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ABSTRACT
Two approaches can be distinguished in studies of climate change impacts on water resources
when accounting for issues related to impact model performance: (1) using a multi-model
ensemble disregarding model performance, and (2) using models after their evaluation and
considering model performance. We discuss the implications of both approaches in terms of
credibility of simulated hydrological indicators for climate change adaptation. For that, we discuss
and confirm the hypothesis that a good performance of hydrological models in the historical
period increases confidence in projected impacts under climate change, and decreases uncer-
tainty of projections related to hydrological models. Based on this, we find the second approach
more trustworthy and recommend using it for impact assessment, especially if results are
intended to support adaptation strategies. Guidelines for evaluation of global- and basin-scale
models in the historical period, as well as criteria for model rejection from an ensemble as an
outlier, are also suggested.
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1 Introduction

Climate impact research is currently evolving from
impact studies to development of adaptation strategies
and provision of climate services. In the water sector,
these services are now starting to provide detailed, high
spatial resolution information on projected climate
change impacts in the future for specific water-related
indicators, to be directly applied in adaptation mea-
sures (Kaspersen et al. 2012). Projections of climate
impacts are always connected with uncertainties,
whereas stakeholders typically prefer to use crisp num-
bers, ignoring spreads of projections. Therefore, differ-
ent approaches are being developed to create awareness
of uncertainty, and guide users for robust decision
making under uncertainty. The modellers and data
providers at present face a large responsibility to
achieve confidence in the model results for climate
change adaptation that is undertaken locally.

The projection of future water resources is usually
done by following a complex modelling chain, often
starting with assumptions regarding future radiative

forcing (e.g. representative concentration pathways,
RCPs) and climate projections by general circulation
models (GCMs) to regional climate models (RCMs), or
statistical downscaling methods, to bias correction of
climate data, and finally through hydrological impact
models to obtaining final results (see details in the
reviews by Olsson et al., 2016, Krysanova et al. 2016).
Following this chain, it is becoming more common to
use not only ensembles of climate projections, but also
sets of impact models, i.e. ensembles of hydrological
models (Haddeland et al. 2014, Roudier et al. 2016,
Donnelly et al. 2017, Vetter et al. 2017).

Different types of hydrological models (HMs) are
used for impact assessment; they can be global-
(gHM) or regional/basin-scale (rHM), simplified con-
ceptual or process-based, high resolution, semi-distrib-
uted or spatially lumped. The numerical models were
originally developed for different purposes, such as
flood forecasting (e.g. HBV, see Bergström 1976), pro-
cess understanding (e.g. SHE, see Refsgaard et al.
2010), predictions in ungauged basins (e.g.
TOPMODEL, see Beven and Kirby 1979), large-scale
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water resource estimates (e.g. WaterGAP, see Döll et al.
2003), agricultural water management issues (SWAT,
see Arnold et al. 1993) or surface-water quality man-
agement (e.g. HYPE; see Lindström et al. 2010). The
scale of a model may be not fixed, as there are models
originally developed for the basin scale that are applied
also for the continental and global scales (such as
HYPE, SWAT, LISFLOOD), and models developed
for the global scale that are applied for large river
basins (e.g. VIC and WaterGAP3). The various model
concepts are often assigned with different approaches
to evaluate model performance, and sometimes with
different attitudes to the importance of model calibra-
tion and validation.

From the beginning of the 1990s, the catchment
modelling community developed sophisticated opti-
mization and uncertainty algorithms (e.g. Beven and
Binley 1992, Duan et al. 1993, Vrugt et al. 2003),
which are frequently applied to judge reliability of
rHMs for specific purposes and sites. Thus, rHMs in
climate impact studies are generally calibrated and
validated specifically to the site of interest. On the
contrary, most gHMs are usually applied for impact
studies with a global parameterization, which com-
promises the quality of local performance for
assumed good performance globally, i.e. using a
priori estimates of individual process parameters
(e.g. see Vörösmarty et al. 2000), or after calibration
only for selected large catchments (e.g. Döll et al.
2003, Widén-Nilsson et al. 2007), or combinations of
these approaches (e.g. Nijssen et al. 2001). It is
impossible to achieve good performance at all loca-
tions and basins using these methods, so generally a
rHM will provide better performance than a gHM at
the location for which a rHM has been tuned.
However, more rigorous calibration procedures are
now starting to be developed for gHMs (e.g. Müller
Schmied et al. 2014), and continental-scale HMs (e.g.
Donnelly et al. 2016, Hundecha et al. 2016) including
multiple objective calibration, also for variables other
than discharge (e.g. Viney et al. 2009, Andersson
et al. 2017).

Recently, the outputs from global- and regional-
scale hydrological models were compared in the
Inter-Sectoral Impact Models Intercomparison Project
(ISI-MIP) (Gosling et al. 2017, Hattermann et al. 2017)
for their performance and impacts in terms of mean
seasonal dynamics of river flow, mean annual dis-
charge and high/low flows.

In general, two different approaches can be distin-
guished in climate change impact studies when apply-
ing impact models and accounting for issues related to
model performance:

Approach 1: Using a multi-model ensemble dis-
regarding performance. This approach is widely used
for climate impact assessment by global- and continen-
tal-scale modelling studies (Dankers et al. 2014,
Gosling et al. 2017) and follows the state of the art
for ensembles of GCM and RCM projections used by
the IPCC (IPCC 2014). It is assumed that every parti-
cipating model has equal opportunity (sometimes
called “one model, one vote”), and some modellers
even claim that the multi-model application is not “a
beauty contest” as an argument supporting this
approach. For example, Christensen et al. (2010) sug-
gested that an unweighted multi-model mean is the
best approach for RCM projections, because no single
model is best for all variables, seasons and regions (see
also Kjellström et al. 2010). This has also been assessed
for gHMs (Gudmundsson et al. 2012a, 2012b), based
on a study of the performance of nine gHMs (including
land surface schemes, LSS), suggesting that a central
tendency of a multi-model ensemble (mean or median)
should be presented as the output in climate change
impact studies, despite (and because of) the large var-
iations in performance of individual models.

Approach 2: Using models considering their per-
formance. This approach is also widely applied for
impact assessment. Several authors (e.g. Prudhomme
et al. 2011, Roudier et al. 2016) have underlined the
importance of model performance and suggested that
the impact model ensemble should be adjusted accord-
ing to the performance of the HMs in reproducing the
indicators to be projected (e.g. river discharge). This
could be done by removing the outliers or poorly
performing models, or weighting the individual mod-
els’ results based on their results in the reference per-
iod. Hydrological impact assessment often involves the
output of one or more indicators for which the perfor-
mance under historical climate conditions can be eval-
uated specifically. This approach follows the tradition
of catchment modellers to choose between parameter
values during calibration, and only accept the best
model performance. Nowadays, it is often extended to
using not one but several parameter sets that demon-
strated a good performance, enabling also uncertainty
assessment (Beven and Binley 1992, 2014, Seibert 1997,
Beven 2009, Yang et al. 2014).

There are both advantages and disadvantages in
each of these two approaches when applied for climate
change impact assessment. A comparison of these two
approaches allows us to compare also uncertainties
related to impact models and connect them with the
model performance.

For instance, the first approach may be the only
feasible one on short notice for global- and
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continental-scale assessments (e.g. IPCC) that are used
to raise awareness about potential changes and hot-
spots in future water resources, and to allow impact
assessments also in data poor regions. However, the
global-scale models may not provide an accurate
description of the hydrological system at a given loca-
tion, river basin or region for the period of available
observations (e.g. Dankers et al. 2014, Hattermann
et al. 2017). Besides, this approach has some obvious
weaknesses, because e.g. a removal of one single outlier
model that consistently overestimates or underesti-
mates runoff percentiles could shift the ensemble
mean far from the level corresponding to the situation
when all models are used (Gudmundsson et al. 2012a,
Fig. 4), and how should this be interpreted? Also, the
ensemble approach requires large modelling resources,
and is only meaningful if there is consensus among the
model groups about the model protocol and simulation
experiments.

The second approach, on the other hand, is herein
considered more reliable at the catchment scale and
could give confidence to decision makers to implement
adaptation measures. If simulations for the historical
period closely represent observations, the projections
based on such models are more easily accepted by
model users (e.g. Borsuk et al. 2001). This approach
involving calibration and validation procedures is also
more time consuming and computationally demand-
ing, especially when applied for large domains using
complex process-based models.

However, it can be argued that equifinality in the para-
meter choices (Beven 2006) and adjustment of parameters
to present climate might not give robust parameter values
that are valid also for a changed climate. Still, checking the
model(s) performance, allowing for equifinality (e.g. using
the GLUE methodology: see Beven and Binley 1992) and
involving an ensemble of parameter sets will be more
robust than using a single “optimum” parameter set, and
this should still be a part of best practice (e.g. see Cameron
et al. 2000). Nevertheless, this does not mean that the
resulting ensemble of parameter sets will provide good
simulations under future climate conditions, for a number
of reasons. This calls for calibration and validation proce-
dures that at least ensure that themodel’s ability to respond
to the longer scales of variability in today’s climate is as
good as possible.

Traditionally, gHMs are applied for climate impact
assessments at global and continental scales with a
coarse spatial resolution (e.g. 0.5 degree), while rHMs
are applied in impact studies mostly for one or several
river basins (Bergström et al. 2001, Andréassian et al.
2004, Aich et al. 2014, Vetter et al. 2015) or at the
national or large river-basin-scale with a high spatial

resolution (Huang et al. 2010, 2013a, 2013b, Arheimer
et al. 2012, Hattermann et al. 2014, 2015, Arheimer and
Lindström 2015). Recently, rHMs have started to be
applied also at the continental scale (Archfield et al.
2015, Donnelly et al. 2016), or for multiple large river
basins worldwide (ISI-MIP project, see Krysanova and
Hattermann 2017, Krysanova et al. 2017) based on
model evaluation done in advance (Huang et al.
2017). The gHMs are moving towards a finer resolu-
tion of up to ~1 km (Bierkens et al. 2015). Thus, the
two impact-modelling communities are approaching
each other’s spatial domains and should also benefit
from sharing their best practices.

In this paper, we argue that both approaches for asses-
sing climate impacts are useful in the right context, but it
is important to be aware of the differences, and the
uncertainties related to model performance should be
always mentioned. In particular, we intend to discuss
implications of the second approach recognizing the
importance of model performance, and whether it helps
to achieve more reliability in water indicators for climate
change adaptation. To do this, we intend to prove or
reject the hypothesis that good performance of hydrologi-
cal models in the historical period increases confidence in
projected impacts under climate change, and decreases
uncertainty of projections related to hydrological models.
This will be done mainly based on literature review and
analysis of some modelling results, and guided by the
following partial questions:

(1) When does a model become a poor tool for
describing the behaviour of a basin and thus
should be excluded from an ensemble as an
outlier?

(2) What is the influence of model performance in
the control period on the outcome of impact
assessment? Namely, does a good performance
of HMs increase their credibility for impact
assessment and decrease uncertainty of projec-
tions related to hydrological models, or not?

(3) How should model evaluation be done in the
context of climate impact assessment?

2 Performance of global and regional HMs and
cross-scale evaluation

First, we would like to stress that, in our opinion, it is
the model’s performance at the location of interest in
the period with observations that is important, and not
whether or not the model was calibrated and validated
to that location. Sometimes a non-calibrated model
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may perform well enough, and the calibration may lead
to problems related to over-tuning.

Usually we assume that a model performs well when
it is evaluated for several indicators, and a number of
evaluation criteria, describing certain hydrological sig-
nature(s) (e.g. river discharge, or percentile Q10), are in
the good or satisfactory performance categories vs
observations. The judgment of a “good performance
category” depends on the considered hydrological sig-
nature, its temporal resolution, spatial scale, evaluation
criteria used and quality of observational data
(Kauffeldt et al. 2013, Beven and Smith 2015).
Guidelines for model evaluation have been formulated
in several papers (e.g. Moriasi et al. 2007, Tuppad et al.
2011, Ritter and Muñoz-Carpena 2013). Here we
briefly discuss performance of global models, regional
models and a cross-scale evaluation of both model
types based on recent literature.

2.1 Performance of global hydrological models

The performance of gHMs used in impact studies tends
to vary with location and catchment scale, which
means that, while at some points it may be considered
good, in many cases it can be very poor. A number of
studies evaluated the performance of gHMs by com-
paring different simulated aspects of runoff. Table 1
provides an exemplary overview of evaluation of eight
global hydrological models and one continental-scale
model applied in the manner of gHMs, not pretending
to give a full picture or include all existing gHMs.
Please note that nearly all of these are maintained
models, meaning that they are continuously updated
and improved and that the values in this table simply
reflect the state of the model at the time of the pub-
lication cited. For a more complete list of gHMs and
their main features, see Bierkens (2015), Bierkens et al.
(2015), Sood and Smakhtin (2015) and Kauffeldt et al.
(2016). A comprehensive summary of previous global
and continental model evaluation protocols can be
found in Beck et al. (2017).

As one can see from Table 1, a highly heterogeneous
number of basins, criteria, validation periods, data
products (climate forcing, discharge data) and evalua-
tion criteria have been used in different studies. The
thresholds of fit are not always explicitly defined and
documented for all studied basins, and the perfor-
mance varies greatly among the basins and studies.
Satisfactory results in terms of long-term average
annual or monthly runoff are usually found for
approximately 50% of all gauge stations considered,
and the rest show poor comparison with observations
(Table 1). The most comprehensive evaluation of

monthly discharge for more than 1000 gauge stations
globally was done with the PCR-GLOBWB and
WaterGAP2.2 models (Van Beek et al. 2011, Müller
Schmied et al. 2014), and in both cases the quality of
climate forcing data was discussed in relation to the
evaluation results.

Poor performance: systematic overestimation of
runoff in arid and semi-arid areas, and systematic
underestimation of discharge in high-latitude river
basins, can be noted for most examples presented in
Table 1 for gHMs. This indicates systematic biases
across models in representing specific processes such
as snowmelt in high latitudes and evaporation in dry-
lands (see e.g. Gerten et al. 2004), but can also be
attributed partly to the climate forcing datasets and
their uncertainties (see e.g. paper by Biemans et al.
(2009), who compared seven global precipitation data-
sets in relation to the performance of one gHM). Thus,
we can conclude that a comprehensive, systematic eva-
luation for all models (also for variables other than
discharge), using the same set of evaluation metrics
and observational databases, is needed.

Often, gHM performance is evaluated in several
large-scale catchments for river discharge only, yet
impact results are delivered for multiple hydrological
indicators on maps at all scales from far upstream (one
grid cell) to far downstream (many grid cells accumu-
lated), as well as for a number of internal model vari-
ables such as evapotranspiration, soil moisture and
runoff. It is also becoming common to use gHMs not
only for studying changes in mean seasonal dynamics,
but also to investigate changes in extreme runoff char-
acteristics, such as magnitude and frequency of high/
low flows, floods, hydrological droughts and water
scarcity under climate change scenarios (Dankers
et al. 2014, Prudhomme et al. 2014, Schewe et al.
2014, Arnell and Gosling 2016, Gosling et al. 2017).
This has mostly been done without any checking of
model performance for the indicators of extremes in
advance in these and other global-scale studies. As a
result, huge projection uncertainties and even contra-
dicting projections based on gHMs appear in the lit-
erature (Kundzewicz et al. 2017), and stakeholders may
be confused.

However, there do exist several studies that evalu-
ated performance in more detail, e.g. for a set of three
to nine uncalibrated gHMs in Europe using a database
of discharge observations in very small, pristine catch-
ments (mostly sub-grid scale) which were assumed to
represent grid-scale runoff. The evaluations included
spatially aggregated runoff percentiles (Gudmundsson
et al. 2012a), seasonality of the runoff at grid and
spatially aggregated scales (Gudmundsson et al.
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2012b), and indices describing extremes of runoff
(Prudhomme et al. 2011). This was a valuable contri-
bution to understanding how these sorts of models
perform at the grid to sub-catchment scale. These
studies showed that there are large variations in local
model outputs, large variations in model performance
when aggregating outputs over larger areas, biases in
both mean and variability of simulated runoff, and
increasing biases at the extreme ends of the flow dura-
tion curve. It was shown that in many cases individual
models perform extremely poorly. However, while
Gudmundsson et al. (2012a) suggested that each
model was a hypothesis to be tested, conclusions as to
whether any of these “model hypotheses” should be
rejected were not made, and instead the multi-model
ensemble was suggested to be used for climate impact
analysis.

Recently, Beck et al. (2016) presented a new glob-
ally regionalized model evaluated in over 1787 catch-
ments ranging in size from 10 to 10 000 km2, and,
more importantly, presented a comparison of the
performance of nine state-of-the-art gHMs using
common metrics. They showed that the median per-
formance of many of these models across the range
of evaluated catchments is rather poor. For example,
median Nash and Sutcliffe efficiencies (NSE) were
well below zero, i.e. adequacy of the used gHMs to
described processes is worse than knowing the mean
flow (i.e. the observed mean is a better predictor than
the models). Notably, the new model presented with
regionalized calibration outperformed even the
ensemble mean of the other nine gHMs. Here, it
seems appropriate to quote the Nobel laureate in
chemistry, Sir C. N. Hinshelwood (1971, p. 22,
1966/67, p. 24): “It is sometimes claimed that the
results even if rough will be useful statistically. There
can be no more dangerous doctrine than that based
upon the idea that a large number of wrong or mean-
ingless guesses will somehow average out to something
with a meaning.”

2.2 Performance of regional-scale models

In contrast to gHMs, performance of regional models
is always tested in advance for the region/river basin
under study, most often using daily or monthly dis-
charge dynamics, but less often for other variables:
high and low percentiles of discharge, evapotranspira-
tion, return periods of floods and low flow. Table 2
presents an overview of evaluation of regional hydro-
logical models for large regions, which was done rela-
tive to the indicators of interest of impact assessment.

As we can see, good evaluation results, in terms of
two to three criteria of fit, have been achieved for most
of the gauges in all studies, whereas a poorer perfor-
mance has been stated for a few gauges, mostly in
catchments with intensive water management, low run-
off coefficient or for low flow. Going to the multi-basin
and national-scale applications with the models devel-
oped for the catchment scale and assuring their good
performance is possible in principle, though not easy
(Strömqvist et al. 2012).

However, the applied evaluation/validation techni-
ques used for all HMs usually do not assess how a
model might perform in a different climate (e.g. check-
ing specifically for dry or wet periods, depending on the
expected future climate), although it is important for the
following impact studies. Validation of a model in dif-
ferent climates can be done by (a) using a differential
split-sample, or DSS, test, as suggested by Klemeš (1986)
and Refsgaard et al. (2013a), (b) testing the model under
different combinations of the calibration/evaluation per-
iods including the period of changes in hydrological
regime (e.g. Choi and Beven 2007, Coron et al. 2012,
Gelfan et al. 2015), (c) testing the model’s ability to
reproduce inter-annual variability (Greuell et al. 2015),
or (d) a combination of these methods to give more
credibility to the fact that the model can perform well in
a changing climate for certain indicators (or should be
declined for some indicators). Note that the hierarchical
test scheme for model validation developed by Klemeš
(1986) distinguishes simulations under stationary and
non-stationary conditions as well as for gauged and
ungauged basins.

Several recent studies across the globe have
addressed these methods. For instance, the study of
Choi and Beven (2007) on the multi-period and
multi-criteria evaluation of TOPMODEL in a catch-
ment of South Korea has shown that, while the model
fitted very well in a classical sense for the whole cali-
bration period, the dry period clusters did not provide
parameter sets consistent with other periods. Coron
et al. (2012) tested three conceptual rainfall–runoff
models over a set of 216 catchments in Australia in
contrasting climate conditions using a generalized
split-sample test, and showed that validation over a
wetter (drier) climate than during calibration led to
an overestimation (underestimation) of the mean run-
off, whereas the magnitude of the models’ deficiency
depended on the catchment considered. In the study of
two basins, one characterized by changes in climatic
conditions and the second exposed to a drastic land-
cover change due to deforestation, Gelfan et al. (2015)
showed that it is possible to simulate changes in hydro-
logical regime with acceptable accuracy, retaining the
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stable model structure and parameter values. Fowler
et al. (2016) analysed 86 catchments in Australia and
showed that DSS-test can miss potentially useful para-
meter sets, which could be identified using an approach
based on Pareto optimality, suggesting that models
may be more capable under changing climatic condi-
tions than previously thought.

Examples of testing a range of catchment models
under changing climate and anthropogenic conditions
and successful evaluation of their ability to cope with
them were provided in a Special Issue of Hydrological
Sciences Journal on “Modelling temporally-variable
catchments” (Thirel et al. 2015).

2.3 Cross-scale evaluation of both types of models

Recently, hydrological simulations carried out with the
help of nine gHMs and nine rHMs for 11 large river
basins in all continents were analysed and inter-com-
pared under reference and scenario conditions
(Hattermann et al. 2017). The rHMs were calibrated
and validated using the re-analysis WATCH forcing
data (WFD, Weedon et al. 2011) as input and applying
a split-sample approach, whereas the gHMs were not
calibrated (with the exception of one). The outputs of
five GCMs from CMIP5 (Taylor et al. 2012) were
statistically downscaled and used as climate forcing
under four RCPs. They were bias-corrected using the
WATCH data as reference and applying the method
described in Hempel et al. (2013).

However, comparison of the WATCH data against
locally available observational climate data in the refer-
ence period revealed that some variables did not match
the observations in some basins (e.g. global radiation in
the Niger, and precipitation in the Upper Amazon). In
the case of the Niger, the Hargreaves equation with
Tmin and Tmax as input variables was used to calcu-
late global radiation, which led to a significantly
improved comparison of the simulated discharge
against measurements (Aich et al. 2014). For the
Upper Amazon with tropical cloud forests, the cloud
water interception was included using the Tropical
Rainfall Measuring Mission data (Strauch et al. 2017),
also leading to improvement of model performance.
Despite these modifications, the conclusions regarding
rHMs and gHMs in this study should hold, because
rHMs generally give even better results than gHMs
outside of controlled experiments, such as in
Hattermann et al. (2017), because rHMs often use
local forcing data utilizing all available information.

One major result of the inter-comparison for the
reference conditions is that the global models often
show a considerable bias in mean monthly and annual

discharges and sometimes incorrect seasonality,
whereas regional models show a much better reproduc-
tion of reference conditions. The mean of gHMs per-
forms better than most individual models due to a
smoothing effect, but the bias is still quite large.

Hattermann et al. (2017) summarized the model
evaluation results for two model ensembles considering
only their aggregated outputs: the long-term mean
monthly dynamics averaged over each model set. The
evaluation was done using two criteria of fit: correla-
tion coefficient (r) between the simulated and observed
mean annual cycles of the period 1971–2000 and bias
in standard deviation (Δσ). In addition, the d-factor
(Abbaspour et al. 2007), which is the ratio of the
average distance between the 97.5 and 2.5 percentiles
and the standard deviation of the corresponding mea-
sured variable, defined as a measure of uncertainty, was
applied.

According to the accepted thresholds, high corre-
lation (≥0.9) was found for 10 basins for means of
rHMs, but for only four out of 11 basins for means of
gHMs; and low bias in standard deviation (<±15%)
was found in nine cases for means of rHMs, but only
in one case out of 11 for means of gHMs. The values
of d-factor below 1 denoting a low uncertainty
related to observations were found for nine basins
simulated with rHMs, but only for one basin simu-
lated with gHMs. Poor performance was found even
for the aggregated gHM outputs: the means of nine
global models, whereas the regional models demon-
strated good performance in this respect, and also
individual rHMs were successfully evaluated for
monthly and seasonal dynamics as well as high
flows (see Huang et al. 2017). We can conclude that
performance varies systematically between the cali-
brated rHMs and non-calibrated gHMs in favour of
the regional models.

2.4 When does a model become a poor hypothesis
for the behaviour of the basin?

Based on this overview of the HMs’ performance, one
may ask: When does a model become a poor hypoth-
esis for the behaviour of the basin and thus should be
excluded from an ensemble as an outlier? Even those
who are less interested in calibration or evaluation
must accept the need for arguments why a model
should still be considered useful. In our opinion,
there are at least three well-established statements for
judging models (see e.g. discussions in Klemeš 1986,
Coron et al. 2011, Refsgaard et al. 2013a, Thirel et al.
2015).
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First, we agree that a hydrological model can never
be universally validated, yet its performance can be
evaluated for situations that imitate the “target” condi-
tions (e.g. impact assessment) of the model application.
Second, if the model does not perform well (in accor-
dance with the definition above), it is most likely
inadequate in the “target” conditions. Third, the oppo-
site is not always true: a lack of disagreement does not
necessarily result in the model applicability for these
conditions; however, appropriate evaluation design
increases credibility and decreases uncertainty in the
model results. According to Klemeš (1986), the ade-
quacy of a hydrological model should be judged only
from the point of view of the credibility of its outputs.

Besides, the model performance also depends on the
adequacy of the forcing data, which is not always con-
sistent and adequate: e.g. see Kauffeldt et al. (2013),
who examined the consistency between input climate
data and discharge data; Pechlivanidis and Arheimer
(2015), who analysed errors and inconsistencies in
global databases in application to India; and the dis-
cussion of disinformation in data and its effect on
model calibration and evaluation by Beven and
Westerberg (2011) and Beven and Smith (2015).
There are also useful discussions (Beven 2006, 2012,
2016) about facets of uncertainty and possibilities of
rejecting potentially useful models because of poor
observational data (false negative error), or accepting
poor models just because of poor observational data
(false positive error), suggesting that we should take a
much closer look at the input data to be used for
calibration. Therefore, evaluation of the forcing data
should be always done in advance.

The listed statements allow us to argue that a model
intended to reproduce, for example, the seasonal runoff
regime (or other indicators of interest, e.g. high and
low percentiles) should be excluded from an ensemble
as an outlier, if:

(a) it tends to overestimate/underestimate the long-
term average annual runoff (or indicators of
extremes) significantly (e.g. by >25%, see
Moriasi et al. 2007);

(b) it cannot reproduce seasonality sufficiently well,
e.g. seasonality of flood generation (this can be
tested using coefficient of correlation r and bias
in standard deviation with thresholds r < 0.8,
bias > 25% as criteria of rejection); or

(c) it cannot reproduce historical inter-annual
variability (e.g. measured by bias in standard
deviation exceeding 25%), or deviate signifi-
cantly in performance between specified periods
or between dry and wet periods in the past.

If evaluation is being done for many stations, NSE <
0.5 could be used as a criterion of rejection (see
Roudier et al. 2016). The suggested criteria for season-
ality were used in Huang et al. (2017) and Hattermann
et al. (2017), but with stronger thresholds than pro-
posed here.

Criteria and thresholds for model evaluation focused
on streamflow simulation and considering uncertainty
of measured data, which could also be used for specify-
ing ensemble outliers, can be found in the guidelines by
Moriasi et al. (2007). Nevertheless, we argue that flex-
ibility and pragmatism should be used in applying
these thresholds, as the potential to achieve a certain
model performance is dependent on the quantity and
quality of data available, the catchment size, anthropo-
genic impacts, climate conditions and the flow regime.
Alternatively, the GLUE limits of acceptability
approach suggested and applied for flood frequency
estimation in Blazkova and Beven (2009) and for dis-
charge prediction in Liu et al. (2009), which is based on
analysis of different sources of uncertainty and
accounts for observational errors, can be used.

The ability of a model to maintain consistent per-
formance across varying climatic periods (e.g. in a
split-sample approach) is more important than extre-
mely high performance in one period, as the level of
performance across multiple periods is more indicative
of the model’s potential consistency in a future climate.
Therefore, models that deviate significantly in perfor-
mance among several periods should be rejected. And,
of course, overall inaccurate performance should be
grounds for model rejection.

Whichever approach is used, we argue that a model
should not be used for impact assessment if it could
not perform well at the validation or verification stage,
i.e. it should not be used for projecting indicators it has
shown to be poor in reproducing. Under verification
here we mean additional model testing under condi-
tions substantially differing from those used for the
calibration and validation. For example, if projection
of low flows and droughts is of interest or if it is
expected that dry periods will increase in future, the
use of models that showed difficulty in reproducing dry
periods (e.g. Choi and Beven 2007, Chiew et al. 2014)
should be excluded, or, alternatively, an approach to
allow for non-stationarity of parameters should be
found.

However, in practice there are, on the one hand,
studies evaluating performance of state-of-the-art con-
tinental- and global-scale models, where large errors
are found for non-calibrated models considering dif-
ferent indicators (e.g. see Haddeland et al. 2011,
Greuell et al. 2015, Zhang et al. 2016, Beck et al.
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2017), and, on the other hand, numerous climate
impact studies where these models are applied and
projections presented without any form of verification.

To summarize, the following problems related to
uncalibrated gHMs can be listed: poor performance in
many regions or river basins; high spreads and uncer-
tainty of climate impact projections; projections by
multiple gHMs using the same or similar climate
input may contradict, i.e. not be robust; zooming in
on specific regions is usually not recommended. And
the following problems related to calibrated rHMs can
be listed: the model evaluation is time consuming and
labour intensive, especially for larger regions; the com-
prehensive split-sample and spatially-distributed
approach using several indicators is not always applied;
and going to the continental/global scale maintaining
comprehensive model evaluation is not easy.

3 Influence of model performance on results of
impact assessment

3.1 Influence of model performance on impacts
and their credibility

The meaning of credibility can be different (depending
on who is judging) – credibility perceived by the scien-
tific community may not coincide with credibility per-
ceived by the stakeholders or users of model results.
Sometimes, these two groups have opposing views on
this issue. Whereas both approaches 1 and 2 for climate
impact assessment defined in the Introduction are
being applied by scientists, using their own arguments,
for the users of model results probably Approach 2 is
more trustworthy (Borsuk et al. 2001).

There are several studies showing that model per-
formance influences results of impact assessment, and
two model sets developed for global and regional scales
with different performance in the historical period
produce different results.

3.1.1 Example 1: continentally and locally calibrated
model
Simulated impacts of climate change on the seasonality
of discharge in the Kizilirmak River in eastern Turkey
(catchment size 6673 km2) are shown in Figure 1 using
both a continentally (analogous to a gHM) and a
locally (analogous to a rHM) calibrated model using
the same model inputs. The E-HYPE v2.1 model was
first calibrated/validated as a continental-scale model
for 181 gauges across Europe (see Donnelly et al. 2016
and Table 1), and then calibrated locally for this catch-
ment in Turkey (Fig. 2). The local calibration was
manual and aimed to maximize NSE, but a large NSE

value was only accepted if the relative error (RE, or
percent bias) was within 15%. Then the E-HYPE model
was forced by five regionally downscaled global climate
models for RCP4.5.

Large differences in model performance, particularly
in volumetric errors (–68% vs +9.8%), affect the simu-
lated climate change signal (Fig. 1). In the former
model application (Fig. 1(a)), there is no spring flood
peak in the future climate, and instead the largest
discharges are seen in winter. In the latter model simu-
lation (Fig. 1(b)), the spring flood peak is projected to
remain, but decrease in magnitude. This is a significant
difference in the projected climate impacts, particularly
if a user is primarily interested in flow regime.

The differences in these projections are caused by a
smaller snowpack in the continental-scale model, i.e. the
mean annual maximum snow depth over 30 years was
140 cm in the calibrated vs 100 cm in the uncalibrated
model which has a poor performance, meaning a large
underestimation in volume, 68%, at this particular site
(Fig. 2). The performance of the continental-scale model
is particularly poor at this location; however, this is not
unusual when selecting a specific catchment from a large-
scale model application. Of course, it can be argued that
the locally calibrated model is also uncertain, which is
certainly the case. However, it would be misleading to
consider the projections of spring flood changes from the
continental-scale model equally probable, as the changes
are caused by the near depletion of a snowpack that was
too small in the reference period. This example falsifies the
assumption that all large-scale models are good enough
representations of hydrological conditions to be used in
specific catchments. We can therefore conclude that the
projections of the model calibrated specifically for the catch-
ment are more credible due to better process representation.

3.1.2 Example 2: calibrated and non-calibrated
model
In a second example, numerical experiments were
carried out with two versions of the ECOMAG regio-
nal hydrological model in application to the Lena
River basin: (a) with a priori assigned parameters,
and (b) with three parameters (controlling snowmelt,
evaporation and soil infiltration capacity) adjusted
through calibration against long-term daily runoff
data in several streamflow gauges. The daily meteor-
ological inputs were assigned using WATCH re-ana-
lysis data (Weedon et al., 2011), which demonstrated
a good agreement with available meteorological
observations.

First, the ability of the GCM-driven model for
runoff simulation in the historical period (1971–
2005) was tested (Fig. 3(a) and (b)) using climatology
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data from an ensemble of five GCMs: GFDL-
ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-
ESM-CHEM and NorESM1-M, which were bias-cor-
rected in advance against the WATCH re-analysis
data. The long-term mean hydrograph (averaged
over time and five model runs) simulated by the
non-calibrated model (Fig. 3(b)) demonstrates a visi-
ble shift of snowmelt flood in comparison with the
corresponding hydrograph derived from the cali-
brated model, and, importantly, in comparison with

observations. The main reason is in advancing the
snowmelt season by the non-calibrated model from
the beginning of June to the middle of May. In
addition, the non-calibrated model significantly over-
estimates runoff in the period from mid-July to mid-
November.

Then, two model versions were used for projecting
hydrological response to climate change using the same
GCM ensemble and four RCP scenarios for the end-
century period (2070–2099). Figure 3(c) and (d) shows

Figure 1. Comparison of climate change impacts on the annual cycle of discharge (top) and snow depth (bottom) for (a) a
continental-scale and (b) a locally calibrated E-HYPE v2.1 model – Sögutluhan gauge on the Kizilirmak River in eastern Turkey. The
outputs are from the E-HYPE model forced with an ensemble of five regionally downscaled GCMs for RCP4.5. Grey shading shows
the reference period (1971–2000), and red shading, a future period (2071–2098). The minimum, median and maximum of the
ensemble are shown.

Figure 2. Comparison of observed and simulated discharge at Sögutluhan gauge, Turkey, from the large-scale E-HYPE v2.1 model
(blue) and using a model extracted from E-HYPE v2.1 and calibrated locally for this catchment (red). Model performance: large-scale:
volumetric error = – 68%, NSE = 0.09; calibrated for the catchment: volumetric error = +9.8%, NSE = 0.75.
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different responses from two model versions. The non-
calibrated model (Fig. 3(d)) retains tendencies of ear-
lier snowmelt flood and increased summer flow in
comparison with the results obtained with the cali-
brated model, and does not project any visible changes
in the long-term mean peak flow discharge compared
to the reference (1971–2005) period. At the same time,
the calibrated ECOMAG model (Fig. 3(c)) projects an
increase in peak flow discharge by more than 15%
(ensemble mean) in comparison with the reference
period, and a two-week shift of peak flow from mid-
June to the end of May. Similar to the previous exam-
ple, we can conclude that due to better process repre-
sentation, the projections by the calibrated model in
Figure 3(c) are more plausible than those in Figure 3(d).

3.1.3 Example 3: excluding the outlier models
Rejecting the outlier models due to their performance
was applied first at the scale of a single model for a
single catchment using the limits of acceptability
approach, when many sets of sensitive model para-
meters were tested as potential models of the catch-
ment (Blazkova and Beven 2009). For example, the

climate impact study on flood frequency for a catch-
ment in the UK by Cameron et al. (2000) and the flood
frequency assessment for a catchment in Czech
Republic by Blazkova and Beven (2009) showed the
effects of uncertainties in parameterization of hydro-
logical models and in observational data.

There are also examples of multi-impact model
studies where models have been selected or omitted
from an ensemble based on their performance. For
example, the full model ensemble of five HMs from
the IMPACT2C project was not included in the
paper by Roudier et al. (2016), as some impact mod-
els were omitted from the ensemble after validating
their performance for extremes. First, a detailed vali-
dation of all HMs focusing on average conditions
was performed (Greuell et al. 2015), and one of the
models showed a large negative bias of 38%, whereas
the ability to simulate inter-annual variability did not
differ much among the models. After that, the mod-
els’ skill in simulating indicators of extremes (mag-
nitudes of 10- and 100-year floods and low flows)
was tested, assessing whether the median of an indi-
cator computed based on the 11 bias-corrected

Figure 3. Long-term average hydrographs for the Lena basin simulated by (a, c) calibrated and validated and (b, d) not-calibrated
ECOMAG model driven by five GCMs in the reference (1971–2005) and end-century (2070–2099) periods. (a, b) Comparison with
observed discharge in the reference period, and (c, d) comparison of projections for the end-century (ensemble mean with
uncertainty bounds) with ensemble mean in the reference time. cv: calibrated and validated model; nc: not calibrated model; ref:
reference period; p3: end-century period.
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climate runs is close to the same indicator computed
with observed discharge data for 428 stations
(Roudier et al. 2016). For that, the threshold of 0.5
for NSE was used for model rejection, and, finally,
an ensemble consisting of three models was selected
for floods, and two models for low-flow modelling.

Figure 4 shows an example how excluding improb-
able models from an ensemble affects the climate
change signal and spread. Here we show the simulated
impacts in terms of changes in discharge at +2°C
(using the method of Vautard et al. 2014 to define
climate change at 2°C) for the Kalix River catchment
in Sweden using five continental-scale HMs: HYPE,
LISFLOOD, LPJml, VIC and WBM and seven climate
model projections. After excluding two of the HMs
(VIC and LPJml), which were shown to have problems
with simulating seasonality (and thus snow processes,
Greuell et al. 2015), the median climate change signal
increases while the spread of possible responses
decreases.

While it is likely that we underestimate the spread
in plausible responses with the reduced ensemble,
using implausible models to achieve increased spread
is simply misleading. In this case, the poor perfor-
mance of hydrological models could be due to lack
of calibration, inappropriate model structure, poor
observational data, or deficient description or para-
meterization of some key processes for the catch-
ments studied. For example, it was later shown that
a frozen soil routine was causing unrealistic pro-
cesses in VIC (Greuell et al. 2015). We do not

argue here that three selected models are plausible
enough (e.g. due to equifinality and uncertainty in
climate input), but we argue that discarding implau-
sible models leads to improving the robustness of
results, which may lead to improvement of decision
making based on these results.

So, the two HM ensembles in this example show
markedly different median discharge changes and
uncertainty ranges. We can cautiously conclude that
excluding improbable models affects the projected cli-
mate impacts and uncertainty ranges, and the projec-
tions of the reduced ensemble including models with
good performance are more credible. However, more
experiments based on larger ensembles of HMs are
still required.

3.1.4 Example 4: cross-scale comparison of
calibrated rHMs and non-calibrated gHMs in ISI-MIP
A comparison of simulated climate change impacts for
gHM and rHM ensembles was done in a study by
Hattermann et al. (2017) for 11 large-scale river basins
after the evaluation of their performance in the histor-
ical period (described in Section 2.3). The comparison
of simulated climate change impacts in terms of
changes in the long-term average monthly dynamics
for gHM and rHM ensemble medians and spreads has
shown that:

● the signals of change according to a Wilcoxon test
were similar in five out of 11 cases (Rhine, Upper
Niger, Ganges, Upper Mississippi and Lena);

● the means and medians were comparable (<50%
difference) in two out of 11 cases (Ganges and
Lena); and

● the spreads were well comparable (<20% differ-
ence) in four out of 11 cases (Lena, Upper
Amazon, Upper Yangtze and Upper Yellow).

Two of the 11 basins, the Lena and the Ganges, seem
to show the best comparison based on two or three
criteria listed above. However, for the Lena, seasonality
of discharge simulated by two model ensembles is very
different (see Fig. 5), and therefore none of the 11 basins
examined in this study could demonstrate similarity
based on all three criteria and seasonality patterns.

One illustrative example for the Lena River basin
stems from that study (Hattermann et al. 2017) and is
presented in Figure 5 (with slightly different sets of
models). Four regional-scale models (ECOMAG,
HYPE, SWIM and VIC), and six global-scale models
(DBH, H08, LPJmL, MATSIRO, MPI-HM and PCR-
GLOBWB) were used. The gHMs were applied with
0.5° resolution, whereas the three rHMs (ECOMAG,

Figure 4. Projected changes in discharge at +2°C for the Kalix
River catchment in Sweden using an ensemble of five conti-
nental-scale HMs and a reduced ensemble of three HMs which
excludes two models that failed to reproduce the seasonality of
discharge. The uncertainty ranges are also due to seven driving
climate model projections for RCPs 2.6 and 4.5 (see Roudier
et al. 2016, Donnelly et al. 2017, for methodology).
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HYPE and SWIM) used much finer spatial disaggrega-
tion into sub-basins and hydrotopes, and one (VIC)
into 0.5° grids with the sub-grid heterogeneity account-
ing method. The comparison of model outputs, both
visually and statistically, showed good performance of
rHMs (Fig. 5(a)), and rather poor performance of most
gHMs, with large underestimation and significant delay
in flood peaks (Fig. 5(b)).

The better performance of rHMs compared to
gHMs is probably due mainly to: (a) better representa-
tion of snow accumulation and snowmelt processes in
the three of four regional models with finer spatial
resolution, which is crucial for flood dynamics in this
basin; and (b) the calibration of regional models, which
also leads to better representation of snow and runoff

processes. According to Gudmundsson et al. (2012b),
the low performance of hydrological models in snow-
dominated regions is primarily related to the timing of
the mean annual cycle, and could be associated with
the parameterization of snow dynamics and sub-grid
variability of elevation.

In our case (Fig. 5(c)), the medians of simulated
changes in discharge at the end-century from two
model ensembles are very different and follow the
patterns of their performance in the reference period.
In other words, the regional models project a substan-
tially increased snowmelt flood in May and June shifted
to an earlier period and lower discharge in mid-sum-
mer, whereas the gHM ensemble projects a moderate
increase in discharge in May–August (Fig. 5(c)).

0

20

40

60

80

100

1 61 121 181 241 301 361

Q
, 

1
0

0
0

 m
3
/
s

days

Obs

(a)
r
H
M
s

0

20

40

60

80

100

1 61 121 181 241 301 361

Q
, 

1
0

0
0

 m
3
/
s

days

Obs

(b)

g
H
M
s

days

(c)

D
iff

 in
 r

un
of

f [
m

3 /
s]

Figure 5. Evaluation of hydrological model performance in the Lena River basin: long-term average daily discharge driven by
WATCH climate data in the reference period 1971–2000 simulated by (a) regional models, rHMs, and (b) global models, gHMs. (c)
Simulated climate change impacts modelled by both model types comparing long-term average daily discharge in the scenario
period 2070–2099 and reference period. The ranges in (c) are due to five driving GCMs as well global and regional hydrological
models.
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Therefore, we can conclude that not only does the
performance of two model sets differ, but also the results
of impact assessment are not comparable. Probably, this
is partly due to the fact that the model performance
influences the results of the impact study, though it
cannot be quantified strictly in this example. The ques-
tion is, which results are more credible: the ones based
on the non-calibrated gHMs with a poor performance,
or those of the regional-scale models with better per-
formance? Following Approach 2, we can conclude that
the change pattern suggested by regional models is,
probably, more trustworthy.

3.1.5 Weighting of impact models
There are also studies where weighting of impact mod-
els based on their performance was applied. An early
study by Cameron et al. (2000) for assessment of cli-
mate impact on flood frequency used likelihood
weighting to create uncertainty bounds on future
flood frequencies, albeit at that time driven by climate
changes from only a single GCM run. The study of
Gain et al. (2011) applied weighting of 12 GCMs via
hydrological model PCR-GLOBWB; rather than statis-
tically downscaling each of the GCMs based on local
meteorological data they attached a weight to each of
the GCM-HM simulated outputs, based on similarity
of the observed discharge. Recently, Yang et al. (2014)
analysed probabilistic climate change projections for
the headwaters of the Yellow River, China, with
weights assigned to downscaling methods and three
hydrological models. The study aimed at quantifying
the uncertainties from different sources in simulating
extreme flows and constructing reliable scenarios of
future extreme flows.

3.2 Influence of model performance on
uncertainty of projections

The gHMs applied in ISI-MIP show large ranges in the
evaluation period (Hattermann et al. 2017), and, con-
sequently, also give very wide spreads in impacts com-
pared to the regional models in most cases. This paper
evaluated the spreads in the long-term average seasonal
dynamics of runoff, and found that spreads from gHMs
were higher than those from rHMs in 10 basins (of 11),
and in three basins the spreads from gHMs were more
than doubled as compared to spreads from rHMs (in
the Tagus, Upper Niger and Darling). Another study
(Gosling et al. 2017) compared relative changes in
simulated mean annual runoff and indicators of high
and low extreme flows between the two ensembles.
Whilst some consistency in the median values between
the two ensembles was found in this study, the spreads

were generally wider for the gHM ensemble than for
the rHM ensemble in most catchments. This leads to
the question: Are the models with poor performance
misleading the users on the known projection
uncertainties?

Also Clark et al. (2016) argue that characterizing
uncertainties throughout the modelling process (rather
than using an ad hoc “enssemble of opportunity”) is
important, followed by reducing uncertainties through
developing criteria for excluding poor methods/mod-
els, as well as with targeted research aimed at improv-
ing modelling capabilities.

The overview of studies described in this section
performed with one or several models allows us to
respond provisionally to Question 2 (in the absence
of further studies dedicated to that very problem
and showing the opposite). That is, a good perfor-
mance of hydrological models in the reference per-
iod increases their credibility, both for scientists
and for users, regarding the results of impact
assessment, and leads to a reduction of uncertainty
bounds.

3.3 Main hypothesis: arguments pro and contra

In addition, we try to analyse here some common
arguments related to our main hypothesis. The argu-
ments pro and contra the main hypothesis, which are
based on numerous literature sources, are listed and
commented on in Table 3.

To summarize, all contra arguments in Table 3
suggest that good performance of a hydrological
model in today’s climate does not guarantee robust
results under different climates. We argue that this
can be, in principle, solved by designing frameworks
for comprehensive model evaluation that take into
account model responses to changing climate, and
model responses to several key processes such as
runoff, evapotranspiration and snow (as a focus
only on streamflow may be too simplistic). Of
course, these requirements are quite demanding
for the modelling community, and their realization
is not straightforward and easy. However, it seems
that this is the only way to achieving more robust
impact projections and low uncertainty related to
hydrological models. In our view, there is a need to
agree on a framework for model evaluation within
the impact modelling community (see Section 4).

We can conclude that the examples presented in this
section and comments to arguments in Table 3 support
the main hypothesis of the paper that a good perfor-
mance of hydrological models in the historical period
increases confidence of projected impacts under
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climate change, and decreases uncertainty of projec-
tions related to hydrological models.

However, good performance of a hydrological
model in the historical period is just the necessary
but not sufficient condition for extrapolating the mod-
el’s capabilities to the future. Of course, there are some
examples in which such extrapolation would not work;
see, for instance, the counter-example in Blazkova and
Beven (2009), where parameter conditioning (even
within the GLUE context) failed to reproduce the fre-
quency behaviour in a different historical period, and
rejection of parameter sets depended on the particular
realization of the inputs used.

3.4 Uncertainty of projections and adaptation

Since the model-based projections of climate impact
on water resources are often different, for various
reasons, adaptation procedures need to be devel-
oped that do not rely on a single projection of
changes in hydrological variables, but rather are
based on ensembles and multi-model probabilistic
approaches and use ranges of projected values.
Expectations of some water managers to be able to
get a crisp value of a needed characteristic of future
river flow are futile.

Part of uncertainty is irreducible, and therefore the
relevant courses of action may follow the precautionary

Table 3. Arguments pro and contra (respectively, for and against) the hypothesis that “good performance of hydrological models in
the historical period increases confidence of projected impacts under climate change, and decreases uncertainty of projections
related to hydrological models”. Comments on arguments P1–P5 and C1–C5 are included in columns 2 and 4. Comments in italics
undermine the main hypothesis, and comments in bold (some of them, a kind of “solution”) support the main hypothesis.
Arguments
pro

Comments on
arguments pro

Arguments contra Comments on arguments contra
(can the contra arguments be

weakened, disrupted or “solved”?

P1. Given a good calibration/
evaluation procedure that takes
into account performance of
multiple processes (runoff,
evapotranspiration, snow,
discharge at multiple sites), there
is a higher chance that the
relative levels of simulated runoff,
evapotranspiration and snow
storage are correct, also under
changing climate conditions.

However, such a procedure is applied
quite rarely.

C1. Good performance under
historical conditions is not a
guarantee for good performance
under different climatic conditions.

Yes, but application of an
appropriate calibration/
evaluation procedure (as in P1
and P2) may be a remedy.

P2. Validation of a model in
different climates, by either (a)
subdividing the time series, e.g.
as suggested in Refsgaard et al.
(2013a) or (b) testing the same
parameter set in multiple
climates, may augur better for
satisfactory model performance in
a changing climate.

(a) This procedure is rarely applied.
(b) Testing the same model in
different basins/climates is often
done, but then the model is mostly
re-calibrated.

This approach should be more
extensively tested and
promoted.

C2. Poorly designed calibration
procedures can compromise the
scenario validity of the model (e.g.
when calibrated to wet conditions
while the future is drier, etc.).

A “good” model should be able to
respond to changes in driving
climate. For that, the
calibration procedure should
be appropriately designed (as
in P1 and P2).

P3. Poor performance of a model set
in a historical period often leads
to impacts with uncertain signals
of change and large spreads in
projections (Hattermann et al.
2017, Gosling et al. 2017).

It is possible that outlying models
cause large uncertainties in the
ensemble. Hence, a good
model performance is
important for credible
projections.

C3. Traditional split-sample
calibration, and using many
calibration parameters, may lead to
overtuning of a model, which
compromises its performance
under changed climate (outside of
comfort zone) (e.g. Viney et al.
2009) and credibility of projections.

This can be solved, if the
calibration/evaluation
procedure is appropriately
designed (as in P1 and P2).

P4. In the case of Approach 1 (see
Introduction) being used:
excluding one poor model outlier
can change the ensemble mean
considerably (Gudmundsson et al.
2012a), hence the ensemble
mean is not credible. The same is
true for median, though median
is usually more robust to outliers.

This is a weakness of Approach 1. C4. Even a well-calibrated model may
be not reliable under significant
climate change (Merz et al. 2011),
as future climate puts calibrated
parameters outside the range in
which they were tested.

However, validation of a model in
different climates (as in P2)
may increase the model
reliability.

P5. Model users and stakeholders
usually like to see comparison of
simulated historical discharge
with observations (Borsuk et al.
2001), and tend not to trust
results originating from poorly
performing models.

Hence, a good model
performance is important for
acceptance of projections by
users.

C5. Modellers should rely on realistic
parameter values taken from the
literature, and accept model
performance as it is, without
calibration.

But the realistic parameter values
are often indicated as ranges;
is a calibration still needed
then?
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principle and adaptive management (Di Baldassarre
et al. 2011, Kundzewicz et al. 2018). The concepts of
precautionary allowances are being envisaged as part of
“climate proofing” exercises. “Climate change adjust-
ment factors” have been already introduced in some
countries of Europe, where water management specia-
lists are incorporating the potential effects of climate
change into specific design guidelines.

The precaution-based adjustments should be
taken into account in new plans for flood risk
reduction (see Olsson et al. 2016, Kundzewicz
et al. 2017). For instance, traditional design values
of precipitation or river flow are increased by a
safety margin in order to be on the safe (or safer)
side. The value of the safety margin may reflect the
existing, model-based, river flow projections that
may span a large range due to the spread of future
climate trajectories, even if the hydrological models
are used after rigorous evaluation and, hence, are
likely to contribute only a small share of the overall
uncertainty. However, it is necessary to remember
that additional uncertainty might arise (especially
for peaks) due to inconsistencies of input data
(Beven and Smith 2015), and it should also be
taken into account.

Uncertainty range in projections is often large, and
it is sometimes argued that decision making about
climate change adaptation has to be postponed until
we know more, i.e. until uncertainty is substantially
reduced. However, as noted by Refsgaard et al.
(2013b), in spite of uncertainty, we often have suffi-
cient knowledge to make quite robust decisions on
climate change adaptation. They listed examples
where even large uncertainties imply only small con-
sequences for decision making, so that the existing
knowledge can be sufficient to justify actions related
to climate change adaptation.

4 How should model evaluation be done when
aiming at impact studies?

Here, we first have to clarify what we mean by
performance in the context of impact studies.
Since the model’s predictive ability cannot be eval-
uated directly from historical data, credibility of
impacts does not relate directly to model perfor-
mance per se. Many studies (e.g. Blazkova and
Beven 2009, Blöschl and Montanari 2010, Coron
et al. 2012, Refsgaard et al. 2013a) have documented
and discussed loss of performance when the model
was used in contrasting climatic conditions. This
means that credibility of impacts relates directly to
the robustness of the model, i.e. its stability with

respect to changes in conditions. If a specifically
designed evaluation test (e.g. DSS-test, Klemeš
1986) shows that a model is able to simulate hydro-
logical signature(s) over periods with changing con-
ditions with acceptable accuracy, and to retain,
therein, a stable structure and parameters, then
this model is more credible than a model that has
not been subject to (or did not pass) this test (see
Beven 2006). Thus, the question is not about the
model performance in a general sense, but about its
performance under an appropriately designed evalua-
tion procedure.

Recently, a few testing procedures based on the idea
of the DSS test were proposed, for instance, multi-
period and multi-criteria conditioning (Choi and
Beven 2007), the sliding window test (Coron et al.
2011), and the generalized split-sample test (Coron
et al. 2012). Also, Euser et al. (2013) proposed a new
FARM (Framework for Assessing the Realism of
Model) test based on evaluation of both performance
and consistency of a model structure.

At first glance, calibration and validation (or evalua-
tion) of hydrological models seem to be well-estab-
lished procedures: typically, via a DSS approach,
using a multi-site, multi-variable and multi-criteria
approach. However, these requirements are rarely
applied rigorously enough, particularly in large-scale
model applications. Thus, in our opinion, impact mod-
ellers need a protocol or framework for testing, validat-
ing or evaluating hydrological models for climate
impact studies, e.g. such as those recently developed
for global land-surface and vegetation models (which
also include hydrological processes) by Luo et al.
(2012) and Kelley et al. (2013).

A recent review by Refsgaard et al. (2013a) does
recommend a clear framework for testing the suitability
of hydrological models for impact studies. They argue
that the most commonly used traditional split-sample
test is not sufficient for that, and suggest guiding prin-
ciples for testing models using proxies of future condi-
tions. The proxies of the future climate can be
constructed by considering either historical time peri-
ods that bear similarity to the expected future climate,
or other locations with a climate similar to the expected
one. Thirel et al. (2015) also suggest using adequate
protocols for model testing under changing conditions.

Further recommendations include evaluation of
observational data and considering the uncertainty
in the data itself (Beven and Westerberg 2011,
Beven and Smith 2015), as well as the use of non-
stationary historical time series that enable validation
of model response to historical changes, and tailoring
the choice of performance criteria for validation to
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the impacts of interest in a given study. For the
validation to be relevant to the impact study, it is
important that it is carried out with the same forcing
data that the climate change forcing data are bias-
corrected to (Krysanova and Hattermann 2017).
Stating this, we leave aside issues related to the
legitimacy of bias-correction of climate change for-
cing data (see discussion in Ehret et al. 2012).

4.1 Regional-scale models

To summarize, we list five main requirements for an
appropriate calibration/validation of the catchment-
scale hydrological models (rHMs) intended for impact
studies:

(1) Evaluate the quality of observational data and
take into account uncertainty in the input data.

(2) Apply a DSS test or any of its updated versions
for calibration/validation, or use a Pareto front
calibration method (Fowler et al. 2016) to opti-
mize the model simultaneously for periods with
different climate (ideally, looking for periods
which may be climatically similar to the pro-
jected future climate).

(3) Validate model performance at multiple sites
within the catchment and for multiple variables
(e.g. runoff, snow cover/depth, evapotranspira-
tion, soil moisture etc.) to ensure internal con-
sistency of the simulated processes.

(4) Validate whether or not the model can repro-
duce the hydrological indicator of interest, i.e. if
the purpose of the impact assessment is to pro-
ject changes in the 50-year flood level, validate
the model performance against that indicator (if
it was not done in Step 3).

(5) Further tests should include validating for any
observed trends (or lack of trends), and validat-
ing the model using a proxy climate test (see
above). The observed trends (or lack of trends)
should be reproduced by the model.

If a model successfully passes calibration and vali-
dation following these requirements (combined with
criteria for rejection of models, e.g. as listed in
Section 2.4), it can be considered ready for impact
assessment, and, in the case of an ensemble
approach, should be weighted higher compared to
other models that were evaluated differently (e.g.
meeting only a part of the requirements) or not
evaluated at all.

4.2 Continental- to global-scale models

For continental- to global-scale models (gHMs), we
urge the creation of some spatially dependent model
performance criteria. As shown in Section 2.1, these
models cannot produce equally plausible results every-
where in the model domain. It is difficult to apply the
above recommended calibration procedures to gHMs,
but the validation procedures identified above are just
as relevant for gHMs, as they will likely identify areas
(catchments or regions) of good and poor perfor-
mance. Similar to rHMs, validation for gHMs should
consist of the following five steps, noting that the
results (and thus utility of the model) will vary
spatially:

(1) Evaluate the quality of observational/re-analysis
data used as forcing and validation data in the
reference period, and consider data uncertainty
in the analysis of model performance.

(2) Check the model performance for a historical
period or sub-periods with varying climate (for
example, checking consistency across a split-
sample test as in Step 2 above). Note that dif-
ferent periods may need to be chosen for differ-
ent parts of the globe.

(3) Validate model performance for at least two
variables (e.g. runoff, snow cover, evapotran-
spiration etc.) to ensure internal consistency of
the simulated processes.

(4) Validate whether or not the model can reproduce
the hydrological indicator of interest, i.e. if the pur-
pose of the impact assessment is to project changes
in the 30-year flood level, validate the model per-
formance against that indicator at gauges with
available data (if it was not done in Step 3).

(5) Validate for any observed trends (or lack of trends).

Areas and variables where a model performs
implausibly should be grounds for rejecting (or
down-weighting) the model projections of climate
change impacts for that site and variable, and possibly
also for other variables (e.g. for the case of poor repro-
duction of snow when spring flood discharge is the
variable of interest). This could be communicated to
users by blacking out or shading in maps of projected
impacts at these areas. These five requirements for
gHMs are weaker than for rHMs, and they all are
doable, especially taking into account recent progress
in evaluation of global models.

Nevertheless, we still acknowledge the problem of
extrapolating poor performance at a point of discharge
observation to all grid squares or sub-basins upstream
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as well as to ungauged basins. Further research is
required to combine these recommendations into a
formal framework for model evaluation and rejection.
This is one of the aims of the recently launched
European research project AQUACLEW (http://www.
aquaclew.eu/).

4.3 How to use the results of impact studies

However, we also need to be certain about the role of
regional vs global HMs. It should be clear that the
results from gHMs might not be useful for quantitative
design of optimized adaptations. Therefore, results of
impact studies should be used by decision makers at
the spatial scales of the models. That is, global impact
studies – mainly to inform governments on the need to
act in mitigation and adaptation at the broad scale, and
regional-scale studies applying well calibrated and vali-
dated models with the input data and HM uncertain-
ties taken into account – also to support adaptation
and decision making.

Regarding robust approaches intended for making
water-management decisions, we suggest searching for
a decision that is affordable without a full risk-based
assessment, e.g. as proposed by Prudhomme et al.
(2010), Beven (2011) and Beven and Alcock (2012). It
is suggested: to deal with the magnitudes of change
factors directly, assuming that GCM/RCM projections
are just one way of producing plausible patterns of the
change factors; to modify the patterns of the change
factors; and after applying hydrological model(s) with a
good performance to use their outputs for assessment
of costs and benefits of precautionary actions. This
precludes a complete risk-based strategy but places
the focus directly on what is considered to be afford-
able in being precautionary.

5 Summary

We have discussed two alternatives for generating
model-based projections of hydrological variables:

(1) to use all hydrological models available in the
multi-model ensemble, disregarding the model
performance in historical period; or

(2) to use a subset of the available models with a
satisfactory performance, and not to use models
that performed poorly on historical records, i.e.
were not able to mimic the past observations
sufficiently well.

Approach 1 is a relatively straightforward, easy and
quick option and saves a lot of work (no model

evaluation needed). The ensemble means are easy to
obtain, and they usually give results closer to observa-
tions than single models. This approach is often used
by gHM ensembles. However, it has some obvious
weaknesses, because for instance removing one or
two outlier models could shift the ensemble mean
far from the level based on all models, and the uncer-
tainties related to gHMs are usually high in this
approach. Thus, the ensemble mean cannot be used
directly for assessments related to management or
adaptation issues at specific sites.

In addition, this approach is rarely accepted by
users, when some models show poor performance
under historical conditions. The users would prefer
not to use poor models, and they would welcome a
preliminary screening. It is also unlikely that the
“ensembles of opportunity” (Approach 1) used in
many multi-model impact studies today are mutually
exclusive or together exhaust the full range of plausible
models from which impacts can be projected.

Approach 2 is a more demanding (time and effort)
option, as it assumes testing model performance in
advance, and maybe excluding outlier model(s) or weight-
ing them depending on their performance. It is based on
rating after merit (performance). This approach is more
common for regional HMs, though some global models
are now being steered into this direction as well. If an
ensemble of HMs is used, excluding models featuring
poorly on the historical material could be accepted posi-
tively by stakeholders or users of the model results. We
find this approach more reliable and recommend using it
for impact assessment, also when regional scale results are
extracted from the global model applications and
interpreted.

Recommendations on how to apply Approach 2
depend on the scale of the study and hydrological indi-
cator(s) for which the impact study is being done. For
example, when studying the impacts of climate change
on river flow at a single river site, perhaps a well-vali-
dated single catchment-scale model is sufficient.
However, for studying the impacts of climate change
on river flow over a large region including both gauged
and ungauged basins, where model performance varies
from site to site, the multi-model ensembles are useful,
but some models should be rejected from the ensemble
after evaluation if they do not pass some minimum
criteria relevant to the end-users of the study, and
other weighted based on their performance.

The following key messages can be delivered:

(1) Evaluating performance of hydrological model
in the historical period is a necessary (but not
sufficient) condition for judging model
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applicability for climate impact studies. A good
performance of HMs in a historical control per-
iod (a) increases confidence in projected
impacts under climate change, and (b) decreases
spread and uncertainty of projections related to
HMs and their model-structural differences. It is
not sufficient, because good performance under
historical conditions is not a guarantee per se for
good performance under different climatic con-
ditions (the model might not account for pro-
cesses that could occur in a changed climate).

(2) Especially if results of climate impact studies for
certain river basins or regions are of interest,
using properly evaluated HMs (e.g. according
to the five steps outlined in Section 4 for both
the regional and global models) that show good
performance in the historical period is more
trustworthy for future projections than using
models for which performance is shown to be
poor. Here we do not argue that all properly
evaluated models with good performance are
plausible enough, but we argue that discarding
implausible models with poor results in the
reference period leads to improving robustness
of results and higher credibility.

(3) Model evaluation is important for both the
scientific credibility and user acceptance of
results of climate change impact studies.

(4) Model evaluation should be specific to the scale,
location and indicator for which the impacts are
being simulated. As a rule, multiple indicators
should be applied in evaluation, corresponding
to best practices, especially if the model output
is intended for decision-making support.

(5) Hydrological model evaluation specifically for
indicators is the only way to estimate ranges of
model capabilities and, thereby, to safeguard
against the model’s use for tasks beyond its
demonstrated (legitimate) capabilities. Such eva-
luation is necessary both for hydrological mod-
els intended to operate in a predictive mode and
for projecting impacts.

(6) In some cases uncalibrated models may project
mean relative impacts comparable to those of
calibrated ones, but the results of the former
are difficult to apply in subsequent applications
because of potentially large biases shown in pre-
vious assessments.

(7) It seems it is in the inherent nature of gHM
modelling that model performance varies
among sites, as comprehensive tuning and vali-
dation are often not possible due to lack of high-
resolution input data at the global scale,

comparably high computation costs, and inten-
tional focus on representation of large-scale pat-
terns and a variety of processes. However,
moving to a finer resolution of gHMs and
applying regionalized calibration are promising
steps that could improve the situation.

(8) Application of HMs for climate impact assess-
ment at a large (global or continental) scale
without checking their performance can be use-
ful for obtaining global/continental overviews
and motivating regional- and basin-scale stu-
dies, but zooming information from large-scale
maps into regions should be restricted. Instead,
application of the spatially dependent model
performance criteria (Section 4) and blacking
out areas with poor performance on maps is
recommended as a more advanced method.

Rules of good practice for impact studies deduced
from these key messages are: (a) use an ensemble of
impact models instead of a single model, if possible
(but, it can be critical how the ensemble is defined in
terms of model structures, parameter sets, input data
realizations and observational error); (b) apply a com-
prehensive model evaluation/validation technique, cus-
tomized for the problem at hand (e.g. referring to mean
values or extremes), and considering performance spe-
cifically for indicators, as described in Sections 2.4 and
4; (c) exclude models with large biases in the evaluation
period, and possibly apply weighting of other models
depending on their performance. However, there are
still unresolved issues about conditioning on uncertain
historical data and evaluating impacts using uncertain
(bias-corrected) future scenarios. These issues and a
question on how to define an appropriate ensemble
should be the subject of forthcoming studies.
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