovery or non-polarised (NP) [1] sequence. Since the
magnetisationMz(τ ) is proportional to an NMR experi-
mental signal, which is defined up to an arbitrary mul-
tiplicative factor, Mz(0) and χBr should be considered
as additional independent fit parameters when fitting the
model ofMz(τ ) of Equations (29) and (30) to experimen-
tal data, unless there is a relationship between χBr and
Mz(0) due to the experimental conditions.

4. Particular cases

Following McLaughlin and Leigh [20], slow and fast
exchange situations can be defined by comparing the
effective exchange rate 1/τAB, the so-called ‘shutter-
speed’ [16], and the relaxation rate difference�v defined
as

1
τAB

= 1
τA

+ 1
τB

and �v = 1
T1Av

− 1
T1Bv

. (33)

The slow and fast exchange situations are defined by the
inequalities 1/τAB << |�v| and |�v| << 1/τAB, respec-
tively. They depend on the field value Bv because the
intrinsic relaxation rates 1/T1Av , 1/T1Bv vary with the
field.

4.1. Immediate acquisition s = 0

4.1.1. Slow exchange limit in the relaxation field Br:
1/τAB << |�r|
For�r > 0, the fast and slow effective relaxation rates are

R+
r = αAr = 1

T1Ar
+ 1

τA
, R−

r = αBr = 1
T1Br

+ 1
τB

.

(34)
According to Equations (7) and (34), we have μ+

r
∼= 0,

μ−
r

∼= �rτB + τB/τA − 1. The slow exchange condition
leads to |τB/τA − 1| << |�r|τB so that μ−

r
∼= �rτB and

Dr = μ−
r − μ+

r
∼= �rτB. Since �r = |�r|, according to

Equation (24), we have

c+r [m̃zr(0)] = mAzr(0) − mBzr(0)
|�r|τB ,

c−r [m̃zr(0)] = mBzr(0)
|�r|τB . (35)
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Consequently, from Equations (27), (28), and (34), the
magnetisations of sites A and B are

MAz(τ ) = χABr +
[
mAzr(0) − mBzr(0)

|�r|τB

]
e−αArτ

+ mBzr(0)
|�r|τB e−αBrτ

MBz(τ ) = χBBr + mBzr(0)e−αBrτ . (36)

Dropping all the terms with the factors 1/(|�r|τB), these
magnetisations reduce to

MAz(τ ) = χABr + mAzr(0)e−αArτ ,

MBz(τ ) = χBBr + mBzr(0)e−αBrτ (37)

Since 1 << |�r|τB, the total magnetisation derived from
Equation (36) is

Mz(τ ) = MAz(τ ) + MBz(τ ) = χBr

+
[
mAzr(0) − mBzr(0)

|�r|τB

]
e−αArτ

+ mBzr(0)e−αBrτ . (38)

Except if |mAzr(0)| << |mBzr(0)|, for instance, when
pA << pB,Mz(τ ) reduces to the symmetric expression

Mz(τ ) = χBr + mAzr(0)e−αArτ + mBzr(0)e−αBrτ . (39)

When�r < 0, the values of c±r [m̃rz(0)],MAz(τ ),MBz(τ ),
and Mz(τ ) are obtained by permutation of the roles
of A and B. Note that under the additional conditions
1/τA << 1/T1Ar and 1/τB << 1/T1Br , the total mag-
netisation evolves as the sum of the magnetisations of
sites without exchange.

4.1.2. Fast exchange limit in the relaxation field Br:
|�r| << 1/τAB
The fast exchange condition leads to the inequality
�rτB << 1/pA. Setting

1
T1r

= 1
2

(
1

T1Ar
+ 1

T1Br

)
, (40)

the effective relaxation rates are

R+
r = 1

τA
+ 1

τB
+ 1

T1r
+ �r

2
(pB − pA),

R−
r = pA

T1Ar
+ pB

T1Br
. (41)

Then, we have αA − R−
r = �rpB + 1/τA, μ−

r =
�rpBτB + pB/pA ∼= pB/pA, αA − R+

r = �rpA − 1/τB,

μ+
r = �rpAτB − 1 ∼= −1, and Dr ∼= pB/pA + 1 = 1/pA.

From Equation (28), we get

C̃0(0) = χ̃Br,

C̃+(0) = [pBmAzr(0) − pAmBzr(0)]
(

1
−1

)
,

C̃−(0) = [mAzr(0) + mBzr(0)]
(
pA
pB

)
, (42)

so that the site magnetisations are

MAz(τ ) = χABr + [pBmAzr(0) − pAmBzr(0)]e−R+
r τ

+ [mAzr(0) + mBzr(0)]pAe−R−
r τ ,

MBz(τ ) = χBBr − [pBmAzr(0) − pAmBzr(0)]e−R+
r τ

+ [mAzr(0) + mBzr(0)]pBe−R−
r τ , (43)

and the total magnetisation is

Mz(τ ) = χBr + [mAzr(0) + mBzr(0)]e−R−
r τ . (44)

The total magnetisation decays with the slow effective
relaxation rate R−

r given by Equation (41).

4.1.3. Site of scarce nuclei with high intrinsic
relaxation rate
Assume that the population of site B is scarce, i.e. pB <<

1 and pA ∼= 1, with a high relaxation rate 1/T1Br >>

1/T1Ar. For instance, the situation occurs in liquid solu-
tions when A corresponds to the solvent molecules in
the bulk and B to solvent molecules bound to paramag-
netic species or slowly rotatingmacromolecules. Then, as
1/τA << 1/τB, we have αA << αB. Then, the effective
relaxation rates are

R+
r

∼= αBr, R−
r

∼= 1
T1Ar

+ pB
pA

1
T1Br + τB

. (45)

The parameters defining the change-of-basis matri-
ces Pr and P−1

r from Equation (10) with v = r are
μ−
r

∼= pB
pA

T1Br
T1Br+τB

<< 1, μ+
r

∼= −1 − τB
T1Br , Dr = −μ+

r
∼=

1 + τB
T1Br . By neglecting terms in pB/pA = τB/τA and

mBr(0)/mAr(0), from Equations (27) and (28), the site
magnetisations can be approximated as

MAz(τ ) = χABr + mAzr(0)e−R−
r τ ,

MBz(τ ) = 0, (46)

so that the total magnetisation is

Mz(τ ) ∼= MAz(τ ) ∼= χBr + mzr(0)e−R−
r τ , (47)

The Mz(τ ) evolution of Equation (47) with R−
r given

by Equation (45) overlaps the time decays obtained above
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in the slow and fast exchange limits. Indeed, in the slow
exchange case T1Br << τB, R−

r in Equation (45) reduces
to R−

r
∼= 1/T1Ar + (pB/pA)/τB = 1/T1Ar + 1/τA = αAr,

so that Mz(τ ) obeys Equation (39) with negligible site
B magnetisation. In the fast exchange limit τB << T1Br,
R−
r in Equation (45) takes the form R−

r
∼= 1/T1Ar +

(pB/pA)/T1Br ∼= pA/T1Ar + pB/T1Br of Equation (41).

4.2. Delayed acquisition s > 0

4.2.1. Slow exchange limits in the relaxation and
acquisition fieldsBr andBa: 1/τAB<<min(|�r|, |�a|)
Assume that the slow exchange condition 1/τAB <<

|�a| also holds in the acquisition field Ba though the
intrinsic relaxation rates are expected to have values
lower than those in the relaxation field Br < Ba since
relaxation rates usually decrease as field increases. For
�a > 0, as for the relaxation field Br, we have R+

a =
αAa, R−

a = αBa, μ+
a

∼= 0, μ−
a

∼= �aτB, and Da = μ−
a −

μ+
a

∼= �aτB. Then, dropping all the terms in factors
of 1/(|�r|τB) or 1/(|�a|τB), the columns C̃0(s), C̃±(s)
defined by Equations (23) and (24) reduce to

C̃0(s) =
(

χA
χB

)
Ba +

(
e−αAasχA
e−αBasχB

)
(Br − Ba),

C̃+(s) = mAzr(0)
(
e−αAas

0

)
,

C̃−(s) = mBzr(0)
(

0
e−αBas

)
. (48)

According to Equation (22), we have

MAz(τ + s) = χA[Ba + e−αAas(Br − Ba)]

+ mAzr(0)e−αAase−αArτ ,

MBz(τ + s) = χB[Ba + e−αBas(Br − Ba)]

+ mBzr(0)e−αBase−αBrτ , (49)

and the total magnetisation reads

Mz(τ + s) = χBa + (χAe−αAas + χBe−αBas)(Br − Ba)

+ mAzr(0)e−αAase−αArτ

+ mBzr(0)e−αBase−αBrτ . (50)

4.2.2. Slow exchange limit in the relaxation field Br
and fast exchange limit in the acquisition field Ba:
|�a| << 1/τAB << |�r|
This situation may occur since relaxation rates usually
decrease as field increases so that |�a|,which is expected
to be smaller than |�r|, can become much smaller than
1/τAB. For �r > 0, as in Section 4.1.1, we have μ+

r
∼=

0, μ−
r

∼= �rτB and Dr = μ−
r − μ+

r
∼= �rτB. As for the

fast exchange limit in the relaxation field Br studied
in Section 4.1.2, setting 1/T1a = (1/T1Aa + 1/T1Ba)/2,
the effective relaxation rates are R+

a = 1/τA + 1/τB +
1/T1a + (�a/2)(pB − pA), R−

a
∼= pA/T1A + pB/T1B, so

that we have μ−
a

∼= pB/pA, μ+
a

∼= −1, Da ∼= 1/pA. Then,
neglecting the termswith the factors 1/(|�r|τB), the total
magnetisation is given by

Mz(τ + s) = χBa + e−R−
a sχ(Br − Ba)

+ e−R−
a s[mAzr(0)e−αArτ + mBzr(0)e−αBrτ ].

(51)

4.2.3. Fast exchange limits in the relaxation and
acquisition fieldsBr andBa:max(|�r|, |�a|)<<1/τAB
Since relaxation rates usually decrease as field increases,
it is expected that the condition of fast exchange
at field Br implies the analogous condition |�a| =
|1/T1Aa − 1/T1Ba| << 1/τAB of fast exchange at field
Ba > Br. As for the fast exchange limit in the relax-
ation field Br studied in Section 4.1.2, setting 1/T1a =
(1/T1Aa + 1/T1Ba)/2, the effective relaxation rates are
R+
a = 1/τA + 1/τB + 1/T1a + (�a/2)(pB − pA), R−

a
∼=

pA/T1A + pB/T1B, so that we have μ−
a

∼= pB/pA, μ+
a

∼=
−1, Da ∼= 1/pA. The columns C̃0(s), C̃±(s) are readily
obtained from Equations (23) and (24). Using Equation
(22), they yield the site magnetisations

MAz(τ + s) = χABa + [(pBχA − pAχB)e−R+
a s

+ χAe−R−
a s](Br − Ba)

+ [pBmAzr(0) − pAmBzr(0)]e−R+
a se−R+

r τ

+ pA[mAzr(0) + mBzr(0)]e−R−
a se−R−

r τ ,

MBz(τ + s) = χBBa + [−(pBχA − pAχB)e−R+
a s

+ χBe−R−
a s](Br − Ba)

− [pBmAzr(0) − pAmBzr(0)]e−R+
a se−R+

r τ

+ pB[mAzr(0) + mBzr(0)]e−R−
a se−R−

r τ ,
(52)

and the total magnetisation

Mz(τ + s) = χBa + χe−R−
a s(Br − Ba)

+ [mAzr(0) + mBzr(0)]e−R−
a se−R−

r τ . (53)

4.2.4. Site of scarce nuclei with high intrinsic
relaxation rates in the relaxation and acquisition
fields Br and Ba
Under the same conditions as in Section 4.1.3 and the
hypothesis 1/T1Aa << 1/T1Ba, the site magnetisations
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can be approximated as

MAz(τ + s) = χABa + e−R−
a sχA(Br − Ba)

+ mAzr(0)e−R−
a se−R−

r τ ,

MBz(τ + s) = 0, (54)

so that the total magnetisation is

Mz(τ + s) ∼= MAz(τ + s) ∼= χBa + e−R−
a sχ(Br − Ba)

+ mzr(0)e−R−
a se−R−

r τ . (55)

The Mz(τ ) evolution of Equation (55) overlaps time
decays obtained in the slow and fast exchange limits. For
slow exchange in both fields Br and Ba, Equation (55)
becomes Equation (50) where the site B magnetisation
terms inmBzr(0) and χB are neglected. For fast exchange
in both fields Br and Ba, Equation (55) is identical to
Equation (53).

As a rule, in the various cases of slow exchange in the
fields Br and/or Ba, when either the intrinsic relaxation
rate or the exchange rate is dominant for a given site,
note that the α parameter giving the evolution of the site
magnetisation is practically equal to the dominant term.

Finally, our formalism using the general evolution
operator of themagnetisations of the exchanging sites can
be easily applied to any FFC sequence.

5. Relaxometric exploration of systems

Information, that can be deduced from NMR relaxom-
etry, depends on the values of τA, τB, T1Av , T1Bv . Here,
consider typical values of relaxation and residence times
in biological systems. The residence time τi of an intra-
cellular water molecule is known to vary between 0.01 s
for red blood cells to 100 s for xenopus ovocytes [16].
These residence times should be compared with typical
intrinsic relaxation times [14]. Whatever the field, the T1
value is rather long, of the order of 1 s, in the extracellular
medium, but can be considerably reduced by inclusion of
paramagnetic contrast agents [3–5,11,21]. On the other
hand, T1 drops from 1 s to 30ms when the field decreases
from 0.25 T to 0.2mT in mouse leg tissues. It should be
emphasised that the detailed balance principle implies
a decrease of the residence time τe of an extracellular
water molecule with the volume fraction of the extracel-
lular space, so that τe may become an order of magnitude
shorter than τi. Thus, the values of τA, τB, T1Av , T1Bv

range between a few milliseconds and a few seconds.
They can be easily studiedwith standardNMR spectrom-
eters, the pulse sequences of which make it possible to
analyse the evolution of the nuclear magnetisation over
times less than 0.1ms.

The FFC-NMR investigation of dynamical processes
of characteristic times between 1ms and 1 s becomes
problematic when the acquisition delay s is not negligi-
ble with respect to the values of τA, τB, T1Ar, T1Br, T1Aa,
T1Ba. In practice, this delay incorporates the duration of
the field ramp from Br to Ba and the time required to
ensure the Ba stability. It is only of a few milliseconds on
a Stelar FFC relaxometer [1], but can reach a few tens of
milliseconds on an MRI scanner [2].

The natural time unit τu of systems of nuclei undergo-
ing chemical exchange is the shutter time τAB, or better

τu = 2τAB, (56)

which reduces to the common residence time τA = τB
when the sites A and B have equal populations of nuclei.
Therefore, the times τA, τB, T1Ar, T1Br, T1Aa, T1Ba will be
expressed in τu units hereafter.

It is necessary to sample the total longitudinal mag-
netisation Mz(τ ) in the relaxation field Br at both short
and long τ values in order to determine R+

r and R−
r ,

respectively. The application of a 90° pulse to measure
Mz(τ ) is only feasible from the moment when the acqui-
sition field Ba is stable, that is at the end of a delay s > 0
after the fast jump of the field value Bv from Br to a
value near the acquisition value Ba which is reached by
the rapid change of the current through the magnet coil.
Then, the observed signal is proportional to Mz(τ + s)
rather than Mz(τ ), where Mz(τ + s) is given by Equa-
tions (25) and (26), which can be used in the general
case to derive the lifetimes and intrinsic relaxation rates
of the sites at the relaxation field Br. According to these
equations, this derivation is only possible for a short
delay s such as R±

a s is not significantly larger than unity.
Otherwise, the signal vanishes and the relaxation infor-
mation is lost. In particular, a bi-exponential decrease of
the magnetisation can be reduced to an apparent mono-
exponential decay if only one of the two factors w+(s) or
w−(s) keeps a significant value.

Practically, the magnetisation decay with time τ can
be fitted either by a single decreasing exponential or by a
linear combination of two such exponentials correspond-
ing in principle to the most general case of Equation
(25). However, as shown below, the possibility of observ-
ing a bi-exponential decay occurs only in special cases
because either exchange tends to lead to effective mono-
exponential behaviour or the population of one site is
largely dominant. A physico-chemical knowledge of the
system of exchanging nuclei must be invoked to decide
between these two cases. The Mz general expressions of
Equations (25), (29), or its limiting expressions of Equa-
tions (39), (50), (51) should be used for bi-exponential
decay. Simplified mono-exponential expressions, such as
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those of Section 4, can be used for mono-exponential
relaxation.

Quite generally, bi-exponential relaxation is observ-
able if the ratio w+/w− derived from Equation (26) is
neither too small nor too large, typically in the range

0.1 ≤ w+/w− ≤ 10. (57)

Moreover, the effective relaxation rates R+
r and R−

r given
by Equation (6) with v = r should differ significantly in
order to be distinguishable from experimental data. This
is all the more the case with increasing inaccuracy in the
measurements and decreasing number of relaxation peri-
ods τ . Typically, the ratio R+

r /R−
r ≥ 1 should satisfy the

inequality

R+
r /R−

r ≥ 2. (58)

Assume that the relaxation field has a fixed value Br.
We will investigate the domain of the parameters τA,
τB, T1Ar, T1Br for which the total magnetisation has a
bi-exponential decay. Introduce the population ratio

q = pB
pA

= χB

χA
= τB

τA
. (59)

In what follows, the optimal ideal situation of immedi-
ate acquisition s = 0 is considered first. The influence of
delayed acquisition s > 0 is investigated later.

The domain of bi-exponential decay can be
characterised by the only three independent dimension-
less parameters q, T1Ar/τu, T1Br/τu forming a three-
dimensional space. In this space, the boundary surfaces
of the bi-exponential domain, i.e. w+/w− = 0.1 (grey
boundary) and 10 (blue boundary) with s = 0, are shown
in Figure 2 as a function of the decimal logarithms of the
three parameters. The domain is formed by two zones Z1
and Z2 between the grey and blue surfaces. More precise
information is given in Figure 3 where plane sections of
Figure 2 are displayed for different typical fixed q val-
ues. Within each of these plane sections, the frontiers
of the dotted area are the traces of the above bound-
ary surfaces corresponding to the conditions of Equation
(57). Besides, the contours w+/w− = q and 1/q appear
as black and blue curves, respectively. They show that
w+/w− ranges between q and 1/q. They should be con-
sidered as matching the logT1Ar and logT1Br axes when
they are parallel and close to these axes. The areas cor-
responding to the ratio R+

r /R−
r in the intervals [1,2],

[2,4], [4,12], [12,20], [20,∞] are coloured inwhite, green,
yellow, orange and red, respectively.

For q = 1, the bi-exponential behaviour occurs in two
zones symmetric with respect to the principal diagonal
with 0.1 ≤ w+/w− ≤ 10, but not in the fast exchange
area and in a narrow band around T1Br ∼= T1Ar .

Figure 2. Bi-exponential relaxation domain, 0.1 ≤ w+/w− ≤
10, in the space of logarithmic co-ordinates log qwith q = pB/pA,
log(T1Ar/τu), log(T1Br/τu) for immediate signal acquisition s =
0. This domain is defined by its boundaries w+/w− = 0.1 (grey
contour) and w+/w− = 10 (blue contour). The surface contours
R+
r /R−

r = 3 (green surface) and R+
r /R−

r = 20 (red surface) are
also displayed (Colour online, B/W in print).

For q = 0.2, there are two zones of observable bi-
exponential relaxation: a dotted band parallel to the
logT1Ar axis corresponding to T1Br < T1Ar with 0.1 ≤
w+/w− ≤ q = 0.2 and a dotted band parallel to the
logT1Br axis corresponding to T1Br > T1Ar on the left
side of the black curve with 0.1 ≤ w+/w− ≤ 1/q = 5.

For q = 5, the figure is symmetric to the case q =
0.2 with respect to the principal diagonal logT1Ar =
logT1Br. The two zones of observable bi-exponential
relaxation are a dotted band parallel to the logT1Ar axis
corresponding to T1Br < T1Ar with 0.1 ≤ w+/w− ≤ q =
5 and a dotted band parallel to the logT1Br axis corre-
sponding to T1Br > T1Ar below the blue curve with 0.1 ≤
w+/w− ≤ 1/q =0.2.

For q = 0.01, there is no intersection between the dot-
ted and the coloured zones R+

r /R−
r ≥ 2 indicating the

absence of observable bi-exponential relaxation.
For q = 100, the figure is symmetric to the case q =

0.01 with respect to the principal diagonal logT1A =
logT1B. There is no intersection between the dotted and
coloured zones indicating the absence of observable bi-
exponential relaxation.

Turn to an instrument with an acquisition delay s > 0.
For an FFC-MRI scanner with s =20–30ms, consider
residence times τA, τB of the order of 100–200ms. Then, a
typical acquisition delay is s/τu = 0.2. A delay time s > 0
leads to an attenuation of the observed signal. Besides
this attenuation, the mono or bi-exponential decay of the
total magnetisation leads to different qualitative changes.
For the cases 4.2.3 and 4.2.4 of mono-exponential decay
described by Equations (53) and (55), the attenuation
is simply given by the factor e−R−

a s so that the inequal-
ity R−

a s ≤ 1 should hold to keep a reasonable signal to
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Figure 3. Bi-exponential relaxation areas, 0.1 ≤ w+/w− ≤ 10,
(dotted zones) in the space of logarithmic co-ordinates
log(T1Ar/τu), log(T1Br/τu) for immediate signal acquisition
s = 0 and for the values 1, 0.2, 5, 0.01, 100 of the population
ratio q = pB/pA = τB/τA. In the white zone corresponding to
R+
r /R−

r < 2, observation of bi-exponential relaxation is difficult
because of the proximity of R+

r and R−
r . Several intervals of the

ratio R+
r /R−

r (coloured zones) are also displayed. For each q value,
the point of co-ordinates log(τA/τu), log(τB/τu) is represented
by a black circle (Colour online, B/W in print).

noise ratio. The situation is similar for the limiting case
4.2.2 of fast exchange in field Ba and biexponential decay
described by Equation (51). By contrast, for the limiting
case 4.2.1 of slow exchange in field Ba and bi-exponential
decay described by Equation (50), the relative weights of
the two exponentials are differently affected. If R1Aas > 1
or R1Bas > 1, the bi-exponential behaviour may reduce
to a mono-exponential decay.

The loss of information brought by the delay time
s > 0 is illustrated in Figure 4 for q =1, 0.2, and 5,
where the dotted areas correspond to the condition of bi-
exponential decay of Equation (57). Comparing Figure
4(a–c) with the analogous Figure 3(a–c) relative to s = 0,
the areas corresponding to an observable bi-exponential

Figure 4. Bi-exponential relaxation areas, 0.1 ≤ w+/w− ≤ 10,
(dotted zones) in the space of logarithmic co-ordinates
log(T1Ar/τu), log(T1Br/τu) for delayed signal acquisition
s/τu > 0 and for the values 1, 0.2, 5 of the population ratio
q = pB/pA = τB/τA. The white and coloured areas correspond-
ing to value intervals of R+

r /R−
r are defined as in Figure 3. For

each q value, the point of co-ordinateslog(τA/τu), log(τB/τu) is
represented by a black circle (Colour online, B/W in print).

decay of Mz are considerably reduced. For instance,
for q =1, the two symmetric large dotted zones of bi-
exponential decay shrink to two symmetrical narrow
areas. Moreover, the dotted band parallel to the logT1Ar
axis corresponding to T1Br < T1Ar and the dotted band
parallel to the logT1Br axis corresponding toT1Br > T1Ar
have disappeared for q = 0.2 and 5, respectively.

According to extensive previous studies [15], the bi-
exponential situation described by the present formal-
ism is likely to occur frequently in biological tissues
because the extra- and intra-cellular water molecules
have comparable populations. For instance, the extra-
cellular/intra-cellular water ratio q is about 1 for blood
and brain white matter. In many tissues, it ranges from
0.1 (muscle) to 20 (tumour rim). Moreover, by adding
MRI contrast agents at various concentrations into cell
suspensions [14,17], the intrinsic relaxation rate of the
water protons of the extracellular medium can be signifi-
cantly increased, making it possible to extract the intrin-
sic intracellular relaxation rate and the water residence
lifetimes in both intra- and extra-cellular compartments
by applying the present theory if the acquisition delay is
short enough.

The influence of the acquisition delay on the best fit
values of residence times and intrinsic relaxation times is
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illustrated now by simulating a very-low-field FFC-MRI
investigation of a tumour tissue of a mouse leg [14].
Indeed, prototypes of FFC-MRI scanners and FFC-NMR
relaxometers operating down to 2μ T are under devel-
opment within the framework of the European project
IDentIFY. In a tissue, at a given relaxation field Br, a
water molecule basically goes back and forth between
the intracellular (A = in) space with intrinsic longitu-
dinal time T1in,r during a residence time τin and the
extracellular (B = ex) space with intrinsic longitudinal
time T1ex,r during a residence time τex. The popula-
tion fractions are assumed to be pex = 0.2 and pin = 0.8
since pex, denoted as Vex in Ref. [14], ranges between
0.14 and 0.30. Since the intracellular lifetime τin ranges
between 0.48 and 1.44 s, we assume τin = 800ms and
τex = (pex/pin)τin = 200ms. Below 0.2mT, according to
Figure 4 of Ref. [14] and to Fig. S2 of the related Support-
ing Information,T1in,r andT1ex,r are expected to be of the
order of a few tens and a few hundreds ofms, respectively.
For simulation purpose, at Br = 10μ T, we take extrap-
olated values T1in,r = 20ms and T1ex,r = 400ms. The
initial proton magnetisation is assumed to have the equi-
librium value in the polarisation field Bp = 100mT. The
acquisition field is Ba = 60mT, in which the estimates
of the intrinsic relaxation times are T1in,a = 150ms and
T1ex,a = 2000ms. Finally, the acquisition delay has a typ-
ical value s = 20ms as in an MRI scanner built by Lurie
et al. [2,7–9]. Thus, s is not negligible with respect to both
T1in,a and τex.

Applying the PP sequence of Figure 1, the evolu-
tion of the total magnetisation Mz of the water pro-
tons is simulated for the above input parameter val-
ues according to Equation (25) which accounts for the
acquisition delay. The simulated magnetisation values
shown by dots in Figure 5 were obtained for 24 expo-
nentially spaced values of the evolution period τ , rang-
ing between 2 and 700ms. As in a real experiment,
each Mz value is affected by a random error assumed
to be here of ±1%. Then, the best fit independent
parameters pfitex, τ

fit
ex , T

fit
1in,r, T

fit
1ex,r entering the magneti-

sation Mz(τ + s) in Equation (25) are expected to devi-
ate from the ‘true’ input values pex = 0.2, τex = 200ms,
T1in,r = 20ms, T1ex,r = 400ms. Even for the present
small simulated ‘experimental’ uncertainties and despite
the excellent agreement between the continuous fit-
ted function Mz(τ + s) and the simulated data shown
in Figure 5, several best-fit parameters pfitex = 0.235,
τ
fit
ex → ∞, Tfit

1in,r = 19.8ms, Tfit
1ex,r = 146ms are signif-

icantly different from the input values. In particular,
the best-fit residence times have very large values so
that there is practically no water exchange. Now, follow-
ing Ruggiero et al. [14], assume that the extracellular

Figure 5. Typical bi-exponential time decay of the water proton
magnetisation of a tumour tissue of a mouse leg at body temper-
ature in the relaxation field Br = 10μ T of an FFC-MRI scanner.
Water molecule basically goes back and forth between the intra-
cellular space and the extracellular space. The discrete dots are
the simulated data corresponding to Mz(τ + s) in Equation (25)
with realistic exchange and relaxation input parameters (see text)
for an acquisition delay s = 20ms with random magnetisation
errors of±1%. The superimposed continuous curves are theexcel-
lent fits of Mz(τ + s) to the previous simulated data (see text).
The dashed curve is the unsuccessful mono-exponential relax-
ation function fitted to the simulated data. The dotted curve is the
poor fit ofMz(τ ) (s = 0) in Equation (29) to the simulated data.

medium is similar to Matrigel and has the known value
Tfit
1ex,r = 400ms obtained in Matrigel from indepen-

dent FFC-NMR measurements. Under these conditions,
we obtain pfitex = 0.195± 0.01, τ fitex = 209± 18ms, Tfit

1in,r
= 20.3± 0.4ms in very good agreement with the input
values and still an excellent agreement between the
continuous fitted function Mz(τ + s) and the sim-
ulated data as shown in Figure 5. Note that the
simulated data cannot be reproduced by the mono-
exponential fit represented by the dashed curve in
Figure 5.

Turn to the influence of the acquisition delay on the
best-fit parameters. Here, the simulated data are still
those which were previously obtained by using the mag-
netisation Mz(τ + s) of Equation (25) with acquisition
delay s = 20ms, but the fitted function is the magnetisa-
tionMz(τ ) of Equation (29) with immediate acquisition
s = 0. Setting Tfit

1ex,r = 400ms, the best-fit parameters
pfitex = 0.242, τfitex = 1650ms, Tfit

1in,r = 19ms are in strong
disagreement with the input values and lead to a fit-
ted function Mz(τ ), represented in Figure 5 by a dotted
curve which also strongly departs from the simulated
data. For s = 0, even if the amplitude of Mz(τ ) is con-
sidered as an additional adjustable parameter through an
additive term c0, the fit agreement is not improved. This
simple example shows that the influence of the acquisi-
tion delay on the best-fit parameters of themagnetisation
expressions should be carefully examined in systemswith
bi-exponential decay as soon as it somewhat affects the
observed magnetisation.
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Finally, recent theoretical developments in the analysis
of multi-exponential relaxation data [22] should facili-
tate the precise determination of the physico-chemical
parameters involved in systems of nuclear spins under-
going chemical exchange.

6. Conclusion

Wehave presented a general formalism for describing the
evolution of the magnetisations of populations of nuclei
exchanging between two sites after an FFC sequence.
In the case of the PP sequence, we have derived gen-
eral expressions of themagnetisation decay and provided
simple formulas in the slow and fast exchange limits, and
in the case of a site of scarce nuclei with high intrin-
sic relaxation rate. We have shown that a bi-exponential
decay is only observable if both site populations are com-
parable and if the exchange rates are slower than or
comparable to the absolute difference of intrinsic relax-
ation rates. We have given analytic expressions of the
loss of information due to the finite acquisition delay.
We have shown that the acquisition delay can strongly
affect the fitted values of the populations, residence times,
and intrinsic relaxation times of the sites in the case of
bi-exponential relaxation.
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