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Hydrological response to future land-use change and climate change in a
tropical catchment
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bFaculty of Forestry, Universitas Gadjah Mada, Yogyakarta, Indonesia; cInstitute of Water Policy, Lee Kuan Yew School of Public Policy,
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ABSTRACT
Hydrological response to expected future changes in land use and climate in the Samin catch-
ment (278 km2) in Java, Indonesia, was simulated using the Soil and Water Assessment Tool
model. We analysed changes between the baseline period 1983–2005 and the future period
2030–2050 under both land-use change and climate change. We used the outputs of a bias-
corrected regional climate model and six global climate models to include climate model
uncertainty. The results show that land-use change and climate change individually will cause
changes in the water balance components, but that more pronounced changes are expected if
the drivers are combined, in particular for changes in annual streamflow and surface runoff. The
findings of this study will be useful for water resource managers to mitigate future risks
associated with land-use and climate changes in the study catchment.
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1 Introduction

Climate change and land-use change are key factors
determining changes in hydrological processes in
catchments. Numerous studies have been carried out
to evaluate the impacts of land-use and climate change
on water resources (Legesse et al. 2003, Li et al. 2009,
Mango et al. 2011, Wang 2014, Marhaento et al. 2017b,
Shrestha and Htut 2016, Zhang et al. 2016). Most
findings show that changes in land use and climate
affect hydrological processes such as evapotranspira-
tion, interception and infiltration, resulting in spatial
and temporal alterations of surface and subsurface flow
patterns (Legesse et al. 2003, Bruijnzeel 2004,
Thanapakpawin et al. 2007, Khoi and Suetsugi 2014,
Marhaento et al. 2017a). According to Wohl et al.
(2012), hydrological processes in the humid tropics
differ from those in other regions in that they have
greater energy inputs and faster rates of change, includ-
ing human-induced changes, and therefore require
additional study. The Intergovernmental Panel on
Climate Change (IPCC 2007) reported that tropical
regions, including Indonesia, are one of the most vul-
nerable areas for future water stress due to extensive
land-use and climate changes.

With a population of more than 130 million (in 2010),
Java, Indonesia, is one of the most densely populated

islands of the world. Over the past century, land use on
Java has changed rapidly, following the rapid growth of
human population (Verburg and Bouma 1999), which
has resulted in significant changes in the water system.
Bruijnzeel (1989) observed higher flows during rainy
seasons and lower flows during dry seasons after a fair
proportion of forest area was transformed into settle-
ments and agricultural land in the Konto catchment
(233 km2) in East Java. Studies by Remondi et al.
(2016) and Marhaento et al. (2017a) presented similar
results, showing that land-use change due to deforestation
and expansion of settlement areas have reduced the mean
annual evapotranspiration and increased mean annual
streamflow. In addition, the fraction of streamflow origi-
nating from surface runoff has significantly increased,
compensated by a decrease in baseflow.

Besides land-use change, Java has experienced cli-
mate change in the past decades. Aldrian and Djamil
(2008) found a significant change in the spatial and
temporal climate variability over the Brantas catchment
(12 000 km2) in East Java over the period 1955–2005.
They found a decrease in annual rainfall, an increase of
the rainfall intensity during the wet season and an
increase in the dry spell period. More pronounced
changes likely occurred in the low-altitude area closer
to the coast. Their findings resemble those of Hulme
and Sheard (1999), who found that most islands of
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Indonesia have become warmer since 1900, reflected in
an increase in the annual mean temperature of about
0.3°C. Moreover, the mean annual precipitation has
likely declined in the southern regions of Indonesia,
including Java, resulting in a significant change in
water availability.

Changes in land use and climate in Java have threa-
tened local and regional socio-economic development.
Amien et al. (1996) and Naylor et al. (2007) argued that
land-use and climate change in Java have caused a
decrease in rice production, resulting from a warming
climate as well as a decrease in farming area. In addi-
tion, many reservoirs have failed, having a lower life
span and water supply capacity than expected due to
sedimentation from deforested upstream areas
(Moehansyah et al. 2002). Furthermore, the frequency
of disastrous events related to land-use and climate
change (e.g. droughts and floods) has increased, result-
ing in major economic losses in Java during the past
decades (Marfai et al. 2008). Without taking any miti-
gation measures, Java is projected to have a severe food
crisis by the year 2050 due to land-use and climate
changes (Syaukat 2011).

Land-use planning can be an effective way to miti-
gate future risks associated with changes in land use
and climate (Memarian et al. 2014). Numerous studies
have argued that different types of land use have dif-
ferent water use and water storage characteristics
(Bruijnzeel 1989, 2004, Legesse et al. 2003, Memarian
et al. 2014). However, it is a challenge to measure the
effectiveness of land-use planning for improving avail-
ability of water resources due to climatic interference.
Complex interactions between land-use and climate
changes may not only result in accelerating changes
in hydrological processes (Legesse et al. 2003, Khoi and
Suetsugi 2014), but may also offset each other (Zhang
et al. 2016), which requires further study.

In order to provide good insight in land-use and
climate change impacts on hydrological processes,
coupled models are typically used. For example,
Zhang et al. (2016) used a combination of a Markov
chain model and a Dynamic Conversion of Land Use
and its Effects (Dyna-CLUE) model to simulate future
land uses, climate change scenarios to predict future
climate variability and the Soil and Water Assessment
Tool (SWAT) model to simulate hydrological processes
in order to quantify the hydrological impacts of land-
use and climate changes. However, very few studies
have assessed hydrological impacts due to land-use
and climate changes in tropical regions, which is
mainly due to limited hydrological data in such regions
for model calibration and validation purposes (Douglas
1999). Furthermore, the results are often contradictory

and inconsistent, in particular for large catchments
(> 100 km2) where interference from climate change
becomes more important (Calder et al. 2001, Beck et al.
2013).

This study aims to assess future hydrological
response to changes in land use and climate in the
Samin catchment (278 km2) in Java, Indonesia. The
Samin catchment was selected following prior studies
by Marhaento et al. (2017a, 2017b), who argued that
historic land-use change in the Samin catchment has
significantly affected the hydrological processes in this
catchment. The Central Java Provincial Government
(2010) has introduced spatial land-use planning for
the Samin catchment through a regional regulation,
which motivated us to assess its effectiveness in miti-
gating future risks to water resources under different
climatic circumstances. This research assesses the sepa-
rate and combined effects of land-use change and cli-
mate change on water balance components for the
period 2030–2050 through plausible future land-use
and climate change scenarios. In Section 2 we describe
the study area and data availability, in Section 3 the
methods used, such as land-use change modelling,
climate change modelling and hydrological modelling.
In Section 4 we present the results, in Section 5 we
discuss the key findings, and in Section 6 we draw the
conclusions from the study.

2 Study area and data availability

2.1 Catchment description

The Samin catchment (278 km2) is part of the
Bengawan Solo catchment, the largest catchment in
Java, Indonesia, which plays an important role in sup-
porting the lives of more than half a million people
within its area. It is located between 7.6–7.7°S and
110.8–111.2°E. The highest part of the catchment is
Lawu Mountain (3175 m a.s.l.) and the lowest part is
near the Bengawan Solo River (84 m a.s.l.) (see Fig. 1).
The upper part of the Samin catchment is characterized
by steep terrain (> 25%) and predominantly covered by
evergreen forest. A less undulating terrain is found in
the middle part of the catchment, which is mostly
covered by mixed garden, agricultural crops and settle-
ments. In the downstream part, agriculture (mainly
paddy fields) and settlements are dominant.
According to the soil map from the Harmonized
World Soil Database (FAO, IIASA, ISRIC, ISSCAS,
JRC 2012), the soil distribution of the Samin catchment
is predominantly luvisols (leafy humus soil) and ando-
sols (volcanic soil of Mount Lawu), which cover 57%
and 43% of the study area, respectively. Geologically,
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the Samin catchment is located in a depression zone
filled by volcanic deposits from Mount Lawu, which
have resulted in deep and fertile soils and thus are
suitable for agriculture.

The Samin catchment experiences a tropical mon-
soon climate with distinct dry and wet seasons, where
the former generally extends from May to October and
the latter from November to April. Mean annual rain-
fall can be 1500 mm in dry years and reaches 3000 mm
in wet years. The spatial rainfall pattern likely follows
the orography, with a larger amount of rainfall in the
upstream than in the downstream area. The mean daily
temperature is approximately 26°C, with a mean daily
minimum of 21.5°C and a mean daily maximum of
30.5°C. The mean annual potential evapotranspiration
in the catchment ranges from 1400 to 1700 mm
(Marhaento et al. 2017a). According to the Indonesia
Statistical Bureau (BPS 2017), the population size at the
sub-district level in the Samin catchment is about
800 000 inhabitants, with an average annual population
growth over the period 1994–2010 of about 0.8%. In
the same period, land use has changed significantly,
with an increase in the settlement area and a decrease
in the forest area (Marhaento et al. 2017a). Population
growth in the Samin catchment has been projected to
decrease over time, reaching 0.1% per year in 2035, as a
result of a successful birth control programme as well
as a transmigration programme (BPS 2013), which may
affect future land-use change in the study catchment.

2.2 Data availability

To set up the hydrological model, spatial and non-
spatial data were used. For the spatial data, land-use
maps of 30-m spatial resolution for the years 1994,
2000, 2006 and 2013 were available for the study area
from Marhaento et al. (2017a). A land-use spatial plan-
ning map of the study area for the period 2009–2029
was available from Central Java Provincial Government
(2010). The topographic map contains information
related to elevation, roads and locations of public facil-
ities (e.g. hospitals, schools and offices) and is available
from the Geospatial Information Agency of Indonesia
at 1:25 000 scale. A soil map at a spatial resolution of 30
arcsec was taken from FAO, IIASA, ISRIC, ISSCAS,
JRC (2012).

For the non-spatial data, daily water level data for the
period 1990–2013 were available from the Bengawan
Solo River Basin organization and converted into daily
discharge data using the rating curves provided by the
organization. Daily climate data for the period
1983–2013 were available from 11 rainfall stations and
three climate stations within the surrounding catch-
ments. Future climate data for the period 2030–2050
for different emission scenarios were obtained from
SEACLID/CORDEX Southeast Asia (CORDEX-SEA), a
consortium consisting of experts from 14 countries and
19 institutions that aims to downscale a number of
global climate models (GCMs) from the Fifth Coupled

Figure 1. Samin catchment in Java, Indonesia, with the locations of hydrological gauges and soil distribution within the study
catchment.
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Model Inter-comparison Project (CMIP5) for the
Southeast Asian region. For Indonesia, the Indonesian
Agency for Meteorology, Climatology and Geophysics
(BMKG) provided the regional climate model (RCM)
RegCM4 data at 25 km × 25 km resolution (Ngo-Duc
et al. 2016), downscaled from the CSIRO Mk3.6.0 GCM.
The rainfall and maximum and minimum temperature
data are available on a daily basis for the period
1983–2005 to represent the baseline period, and for
2030–2050 to represent the future period. Two scenarios
for the radiative forcing of future greenhouse gas
emissions were applied, namely Representative
Concentration Pathway (RCP) 4.5 and 8.5 to represent
low emission and high emission scenarios, respectively.
In addition to the RCM dataset, this study also used six
additional GCMs from different sources in order to
include the effect of climate model uncertainty. This
study used GCMs rather than other RCMs to include
climate model uncertainty because other RCMs are not
available for the study catchment. Table 1 shows the
characteristics of each GCM used in this study. These
GCMs were selected after comparison of the mean
annual rainfall in the study catchment from 26 GCMs
listed in CMIP5, which showed significantly different
changes in rainfall (even in the direction of change)
between the baseline and future periods, resulting in a
large uncertainty band in future climate variability. By
taking GCMs with the most significant different direc-
tions and magnitudes, the results of the simulations
using these selected GCM outputs will probably cover
the full range of potential futures, including those that
would follow from the outputs from other GCMs listed
in CMIP5, including the ensemble mean. It should be
noted that, for the mean annual rainfall used in the
GCM selection, this study used the average value of
RCP4.5 and RCP8.5 climate scenarios from the GCMs.

3 Methods

3.1 Land-use change model

Future land-use distributions in the study catchment
are based on two land-use scenarios, namely a

business-as-usual (BAU) scenario and a controlled
(CON) scenario. The BAU scenario represents a future
situation where no measures are taken to control land-
use change in the study catchment, whereas the CON
scenario represents idealized land-use conditions that
follow the spatial planning regulation.

3.1.1. Business-as-usual (BAU) scenario
Attempts were made to ensure that future land use in
the study catchment under the BAU scenario is in
accordance with the ongoing trends of land-use
change. An integration of a Markov chain and a cellu-
lar automata model (CA–Markov) with multi-criteria
evaluation (MCE) was used to project land-use changes
in the catchment for the future period (i.e. 2030–2050).
The CA–Markov model has been widely used to simu-
late land-use changes throughout the world (Myint and
Wang 2006, Hyandye and Martz 2017). Compared to
other models with a similar aim (e.g. GEOMOD,
CLUE), the CA–Markov model has a high ability to
simulate multiple land-use covers and complex pat-
terns with smaller amounts of data and less computa-
tional effort (Eastman 2012). Along with the CA–
Markov model, an MCE technique was used to support
the decision processes of land allocations using differ-
ent criteria of land-use suitability (Behera et al. 2012).
The MCE uses factors and constraints for each land-
use category. Different factors indicate the relative suit-
ability of a specific land-use type that is generally based
on a measured dataset (e.g. slope gradient, elevation
and road distances), whereas constraints are used to
exclude certain areas from consideration (e.g. protected
area and water bodies).

Factors and constraints of each land-use type were
selected based on the available spatial data (see
Table 2). In order to make the factors and constraints
spatially comparable, they were standardized using
fuzzy membership functions with a range of 0–1,
where a value closer to 1 indicates a stronger member-
ship. Three types of fuzzy membership function were
used, namely a monotonically increasing linear func-
tion (MIL), a monotonically decreasing linear function

Table 1. List of CMIP5 GCMs used and their characteristics.
Model Resolution

(Lon. × Lat.)
Country of origin Difference* References

GFDL-ESM2M 2.5º × 2.0º USA − − − Dunne et al. (2012)
CanESM2 2.81º × 2.79º Canada − − Arora et al. (2011)
CSIRO-Mk3.6.0 1.875º × 1.86º Australia − Collier et al. (2011)
MPI-ESM-LR 1.875º × 1.85º Germany + Giorgetta et al. (2013)
MIROC5 1.41º × 1.39º Japan + + Watanabe et al. (2010)
NorESM1-M 2.5º × 1.875º Norway + + + Bentsen et al. (2013)

*Difference between baseline and future conditions, where “−” indicates that the mean annual rainfall in the future period is smaller and
“+” that it is larger than in the baseline period.
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(MDL) and a monotonically increasing symmetric
function (MIS). Subsequently, four fuzzy control points
were determined, in which the first marks the location
where the membership function begins to rise above 0,
the second indicates where it reaches 1, the third indi-
cates where the membership function drops below 1
again, and the fourth marks the point where it returns
to 0. The four control points of the fuzzy membership
function for each land-use class used in this study were
adapted from Hyandye and Martz (2017). However,
some changes were made for this study considering
the local conditions (e.g. agricultural area was divided
into paddy field and dryland farm) and data availability
(e.g. population density was not included as a factor).

In this study, the Markovian transition area matrix
was generated using two recent land-use maps for the
years 2006 and 2013. However, we applied a boundary
condition for the settlement area by determining the

settlement area in 2050 based on a linear relationship
between the changes in settlement area estimated from
historical land-use maps (Marhaento et al. 2017a) and
population size in the same years (see Fig. 2(a)).
Population in 2050 was obtained using a second-
order polynomial function that can represent a
decrease in the population growth in the future, based
on the information from the Indonesia Statistical
Bureau (BPS 2013) (Fig. 2(b)). The results suggest
that the settlement area in the study catchment in
2050 will be 50.2% of the study area. We applied this
boundary condition in the simulation through a mod-
ification of the time lags of the model simulation until
the model closely projected a settlement area in 2050 of
about 50% of the study area. The projected annual
land-use distributions from 2030 to 2050 resulting
from the fitted model were used as land-use inputs in
the SWAT simulations under the BAU scenario. For

Table 2. Factors, membership functions, control points and constraints of the different land-use classes. MIL: monotonically
increasing linear function; MDL: monotonically decreasing linear function; MIS: monotonically increasing symmetric function.
Land-use class Factors Membership functions Control points Constraints

Evergreen forest Slope gradient MIL a = 25, b = maximum Existing settlement
Distance from road MIL a = 500, b = maximum Existing paddy field
Elevation (DEM) MIL a = 1500, b = maximum Waterbodies

Mixed garden Slope gradient MIS a = 8, b = 25, c = 25, d = 45 Protected area
Distance from road MDL a = 100, b = maximum Waterbodies
Distance from existing settlement MDL a = 100, b = maximum Existing settlement

Paddy field Slope gradient MIS a = 0, b = 15, c = 25, d = 45 Protected area
Distance from road MDL a = 0, b = maximum Waterbodies
Distance from existing settlement MDL a = 0, b = maximum Existing settlement

Dryland farm Slope gradient MIS a = 0, b = 15, c = 25, d = 45 Protected area
Waterbodies

Distance from road MDL a = 0, b = maximum Existing settlement
Settlement Distance from road MDL a = 0, b = maximum Protected area

Distance from existing settlement MDL a = 0, b = maximum Waterbodies
Slope gradient MDL a = 0, b = 45
Distance from urban facilities MDL a = 0, b = maximum

Shrub land Slope gradient MIL a = 15, d = maximum Protected area
Distance from road MIL a = 500, b = maximum Waterbodies
Distance from existing settlement MIL a = 500, b = maximum Existing settlement

Waterbodies Existing waterbodies - - -

Figure 2. (a) Linear relationship between the settlement area (in %) and population size and (b) second-order polynomial function
of the population growth in the Samin catchment.
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this study, spatial data preparation and land-use simu-
lations were executed using IDRISI Selva v.17 software
(Eastman 2012).

3.1.2 Controlled scenario
In the controlled (CON) scenario, future land use in
the study catchment was assumed to follow the spatial
planning map. A pre-processing analysis was carried
out in order to convert a printed map of the spatial
planning map into a digital map. Furthermore, we
changed the classification of the spatial planning map
to be comparable with the land-use classification from
Marhaento et al. (2017a). Figure 3 shows the spatial
planning map of the study catchment with reclassified
land-use types. According to the spatial planning map,
in the year 2029, agricultural area (i.e. paddy field and
dryland farm) will be the dominant land-use type in
the study catchment, covering 55% of the study area,
followed by forest area (i.e. evergreen forest and mixed
garden, 31%) and settlements (14%). Forest area is
dominant in the upstream area, whereas agricultural
area and settlements are dominant in the downstream
area. We used the projected land-use distribution in
2029 from the spatial planning map and the land-use
map for the year 2013 as inputs in the CA–Markov
model in order to simulate annual land-use distribu-
tion in the future period (i.e. 2030–2050). The output
of the model was used as land-use input in the SWAT
simulations under the CON scenario.

3.2 Climate change model

Generally, GCM and RCM outputs are biased, which
hampers the direct use of GCM or RCM data to assess
the impact of climate change on hydrological processes
(Teutschbein and Seibert 2012). Thus, there is a need
to correct these outputs before they can be used for
regional impact studies. In this study, we used different
bias correction methods to correct RCM and GCM
output. However, considering that the size of the
study catchment is not comparable with the spatial
resolution of the applied RCM and GCM outputs, we

used the average values of rainfall and temperature
from six RCM and three GCM grid cells located near
the study catchment. We did this in order to minimize
the bias due to inhomogeneity of a single station
because of systematic bias in the model (Murphy
et al. 2004, Gubler et al. 2017).

For the RCM data, the distribution mapping
method and the variance scaling method were used
to correct biases in rainfall and maximum and mini-
mum temperatures, respectively. We selected these
methods having performed an accuracy assessment
based on a split sample test (Klemeš 1986), where
the period 1983–1997 was the calibration period and
1998–2005 was the validation period, for different bias
correction methods (i.e. linear scaling, power trans-
formation, distribution mapping). We found that
these methods outperformed other methods based
on their coefficient of determination (R2) against the
observed rainfall and maximum and minimum tem-
peratures. For rainfall, the distribution mapping
method resulted in R2 of 0.77 with a root mean square
error (RMSE) of about 88 mm/month, whereas the
linear scaling and power transformation methods
resulted in R2 of 0.53 (RMSE = 108 mm/month) and
0.56 (RMSE = 107 mm/month), respectively. For the
maximum and minimum temperatures, the variance
scaling method resulted in R2 of 0.62 (RMSE = 1.1°C),
whereas the linear scaling and distribution methods
resulted in R2 of 0.51 (RMSE = 1.3°C), and 0.48
(RMSE = 1.4°C), respectively. However, it should be
noted that all bias correction methods improved the
raw RCM-simulated rainfall and maximum and mini-
mum temperatures. For the six additional GCMs, we
applied a delta change method to correct biases of the
GCM-simulated rainfall and maximum and minimum
temperatures. Rather than using the GCM simulations
of future conditions directly, the delta change method
uses the differences between GCM-simulated historic
and future conditions for a perturbation of observed
data. For a detailed description of each method, we
refer to Teutschbein and Seibert (2012) and Fang et al.
(2015).

Figure 3. Projected land-use map of the Samin catchment for 2029 according to the spatial planning map of the Central Java
Provincial Government.
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3.3 Hydrological model

The Soil and Water Assessment Tool (SWAT) model
(Arnold et al. 1998) was used to simulate hydrological
processes in the study catchment. The SWAT model is a
physically based semi-distributed model that divides a
catchment into sub-catchments and then further into
hydrological response units (HRUs) for which a land-
phase water balance is calculated (Neitsch et al. 2011).
Runoff from each HRU (i.e. combinations of land use,
soil and slope) is aggregated at sub-catchment level and
then routed to the main channel for which the catchment
water balance is calculated. In a previous study, we
showed the suitability of SWAT to attribute changes in
the water balance to land-use change in the Samin catch-
ment (Marhaento et al. 2017a). The SWAT model set-up
in this study used the same settings as in Marhaento et al.
(2017a). Therefore, we only present a brief summary of
the model set-up and calibration results here.

Eleven sub-catchments, ranging in size from 0.12 to
83 km2 were delineated based on the digital elevation
model (DEM). In addition, the DEM was used to gen-
erate a slope map based on the slope classification from
the Guidelines of Land Rehabilitation from the Ministry
of Forestry (1987). Land-use codes from the SWAT
database, namely AGRR, FRSE, FRST, RICE, URMD,
LBLS and WATR, were assigned to denote dryland
farming, evergreen forest, mixed garden, paddy field,
settlements, shrub land and water, respectively. For the
settlement land use, we used the assumption that the
settlement area is not fully impervious and in between
the houses has some pervious spaces that are often used
as domestic yards. Thus, we used the class Urban
Residential Medium Density (URMD) in the SWAT
model to assign parameters to the settlement area. The
URMD assumes an average of 38% impervious area in
the settlement area (Neitsch et al. 2011), which is similar
to the settlement conditions in the study catchment.

The HRUs of the study catchment were created by
spatially overlaying a land-use map with seven classes
(i.e. AGRR, FRSE, FRST, RICE, URMD, LBLS and
WATR), a slope map with five classes (i.e. 0–8%,
8–15%, 15–25%, 25–45% and > 45%), and a soil map
with three classes (i.e. luvisols, andosols and vertisols)
resulting in about 359 HRUs. The Hargreaves method
was used to calculate reference evapotranspiration
because it requires only temperature data that are avail-
able for the past and future periods in this study. The
Soil Conservation Service Curve Number (SCS CN) and
the Muskingum method were used to calculate surface
runoff and flow routing, respectively.

Following the procedure of Abbaspour et al. (2015), six
SWAT parameters, namely CN2, SOL_AWC, ESCO,

CANMX, GW_DELAY and GW_REVAP, were identified
as the most sensitive parameters, and these were calibrated
using the Latin Hypercube Sampling approach from the
Sequential Uncertainty Fitting version 2 (SUFI-2) in
the SWAT-Calibration and Uncertainty Procedure
(SWAT-CUP) package. The calibration period was
1990–1995, assuming that this period is a reference period
when land-use change and climate change had small
impacts on hydrological processes (Marhaento et al.
2017a). First, parameter ranges were determined based
on minimum and maximum values allowed in SWAT. A
number of iterations were performed where each iteration
consisted of 1000 simulations with narrowed parameter
ranges in subsequent calibration rounds. Simulations for
model calibrationwere assessed on amonthly basis and the
Nash Sutcliffe Efficiency (NSE) criterion was used as the
objective function, similarly to in, for instance, Setegn et al.
(2011) and Zhang et al. (2015). Besides the NSE, other
model performance statistics, including percent bias
(PBIAS), R2, RMSE and the mean absolute error (MAE),
were calculated to evaluate the performance of the hydro-
logical models. The results of the model calibration show
that the simulated mean monthly discharge in the calibra-
tion period agrees well with the observed records, with
NSE, PBIAS,R2, RMSE andMAE values of 0.78, −7.8, 0.78,
3.6 m3/s and 2.7 m3/s, respectively. For the validation
period (1996–2013), the NSE model performance of the
calibrated SWAT model is 0.70 and values for the other
metrics (PBIAS, R2, RMSE and MAE), were 0.6, 0.76,
3.4 m3/s and 2.5 m3/s, respectively.

3.4 Future hydrological responses to land-use and
climate change scenarios

Future hydrological processes in the study catchment were
simulated using the calibrated SWAT model, using inputs
from the bias-corrected RCM and GCMs for the period
2030–2050 and the projected land-use distributions. For
the baseline conditions, we used the output of the SWAT
simulations forced by the bias-corrected RCMdata and the
observed data, where both datasets cover the period
1983–2005. The baseline condition simulated with the
bias-corrected RCM data was used as a baseline condition
for the future simulation forced by the RCM dataset,
whereas the baseline condition simulated by the observed
data was used as a baseline condition for the future simula-
tion forced by the GCM dataset. In addition, two land-use
distributions for the years 1994 and 2000 were used in the
simulation to represent land-use conditions in the baseline
period. We used the Land Use Update (LUP) tool in
ArcSWAT (Marhaento et al. 2017a) to incorporate land-
use change in the SWAT simulations, in which land use
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was initially assumed as that reported for 1994, and
updated by the land use for 2000 when the simulation
date entered 1 January 2000. The LUP tool was also used
to incorporate land-use change in the simulations for the
future period (i.e. 2030–2050), where in the simulations we
annually updated the land-use information from the land-
use change model. Table 3 shows the scenario simulations
executed in this study including assessment of the effects of
land-use change only (LUC), climate change only (CC)
and combined land-use and climate change (LUC+ CC)
scenarios on hydrological processes. For each scenario,
several hydrological components, namely precipitation
(P), potential evapotranspiration (PET), streamflow (Q),
actual evapotranspiration (ET), surface runoff (Qs), lateral
flow (Ql) and baseflow (Qb) were calculated and compared
to the baseline conditions. It should be noted that this
study is carried out at the catchment level since the
model was calibrated and validated based only on a single
discharge station located at the catchment outlet. We did
not assess the impacts of land-use and climate changes on
the water balance at a finer scale than the catchment scale
(i.e. sub-catchment) because impact assessment at the sub-
catchment scale, for which the calibration has not been
carried out, may not be justified (e.g. Ewen et al. 2006). In
addition, this study used the average value of six RCM and
three GCMgrid cells to represent future climate conditions
of the study catchment. Consequently, relatively small
water balance variations from different climate conditions
in different sub-catchments were found.

4 Results

4.1 Land-use change

As shown in Table 4, land use in the study catchment in
2050 under the BAU scenario is predominantly settle-
ments, followed by paddy field, dryland farm, mixed
garden, evergreen forest, shrub land and waterbodies.

Settlement refers to a built-up area and its surroundings;
paddy field is agricultural land that consists of rice
paddy fields with an intensive irrigation system; dryland
farm is an agricultural area for seasonal crop produc-
tion; mixed garden is community forest that consists of
multipurpose trees (e.g. fruits, fuel wood, etc.), often
combined with seasonal crops on the same unit of
land; evergreen forest is a homogeneous forest area
that consists mainly of Pinus merkusii tree species;
shrub land is an abandoned area covered by herbaceous
plants; and waterbodies refers to rivers and ponds.

In comparison to the year 2000, forest area (i.e. ever-
green forest and mixed garden) and shrub land decreased
by 35% and 2.4%, respectively, while agricultural area (i.e.
paddy field and dryland farm) and settlements increased
by 3.5% and 33.9%, respectively (Table 4). The settlement
area significantly increased in the down- and mid-stream
areas, where mixed garden and paddy field were con-
verted to impervious areas. In the upstream area, the
dryland farm land use was mainly converted to mixed
garden and shrub land, as shown in Figure 4.

Under the CON scenario, land use in 2050 is predo-
minantly paddy field, followed by dryland farm, settle-
ments, mixed garden, evergreen forest and waterbodies.
In comparison to the year 2000, mixed garden and shrub
land decreased by 22.1 and 4.3%, respectively, while agri-
cultural area, evergreen forest and settlements increased
by 15.2%, 10.2% and 1%, respectively. Figure 4 shows
that, under the CON scenario, forests are located in the
upstream area, while agricultural area and settlements are
in the down- and mid-stream areas. It should be noted
that, in this scenario, the evergreen forest area will
increase, while the mixed garden area will decrease,
resulting in a net decrease in forest area of 11.9%.

4.2 Climate change

Figure 5 shows the changes in mean annual rainfall
from the RCM and GCMs under RCP4.5 and RCP8.5

Table 3. Future land-use and climate change scenarios as
inputs for the SWAT model. NLUC: no land-use change; NCC:
no climate change; BAU: business-as-usual scenario; CON: con-
trolled scenario; RCP4.5 and RCP8.5: climate change scenarios
under Representative Concentration Pathways 4.5 and 8.5,
respectively. For simulations under CC and LUC + CC scenarios,
we used outputs from one RCM and six GCMs as model inputs
to include climate model uncertainty.
Scenarios Land-use change

NLUC BAU CON

Climate change NCC Baseline BAUNCa CONNCa

RCP4.5 NC4.5b BAU4.5c CON4.5c

RCP8.5 NC8.5b BAU8.5c CON8.5c

aLUC scenarios.
bCC scenarios.
cLUC + CC scenarios.

Table 4. Land-use distribution (in %) in the years 2000 and
2050 for different scenarios.
Land-use class Reference

(2000)
Future (2050)

BAU CON

LU 2000 LU
2050

Δ LU
2050

Δ

1. Forest area 42.2 7.2 −35 30.3 −11.9
a. Evergreen forest 3 2.3 −0.7 13.2 10.2
b. Mixed garden 39.2 4.9 −34.3 17.1 −22.1

2. Agricultural area 36.9 40.4 3.5 52.1 15.2
a. Paddy field 28.2 22.2 −6 34 5.8
b. Dryland farm 8.7 18.2 9.5 18.1 9.4

3. Settlement 16.3 50.2 33.9 17.3 1
4. Shrub land 4.3 1.9 −2.4 0 −4.3
5. Waterbodies 0.3 0.3 0 0.3 0
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in the future period (2030–2050) relative to the base-
line period (1983–2005). Based on the RCM, the mean
annual rainfall in the study catchment is projected to
decrease by 412 mm (−20%) under RCP4.5 and
505 mm (−25%) under RCP8.5. The direction of
change in the mean annual rainfall for the RCM is
similar to those for three of the GCMs (i.e. GFDL-
ESM2M, CanESM2 and CSIRO-Mk3.6.0), which pro-
jected a decrease in mean annual rainfall ranging from
8 mm (−0.4%) to 193 mm (−18%) under RCP4.5 and
from 22 mm (−1%) to 343 mm (−17%) under RCP8.5.
In contrast, the other three GCMs (MIROC5, MPI-
ESM-LR and NorESM1-M) showed the opposite

direction of change in the mean annual rainfall over
the study area. These GCMs project an increase in
mean annual rainfall in the future ranging from
91 mm (+5%) to 384 mm (+19%) under RCP4.5 and
from 87 mm (+4%) to 287 mm (+15%) under RCP8.5.
Although the RCM-simulated rainfall was downscaled
from the CSIRO Mk.3.6.0 GCM, the magnitude of
change of the two is different, in particular under the
RCP4.5 scenario. This is probably due to systematic
biases in the RCM, which makes it independent from
its driving datasets because of its physics parameteriza-
tion (Murphy et al. 2004) and application of the bias-
correction method (Themeßl et al. 2012).

Figure 4. Land-use cover of the Samin catchment in (a) 2000, (b, d) 2030 and 2050 under business-as-usual (BAU) scenario, and (c, e)
2030 and 2050 under controlled (CON) scenario.

Figure 5. Changes in mean annual and monthly rainfall in the Samin catchment in the future period (2030–2050) relative to the
baseline period (1983–2005) under RCP4.5 and RCP8.5 scenarios.
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While different climate models show inconsistent
directions of change for future rainfall, all climate
models project a similar direction of change for the
maximum and minimum temperatures, although with
slightly different magnitudes. For the RCM, the mean
annual maximum and minimum temperatures increase
for both scenarios, by +1.0°C and +1.3°C, respectively,
under RCP4.5, and by +0.7°C and +1.4°C, respectively,
under RCP8.5. All GCMs projected an increase of
about +1°C in the mean annual maximum and mini-
mum temperatures in the future period compared to
the baseline period under both RCP4.5 and RCP8.5
scenarios.

4.3 Future hydrological response

4.3.1 Effects of land-use change
In comparison to the baseline conditions (1983–2005),
simulations under land-use change scenarios indicated
a decrease in the mean annual ET and an increase in
the mean annual Q and Qs (Fig. 6). However, the
directions of change were different for Ql and Qb.
Under BAU, Ql increases and Qb decreases, while
under CON, Ql decreases and Qb increases. We find
that under BAU the mean annual ET decreases by 15%,
which is larger than the decrease of 7.4% under CON.
A decrease in the mean annual ET under both scenar-
ios is compensated by an increase in the mean annual
Q with the same magnitude. More pronounced changes
occur in the fraction of Q that becomes Qs, Ql and Qb.
Under BAU, the mean annual Qs and Ql increase by
40% and 20%, respectively, at the expense of Qb, which
decreases by 3%. Under CON, the mean annual Qs

increases by 16% and the mean annual Qb by 6%,
while the mean annual Ql was relatively constant. At
a monthly scale (Fig. 6(b)), the simulated Q under both
land-use change scenarios is higher than in the baseline
period during the wet season and similar to the base-
line period during the dry season. The mean monthly

Q under the BAU and CON scenarios reaches its peak
in February, with a value of 175 mm (+41%) and
149 mm (+20%), respectively.

Changes in the hydrological responses as a result of
land-use changes were mainly affected by changes in
the Curve Number (CN) parameter in the simulation.
Table 5 shows the relationship between changes in the
weighted CN value and mean annual Q and ET under
different land-use change scenarios. The results show
that an increase in the weighted CN value at catchment
level for both scenarios resulted in an increase in the
mean annual Q and a decrease in the mean annual ET,
where the increase in the weighted CN value under the
BAU scenario is larger than that under the CON
scenario.

4.3.2 Effects of climate change
There is a large uncertainty in the future mean annual
P for both RCP4.5 and RCP8.5, which causes a large
variation in the projected water balance components
(Fig. 7). Projected changes in the mean annual P under
different RCP scenarios range from −20% to +19%
under RCP4.5 and from 25% to +15% under RCP8.5.
Together with an increase in the simulated PET of
about 3%, changes in the mean annual P from both
RCP scenarios cause a significant change in the mean
annual Q as well as in the fractions of flow that become
Qs, Ql and Qb, while changes in ET are relatively minor.
Under RCP4.5, projections of the mean annual Q and
ET range from −35% to +43% and from −7% to +5%,
respectively. Pronounced changes can be observed for
the mean annual Qs (ranging from −33% to +50%), Ql

(−32% to +38%) and Qb (−38% to +39%). Under
RCP8.5, projections of the mean annual Q and ET
range from −47% to +32% and −10% to +5%, respec-
tively, whereas changes in the mean annual Qs, Ql and
Qb range from −44% to +36%, −41% to +29%, and
−56% to +28%, respectively. The large ranges in the
projections for the mean annual water balance

Figure 6. (a) Change in the mean annual water balance components under different land-use change scenarios compared to the
baseline period. (b) Mean monthly streamflow under different land-use change scenarios.
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components likely result from the differences in the
projected P from the different climate models. It
should be noted that the RCM downscaled from a
CSIRO Mk.3.6.0 GCM projected a (very) significant
decrease in the mean annual P for both scenarios,
resulting in pronounced changes in the mean annual
Q, Qs, Ql and Qb.

At a monthly scale, most climate models under
RCP4.5 and RCP8.5 project a decrease in ET during
the dry season and an increase during the wet season
(Fig. 8). A large uncertainty is found for the dry season,
for which some climate models under RCP8.5 project a
significant decrease in the mean monthly ET, in parti-
cular for the simulation using the RCM data. For Q, a
large uncertainty is found during the wet season,
because different climate models project different
directions of change, in particular under RCP4.5.
Under RCP8.5, the direction of change is evident,
with most climate models projecting a decrease of Q
from April to December.

4.3.3 Combined effects of land-use change and
climate change
When land-use and climate change scenarios are com-
bined, the effects on the water balance components are
pronounced, as shown in Figure 9. It should be noted

that in Figure 9 we used a single line to represent the
baseline conditions to simplify the figure. This line is the
average value of the baselines from the RCM and GCMs.
The results show that the mean annual ET decreases,
with the greatest decrease under the BAU8.5 scenario
(ranging from −10% to −25%) and the smallest under
the CON4.5 scenario (−1% to −14%). The direction of
change in the mean annual ET under combined climate
and land-use change scenarios is similar to the ET
changes found when we considered land-use change
only. The mean annual Q is mostly projected to increase
under the BAU4.5 scenario (from −7% to +64%), where
only the simulation with RCM data projected a decrease
in Q. Under the BAU8.5 and CON4.5 scenarios, the
projected changes in the mean annual Q range from
−18% to +53% and −19% to +52%, respectively. The
largest uncertainty in change in the mean annual Q is
found under the CON8.5 scenario, in which it will
change by −30% to +42%. An increase in the mean
annual Q is observed under the BAU4.5 scenario,
although some climate models predict a decrease in
the mean annual rainfall. Changes in the mean annual
Q due to land-use change are amplified under wetting
climate scenarios (projection of an increase in the future
rainfall from the climate models), where the mean
annual Q increases by about 64% under scenario

Table 5. Weighted curve number (CN) value, mean annual streamflow (Q) and evapotranspiration (ET) for different land-use types
under different land-use change scenarios. BAU: business-as-usual; CON: controlled.
Variables LUC scenario Evergreen forest Mixed garden Paddy field Dryland farm Settlement Shrub Water Catchment averaged

Weighted CN Baseline 47.3 59.8 70.0 71.6 77.4 50.3 78.2 63.42
BAU 46.8 54.5 68.6 69.4 76.3 50.2 78.2 69.71
CON 46.8 52.6 67.9 75.2 77.3 50.2 78.2 66.23

Q (mm) Baseline 726 714 1060 1046 1194 1036 0 906
BAU 730 722 1045 1031 1193 1055 0 1068
CON 730 716 1037 1078 1197 1071 0 984

ET (mm) Baseline 1331 1332 985 1002 860 1015 1179 1144
BAU 1328 1333 1001 1021 862 1002 1179 984
CON 1328 1336 1008 970 859 981 1179 1066

Figure 7. Changes in the water balance components (in %) compared to the baseline period under RCP4.5 and RCP8.5 scenarios for
different climate models.
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BAU4.5, which is about 40% more than under the land-
use change only scenario. Similarly, there is a significant
increase in the mean annual Qs in particular under the
BAU4.5 and BAU8.5 scenarios, although the RCM and
some GCMs project a decrease in the mean annual
rainfall. The mean annual Qs is projected to increase

by +21% to +102% and by +2% to +91% under the
BAU4.5 and BAU8.5 scenarios, respectively. Changes
in the mean annual Qs are pronounced for wetting
climate scenarios, where the mean annual Qs is pro-
jected to increase by about 100% compared to the base-
line conditions, which is 60% more than under the land-

Figure 8. Mean monthly ET and Q from different climate models under RCP4.5 and RCP8.5 scenarios.

Figure 9. Predicted mean annual water balance components for different combinations of climate change and land-use change
scenarios.
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use change only scenario. For Qb, it is observed that
scenarios show increases as well as decreases in the
mean annual Qb, resulting in a large uncertainty. The
directions of change in the mean annual Qb under
different scenarios are similar to those under the climate
change only scenario. The CON4.5 scenario projected
the largest change in mean annual Qb, with a range from
−30% to +46%, subsequently followed by the CON8.5,
BAU4.5 and BAU8.5 scenarios.

At a monthly scale, most of the scenarios project an
increase in the mean monthly Q from January to
March, where changes in the mean monthly Q range
from +60% to +120% compared to the baseline period
(Fig. 10). During the dry season, a large uncertainty is
found for all scenarios, which projected decreases as
well as increases in the mean monthly Q. At the start of
the wet season (i.e. November), most scenarios pro-
jected a decrease in the mean monthly Q, where the
largest decrease is found under the CON85 scenario
(ranging from −84% to +14%), followed by BAU85,
CON45 and BAU45.

5 Discussion

In the Samin catchment, changes in land use are
mainly controlled by internal factors, such as expan-
sion of agriculture and settlements, whereas changes in
climate variability are considered as externally driven.
Both play a significant role in changing hydrological
processes of the catchment. Using a modelling
approach, this study assesses individual and combined

effects of future land-use and climate change on the
water balance components in the Samin catchment.

5.1 Effects of future land-use change

Findings show that when future land-use changes
under a business-as-usual (BAU) scenario, mean
annual evapotranspiration will decrease, resulting in
an increase in the mean annual streamflow. The
mean annual surface runoff and lateral flow are pro-
jected to increase almost twofold, but baseflow will
decrease. A massive land-use conversion from vege-
tated area into settlement area as suggested by the
BAU scenario will significantly reduce canopy inter-
ception and soil infiltration capacity, resulting a large
fraction of rainfall being transformed into surface run-
off (Bruijnzeel 2004, Valentin et al. 2008, Marhaento
et al. 2017a). As a result, under BAU, the Samin catch-
ment will face an increasing risk of disastrous events
such as flash floods, landslides and severe soil erosion.
Those risks can potentially be reduced by introducing
and enforcing a land-use planning regulation. We find
that the allocation of forest area to the upstream part of
the catchment and agriculture to the midstream part,
while maintaining the settlement area, as suggested by
the CON scenario, would significantly reduce the mean
annual surface runoff and lateral flow, while the mean
annual baseflow would increase. A large fraction of
vegetated area (i.e. evergreen forest) may lead to an
increase in the water storage capacity of the soil due to
greater root penetration and biotic activity in the upper

Figure 10. Mean monthly streamflow for different combinations of land-use change and climate change scenarios.
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soil layers, resulting in a larger infiltration rate and
ground water recharge (Bruijnzeel 1989, 2004,
Guevara-Escobar et al. 2007). With more water infil-
trated and stored into the soil, a more balanced water
distribution between wet and dry seasons can be
expected. The directions of change in the water balance
components by land-use change in this study are in
line with other studies in the tropics from Bruijnzeel
(1989), Valentin et al. (2008), Remondi et al. (2016)
and Marhaento et al. (2017a).

5.2 Effects of future climate change

When considering only climate change, findings show
that changes in the mean annual rainfall may have
large impacts on the water availability of the Samin
catchment. An increase (or decrease) in the mean
annual rainfall may result in a large increase (or
decrease) in the streamflow and in the fractions of
flow that become surface runoff, lateral flow and base-
flow, while changes in ET are relatively minor.
However, small increases in rainfall are likely to have
little impact on the water balance. More significant
impacts on the water balance can be observed if the
changes in the mean annual rainfall are larger than
10%, where the impacts on streamflow and on the
fractions of flow that become surface runoff, lateral
flow and baseflow can be double the changes in rain-
fall. Accordingly, changes in the fraction of flow
becoming surface runoff, lateral flow and baseflow
can be larger under climate change scenarios than
land-use change scenarios. These findings are similar
to the results of Mango et al. (2011) and Liu et al.
(2011). The rising temperature causes an increase in
the potential evapotranspiration, which may affect the
mean annual ET due to an increase in the available
energy (Budyko 1974). However, this study finds that
changes in annual ET are likely attributed to changes in
annual rainfall, where the variations of ET follow the
variations of rainfall. Thus, an increase in ET is found
during the wet season while a significant decrease in
ET is found during the dry season. These findings are
in line with Budyko (1974), who argues that changes in
evapotranspiration are determined by the balance
between precipitation and evaporative demands.

5.3 Combined effects of future land-use change
and climate change

The findings show that both land-use change and cli-
mate change contribute to changes in the water balance
components, but each driver has a specific contribution
to the water balance alteration. Under combinations of

land-use and climate change scenarios, changes in the
annual evapotranspiration are likely attributed to land-
use change, while changes in the annual baseflow are
likely attributed to climate change. It should be noted
that this study used two completely different land-use
scenarios, where the BAU scenario represents defores-
tation and the CON scenario (partly) reforestation.
Thus, changes in annual evapotranspiration under dif-
ferent land-use change scenarios can be clearly
observed, since trees are generally known to have
higher evapotranspiration rates than other land uses
(Bruijnzeel 1989, 2004, Marhaento et al. 2017a). The
presence of forests can increase the annual evapotran-
spiration from both canopy interception and plant
transpiration, so that under the BAU scenario there
will be a significant decrease in the annual evapotran-
spiration. However, one cannot neglect the role of
climate variability to control changes in the annual
evapotranspiration, since evapotranspiration is largely
influenced by precipitation (Budyko 1974, Liu et al.
2011). At the monthly scale, evapotranspiration is
close to its potential value during the wet season,
since rainfall supplies sufficient water, whereas in the
dry season, the evapotranspiration capacity is mainly
determined by the antecedent soil moisture and influ-
enced by different land-cover types (Liu et al. 2011).

The magnitude of changes in annual baseflow is
mainly determined by climate change (i.e. changes in
rainfall), where the directions of change in annual Qb

under different scenarios are similar to those under the
climate change only scenario. We found a small effect
of land-use change on the changes in the annual base-
flow, with a larger baseflow under the CON scenario.
However, the magnitude of changes in baseflow under
different land-use scenarios was smaller than expected.
According to Ilstedt et al. (2007), the presence of for-
ests can result in more baseflow due to an enhanced
groundwater recharge. Apparently, in this catchment,
the effects of land-use change on the baseflow are offset
by climate change. Thus, more research is needed to
assess the attribution of changes in the baseflow to
land-use change and climate change.

Combined land-use change and climate change have
a more pronounced effect on the streamflow and sur-
face runoff. A projected increase in rainfall accompa-
nied by the deforestation scenario (BAU scenario) will
have more significant impacts on streamflow and sur-
face runoff than land-use change or climate change
acting alone (Legesse et al. 2003, Hejazi and Moglen
2008, Khoi and Suetsugi 2014). Moreover, at the
monthly scale, the streamflow originating from surface
runoff significantly increases during the wet season and
decreases during the dry season, indicating that more
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extreme events (i.e. droughts and floods) will poten-
tially occur in the future. Under the land-use planning
scenario (CON scenario), the effects can be reduced,
but only by less than 20%. Thus, more measures (e.g.
soil conservation) are required in addition to land-use
planning in order to enhance infiltration and aquifer
recharge and subsequently reduce risks due to land-use
and climate change impacts.

Besides resulting in more pronounced effects on the
water balance alteration, combined climate change and
land-use change also resulted in a “neutralizing” effect,
where the combined effects resulted in less significant
impacts because the effects of land-use and climate
changes on hydrological processes were acting in oppo-
site directions. In this study, this neutralizing effect
occurred in particular during the dry season, in which
the hydrological variations are mainly driven by cli-
mate variability rather than by land-use change. During
dry conditions, changes in the hydrological processes
were small despite the fact that land use has changed
significantly, as can be seen under the BAU scenario.
For this reason, we agree with Zhang et al. (2016), who
argued that the role of land-use change should not be
overlooked under dry climatic conditions.

5.4 Limitations and uncertainties

This study couples a land-use change model, a climate
change model and a hydrological model, whereby each
model can be a source of uncertainty affecting the
results. For the land-use change model, we used an
integration of the CA–Markov and MCE techniques
to project future land-use distributions. However, this
method bases land use in the future on extrapolation of
trends, while future trends are obviously uncertain due
to uncertainties in e.g. future population growth.
Therefore, we used a boundary condition in the simu-
lations to constrain the future land-use distributions.
For the climate change model, large model uncertain-
ties occur due to model choices, where different cli-
mate models result in different directions of change in
the projected rainfall. Therefore, this study employed
six additional GCMs that were selected based on dif-
ferent directions of change in future rainfall to include
climate model uncertainty. However, uncertainties
from the climate models can be larger due to other
sources of uncertainty, for instance from the model
structure (e.g. choice of spatial resolution, the set of
processes included in the model, basic assumptions on
parameterization) and application of statistical down-
scaling methods (Murphy et al. 2004). For the selection
of GCMs, the use of bias-corrected GCMs provided by
ISIMIP (www.isimip.org) can be considered for further

research, since this consortium has incorporated more
specific information for different sectors (e.g. the agri-
culture sector) in their climate model scenarios. In
addition, for further research it is suggested to down-
scale the climate model outputs based on the climato-
logical gauge network in order to provide a better
assessment of climate change impacts on hydrological
processes at the catchment scale. For the hydrological
model, sources of uncertainty can be present due to the
model structure (e.g. model assumptions, equations) as
well as data inputs (e.g. lack of relevant spatial and
temporal variability of data on rainfall, soils, land uses
and topography). It should be noted that in this study
the SWAT model was mainly calibrated and validated
for streamflow and not specifically for other water
balance components such as ET, Qb, Qi and Qb. Thus,
the results of the analysis regarding these water balance
components should be interpreted taking into account
the uncertainty. In addition, this study used a coarse
soil map, which may result in too much generalization
of the nature of the soils in the study catchment.
Moreover, the scenario settings used in this study fol-
low a single-factor fixed method, which does not take
into account atmospheric feedbacks of land surface
processes (Blöschl et al. 2007). Considering these
uncertainties, accumulation of errors may affect the
results.

6 Conclusions

We have assessed the separate and combined impacts
of projected future changes in land use and climate
on the water balance components in the Samin catch-
ment. The results show that, individually, land-use
and climate change can result in changes in the
water balance components, but that more pro-
nounced changes will occur if the drivers are com-
bined, in particular for the mean annual streamflow
and surface runoff. When combining the RCP4.5
climate scenario and business-as-usual (BAU) land-
use scenario, the mean annual streamflow and surface
runoff are expected to change by −7% to +64% and
+21% to +102%, respectively, which is 40% and 60%
more than when land-use change is acting alone.
When the BAU scenario is replaced by the controlled
(CON) land-use scenario, the mean annual stream-
flow and surface runoff reduce by up to 10% and
30%, respectively, while the mean annual baseflow
and evapotranspiration increase by about 8% and
10%, respectively. The findings show that land-use
planning can be one of the promising measures to
reduce future water-related risks in the Samin catch-
ment. However, it remains a challenge to accurately
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predict the future hydrological changes due to land-
use and climate change, since there are various
uncertainties, in particular associated with future cli-
mate change scenarios.
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