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ABSTRACT
A Gumbel mixture distribution is proposed for modelling extreme events from two different
mechanisms: one phenomenon occurring annually and one occurring infrequently. A new Monte
Carlo simulation procedure is presented and used to assess the consequence of fitting traditional
Gumbel or GEV models to annual maximum series originating from two different populations.
The results show that mixture models are preferred to single-population models when the two
populations are very different. The Gumbel mixture model was applied to annual maximum 24-
hour rainfall data from 64 South Korean raingauges, split into events generated by typhoon and
non-typhoon rainfall. The results show that the use of a mixture model provides a more accurate
description of the observed data than the Gumbel distribution, but is comparable to the GEV
model. The theoretical and practical results highlight the need for more robust methods for
identifying the underlying populations before mixture models can be recommended.
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1 Introduction

Flood frequency analysis is typically conducted by fitting
a two-, three- or four-parameter statistical distribution to
an annual maximum series of rainfall or flow events from
which a design event of a return period T is estimated as
the 1� 1=Tð Þ quantile in the chosen distribution.
However, progress in hydrological science, data availabil-
ity and statistical methods, as well as the emergence of
new challenges related to environmental change and the
prediction of very extreme events, has prompted some
researchers to advocate a break from traditional methods
as outlined above and a move towards a process-based
approach to design flood estimation (e.g. Alila and
Mtiraoui, 2002, Merz and Blöschl 2008, Barth et al.
2017). This leads naturally to the exploration of statistical
models representing data originating from different
underlying processes. Indeed, there aremultiple examples
in the literature of mixture-type distributions being used
for frequency analysis of observed series of hydrological
extremes. For example, Waylen andWoo (1982) used the
product of two Gumbel distributions to represent annual
maximum floods originating from a mixture of rainfall
and snowmelt events. Rossi et al. (1984) presented the
two-component extreme value (TCEV) distribution to
describe highly skewed flood data from 39 Italian catch-
ments. Calenda et al. (2009) proposed a mixture model
for an annual maximum series on the River Tiber in

Rome consisting of a normal distribution for ordinary
floods and a Gumbel distribution for “exceptional
floods”, classifying the two types of events based on an
event magnitude threshold value. Villarini and Smith
(2010) argued that floods in the eastern United States
arise from distinctly different weather systems influen-
cing the tail behaviour of the observed series. Murphy
(2001) analysed streamflow data from Massachusetts,
USA, and defined three distinct types of events: ordinary,
tropical cyclone and ice-jam release. He found that the
existence of the different types of floods caused lack of fit
when applying the standard flood frequency estimation
technique described in Bulletin 17B. Yoon et al. (2013)
used a mixture model to represent annual maximum
rainfall events in South Korea, consisting of a mixture
of events generated by typhoon and non-typhoon
weather systems. A common theme in all these studies
is that they advocate the use of mixture distributions
based on case studies of observed records and hydro-
meteorological considerations.

However, mixture models typically involve the esti-
mation of more parameters than single population
models, which can be problematic in terms of model
performance. Cunnane (1985) argued that it is not
satisfactory to arbitrary postulate the existence of two
or more populations as a way of achieving a more
flexible model. These concerns were also raised by
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Rossi et al. (1984), who warned against the use of the
TCEV distribution for at-site analysis due to the high
degree of uncertainty associated with design quantiles
derived from four-parameter distributions. Similarly,
Serago and Vogel (2018) highlighted that earlier studies
into flood frequency methods found that parameter
parsimonious models generally have lower mean
square error (MSE) than more complex models. The
Flood Studies Report (NERC, 1975) did not specifically
pursue mixture distributions with British flood data
but highlighted potential practical issues associated
with the definition of distinctly different event types.
Despite the widespread interest in mixture models as
a way of progressing flood hydrology and the reserva-
tions expressed above, no scientific assessment of the
robustness of mixture distributions when applied to
hydrological extremes has yet been conducted. In the
light of this knowledge gap, the aim of this study is to
investigate how useful mixture distributions are in
describing annual maximum series originating from
mixture populations. In particular, given the sampling
uncertainty involved in the estimation of model para-
meters in at-site analysis, how different should the two
populations be before it is advisable to consider
a mixture distribution over more traditional single
population models such as Gumbel or GEV? First, the
assumptions behind mixture models are reviewed, and
a new Monte Carlo simulation procedure proposed.
Next, the consequences of choosing a single population
model are examined when, in reality, floods are gener-
ated by a mix of two different processes. Finally, the
impact of using mixture models is investigated by
considering 24-hour annual maximum series of rainfall
events from South Korea, classified as either typhoon
or non-typhoon events.

2 Frequency models of mixed extreme
phenomena

In this section, we introduce and discuss the assump-
tions underpinning mixture models, with emphasis on
the occurrence of infrequent events, and describe pro-
cedures for estimating the model parameters from
annual maximum series.

2.1 Model description

Consider two different flood generating processes, each
consistently resulting in a peak event within each
water year, for example, annual maximum floods resulting
from snowmelt events or rainfall, as considered in Waylen
and Woo (1982). The magnitude of the annual maximum
event resulting from each mechanism is considered as

independent random variablesX1 andX2, with cumulative
distribution functions (cdf) given as F1 and F2, respectively.
The annual maximum event, X, is then defined as the
maximum value of X1 and X2, and the cdf given as:

FX xð Þ ¼ P max X1;X2ð Þ � xf g
¼ P X1 � x\X2 � xf g ¼ F1 xð ÞF2 xð Þ (1)

where the last equals sign implies that the annual
maximum values generated by each of the two pro-
cesses are independent. If F1 and F2 are two-parameter
Gumbel distributions, then Equation (1) becomes the
TCEV distribution as defined by Rossi et al. (1984).
Fitting of this model requires two distinct series of
maximum events to be identified, and a distribution
fitted to each series. Using a TCEV distribution is
therefore only reasonable if each of the two processes
generates an event in every year, e.g. at least one rain-
fall and one snowmelt flood event in each year.

However, it is not always the case that both processes
generate events every year, as some processes might
represent a more infrequent phenomenon that does not
occur every year at every location. Examples of such
infrequent events might include tropical storms or ice-
jam release (Murphy 2001, Macdonald et al. 2006,
Lindenschmidt et al. 2018), atmospheric rivers (Lavers
et al. 2011, Barth et al. 2017) or typhoons (Yoon et al.
2013, Shin et al. 2015). In such cases, a cdf of the mixture
population can be derived from the law of total prob-
ability. Consider an annual maximum series where the
value in each year is generated by either Process 1 or
Process 2.Whether the annual maximum for a given year
is generated by Process 1 or Process 2 is the result of
a random experiment that can have only two outcomes:
the annual maximum value in this year is generated by
Process 1 (event E1) or it is generated by Process 2 (event
E2), where the terminology “event” refers to the outcome
of a random trial. In each year, the event E1, defined as the
annual maximum value being generated by Process 1, has
a probability of occurring P E1f g ¼ 1� ω. The comple-
mentary event, E2, that the annual maximum value is
a result of Process 2, has a probability P E2f g ¼ ω. It is
assumed here that Type 2 events are less frequent than
Type 1 events, i.e. P E2f g<P E1f g, which is the same as
ω<0:50. It is also assumed that only Type 1 or Type 2
exists, i.e. P E2f g þ P E1f g ¼ 1. The cdf of the annual
maximum series X can now be defined according to the
law of total probability:

FX xð Þ ¼ P X1 � xjE1f gP E1f g
þ P X2 � xjE2f gP E2f g

¼ G1 xð Þ 1� ωð Þ þ G2 xð Þω (2)
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where the probability distributions, G1 and G2, are
defined as conditional distributions, and thus different
from the unconditional distributions, F1 and F2, used
in the first approach (Equation (1)). The corresponding
probability density function is defined as:

fX xð Þ ¼ g1 xð Þ 1� ωð Þ þ g2 xð Þω (3)

where g1 and g2 are the corresponding conditional
probability distribution functions of the Type 1 and
Type 2 events. Using unconditional distributions with
the second approach is not correct and can result in
misleading results. For example, Yoon et al. (2013)
appear to have used unconditional distributions with
a mixture-model framework to represent annual max-
imum daily rainfall in South Korea, classified as origi-
nating from typhoon and convective rainfall. Due to
the inclusion of years where no or only minor impact
of typhoons on rainfall was recorded, their study came
to the surprising, and counterintuitive, conclusion that
design rainfall estimates would be higher if typhoon
events were not considered in the analysis; this despite
the largest events on record being caused by typhoon
events. The relaxation of the requirement for the mix-
ture model in Equation (2) that a Type 2 event occurs
in each and every year is a key difference with the
TCEV model in Equation (1), which assumes that
both Type 1 and Type 2 events occur in each year.

2.2 Parameter estimation

In this study it is assumed that the conditional distri-
butions in the mixture model (Equation (2)) are two-
parameter Gumbel distributions, each with a cdf
defined as:

Gi xð Þ ¼ exp �exp
x � μi
αi

� �� �
; i ¼ 1; 2 (4)

where μ and α are the location and shape parameters,
respectively. The model parameters for each of the two
flood processes can be estimated using a variety of meth-
ods, including the method of moments, method of
L-moments or likelihood-based methods. The idea
behind a mixture model is that the annual maximum
series consists of two or more distinctly different types of
events. Therefore, it is argued here that first step should
involve separating the annual maximum series into two
sub-samples based on classification of each event as
being either Type 1 or Type 2. Next, the conditional
distributions G1 and G2 should be fitted to each of the
two sub-samples separately. Finally, the two conditional
distributions are combined through Equation (2). In this

study the method of L-moments is used for estimation of
the location and scale parameter for each process, i.e.:

α ¼ λ2
ln2

(5a)

μ ¼ λ1 � γα (5b)

where λ1 and λ2 are the first- and second-order
L-moments, respectively, and γ ¼ 0:5772 is Euler’s
constant (Hosking and Wallis 1997). It is possible to
define the likelihood function for the combined mix-
ture distribution in Equation (2) and find the combi-
nation of five parameters (μ1; α1; μ2; α2;ω) that
maximizes the likelihood function. However, this
approach is akin to fitting a five-parameter distribution
directly to the data without considering the different
types of events, not unlike fitting any other five-
parameter distribution to the data, such as a Wakeby
distribution (Park et al. 2001).

According to Equation (2), the weight parameter ω
in the mixture model is the probability that in a -
given year the annual maximum (AM) event is
a Type 2 event, P E2f g, where again it is assumed that
Type 2 events are less frequent than Type 1 events, i.e.
ω<0:50. A naive estimator of the weight parameter is
the ratio between the number of observed Type 2
events and the total number of events, i.e.:

ω̂ ¼ Number of Type 2 AM events
Total number of AM events

(6)

However, a closer inspection of how Type 1 and 2
events are generated in the annual maximum series is
required to ensure that the correct model features are
captured by the estimator. For a Type 2 event to
become the annual maximum event (an E2 event),
two conditions must be satisfied: (i) an event of Type
2 must have occurred (this event is denoted F2 with
associated probability P F2f g), and (ii) the magnitude of
the Type 2 event must exceed the magnitude of the
annual maximum Type 1 event occurring in the
same year (X2 > X1). Thus, assuming that the event
F2 and the magnitude of the Type 2 event are indepen-
dent, the probability P E2f g is given as:

P E2f g ¼ P F2 \X2 � X1 > 0f g
¼ P F2f gP X2 � X1 > 0f g (7)

As specified above, Type 2 events are more infrequent
but typically larger than Type 1 events, i.e. P E2f g <0:5,
P X2 > X1f g > 0:5 and 0 � P F2f g � 1. Evaluation of
Equation (7) requires the statistical distribution of the
difference between two Gumbel distributed random

HYDROLOGICAL SCIENCES JOURNAL 1929



variables Z ¼ X2 � X1. Details of the derivation of the
probability distribution function (pdf) for Z is shown
in the Appendix and the solution is given as:

fZ zð Þ ¼ α�1
1 exp

μ2
α2

þ z þ μ1
α1

� �
Ω μ1; α1; μ2; α2; z
� �

(8)

where μ1; α1; μ2; α2 are the location and scale parameters
of the two Gumbel distributions representing Type 1 and
Type 2 events, and Ω is a function defined as:

Ω μ1; α1; μ2; α2; z
� � ¼

ð1
0
u

α2
α1exp �exp

μ2
α2

� �
u

�

�exp
μ1 þ z
α1

� �
u

α2
α1

�
du

(9)

The function Ω is evaluated numerically and, finally,
numerical integration of the pdf provides the required
estimate of the cumulative probability, PfZ > 0g.

The introduction of Equation (7) has implications
for model specification and design of a Monte Carlo
simulation procedure, as outlined in the next section.

3 Monte Carlo simulation study of model
choice

Calculating design flood events requires a choice on the
flood frequency distribution to be used, typically a two-
, three- or four-parameter distribution such as the
Gumbel, GEV or kappa distributions (e.g. Salinas
et al. 2014, Kjeldsen et al. 2017). It is well known that
the choice of distribution requires a trade-off between
ability to fit the data and parameter parsimonious
models to constrain the uncertainty of the design
events (e.g. Laio et al. 2009). To investigate the impor-
tance of fitting the correct mixture model containing
different types of events, a bespoke two-step Monte
Carlo procedure is developed for generating an annual
maximum series with the correct mixture of Type 1
and 2 events, as well as maintaining the constraint that
a Type 2 event is only included if its magnitude exceeds
the magnitude of the Type 1 event for the same year.
This procedure is subsequently used to compare the
performance of commonly used distributions for
describing annual maximum series originating as
a result of events from two different populations.

3.1 A new Monte Carlo simulation procedure for
infrequent events

To generate an annual maximum series of length n
containing a mixture of Type 1 and Type 2 events

according to the weight parameter ω, the following
steps were implemented:

Step 1 Using the Gumbel distribution specified for
Type 1 events, a Type 1 AM event is generated for each
of the t ¼ 1; . . . ; n years.

Step 2 For each of the t ¼ 1; . . . ; n years in turn the
occurrence of a Type 2 event is generated with prob-
ability P F2f g: In practice this is implemented as
n independent Bernoulli distributions with para-
meter P F2f g:

Having specified the mixture model according to
Equation (2), this probability is defined per Equation
(7) as:

P F2f g ¼ ω

P X2 � X1 > 0f g (10)

where the denominator is derived as described in
Section 2 based on the two specified Gumbel distribu-
tions. If a Type 2 event occurs, then the associated
magnitude is generated based on the Gumbel distribu-
tion of the Type 2 events. Finally, the actual annual
maximum event for this particular year is defined as
the largest of either the Type 1 from Step 1, or the Type
2 event generated in Step 2.

Examples of generated annual maximum series are
shown in Figure 1 as flood frequency curves for a range
of parameter values of the underlying mixture distribu-
tion. The parameter values are representative of the
two populations identified in the South Korea rainfall
data presented in Section 4 of this paper. As expected,
the more different the two populations become in
terms of the location and scale parameters of the two
Gumbel distributions, the more separated the two sam-
ples become. For example, when the location para-
meter of the Type 2 process is twice as large as for
the Type 1 process μ2=μ1 ¼ 2

� �
, then the largest events

are almost exclusively Type 2 events.
Figure 1 also shows the quantile function of the

fitted Gumbel mixture distribution, clearly demonstrat-
ing the flexibility of the distribution to represent dif-
ferent sample compositions.

The estimator introduced in Equation (10) was
validated using the Monte Carlo simulation proce-
dure and compared to the naïve estimator in
Equation (6). Annual maximum series of length
between 25 and 1000 years were generated from
a Gumbel mixture model with fixed parameters
μ2=μ1 ¼ 1:5; α2=α1 ¼ 1:5;ω ¼ 0:20
� �

. For each record
length a total of M ¼ 500 individual annual maxi-
mum series were generated, with the information
recorded on whether the annual maximum is the
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result of a Type 1 or a Type 2 event, For each series
the five parameters of the Gumbel mixture model
(including the weight parameter ω) were estimated
using L-moments for the parameter of each indivi-
dual Gumbel distribution as per Equations (5a) and
(5b), and the estimator in Equation (6) for the
weight parameter ω. Estimates of the adjusted weight
derived using Equation (10) were obtained with sam-
ple estimates of μ1; μ2

� �
and α1; α2ð Þ used to

calculate P X2 � X1 > 0f g. Figure 2 shows the median
of the M ¼ 500 series generated for each record
length for both the weight parameter ω estimated
directly from the generated samples using Equation
(6), and the adjusted weight estimated using
Equation (10) plotted against record length.

The results given in Figure 2 show that the adjusted
estimate (Equation (10)) ensures that the estimated
weight parameter represents more closely the specified
population value of the mixture distribution
(ω ¼ 0:20). In contrast, the naïve estimator

consistently underestimates the true model parameters
as it ignores the requirement for the infrequent phe-
nomena simultaneously to both occur (F2) and gener-
ate an event larger than the Type 1 events
(X2 � X1 > 0) in order for the annual maximum to be
a Type 2 event. Note also that the relatively large
sampling uncertainty of the weight parameter (the
95% confidence interval shown by the shaded area in
Fig. 2) is a manifestation of the difficulty of obtaining
robust results from a statistical analysis of infrequent
events.

3.2 Choice of distribution

MonteCarlo experiments were conducted to compare the
robustness (asmeasured by the bias and rootmean square
error) of the five-parameter Gumbel mixture model
(GMM) with that of other, commonly used, candidate
distributions, specifically the two-parameter Gumbel dis-
tribution (GUM) and the three-parameter GEV

Figure 1. Examples of annual maximum series covering n ¼ 25 years derived from a mixture of Type 1 and Type 2 events, including
flood frequency curves fitted to the sample data using the Gumbel mixture model combined with the method of L-moments. Black
dots represent Type 1 events and triangles are Type 2 events.
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distribution. The model parameters for each of the candi-
date distributions were estimated using the method of
L-moments, as described by Hosking and Wallis (1997).

The performance of each distribution was quantified
using the bias and root mean square error (RMSE), as
recommended by Stedinger et al. (1993). The quantity
of interest in this study is the estimated design event
for a 100-year event. Based on M ¼ 10 000 Monte
Carlo generated annual maximum series of record
length n, Bias and RMSE are calculated as:

Bias ¼ 1
M

XM
m¼1

x̂m � xð Þ (11)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
m¼1

x̂m � xð Þ2
vuut (12)

where x̂m is the estimated design event for the mth
Monte Carlo generated annual maximum series, and
x is the true design event as specified by the mixture
model. No explicit analytical expression for the quan-
tile of the Gumbel mixture model exists, and instead
the design event with a return period T is derived
numerically using bisection to solve the equation
below for the design quantile xT :

F xTð Þ ¼ exp �exp
xT � μ1

α1

� �� �
1� ωð Þ

þ exp �exp
xT � μ2

α2

� �� �
ω

¼ 1� 1
T

(13)

The performance (Bias and RMSE) of the GMM
was compared to results obtained by fitting two-
parameter Gumbel and three-parameter GEV distribu-
tions to the same annual maximum series using the
method of L-moments (Hosking and Wallis 1997). The
comparisons were conducted by assuming the under-
lying distributions are Gumbel mixture distributions
classified according to the ratios between location para-
meters, μ2=μ1 ¼ 1:0; 1:5; 2:0 (assuming the location
parameter of Type 2 events is equal to or larger than
that for Type 1 events), and the ratios between scale
parameters, α2=α1 ¼ 1:0; 1:5; 2:0, assuming the stan-
dard deviation for Type 2 events is equal to or larger
than that for Type 1 events. Finally, the weight para-
meter ω varies between 0.01 and 0.50, thus assuming
that Type 2 events are less frequent than Type 1 events.
These parameter ratios were selected based on analysis
of annual maximum series of 24-hour rainfall events
extracted from 64 raingauges located in South Korea,
recording extreme rainfall associated with both
typhoon events and non-typhoon events.

Figure 2. Median of the weight parameter ω estimated using the naïve estimator (dashed line) and the adjusted estimator (solid
line). The shaded area represents the 95% confidence interval around the adjusted estimator.
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Figure 3 shows the Bias of the five-parameter
(GMM), two-parameter Gumbel and three-parameter
GEV distributions plotted as a function of weight para-
meter for all nine combinations of μ2=μ1 and α2=α1.
The results are based on a record length of n ¼ 50
years. When the distributions of Type 1 and Type 2
events are very similar, i.e. both μ2=μ1 and α2=α1 are
equal to 1 (upper left corner), then the five-parameter
Gumbel mixture model exhibits a high level of bias
compared to more parameter parsimonious Gumbel
or GEV models. Maintaining the ratio of the location
parameters at 1, but increasing the ratio of the scale
parameters to 1.5, both the Gumbel and GEV distribu-
tions are generally less biased than the mixture model,
except for weight parameters close to zero. For all other
combinations, the mixture model is generally less
biased than the other candidate distributions, especially
for weight parameters exceeding 0.10. For all consid-
ered cases, these results show that, if distinctly different
types of events can be identified in an annual max-
imum series, and the statistical properties (mean and
standard deviation) of the events generated by the two
different processes are sufficiently different, then there
is merit, if minimizing Bias is of interest, in choosing
a five-parameter mixture model over more parameter

parsimonious and popular alternatives such as Gumbel
or GEV distributions. The results in Figure 3 are based
on a record length of 50 years; further Monte Carlo
simulations (reported in the Supplementary Material)
show that the patterns seen in Figure 3 maintain their
general form for a range of record lengths typically
reflected in observed records and for different design
events of different rarity.

Next, the performance of the mixture model was
assessed based on the RMSE as defined in Equation
(12). Unlike Bias, RMSE can only take positive values.
Therefore, the results from the Monte Carlo experiment
are reported in Figure 4 as the ratio between RMSE for
any distribution and the RMSE obtained by using the
mixture distribution, e.g. RMSEGUM=RMSEGMM. Values
of the ratio of less than 1 suggest that the candidate
distribution has a lower RMSE than the GMM, even if
the true underlying population consists of two distinct
flood populations.

Except for isolated instances where μ2=μ1 > 1 and
α2=α1 ¼ 1, the RMSE is consistently lowest for the
Gumbel distribution and highest for the GEV distribu-
tion, with the Gumbel mixture model located between
the two. These results suggest that the added uncer-
tainty introduced by having to estimate the relatively

Figure 3. Bias for the 100-year event of Gumbel mixture, two-parameter Gumbel and three-parameter GEV distributions plotted as
a function of weight parameter for all nine combinations of μ2=μ1 and α2=α1.
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high number of model parameters of the mixture dis-
tribution (five in total) is offsetting the advantages
obtained by specifying the correct model structure. As
for Bias, the effect on RMSE of using different record
lengths and target return periods was found not to
impact on the general conclusions derived from
Figure 4 with regard to the relative performance of
the distributions. These results support conclusions
from other studies (e.g. Lu and Stedinger 1992) that
parameter parsimonious models are often character-
ized by lower RMSE than more complex models.

4 Case study: Korean rainfall

The practical implications of choosing a mixture model
were investigated through analysis of extreme rainfall
data from South Korea. High-quality data from 64 rain-
gauges with long-term records (more than 20 years) were
acquired from the Korea Meteorological Administration
(KMA). The raingauges are evenly distributed over
inland and mountainous, and coastal areas in South
Korea (Fig. 5). For each raingauge the annual maximum
series of 24-h rainfall events were extracted, resulting in
series with durations of between 30 and 56 years.

Rainfall in South Korea is characterized by strong
seasonality, with typically 80% of the total annual rain-
fall occurring in the summer rainy season between May

Figure 4. Ratios between RMSE for the 100-year event for candidate distributions (Gumbel: solid line, GEV: dashed line) and the
Gumbel mixture model as a function of weight parameter for all nine combinations of μ2=μ1 and α2=α1.

Figure 5. Map showing the location across South Korea of the
64 raingauges used in this study.
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and October. Another important aspect of rainfall in
the region is that rainfall events are generally the result
of either non-typhoon rainfall or recorded during the
passing of a typhoon. Usually, the monsoon season
begins in late June and lasts until late July, whereas
typhoons normally occur between August and
September. The largest rainfall event on record is
870 mm in 24 h measured during Typhoon Rusa in
August 2002 on the northeast coast (Park and Lee
2007). For a more detailed discussion of the rainfall
types in South Korea see Yoon et al. (2013).

Information is available from the Korean
Meteorological Administration (KMA, 2011) as to
which raingauges were impacted by typhoon events.
This information was used to classify each of the
annual maximum events as either a typhoon event
(Type 2) or a non-typhoon event (Type 1). An example
of how the information from KMA (2011) was used is
shown in Figure 6. The example in Figure 6 represents
an entire year that has been subdivided into three
periods where rainfall is attributed to typhoon events
(black) and four periods where rainfall is attributed to
non-typhoon events. If the annual maximum event
occurs within one of the typhoon periods, it is classi-
fied as a Type 2 event. Conversely, if the annual max-
imum is recorded in a non-typhoon period, then it is
classified as a Type 1 event. The number of “black”
typhoon periods is based on the actual occurrence of
typhoons in any particular year. Figure 7 shows two
examples where the annual maximum event for a -
particular year is classified as either a typhoon event
(Fig. 7(a)) or a non-typhoon event (Fig. 7(b)).

A total of 154 typhoon events were recorded during
the period covered by the observed rainfall records
(1961–2010), about three per year. Note that the spatio-
temporal characteristics of each typhoon are unique.
Therefore, the impact of typhoon rainfall is not uniform
across raingauges and years. Using this information, the
annual maximum series extracted at each of the 64 rain-
gauges were divided into two sub-samples representing
events generated by typhoon and non-typhoon rainfall.

The Monte Carlo simulations reported in Section 3
showed that the Gumbel mixture model is generally
only preferable for at-site analysis if the two popula-
tions are sufficiently different. Using the observed
annual maximum series from the 64 raingauges, the
implications of assuming a Gumbel mixture distribu-
tion for design rainfall estimation rather than
a Gumbel or GEV distribution were investigated. The
ratio between the 100-year 24-h design rainfall was
estimated for each raingauge assuming a Gumbel mix-
ture distribution (GMM), a two-parameter Gumbel
distribution and a three-parameter GEV distribution,
i.e. ratio ¼ Qi

100=Q
GMM
100 � 100%; i ¼ GUM;GEV. The

ratios of design rainfall estimates were plotted against
estimated parameters of the GMM to investigate what
aspects of the annual maximum samples most influ-
ence the magnitude of the design events. Figure 8
shows the ratios for Gumbel vs GMM (top row) and
GEV vs GMM (bottom) plotted against the estimated
weight parameter (column one), the ratios between
estimated location parameters (column two), and the
ratio between estimated scale parameters (column
three).

The results in Figure 8 show that, in general, fitting
a GMM adopting a Gumbel distribution will in most
cases result in a lower design event, and for GEV in
a higher design event. Interestingly, there is a strong
relationship between the ratio of scale parameters α2=α1
and the ratio between the Gumbel and the Gumbel mix-
ture model, such that increasing the difference between
the scale parameters results in a consistent decrease of the
ratio between 100-year design event magnitudes. There is
a similar, though less striking, relationship observed
when the Gumbel ratio is plotted against the ratio of the
location parameters μ2=μ1. Similar patterns are not
observed when considering the ratios of design events
derived using the GEV and GMM distributions. This
suggests that adopting a Gumbel distribution will poten-
tially result in underestimation of design events, espe-
cially where Type 2 events are consistently larger than
Type 1 events.

Figure 6. Example of how the year is split into rainfall types using information from KMA (2011).
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To illustrate the impact of fitting different distribu-
tions, Figure 9 shows the annual maximum 24-h rain-
fall (AMAX) events plotted against return period, using
the Gringorten plotting position, for four different
raingauges. Each data point was classified, as described
above, as being a result of either a typhoon event
(triangle) or a non-typhoon rainfall event (dot). The
rainfall frequency curves in Figure 9 show that, in all
four cases, the choice of a GEV distribution results in
a larger 100-year design event, especially at higher
return periods.

5 Discussion

Combining the outcome of the Monte Carlo simulations
and the analysis of theKorean rainfall data, the results show
that the use of mixture models appears most useful when
the two flood populations are distinctly different. In con-
trast, if the location and shape parameters of the two
populations do not differ much, a simple Gumbel model
provides amore robust flood frequencymodel. In contrast,

design events derived from the GEV model generally have
a higher degree of uncertainty (RMSE), thus highlighting
the need for a more detailed understanding of the impacts
and trade-offs between model complexity and parameter
uncertainty driven by the relatively short data series. This
conclusion is based on the use of the flood frequencymodel
as a tool for predicting design flood events of moderate
return period (100 years in this study). However, there
might be several reasons why a mixture model might be
preferred over a single population model, such as studies
aimed at defining flood topologies (Merz and Blöschl
2008). Another reason could be in considering the beha-
viour of the flood frequency curve when extrapolating to
very high return periods. For example, DeNiel et al. (2017)
developed an 18-parameter mixed model based on classi-
fication of events according to weather type, and used
historical events to validate the extrapolation of this mix-
turemodel. Also, if a particular type of events is consistently
more severe than the other populations, it could be argued
that the risk analysis should be focused exclusively on these
events only as, for example, infrastructure failure will

Figure 7. (a) Annual maximum from a typhoon event: Gangneung raingauge (June–September 2002), and (b) annual maximum
from a non-typhoon event: Seoul raingauge (June–September 2002).
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inevitably occur as a result of these events rather than the
consistently smaller events from a different population.

Several decisions were made to constrain the extent of
the Monte Carlo simulation study. This was necessary as
the full combination of possible values of the five-
parametermixturemodel, record length and target return
periods would have led to an intangible number of
results. Consequently, the results presented were limited
by considering only design floods with a return period of
100 years as estimated from a record length of 50 years.
The sensitivity of the results with regard to these deci-
sions was investigated and found to be so minor as not to
fundamentally change the overall patterns presented (see
Supplementary Material).

A new two-step Monte Carlo procedure is presented
for use in generating annual maximum series from
a two-component mixture model with specified weight
parameter. It was necessary to introduce this additional
complication in the Monte Carlo simulations to ensure
that the generated annual maximum series reflected the
correct value of the weight assigned to each of the
conditional distributions. While this step resulted in
a somewhat more burdensome set of calculations, it is
argued here that a more formal definition of the weight

parameter and the introduction of a separate probabil-
ity of a Type 2 event occurring is an original and useful
contribution to further studies of rare or infrequent
phenomena causing large events.

The case study investigated the impacts of choosing
a Gumbel mixture model over a single-population
Gumbel or GEV distribution. The results highlight the
danger of adopting a single-population Gumbel distribu-
tion, as this resulted in consistently lower estimates of
design floods than both the GEV and Gumbel mixture
model. The choice between GEV and Gumbel mixture
model is less clear, with a slight tendency for the GEV
distribution to produce higher design flood estimates.
A key difficulty was to develop an operational and robust
method for classifying events as typhoon or non-typhoon
events. Further research is needed to investigate the use of
additional data sources to allow for a more objective
classification. The advantages brought by mixture distri-
butions in terms of their ability to faithfully describe the
extreme generating process must be weighed against the
practical complexity of separating the different types of
events before suggesting their widespread use.

Finally, it should be noted that the results presented
in this study pertain exclusively to the use of mixture

Figure 8. Ratio between 100-year 24-h design events estimated using Gumbel and GMM (top row) and GEV and GMM (bottom row)
for 64 raingauges.
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models for at-site analysis. Further challenges and
developments are needed in order to apply these mod-
els in a regional frequency analysis.

6 Conclusions

The aim of this study was to investigate the usefulness
of mixture models to describe annual maximum series
generated by the existence of two different populations.
The conclusions of the study are:

● A mixture model becomes increasingly desirable
as the difference between the two populations
increases.

● When the two populations are similar or almost
similar, a Gumbel distribution is preferable over
both a mixture and a GEV model as it tends to give
unbiased estimates for the design events of interest.

● A new Monte Carlo simulation procedure was
proposed for correctly specifying the occurrence
of infrequently occurring extreme events.

● Future research should consider robust procedures
enabling objective and practical tools for identifica-
tion of event types so mixture models can be
moved into the regional flood frequency domain.
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Figure 9. Example of frequency curves for 24-h annual maximum rainfall from four raingauges in South Korea impacted by
monsoon and typhoon rainfall events. Triangles: AMAX from Typhoon, dots: AMAX from monsoon rainfall. Solid (red) line: GEV fitted
to the entire series, dashed line: mixture Gumbel model fitted to non-typhoon and typhoon events. Location of raingauges is
indicated in Figure 5.
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Appendix

The probability density function (pdf) of the difference
between two independent random variables Z ¼ X2 � X1 is
denoted fZ zð Þ and can be derived as:

fZ zð Þ ¼ �
1

�1
fX1 zð ÞfX2 x� zð Þdx (A1)

where fX1 and fX2 are the pdfs of X1 and X2, respectively. In
this study the difference between two Gumbel distributed
variables is considered as Z ¼ X2 � X1, each with a pdf
given by:

fX1 xð Þ ¼ α�1
1 exp � x� μ1

α1

� �
exp �exp � x� μ1

α1

� �� �

(A2)

fX2 xð Þ ¼ α�1
2 exp � x� μ2

α2

� �
exp �exp � x� μ2

α2

� �� �

(A3)

where μ1; μ2 and α1; α2 are the location and scale para-
meters, respectively, of the Gumbel distributions describing
the Type 1 and Type 2 events. Both pdfs exist on the interval
�1 < x < 1. Substituting Equations (A2) and (A3) into
(A1) and making the substitution u ¼ exp �x=α2ð Þ gives the
following pdf for the difference:

fZ zð Þ ¼ α�1
1 exp

μ2
α2

þ z þ μ1
α1

� �
Ω μ1; α1; μ2; α2; z
� �

(A4)

where

Ω μ1; α1; μ2; α2; z
� � ¼

ð1
0
u

α2
α1 exp �exp

μ2
α2

� �
u

�

�exp
μ1 þ z
α1

� �
u

α2
α1

�
du

(9)

A similar result was reported by Nadarajah and Kotz
(2005), defining the distribution in Equation (A4) as
a generalized logistic distribution.
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