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Abstract Photo-thermal therapy (PTT) is a minimally-invasive therapy in which photon energy is

converted into heat to kill cancer. Gold nanoparticles absorb light strongly and convert photon

energy into heat quickly and efficiently, thereby making them superior contrast agents for PTT.

This gold nanoparticle-assisted PTT called PPTT has showed great popularity and success in recent

years. The present review starts with the outline of optical properties that base PPTT followed by

description of the synthesis of several gold-based nanoparticles that have been used in PPTT includ-

ing gold nanospheres, gold nanoshells, gold nanorods and gold nanocages. Therapeutic outcomes

will be discussed for each type of gold nanoparticles. Cell death mechanisms and future perspectives

of PPTT will be briefly mentioned at the end.
ª 2011 Alexandria University Faculty of Medicine. Production and hosting by Elsevier B.V. All rights

reserved.
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1. Introduction

Cancer is a disease characterized by uncontrolled growth and
spread of abnormal cells. It is caused by DNA damage which
can be inherited or induced by environmental factors. Cancer

can form tumors on tissues or grow in the body flow system. In
the United States, cancer and heart attack compete in being
the number one killers of humans, with 1,479,350 new cases

of cancer and 562,340 deaths estimated in 2009.1

Current mainstream treatments include surgery, chemo-
therapy or radiation. Surgical extirpation is highly effective

in primary tumors, but it is limited to surgically recognizable
and accessible tumors and thus cancer cells may not be com-
pletely removed. Chemotherapy is the use of chemical drugs

to fight cancer. The systemically administrated drugs circulate
in the body to kill cells that divide rapidly, especially cancer
cells. It commonly has significant side effects due to the drug
toxicity to normal cells and is subject to the development of

resistance by the cancer cells. Radiation, the use of high energy
ionization particles (X-rays, gamma rays or electrons) to dam-
age cell and tissue at a molecular level, is often used as a com-

plementary approach, to eradicate remaining cancer cells after
surgery. It can cause damage to the healthy tissues close to the
cancer cells or in the path of the radiation beam.

Photo-thermal therapy (PTT), a minimally-invasive thera-
peutic strategy in which photon energy is converted into heat
sufficient to destroy cancer cells, has been used to treat cancer
to some degree in the past few decades.2 Heating sources

including near infrared or visible light, radiofrequency waves,
microwaves, and ultrasound waves are used to induce moder-
ate temperature rise in a specific target region to destroy the

cancer cells, clinically termed as hyperthermia. Due to low
absorption efficiency of the natural tissue absorbents, synthetic
organic dye molecules, such as indocyanine green, naphthalo-

cyanines and porphyrins coordinated with transition metals
are externally administrated into the tumor sites to enhance
the photothermal effects. As the dye molecules photobleach

quickly, PTT has not been widely used in clinical settings.
Recently PTT has attracted new interest in the battle

against cancer because of the generation of a novel class of
photothermally sensitized agents – nanoscale gold. Gold metal

at the nano-scale (billionths of a meter) shows superior light
absorption efficiency over conventional dye molecules. Upon
irradiation to electromagnetic radiation, strong surface fields

are induced due to the coherent excitation of the electrons in
the nanogold. The rapid relaxation of these excited electrons
produces strong localized heat capable of destroying surrounding

targeted cancer cells via hyperthermia or other thermal-based
effects. This photothermal therapy induced by plasmonic
gold nanoparticles is called plasmonic photothermal therapy

(PPTT).3 In this chapter, we will give an overview of the gold
nanotechnology-driven photothermal cancer therapy including
a discussion of the optical properties, synthesis, therapeutic
outcomes and insights into cell death mechanisms.

2. Optical properties of gold nanoparticles

2.1. Localized surface plasmon resonance

Compared to non-metal nanoparticles, plasmonic nanoparti-
cles hold a unique photophysical phenomenon, called localized
surface plasmon resonance (LSPR) (Fig. 1A).4 This LSPR is

the result of the interaction of nanoparticles with light of res-
onant frequency. As a result of the absorption of resonant
light, the free electrons of the metal exhibit a collective coher-

ent oscillation around the nanoparticle surface. This coherent
oscillation induced as a result of the absorption of light in res-
onance with the incident light is called the localized surface
plasmon resonance. This plasmon resonance leads to a strong

extinction band around 520 nm in the visible spectral region,
which is the reason for the brilliant red color of the nanogold
solution. Back in 1908 Gustav Mie5 theoretically explained this

phenomenon by solving Maxwell equations. For nanoparticles
much smaller than the wavelength of the light (�25 nm), the
dipole oscillation is dominant and the extinction cross section

is simplified to the following well known expression (Eq. (1)).

Cext ¼
24p2R2e3=2m

k
ei

ðer þ 2emÞ2 þ e2i
ð1Þ

where Cext is the extinction cross section, R is the radius of the
particle, k is the wavelength of the incident light, em is the

dielectric constant of the surrounding medium, e is the com-
plex dielectric constant of the metal given by e =



Figure 1 Schematic illustration of localized surface plasmon resonance (A) and calculated absorption and scattering properties of gold

nanoparticles in different sizes (B). The electric field of incident light induces coherent collective oscillation of conduction band electrons

with respect to the positively charged metallic core. This dipolar oscillation is resonant with the incoming light at a specific frequency that

depends on particle size and shape. The absorption and scattering efficiencies depend on the size of the nanoparticles. Increasing

nanoparticle size leads to an increase of light scattering contribution. (A) Reproduced with permission from Huang et al.4; (B) reproduced

with permission from Jain et al.6
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er(x) + iei(x). The real part of the dielectric constant of the
metal determines the SPR position and the imaginary part

determines the bandwidth. The SPR resonance occurs when
er(x) = �2em. For larger nanoparticles, full Mie theory has
to be used to explain the LSPR considering all multiple elec-

tron oscillations.
The LSPR is dependent on factors affecting the electron

charge density on the particle surface, such as the particle size,

shape, structure, and the dielectric properties of the metal and
the surrounding medium. Spherical gold, silver, and copper
nanoparticles have strong SPR band in the visible region, while

other metals show broad and weak bands in the UV region.
Hollow or core-shell structures show a very red shifted band
of the LSPR wavelength compared to the solid structures.
Anisotropic nanoparticles, such as rods, triangles, and

branched structures also exhibit a red shifted SPR band com-
pared to their spherical analogs.

2.2. Optical absorption and scattering

The total loss of light interacting with plasmonic nanoparti-

cles, i.e., the extinction, is a sum of absorption and scattering.
Light absorption results when the photon energy is dissipated
due to inelastic processes. Light scattering occurs when the
photon energy causes electron oscillations in the matter which

emit photons in the form of scattered light at the same fre-
quency as the incident light. The contribution of these two
parts to the total extinction can be calculated by using Mie the-

ory or discrete dipole approximation (DDA). Fig. 1B shows
calculated absorption, scattering and extinction efficiencies of
gold nanoparticles in different sizes by using the full Mie the-
ory.6 For small nanoparticles, the extinction is dominated by
absorption. Increasing nanoparticle size significantly increases

light scattering.
In noble metal nanoparticles, both the absorption and scat-

tering efficiencies are strongly enhanced due to the LSPR. The

light absorption or scattering of gold nanoparticles is at least
1000 times stronger than the absorption or emission of any or-
ganic dye molecules. This makes gold nanoparticles very

promising in a wide range of applications including sensing,
imaging and photo-thermal therapy.

2.3. Tuning LSPR to NIR region

By changing the structure and shape, the LSPR frequency of
gold nanoparticles can be tuned to near infrared (NIR) region,

where light penetration in tissue is optimal. For this reason,
NIR-absorbing gold-based nanoparticles have received consid-
erable attention in PPTT.

Currently there are three major types of NIR-absorbing
gold-based nanoparticles that are useful in PPTT (Fig. 2):
gold nanoshell (Au NS),7 gold nanorod (Au NRs)4 and gold
nanocage (Au NCs).8 Au NS is composed of a spherical silica

core (100–200 nm in diameter) and a thin layer of gold (5–
20 nm). Its NIR absorption is firstly predicted by Neeves
and Birnboim in 19899 and then experimentally validated

by Halas and co-workers in 1998.10 This two concentric
spherical structures shows red-shifted absorption due to the
coupling between the inner and outer shell surface

plasmons.11 Decreasing the ratio of shell thickness to core ra-
dius largely red shifts the LSPR wavelength from the visible
to NIR region. As shown in Fig. 2, the LSPR wavelength



Figure 2 NIR-absorbing Au NPs in PPTT of cancer. Left column: Au NSs. Reproduced with permission from Loo et al.7; Middle

column: Au NRs. Reproduced with permission from Huang et al.4; Right column: Au NCs. Reproduced with permission from Hu et al.8;

First row: schematic illustration of the structures of Au NSs, NRs and NCs; Second row: TEM images; Third row: surface plasmon

extinction spectra. The surface plasmon band is tuned to the NIR region by changing the shell to core ratio, the aspect ratio and the

particle size, wall thickness and wall porosity for Au NSs, NRs and NCs, respectively.
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shifts from 700 to 1000 nm when the shell thickness decreases

from 20 to 5 nm. The LSPR frequency decreases near-expo-
nentially with decrease in the shell thickness-to-core radius
ratio, with a trend that is universal and independent of the
nanoshell size, core material, shell metal, or surrounding

medium.12

Developed by Wang,13 Murphy14 and El-Sayed15 groups,
Au NR has gained considerable popularity in various applica-

tions due to their precisely and readily controlled NIR optical
properties. The cylinder shaped Au NR shows two absorption
bands: a strong absorption band in the NIR region due to the

electron oscillation along the longitudinal direction and a weak
band in the visible region around 520 nm due to electron oscil-
lation along the transverse direction. This optical behavior has

been well explained using Gans theory.16 The transverse band
is insensitive to the aspect ratio (length/width) of the rod. The
longitudinal band wavelength greatly red shifts from visible to
NIR region in a linear relationship with increased intensity

when the aspect ratio increases.17 The LSPR wavelength is
red shifted from 640 to 1050 nm by simply changing the aspect
ratio from 2.4 to 6.6 (Fig. 2). Compared to nanoshells, DDA
calculation shows that nanorods show 2–3 times stronger

absorption efficiency.8 Their physical dimension is also much
smaller than the nanoshells.

Compared to Au NS and NR, Au NC is developed as a
NIR-absorbing gold nanostructure by Xia group.18 It is com-

posed of a thin and porous gold wall with hollow interior.
Changing the wall thickness, the hole size and porosity can
tune the LSPR wavelength from the visible to the NIR region.

This is experimentally controlled by the amount of auric acid
that galvanically replaces silver cubes to obtain the nanocag-
es.18 Increasing the amount of the auric acid red shifts the

LSPR (Fig 2). DDA calculation shows a 2 nm decreasing of
the wall thickness cause a red shift of the LSPR wavelength
by about 100 nm.19 Increasing the polarity does not influence

the position of the LSPR band, but significantly decreases
the intensity in a linear way.

2.4. Photo-thermal properties

The PPTT rationale is that plasmonic nanoparticles have use-
ful non-radiative photo-thermal properties. The absorbed
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light is converted into heat through a series of photo-physical

processes.20 Firstly, the absorbed light is quickly converted to
heat to form a hot metallic lattice by two processes: electron-
electron relaxation occurring on femto-seconds and electron-
phonon relaxation occurring on the picoseconds. Hot electron

temperatures of several thousand degree kelvin are easily
reached in the nanoparticles even with laser excitation powers
as low as 100 nJ and the lattice temperature on the order of a

few tens of degrees can be achieved. The lattice then cools off
by phonon–phonon relaxation. It means the heat is dissi-
pated from the particles into the surrounding environment

to heat up the species surrounding the nanoparticles. When
the nanoparticles are attached to cancer cells, the heat can
change the function of the cells and even destroy them

depending on the amount of heat generated by the hot
nanoparticles.

Such fast energy conversion and dissipation can be readily
used for the heating of the local environment by using light

radiation with a frequency strongly overlapping with the
nanoparticle SPR absorption band. For sufficient heating,
relatively modest continuous laser light is generally used.

Depending on the LSPR wavelength, the laser light is either
in the visible region using spherical gold nanoparticles or in
the near infrared (NIR) region using NIR-absorbing gold-

based nanoparticles. For in vivo applications, NIR PPTT is
favorable as the NIR light penetrates tissue optimally due
to minimal absorption by the major absorbents of water
and hemoglobin in the tissue. Thus Au NSs, NRs, and

NCs have been actively investigated for their potentials in
PPTT of cancer.
3. Nanoparticle synthesis

3.1. Gold nanospheres

Modern synthesis of visible-absorbing gold nanoparticles

dates back to 1857 when Faraday made the colloid gold by
reducing auric acid with phosphors.21 Current popular meth-
od for making colloid gold was developed by Turkevich

et al. in 195122 and later modified by Frens in 1973,23 named
as citrate reduction method. In this method, sodium citrate re-
duces auric acid at 100 �C to form nanoparticles. The nega-
tively charged citrate also binds to the nanoparticles and

stabilizes them in the solution phase. Changing the amount
of sodium citrate makes nanoparticles of different sizes from
a few to over a hundred nanometers. Some other methods in-

clude Schmid method,24 Brust–Schiffrin method25 and seed-
mediated growth method.26

3.2. Gold nanoshells

Au NSs were developed by Halas group in 1997.10 Silica

nanoparticles around 120 nm in diameter are firstly prepared
by Stöber method in which tetraethyl orthosilicate is reduced
by ammonium hydroxide. The nanoparticles are laminated
with amino-propyltriethoxysilane and then coated with small

gold nanoparticles by covalent interaction. A uniform shell
of gold is formed by depositing more gold onto the gold
seed layer in the presence of auric acid and reducing agent

of sodium borate. The concentration of auric acid deter-
mines the shell thickness. It is noticed that precise control-
ling of the metallic shell thickness, coverage and

smoothness is challenged because of the instability of gold
cluster and the difficulty of deposition of metal atoms onto
the silica core. Nonetheless, this method is regarded as the
general way to synthesize dielectric metal nanoshell

structures.

3.3. Gold nanorods

High yields of gold nanorods suspension were firstly prepared
by the electrochemical method developed by Wang and co-

workers in 1990s.13 A gold metal plate anode, a platinum plate
cathode and a silver plate are immersed in an electrolytic solu-
tion consisting of a rod inducing CTAB surfactant and a co-

surfactant TOAB (tetradodecylammonium bromide). The gold
metal is electrolyzed to generate gold ions which then migrate
to the cathode where they are reduced to gold atoms to form
nanorods. The aspect ratio of the nanorods is controlled by

the concentration and the release rate of silver ions produced
from the redox reaction between gold ion and silver plate. La-
ter, a seed mediated growth method was developed by Murphy

group14 and later modified by El-Sayed group.15 This method
has turned out to be the most popular method for making col-
loidal gold nanorods on account of their simplicity of the pro-

cedure, high quality and yield of nanorods, ease of particle size
controlling and flexibility for structural modifications. This
method involves two steps: In the first step, 2–5 nm gold nan-
ospheres are prepared as seed NPs by the reduction of auric

acid with sodium borate. In the second step, a bulk gold solu-
tion in the presence of CTAB surfactant and silver ions is re-
duced to Au+1 solution by ascorbic acid. To this growth

solution, the seed NPs are introduced and NRs are formed
within 2 h by anisotropic growth from the sphere NPs. The
nanorods are capped by the CTAB molecules in a bilayer

structure. The aspect ratio is controlled by the amount of silver
ions with increasing amount of silver for higher aspect ratios.
The use of a co-surfactant BDAC (benzyldimethylhexadecy-

lammonium) facilitates the growth of nanorods of higher as-
pect ratios.

One other method for making monodisperse Au NRs is the
earlier reported hard template method,27 in which nanorods

are grown in a nanoporous solid template and then dispersed
in an aqueous or organic solvent to form nanorods solution.
Photochemical reduction,28 X-ray irradiation,29 proton beam

irradiation,30 microwave reduction31 and solvothermal reduc-
tion32can also make nanorods with good quality.

3.4. Gold nanocages

Au NCs are generally synthesized by a galvanic replacement

reaction developed by Xia group in 2002.18 Typically, silver
nanocubes are prepared as a template by reducing silver nitrate
with polyvinyl pyrolidone (PVP) at an elevated temperature.
PVP also serves as capping agents and the reaction solvent.

The size of the silver nanocubes is controlled by the amount
of silver nitrate, with increased amount of silver ions for nano-
cages of larger sizes. To the purified silver nanocube solution,

hydrogen tetrachloroaurate was injected at the boiling temper-
ature. The auric acid is reduced to gold atoms by the silver
nanoparticles due to higher standard reduction potential of

gold than silver. The gold atoms epitaxially nucleate on the sil-
ver nanocube and then grow into a thin shell around the silver
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template. The fact that it takes three silver atoms to reduce one

gold atom creates the hole in the cubes as the wall of the empty
cube becomes gold leading to a hollow structure having gold
walls. With holes in them the wall thickness and the size of
holes of the Au NCs are controlled by the amount of gold salt.

Increasing the amount of gold salt produces nanocages with
thinner shells and porous walls.
4. Therapeutic applications

4.1. Gold nanospheres

PPTT involving contrast agents of gold-based nanoparticles

was reported for the first time by Lin and co-workers in
2003 using gold nanospheres in combination with a nanosec-
ond visible pulsed laser.33 Anti-CD8 immunogold nanoparti-

cles specifically bound to T lymphocyte cells and subsequent
irradiation with laser pulses lead to destruction of over 90%.
Of the cells, visible PPTT of cancer cells using gold nanoparti-
cles and pulsed laser has been extensively investigated later by

Zharov et al.34 It was found that cell death could be induced by
a single nanosecond pulse at an energy of 2–3 J/cm2 with 10–15
gold nanoparticles per cell. Visible PPTT of cancer cells using

gold nanoparticles was later been studied by El-Sayed group
using a continuous argon ion laser.35 By using a numerical
model, the group found that a temperature around 75 �C
was reached in the cells for cell death by the laser heating of
gold nanoparticles on the cells.36 Visible PPTT can be used
for fundamental in vitro studies, but its practical applications

in in vivo are limited as visible light does not penetrate tissue
optimally. For in vivo and clinical therapy of tumors under
skin and deeply seated within tissue, NIR light is required be-
cause of its deep penetration due to minimal absorption of the

hemoglobin and water molecules in tissues in this spectral re-
gion. Thus, NIR-absorbing plasmonic nanoparticles are fa-
vored in PPTT of cancer.

4.2. Gold nanoshells

NIR PPTT of cancer using gold-based nanoparticles was
firstly developed by Halas and co-workers using Au NSs in
2003.37 Au NSs were prepared and stabilized with poly (ethyl-
Figure 3 NIR PPTT using Au NSs. (A) In vitro PPTT; (B) in vi

treatment; Dark: untreated controls. While laser itself does not affect t

the laser irradiation area at a laser intensity of 37 W/cm2. Tumors are

shame and control groups. (A) Reproduced with permission from Hir
ene) glycol (PEG). In the presence of PEG-coated Au NSs,

breast cancer cells were destroyed after exposure to cw NIR
light at an intensity of 35 w/cm2 for 7 min (Fig. 3A). Using a
mouse model, they demonstrated that breast cancer xeno-
grafted tumors were destroyed after Au NSs intratumoral

injection and NIR laser irradiation for a few minutes
(Fig. 3B). MRI showed a temperature rise of 37 �C. Subse-
quent studies showed complete tumor eradication at 10 days

post-treatment.38 They also showed that 55% of the mice
receiving NS therapy/laser treatment experienced complete tu-
mor regression without regrowth after 90 days.39 The NSs ex-

hibit a blood half-life time about 4 h and are dominantly
accumulated in mouse liver and spleen. They also found that
the nanoparticles started to clear out of body after 6 months.

Their other research on NIR PPTT using Au NSs can be found
in their recent review.40

4.3. Gold nanorods

NIR PPTT using gold nanorods was firstly demonstrated by
El-Sayed group in 2006 through in vitro studies.41 The NRs

are functionalized with anti-EGFR antibodies for specific
binding to EGFR-positive human oral cancer cells. After
exposure to a beam of focused NIR light, the cancer cells were

destroyed without affecting the normal cells (Fig. 4A and B).
The method has also been demonstrated on some other cell
types by other researchers.42,43 Two years later, the group
demonstrated the feasibility of PEGylated Au NRs for tumor

photothermal ablation using a human oral cancer xenograft
mouse model.44 NIR imaging located the tumors due to the
light absorption of the NRs that were treated either intrave-

nously or intratumorally (Fig. 4C). Tumor growth was signif-
icantly inhibited (p < 0.05) after exposure to a low dose of
NIR light (1–2 W/cm2, 10–15 min) for the NR-treated groups

(Fig. 4D). Thermal transient measurements showed that the
temperature increased by over 20� is sufficient to induce tumor
tissue destruction. Very recently, Bhatia and co-workers

showed that single intravenous injection of PEGylated Au
NRs enables complete eradication of all irradiated tumors in
mice without regrowth over 50 days.45 They also conducted a
quantitative comparison of the photothermal effects between

Au NSs and NRs. Their results show that NRs generate heat
over six times faster than NSs per gram of gold. They have a
vo tumor PPTT. Blank: NSs and laser treatment; Gray: shame

he cell viability, the treatment of Au NSs induces cell death within

completely ablated for the NSs and laser treated groups, but not

sch et al.37; (B) reproduced with permission from O’Neal et al.38



Figure 4 NIR PPTT using Au NRs. (A and B) Selective in vitro photothermal cancer therapy; (C and D) in vivo NIR tumor imaging

and PPTT therapy. At 10 W/cm2, the cancer cells within the laser spot undergo irreversible photodestruction (A) while the normal cells are

not affected (B). The tumors are identified by a black spot under NIR illumination due to the light absorption by the nanorods that are

administrated into the tumor either intratumorally or intravenously. NIR irradiation of the nanorod treated tumors leads to significant

inhibition of the tumor growth rate compared to control tumors. (A and B) Reproduced with permission from Huang et al.41; (C and D)

reprinted with permission from Dickerson et al.44
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blood half life time around 17 h, which is superior long com-
pared to Au NSs.

4.4. Gold nanocages

In 2007, Xia and co-workers demonstrated the feasibility of

Au NCs for NIR PPTT in vitro (Fig. 5A and B).46 The NCs
ere conjugated with anti-HER2 antibodies to target HER2
on breast cancer cells. Cell destruction was observed at a laser

power density of 1.5–4.7 W/cm2. They also found that the cell
circulation damage area is linearly dependent on the laser
power density. The cell death efficiency increases with increas-

ing laser exposure time until steady state at 5 min.47 The
in vivo nanoparticle active targeting and biodistribution of
Au NCs have been considerably studied by Li and co-work-

ers48 using anti-EGFR conjugated Au NCs and 111. In-label-
ing, they show that the NCs reach tumor at 6.8% ID/g.
Targeted PPTT of melanoma xenografted tumors on mice
was studied by the same group using the ligand of a-melano-
cyte-stimulating hormone (MSH) analog that target melano-
cortin type-1receptor overexpressed in melanoma.49 The

tumor affinity of targeted NCs is about three times of that
of the non-targeted ones. Photothermal studies show that tu-
mor uptake of [18F] fluorodeoxyglucose, indicating reduced
metabolic activity after laser treatment. In contrast, there are

no significant changes on the metabolic activity of tumors
for non-targeted and saline ones. Histologic examination also
shows that 66% of tumor tissues show necrotic response for

targeted NCs but only 7.9% were observed for the tumors
treated with the non-targeted NCs and saline solution
(Fig. 5C). These quantitative studies are very important on

the evaluation of PPTT outcomes.

5. Cell death mechanisms

Photothermally induced cell death can take place via apoptosis
or necrosis depending on the laser dosage, type and irradiation

time. It also depends on the subcellular location of the



Figure 5 NIR PPTT using Au NCs. (A and B) In vitro PPTT; (C) in vivo tumor tissue destruction assessed by histologic staining. Only

for the active targeted and laser treated tumors, tumor cells show extensive pyknosis (arrows), karyolysis (arrowheads), cytoplasmic

acidophilia, and degradation of the extracellular matrix of the tumor (asterisks). (A and B) Reproduced with permission from Chen

et al.46; (C) reproduced with permission from Lu et al.49
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nanoparticles. Cell death mechanisms have been explored to
some degree. Under pulsed laser irradiation studied by Zharov
and co-workers,50 laser pulses could induce cell damage via a

series of photothermal and accompanied phenomena; denatur-
ation or breakdown of proteins, cell cavitation, cellular struc-
ture rupturing, evaporation of cellular liquid and bubble

formation by shock waves due to particle thermal expansion,
evaporation, optical breakdown or plasma generation of Au
NPs. The photothermolysis mechanism of NIR PPTT with
cw lasers and Au NRs has been elucidated in some degree

by Wei and Cheng groups.43 Their studies show that the laser
energy used to destroy the cells when the nanoparticles are lo-
cated on the cytoplasm membrane is 10 times lower than that

required when the nanoparticles are internalized inside the
cytoplasm. The energy required for a fs laser is 10 fold lower
than that when a cw laser is used. Based on these results and

staining of cell membrane integrity, cell viability and actin fil-
aments, they found that cell death was initiated by the disrup-
tion of the plasma membrane. Subsequent influx of calcium

ions induces membrane blebbing and damage of actin fila-
ments. Obviously, apoptosis is the route of cell destruction
by the laser heating of gold nanoparticles.

6. Future perpective

As nanotechnologists, we have devised methods to destroy

cancer cells and thus stop cancer as a disease. In order to
use a new medicine, we must make sure that it does not have
side harmful effects. In most new medicines, this can take a

long time. If the harmful effects can be eliminated using animal
trials, the new medicine can be approved for human trials and
if it works safely in humans, the new medicine can be ap-
proved. This is where the use of gold nanotechnology is at

the moment. A great amount of detailed animal experiments
are now going on at the Egyptian National Research Center
and in the USA between the Winship Cancer of Emory Uni-

versity and our Nano-Technology group at Georgia Institute
of Technology aimed at determining and trying to solve the
toxicity of gold nanoparticles when injected in animals. If this

can be accomplished, we hope to go for human trials. This will
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take a long time that cannot be predicted as it depends on the

results of a great deal of research.
References

1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al.. Cancer

J Clin 2009;59:225.

2. Brunetaud JM, Mordon S, Maunoury V, Beacco C. Lasers Med

Sci 1995;10:3–8.

3. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Lasers Med Sci

2008;23:217.

4. Huang X, Neretina S, El-Sayed MA. Adv Mater 2009;21:4880.

5. Mie G. Ann Phys 1908;25:377.

6. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. J Phys Chem B

2006;110:7238.

7. Loo CH, Lin A, Hirsch LR, Lee MH, Barton J, Halas NJ, et al..

Technol Cancer Res Treat 2004;3:33.

8. Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, et al.. Chem Soc

Rev 2006;35:1084.

9. Neeves AE, Birnboim MH. J Opt Soc Am B 1989;6:787.

10. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ. Chem Phys

Lett 1998;288:243.

11. Prodan E, Radloff C, Halas NJ, Nordlander P. Science

2003;302:419.

12. Jain PK, El-Sayed MA. Nano Lett 2007;7:2854.

13. Yu YY, Chang SS, Lee CL, Wang CRC. J Phys Chem B

1997;101:6661.

14. Jana NR, Gearheart L, Murphy CJ. Adv Mater 2001;13:1389.

15. Nikoobakht B, El-Sayed MA. Chem Mater 2003;15:1957.

16. Gans R. Ann Phys 1915;47:270.

17. Link S, Mohamed MB, El-Sayed MA. J Phys Chem B

1999;103:3073.

18. Sun Y, Mayers BT, Xia Y. Nano Lett 2002;2:481.

19. Chen J, Wiley B, Li ZY, Campbell D, Saeki F, Cang H, et al.. Adv

Mater 2005;17:2255.

20. Link S, El-Sayed MA. Ann Rev Phys Chem 2003;54:331.

21. Faraday M. Philos Trans 1857;147:145.

22. Turkevich J, Stvenson PC, Hillier J. Disc Farad Soc 1951;11:55.

23. Frens G. Nat Phys Sci 1973;241:20.

24. Schmid G, Boese R, Pfeil R, Bandermann F, Meyer S, Calis

GHM, et al.. Chem Ber 1981;114:3634.

25. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman RJ. J Chem

Soc Chem Commun 1994;801.

26. Jana NR, Gearheart L, Murphy C. J Chem Mater 2001;13:2313.
27. Foss Jr CA, Hornyak GL, Tierney MJ, Martin CR. J Phys Chem

1992;96:9001.

28. Torigoe K, Esumi K. Langmuir 1992;8:59.

29. Xin F, Gui Y, Zheng X. Wuji Huaxue Xuebao 2005;21:822.

30. Kim YJ, Cho G, Song JH. Nuclear Instrum Meth Phys Res B

2006;246:351.

31. Liu FK, Chang YC, Ko FH, Chu TC. Mater Lett 2003;58:373.

32. Cao J, Ma X, Zheng M, Liu J, Ji H. Chem Lett 2005;34:730.

33. Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP. Biophys J

2003;84:4023.

34. Zharov VP, Kim JW, Curiel DT, Everts M. Nanomed Nanotechnol

Biol Med 2005;1:326.

35. El-Sayed IH, Huang X, El-Sayed MA. Cancer Lett 2006;239:

129.

36. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Photochem

Photobiol 2006;82:412.

37. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Price RE,

Hazle JD, et al.. Proc Natl Acad Sci USA 2003;100:13549.

38. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Cancer

Lett 2004;209:171.

39. James WD, Hirsch LR, West JL, O’Neal PD, Payne JD. J

Radioanal Nucl Chem 2007;271:455.

40. Lal S, Clare SE, Halas NJ. Acc Chem Res 2008;41:1842.

41. Huang X, El-Sayed IH, Qian W, El-Sayed MA. J Am Chem Soc

2006;128:2115.

42. Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S. Chem

Lett 2006;35:500.

43. Tong L, Zhao Y, Huff TB, Hansen MN, Wei A, Cheng JX. Adv

Mater 2007;19:3136.

44. Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H,

Pushpanketh S, et al.. Cancer Lett 2008;269:57.

45. von Maltzahn G, Park JH, Agrawal A, Bandaru NK, Das SK,

Sailor MJ, et al.. Cancer Res 2009;69:3892.

46. Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, et al.. Nano

Lett 2007;7:1318.

47. Au L, Zheng D, Zhou F, Li ZY, Li X, Xia Y. ACS Nano

2008;2:1645.

48. Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM,

et al.. Mol Cancer Ther 2008;7:1730.

49. Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang JZ, et al..

Clin Cancer Res 2009;15:876.

50. Pustovalov VK, Smetannikov AS, Zharov VP. Laser Phys Lett

2008;1.


	Plasmonic photo-thermal therapy (PPTT)
	1 Introduction
	2 Optical properties of gold nanoparticles
	2.1 Localized surface plasmon resonance
	2.2 Optical absorption and scattering
	2.3 Tuning LSPR to NIR region
	2.4 Photo-thermal properties

	3 Nanoparticle synthesis
	3.1 Gold nanospheres
	3.2 Gold nanoshells
	3.3 Gold nanorods
	3.4 Gold nanocages

	4 Therapeutic applications
	4.1 Gold nanospheres
	4.2 Gold nanoshells
	4.3 Gold nanorods
	4.4 Gold nanocages

	5 Cell death mechanisms
	6 Future perpective
	References


