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ABSTRACT 

A novel anatomical behavioral descriptive taxonomy improves motion capture in 

complex motor stereotypies (CMS) by indexing precise time data without degradation in 

the complexity of whole body movement in CMS. The absence of etiological explanation 

of complex motor stereotypies warrants the aggregation of a core CMS dataset to 

compare regulation of repetitive behaviors in the time domain. A set of visual formalisms 

trap configurations of behavioral markers (lateralized movements) for behavioral 

phenotype discovery as paired transitions (from, to) and asymmetries within repetitive 

restrictive behaviors. This translational project integrates NIH MeSH (medical subject 

headings) taxonomy with direct biological interface (wearable sensors and nanoscience in 

vitro assays) to design the architecture for exploratory diagnostic instruments. Motion 

capture technology when calibrated to multi-resolution indexing system (MeSH based) 

quantifies potential diagnostic criteria for comparing severity of CMS within behavioral 

plasticity and switching (sustained repetition or cyclic repetition) time-signatures. 

Diagnostic instruments sensitive to high behavioral resolution promote measurement to 

maximize behavioral activity while minimizing biological uncertainty. A novel protocol 

advances CMS research through instruments with recursive design. 
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CHAPTER ONE: INTRODUCTION 

An infant’s hands erupts and the child has difficulty with motility. 

Meanwhile, a researcher compares toddlers with restricted repetitive behaviors. 

The clinical literature has focused on the ability of individuals with CMS and 

prevalence of CMS (Lewis & Bodfish, 1998). The result is the absence of a 

standard for diagnostic instrument design for CMS research addressing two 

questions: Where does data come from? What is the methodical consequence of 

the absence of time data on CMS?  Operationalized clinical CMS data seem to 

reflect only late stages of repetitive behavior leaving unaccounted earlier time- 

behavior pairings, that is, traces of preliminary cortical potentials, allocation of 

resources, and time variables within the engagement of resources (Figure 17). 

Pre-motor cortical potentials (Dirnberger et al., 1998; Hallett, 2007, 2010; 

Houdayer et al., 2013; Shibasaki & Hallet, 2006) support the presence of 

cortical potentials before a behavior occurs. Data-driven research leaves CMS 

research unable to minimize biological uncertainty and maximize behavioral 

activity. A system to recognize variability in CMS warrants further investigation 

in several areas: the science of behavior markers, graphing local time datasets, 

and symbolic systematic modeling of CMS sequelae. 
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 Throughout the literature on motion capture and CMS there is no 

indication of how to measure the severity of CMS in the time domain 

(Appendix C and Table 7) or the sequential succession of behavioral gestures. 

Consequently, there is no measurement precise enough to assign signatures to a 

complex core dataset mapping the severity of CMS.  

A starting point in quantitative research on CMS is how to conduct 

observations. The neurologist Prechtl (1974) introduces a standard of behavioral 

observation: “Where states distinct brain mechanisms are specific to descriptive 

behavior categories. A concept of state for quantitative neurological assessment 

transitory events superimposed on constellations of startles. Sequences of states 

transformed into discrete vector space...graphically represent state profiles … 

measure state distributions as percentages of time spent in each state mean 

duration of state epoch, number of state transitions.” Another observational 

practice defines behavioral research within the time domain. Siegler and 

Crowley’s (1991) microgenetic methodology extend observation time. Using 

extended observation enables patterns to emerge without using an arbitrary 

observation duration. The microgenetic protocol attempts to “provide data 

against which to evaluate the plausibility and power of potential mechanisms.” 

In Siegler and Crowley observations monitor changes while they are occurring. 

Research observation using multiple sessions is consistent with microgenetics 

approach.  
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A CMS measurement protocol would differentiate on an individual basis 

the severity of CMS. The interval of time pairings (from-, to-) serves as a metric 

to define observational criteria and to direct instrumental design within a 

heterogeneous framework. Already, Marder (2011) provides evidence of 

heterogeneous datasets in pyloric rhythmic circuitry. CMS research in repetitive 

behavior provides no observational criteria to determine the presence or absence 

of heterogeneous functionality in CMS. 

Currently, clinical CMS research persists in statistical techniques 

without evidence from biological wetlab, advanced computational frameworks., 

or diagnostic tools with biomarkers. for mental disorders include biomarkers. 

Biomarkers in psychological research enrich research methodology. Lowe 

reports on the capacity of biomarkers in investigative research: 

…experimental protocols have given neuroscientists and 
psychiatrists an increasingly powerful arsenal for acquiring data 
across multiple spatio- temporal scales, from the level of single 
biomarker molecules, cellular architectures, neural connectivity to 
complex, and interdependent metabolic pathway, physiological, 
and behavioral data (Kotter, 2001; Martone et al., 2004). It is also 
evident that combining multiple ‘‘omics’’ data with matching 
detailed imaging, microscopic, physiological, behavioral, and 
psychiatric codata for complex multigeneic neuropsychiatric and 
neurodegenerative disorders is a task beyond even the best funded 
research groups. (Lowe, 2011, p. 390) 

A new research framework follows new technologies. Quantitative research on 

CMS using new technology would place CMS within direct biological interface 
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through nanoscience in vitro preparations or wearable biosensors. Already, Feng 

et al.’s (2004) replace video analysis with real-time imaging of to analyze c. 

elegans (Caenorhabditis elegans) movements using image processing  of 144 

parameters: (1) digital data information crucial for behavioral analysis; (2) 

conversion parameter estimation of grayscale image converted to a binary 

image; (3) back-bone points cross the creatures body; and, (4) measures of 

specific features based on parameters related to locomotion or morphology 

(body posture, movement, and locomotion waveform). Meanwhile, other c. 

elegans researchers conduct movement research using microfluidic channels a 

nanoscience tool (Ardiel & Rankin, 2008; Chronis et al. 2007; Kawano et 

al.,2011; Larsch et al., 2013; Nagy et al.,2011; Salvador et al., 2014; Wen et al., 

2012). Elegant computational motion capture practices are in a position to 

register local transitional timings nested within chronological order. 

Systematic study of behaviors in time appears as a four-fold problem:  

(1) present independent time coordinates of locally engaged behavior markers 

within the behavior marker’s genidentic history (Reichenbach et al., 1957) 

independent of a chronological order; (2) the absence of a descriptive protocol 

to quantify and reconstruct repetitive behavior within sequelae; and, (3) 

descriptive tools to differentiate and quantify CMS sequelae. CMS researchers’ 

(Appendices A,B) resort to snapshots and stop watch measurement without 

tools measuring local networks unrecorded in video analysis. 
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Heterogeneous or multi-resolution complexity require diagnostic 

measurement of granularity in behavioral activity. New protocols for new 

technologies in CMS research would expand the measurement of the allocation 

of resources evident in multiple streams of information and power process with 

levels of logical formalized through appropriate scientific workflows.  

Motivation. A diagnostic standard for universal measurement of CMS 

investigates behavioral plasticity a phenomena absent from clinical CMS 

research on humans. Since Chalfie et al., (1985) behavioral plasticity (switching 

in cellular function in backward or forward restrictive repetitive behaviors) 

eclipses the low variation hypothesis (Hadders-Algra, 2010; Prechtl, 1990, 

2001). Methodical observation of CMS might provide a framework to quantify 

behavioral phenotypes (jerky or continuous) in a hyperkinetic motor disorder. 

The NIH Taskforce on Childhood Motor Disorders (Sanger et al., 2010) 

suggests jerky and continuous movement provide diagnostic criteria to 

characterize and to identify behavioral phenotypes in CMS. Research on CMS 

might follow a subject-design (waiting for data) or instrument-design 

(configuring the phase space of a behavior). What distinguishes subject-design 

and instrument-design is an open question. One might argue empirical rules 

produce systematic observation criteria to implement instrumental design and 

to improve data collection.  
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 The anatomical behavior descriptions' taxonomy reflects multi-variant 

observational criteria. A network of local sensors functions as a multi-faceted 

data gathering system to quantify micro-events  (independent or coordinated) 

within local timing (asynchronous-schema) and independent of coarse postural 

sequences. Such a sensor-architecture registers (presence/absence) of behavior 

markers to characterize lateralized movement defined through descriptive 

taxonomy (anatomical behavior descriptions, Table 7). Programmed visual tests 

in motion capture sensors represent the anatomical behavior descriptions' 

taxonomy to detect types of behavior markers and data capture. The visual tests 

identify data as: (1) whole-body and regional configurations of movement; (2) 

sequential subcomponents en route to the unfolding of the behavior; and, (3) 

identifying if behavioral resolution and behavioral plasticity generate indexing 

data. A system of rules informs movement analysis as linguistic rules formalize 

phonological analysis.  

 Instrument-design has consequences for transforming assumptions of 

variability in CMS proposed in neurological research (Hadders-Algra, 2010) 

and clinical subject-design studies on repetitive restrictive behaviors 

(Appendices A,B). The absence of high behavioral resolution in CMS reflects 

limitations in the observation of CMS rather than confirming low variation in 

CMS' structure and function. In this project instrument-design maps variability 

as pools of resources in motor function configured during sensory transfer 
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(touching). Kelso (2012) observes “many different muscle configurations can 

produce the same outcome” supports a description of variability in a behavior 

without establishing equilibrium approaching multistability. Another example 

of multistability in motor function Kelso points out is “the same network 

activity in central pattern-generating circuits can be produced using many 

different combinations of synaptic strengths and neuron properties.” The 

example of the central pattern generator's flexibility and modularity gives 

researchers a dynamic view of biological movement beyond the literal (non-

biological) report of video research on CMS.  

Behavioral recording seeks to identify a computational layer to monitor 

variability in motor function in terms of multistability. Measuring the 

engagement of resources in CMS has several choices: (1) signal output; (2) 

behavioral marker; or, (3) defining local neighborhoods related with the 

behavior marker.  If the measurement standard focuses on the signal output 

from the local history of behavioral marker's activity (Figure 13) and the local 

neighborhood of the behavior markers (Figure 18) is missing. Kohn et al. 

(2006) diagrammatic protocol maps biological pathways (exist, co-exist, or  

exclusion) in molecular interactions. Following the example of Kohn and 

collaborators behavioral recording method would display behavioral markers 

based on anatomical behavior descriptions (Table 7). Repetitive behaviors as a 

time related phenomena has notable phenomena unrecorded: sequential 
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transitions, rates of activity, and switching rates in postures. These observations 

prompt a novel methodology. 

 Conducting behavioral recordings is a problem of identifying scientific 

workflows to differentiate laterality as behaviors indicative of motor circuitry 

(inhibitory or excitatory). Forming behavioral recording starts with Marder and 

Calabrese (1996) synopsis of neuronal recording protocols for motor research: 

(1) description: studying a motor system starts with the description of the 

behavior; (2) engagement of resources: determine the sequence of 

muscles/muscle group simultaneously activated (registered by an 

electromyogram) producing the behavior; (3) characterization in the time 

domain: neuron detection of interneurons synapse directly on relevant 

motoneurons, neurons active in time with rhythmic motor pattern, neurons 

regulation timing including initiation, termination, or change in the expression 

of perpetual rhythmic pattern; (4) characterization of neighborhoods: manage 

large sets of interneurons with overlapping connections and functions (single 

neuron manipulation may have little or no influence on the ongoing motor 

patterns); and, (5) pattern analysis: a single neuron displays different activity 

patterns (single recording will be inadequate for neuron classification). 

Neuronal recording registers movement as an ensemble of  neuronal oscillators, 

strength of synaptic connections, and the time course of synaptic currents.  
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Scientific workflows from Marder and Calabrese suggest a progression for 

behavioral recording. 

Step 1: motion capture (description) → registration of behavioral markers as a 

morphological flow of movement 

Step 2: post-motion capture (engaged resources) → differentiate laterality 

(diagram testing: lateralized movement and touch) 

Step 3: analysis (characterization of timing and postures within a kinematic 

neighborhood) → self-similarity sequelae between touching scenarios and 

extension/flexion patterns 

Step 4: computing local timing (pattern analysis of transition) → micro-

rhythms in behavior and multi-functionality under the skin 

Hypothesis. A measurement standard based upon lateralized movement 

facilitates monitoring variability (posture and timing in transitions) in repetitive 

restrictive behaviors. A systematic definition of behaviors in time facilitates 

CMS data collection (motion capture). Anatomical behavior descriptions have 

computational consequences: (1) universal description of lateralized movement 

{(ipsi-, independent movement), coordinated movement( bi-, contra-)} in any 

movement sequence (Table 7); (2) mathematical expectations orient the 

measurement of transitions {(from- ,evacuating a posture), (to-, occupying a 
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posture)} in a biological movement (Figure 14); and, (3) precise analysis of 

each individual's CMS repertoire and sequelae in a multi-dimensional grid 

(Figure 13a) based on the punnett square used in genetics. Characterizing (from-

, to-) pairings in sequelae provide a potential measurement standard to 

distinguish behavioral phenotypes in CMS sequelae. In the future this protocol 

differentiates lateralized movement to determine if top-down variability 

suggests a neurobiological approximation of motor circuitry (inhibitory or 

excitatory) in CMS. 

A computational layer in a motion capture system differentiates 

lateralized movement to determine if top-down variability in the time-regulation 

of sequelae patterns (ipsi-, bi-, or contra-) suggests a neurobiological 

approximation of motor circuitry (inhibitory or excitatory) in CMS. 

Descriptions with a quantitative capacity transform a diagnostic 

instruments' utility for motion capture. An advanced model of temporal domain 

in Figure 17 frames chronological time measurement (duration or order) as an 

allocation of resources. A supply-side view of behavior include several 

scientific workflows: (1) motion capture: transitions (from- evacuation of a 

posture; to-, entry into a posture) as behavioral-time patterns in lateralized 

movement; (2) kinematic analysis: plasticity and behavioral-time pairings; and, 

(3) morphological characterization: lateralized movement and skin innervation. 

Since Chalfie et al., (1985) neurobiological research provides behavioral 
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research with asymmetry in behavioral plasticity in c. elegans (Ardiel & Rankin, 

2008; Chronis et al. 2007; Kawano et al.,2011; Larsch et al., 2013; Nagy et 

al.,2011; Salvador et al., 2014; Wen et al., 2012)  MeSH taxonomy on metabolic 

process, and neural processing in multifunctional patterns (Appendices E). 

Time-keeping in repetitive restrictive behavior (CMS) warrants a strong visual 

semantics with a visual formalism. 

 CMS research aligns video with movement analysis. Visual evidence in 

the fluctuations of CMS analyzed by point-by-point time series or frame 

analysis in video recordings (Hadders-Algra, 2010; Teitelbaum et al., 1998; 

Thelen, 1979) underestimate the role of instrument-design in data collection and 

the mathematical complexity of directing motion capture (Table 2). Motion 

capture and time series analysis through a strong visual semantics (porous-solid-

fractals, Figure 18) provides a  cascading complexity to quantify neighborhoods 

(flow patterns) in the of repetitive restrictive behaviors (Figure 18, right). 

Figures 13a, 14 present a visual formalism to communicate the complexity of 

behavior markers for visualization of local neighborhoods Figures 13, 14 within 

the framework of a taxonomy (Table 7). Cross-referencing known neurobiology 

(Table 9) and the medical MeSH taxonomy (Tables 18-21) organize a 

methodology to index behaviors in time. 
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Argument 

Fractional time measurement of local time behaviors contributes to 

higher behavioral fidelity and strategies to map regulation in behavioral 

plasticity. Local sensor distribution facilitates local time measurement to 

capture independent and simultaneous microevents, without relying upon 

stopwatch measurements.. as local timings between a primary behavior marker 

{(toforward  , ipsilateral) or (frombackward,  ipsilateral )} and neighboring secondary 

behavior marker  {(secondary transition, sensorimotor process: 

toward_touchventral , touchventral | dorsal, releaseventral | dorsal)}. Quantifying the 

sequelae occurs in several fractional series. A fractional series of behavior-time 

pairings evaluates descriptive facets (high behavioral resolution or behavioral 

plasticity). Anatomical behavior descriptions facilitate a recursive assessment of 

CMS. 

 Multi-stability (Kelso, 2012) in motor circuitry explains functional 

transitions. Mircoevents en route behavioral plasticity warrant measurement 

(Figures 9-10). Behavioral recording is a missing link between behavioral 

granularity and known motor wire modeling over the time-course of rhythmic 

motor circuits. 

Quantifying CMS has two mathematical options: component or 

interactive. Recently, clinical researchers (Gowen & Hamiltion, 2013; Torres, 
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2011, 2012; Torres et al., 2013) use the component approach in computational 

neuroscience (Guigon et al., 2008; Todorov, 2004; Wolpert & Ghahramani, 

2000) to model biological movement or the application of optimal control 

theory in clinical CMS research. But, optimal control theory flattens biological 

movement without the accuracy to render the transitional complexity using 

independence, coordination, and switching rates within a granular taxonomy of 

movement. Anatomical behavior descriptions pursues an interactive model of 

movement analysis. 

A novel behavior-time approach responds to the low variability 

hypothesis and the challenge to monitor variability in complex motor 

stereotypies (CMS). The instrumental proposition moves toward how to read 

visual evidence at lower levels of behavior in CMS and differentiating 

regulation of repetitive behaviors. 

Improving observational criteria follows Prechtl (1974) view of 

behavioral states within the time domain. Newell and Slifkin's (1998) view on 

the importance of variability in motor research remains a claim leading to the 

need for a new methodology. “In closing, we would stress that it is important 

that variability is finally treated as a phenomenon or concept of theoretical 

interest rather than rely on an operational measure (standard deviation)... it 

would be misleading to imply that the invariance and variance can be neatly 

partitioned and linked directly to particular output sources.” This project 
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responds to the challenge to monitor variability, that is, flow patterns in 

lateralized phases (ipsi-, bi-, contra-) across the whole-body Methodical 

observation of micro-events (e.g., backward series of sequelae) might help to 

differentiate Hadders-Algra's (2010) repertoire or sequelae in repetitive 

restrictive behaviors (CMS). Three visual formalisms (Figure 13) record the 

scheduling of microevents in CMS. Behavioral recording visualizes a recursive 

network, that is, increasing granularity in CMS during morphological transitions 

within local time zones (Figure 8, 9). 

This investigation suggests how chronological time series are 

incomplete measures of CMS. The following cross-references biomedical 

taxonomies with a description taxonomy (Tables 6-8). Anatomical behavior 

descriptions serve as a platform for a generative taxonomy (Table 7) where 

empirical rules (Table 7) modify descriptive expressions of behavioral markers. 

Several rules parse visual evidence on CMS: (1) kinematic rule: each movement 

is interspersed by a counter-movement and details motion capture of sequelae; 

(2) cinematic rule: repetitions either sustain serialized movements or a next-step 

in a cycle and details sub-division of temporal data; (3) dynamic rule: perpetual 

movement and pace in sequelae quantifies time values of recurrence of the 

sequelae; and, (4) filtration rule: screening for asymmetric transitions (bi-

,contra) does not equal (contra, bi-) or symmetric transitions in the time domain.  
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Observational criteria  
Generative Taxonomy 

 

 
 

Figure 1 Generative taxonomy for motion capture and functional 
taxonomy for time series analysis  

 

Figure 2 Motion capture and time series analysis taxonomies 
(chronological and local timing) 

 

Local time neighborhoods 
 Functional Taxonomy 

15 

 



 

Figure 3 Parameters for generative and functional taxonomies 

Background: Clinical Research and Complex Motor Stereotypies 

Reviewing literature on CMS research one finds an accumulation of 

subject-centered research topics: (1) age of divergence of repetitive restrictive 

behaviors between typically/atypically developing children (MacDonald, 2007); 

(2) time intervals in repetitive restrictive behaviors are short taking 

microseconds to complete as micro-rhythms distributed over time to create 

macro-rhythms on the order of hours (Lewis, 1984); (3) examination of 

dynamic measures of postural stability function as objective markers of 

potential differences in motor control, between individuals with stereotypies and 

individuals with dyskinesias (Bodfish et al.,2001); (4) whether human behaviors 

function similarly to stereotypies behaviors in other species (Thelen, 1979); (5) 

the gap in knowledge on postural control and sway (Memari et al., 2013); 

biomedical discussion of motor stereotypies on a pathological and a 
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physiological basis in the primary condition (typical development) and the 

secondary (atypical development) (Mahone et al., 2004; Muthugovindan & 

Singer, 2009); and (7) the proposed CMS neurobiological research agenda to 

investigate corticostriatal- thalamocortical pathway in secondary using 

neurotransmitters to study stereotypies (Gao & Singer, 2013). Clinical CMS 

researchers would benefit from a universal description to guide research 

methods to support the quantitative measure CMS sequelae or repertoire.  

Operational-clinical CMS data seem to reflect the late stages of 

repetitive behavior leaving unaccounted earlier en route behavior- time pairings, 

that is, traces of preliminary events: cortical potentials, allocation of resources, 

and complex time variables (within the engagement of resources: (1) onset-

acted| past; (2) sustained- retained behavior| present; and, (3) replenishment 

next-step| future). In Smith and Van Houten (1996) keywords for stereotypies 

include descriptive terms (involuntary, patterned, repetitive, rhythmic, 

nonreflex,non-goal directed) and intervention terms (neuropeptides, 

dopaminergic treatments, and neuroradiologic studies). The descriptive terms 

have no quantitative component in Smith & Van Houten’s study. 

 How CMS works under the skin or within the time domain remains 

undocumented in CMS research. Motion capture remains underestimated as a 

core component of clinical CMS research (Bodfish et al., 2000; Bodfish et al., 

2001; Bracewell & Marlow, 2002; Lewis et al., 1984; Lewis & Bodfish, 1998; 
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Lord, 1995; Lord et al., 2012; MacDonald et al., 2007; Mahone et al., 2007; 

Richler et al., 2007; Thelen, 1979, 1980, 1981; Yamada, 1995). Sanger's (2003, 

2006) research on movement disorders is an exception in the development of 

motion capture technology to promote quantitative analysis of movement 

disorders. Recently, automated CMS analysis (Goodwin et al., 2014; Gonçalves 

et al., 2012; Karch et al., 2012) rely on clinical research criteria to measure 

repetitive behaviors without considering the neurobiology to isolate time data 

on behavioral plasticity or severity of CMS (Table 5). Pre-motor cortical 

potentials (Dirnberger et al., 1998; Hallett, 2007, 2010; Houdayer et al., 2013; 

Shibasaki & Hallet, 2006) support before a behavior occurs there is the presence 

of cortical potentials. On instrumental grounds a quantitative methodology 

explores and quantifies how CMS works especially when the phenomena is 

poorly understood, as in CMS. 

Table 1 Diagnosis and Complex Motor Stereotypies 

Autism Spectrum Disorders 

• CMS a diagnostic indicator in DSM V (APA, 2013) 
• assessment & intervention 

Child Neurology 

• 5 minute assessment (Hadders-Algra, 2010) 
• diagnosis & neurobiology  

Medical Behavioral Assessment  

• observe dystonia, dyskinesia, Bradly-kinesia (Maurer & Damasio, 1979, 1982)  
• traditional medical examination (Maurer & Damasio, 1979, 1982)  
• NIH Taskforce in Hyperkinetic Motor Disorders (Sanger et al., 2010)  
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 The absence of time data on CMS leads to a weakness in current 

definitions of CMS (Table 3). Absent from clinical CMS literature are three 

observational constraints: (1) physical, in a swaying movement (minimum of 

two subdivisions for any behavioral marker); (2) mathematical, combinatorial 

expressivity to accurately register variability in repetitive restrictive behaviors; 

and, (3) symbolic, visualization of patterns in local neighborhoods might reveal 

hidden patterns in behavioral plasticity in CMS. Measurement of switching and 

transitions in a repetitive sequence formalize behavioral plasticity in the time 

domain. Motion capture technology designed to differentiate behavioral-time 

pairings for dorsal/ventral observations. Forssberg and Hirschfeld, (1994) 

research with humans suggests postural control studies used to infer  cellular 

motor function.  
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Table 2 CMS studies automation and feature detection 

 Statement  
of Problem 

Data  
Capture 

Transition 
Complexity; 
Differentiated 

 
Goodwin et al., 
(2014) 

uncertainty sequence 
begins/ends; observation 
concomitant stereotypies; 
document high-speed motor 
sequences 

body 
rocking/hand-
flapping , three-
axis 
accelerometers 

N/A 

Gonclaves et al. 
(2012) 

insufficient recording number 
of occurrences of stereotypies  

hand-flapping, 
RGB camera 
(Kinect), 
accelerometer 
with watch 

N/A 

Karch et al. 
(2011) 

absence of kinematic 
description of variation of 
infant motility (especially in 
arbitrary movement patterns) 

upper/lower limb 

scoring movement 
(not morphology) 

N/A 

 Comparing coarse and precise methods in CMS research (Table 3) 

presents a foundation to implement translational research practices for motion 

capture based on definitions of: (1) low variation leads to an absence of time 

data (sustained repetition or next-step repetitions); (2) repetitive restrictive 

movement results in an inability to differentiate sequential timing in CMS; (3) 

non-purposeful movements leaves unrecorded local optimality to differentiate 

phases of lateral movement; and, (4) visual analysis using coarse measurements 

without monitoring the regulation of transitions. 
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Table 3 Comparison with conventions on complex motor stereotypies 
Criteria in CMS Definitions 
Coarseness in Complex Stereotypies  
(APA, 2013; Hadders-Algra, 2010) 

Absence of variance 
Underestimation:  
sustained repetitive motor activity and pace 
perpetuation  

Repetitive restrictive movement 
Underestimation:  
serialization/next-step repetition requires sequential 
timing 

 Non-purposeful movement 
Underestimation:  
modeling local optimality differentiates internal 
continuity 

Coarse Visual Assessments 
Underestimation: 
unrecorded sequential time data 

Precise Measures of CMS  
Severity of Complex Motor Stereotypies 
(High Resolution Behaviors & Plasticity) 

Physiological relevancy 
allocation of resources in repetitive 
behaviors (sustained or next-step in 
cycle) 

Differences in regularity  
sequential timing serialized in transitions 

 

Self-similarity local optimality 
levels of movement  sub-secs within a 
core dataset in CMS 
 

Behavior-time pairings in sequential 
pattern regulation 

A system of behavioral recording poses the opportunity to quantify 

repetitive movement's complexity using descriptions of high behavior resolution 

and behavioral plasticity evident in two avenues of research: (1) the multi-

functional architecture of motor substrates (Arber, 2012; Briggman & Kristan, 

2008); and, (2) multi-stability theory of motor circuitry (Kelso, 2012). There is 

the challenge to monitor behaviors on two scales (morphological and cellular) 

and within a heterogeneous framework of biological boundaries. Behavioral 

recording with high fidelity to the complexity of motor function contributes to 

taxonomical mapping of time data and biological aspects of a motor disorder. A 

top-down behavioral recording paradigm promotes further neuronal 
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computational recording practices (Aur & Jog, 2007; Pais-Vieira et al., 2013; 

Nicolelis et al., 1995, 1997) from the perspective of high behavioral resolution 

is no longer secondary to the principles of central pattern generators.  

Anticipated Results 

The proposed methodology functions within a direct biological interface, 

that is, a paradigm eclipsing indirect methods without neurobiological 

grounding. Milestones in a systematic direct biological interface include several 

points: (1) multi-site recording in the concurrent time-dependent interactions 

between large neuronal population Nicolelis et al., 1995, 1997); (2) 

specification of neurodynamics of neural spikes (action potentials)  as a neural 

code: spike directivity (preferred direction of electrical propagation), charge 

movement during action potential, and the use of tetrode (4 tip 

electrophysiological probe) (Aur, 2010. Aur et al.,2006; Aur & Jog, 2007; Jog 

et al., 1997); (3) co-cultures of nervous membrane on silicon chips (Fromherz, 

2002); (4) the body on the chip incubation of human stem cells in in vitro assays 

(Das et al., 2006; Smith et al. 2013, 2014; Sung et al., 2013); and, (5) the 

shared work in brain-to-brain interface (Pais-Vieira et al., 2013) a progression 

in Nicolelis' research on multi-site neural recording techniques. Behavioral 

recording in this case addresses a system for use by a wide range of researchers 

(clinical, bioengineers, neuroscientists), that is, the goal is a system useful to 

quantify CMS dimensional variability rather than seeking a unique dataset to 
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define CMS behavior. Behavioral recording points toward the heterogeneous, 

that is, a state where variable parametric functions yield the same state as 

discussed in Marder’s  (2011) work on pyloric rhythmic circuits. Instrumental 

design becomes essential to deal with this level of complexity.  

This systematic observational protocol draws upon animal models of 

neurobiology and biological mathematics to monitor regularity (repetition) of 

behavior markers (laterality, extension/flexion, and skin innervation as a 

geography of touch fields) within variable pathological conditions. The reader 

will find below a protocol to standardized measurement and classification of 

CMS severity: (1) regulation of CMS sequelae quantified by transition patterns 

(from-, to-); (2) a descriptive taxonomy and rules to conduct behavioral 

recording to computationally define observational criteria for motion capture 

(biosensors); (3) local time complexes (from the viewpoint of microevents) 

contribute to time series analysis in CMS; and, (4) weighting the persistence of 

behavior makers to provide fractional series for time series analysis. CMS in 

this project act as a mobile boundary system to further understand behavioral 

function under the skin. A missing link in known motor wire modeling is 

behavior recording over the time course of rhythmic motor circuits. By defining 

a novel methodology and measurement standards research on CMS (Figure 2) 

will study local time complexes in: (1) concurrent facets (laterality, touching, or 

switching rates in behavioral plasticity); (2) preliminary stages of sensorimotor 
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engagement (en route to the completion of a chronological sequence); and, (3) 

the allocation of resources (in the time domain). MeSH taxonomy maintained 

by the U.S. National Medical Library is a resource for developing the proposed 

systematic research. Anatomical behavior descriptions function as a 

computational protocol to capture local timing neighborhoods and marking 

intensities of difference (laterality, transition, plasticity, switching rates) (Table 

3) in repetitive sequences.  

An observational taxonomy leads to exploratory studies and scientific 

workflows to keep pace with the challenges of exploration and isolation of 

phenomena in a disorder without an etiological explanation. The expressivity of 

anatomical behavior descriptions monitors visual evidence using several rules 

on CMS visual evidence: the kinematic rule, each movement interspersed by a 

counter- movement; the cinematic rule, repetitions (sustained serial or next-step 

in a cycle); dynamic rule perpetual pace (sequelae); and, filtration rule, 

asymmetric transitions {from(bi-,contra) ≠ to (contra, bi-)}. Observing CMS as local 

fractional series replaces chronological order with local and retrospective time 

analysis (Figure 3). In the anatomical behavior description taxonomy CMS are a 

repetitive environment staging recursion.  
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Table 4 Comparison of temporal organization for “behaviors in time” 

Categories Chronological Order Temporal Complexity Transition 

Formalism historical order, duration action, retention, 
potential 

real-time, non-
redundant 

Intervallic 
Structure 

points, signals independent, parallel 
(physical relationships) 

(from-, to-
),allocation of 
resources, 

 
Order & 
Meaning 

Milestones asynchrony, synchrony sequential 
dynamics 
(local) 

Attributes features  
(reaction, frequency) 

neighborhood (tempi, 
rhythm, deformation, 
emergent, non-linear) 

local optimality 

Hierarchy component, psychometric molecular interactive  
(modularity, 
variability) 

Anatomical behavior descriptions facilitate a recursive assessment of 

CMS as local timings within a primary facet and neighboring secondary facets. 

Observing CMS sequelae as recursions (multiple viewpoint) drills down into a 

broad behavioral-time pairings (from-, to-) or the reversal of a very brief 

behavior-time pairing. A precise model of CMS captures patterns in time series 

under several measurement methods: (1) when an unexpected strength occurs 

during the gearing down of sub-second micro-events (e.g. touching) as a motor 

hiccup (burst);(2) the bi-directional perspective of a facet takes a primary role 

followed by secondary facets; or, (3) anomalous behavior-time patterns in 

switching or whole-body events (independence or coordination). Framed by the 

completion of an onset interval confirms the low-variation hypothesis but within 

the completion of an onset there is a transitional complexity, that is, the en route 
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intermediate timings in CMS found through recursion in anatomical behavior 

descriptions. 

 

Figure 4 Three graphical applications of anatomical behavior 
descriptions 

 

The strength of observation for motion capture would benefit by 

descriptions capable of quantitative and biological expressivity. Mechanistic 

models of movement would benefit from the observation of several layers as 

claims: 

“Movement is generated by the activity of neuronal circuits 
collecting and integrating information, ultimately leading to 
precisely timed skeletal muscle contractions. Work of many years 
had demonstrated that the motor control system exhibits a 
multitude of interleaved layers of organization.” (Arber, 2012, 
p.975) 

Arber summarizes research on motor circuitry using three key 

components: (1) developmentally infused component: neurons project and 
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innervate the spinal cord during motor activity (rhythmic and patterned); (2) 

neurophysiological component bi-directional communication in the brainstem's 

ascending and descending channels, between spinal circuits and supraspinal 

centers; and, (3) sensory feedback systems monitor consequences of motor 

action illustrates touch-induced movement in the escape case (organism-

environmental) case and the integration of touch-movement patterns.  

Taking visual evidence into a mathematical organization is central for 

anatomical behavior descriptions to explore how an individual occupies 3-D 

space and the distribution of whole-body engagement. Identifying a network of 

movement (Figures 13, 18) contributes to visualizing additional components in 

complexities unfolding (enumerated) within biological movement. Additionally, 

the tools used to quantify repetitive movement will compute while observing 

layers of variability in the description of visual evidence in repetitive restrictive.  
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Table 5 Visual Observation and Visual Evidence (Interdisciplinary Mathematical Origins) 

Variability 
(motor research) 

phenomenon or concept of theoretical interest rather 
than operational measure (Newell & Slifkin, 1998) 

Regulation 
(repetitive sequelnce) 

motor function linear, dynamic, equilibrium 
(homeostasis)(Kelso et al., 1981) 

Cellular 
(heterogeneous) 

multistable many different combination (synaptic, 
neuronal) produce same network activity (CPG) 
(Briggman & Kristan, 2008; Kelso, 2012; Marder, 
2011) 

Morphology 
(motion capture) 

transitions in repetitive sequential motion, pairings  

t’{(from, evacuate a posture), (to, enter a posture)} 

Taxonomy 
(behaviors in time) 

high behavioral resolution  
many behavior markers  mark difference in 
repetition 

Early Measurement Standards  

 Historical views of measurement in human performance fall into several 

categories: behavior, pathology, and physiology. Measuring physiology 

establishes methodologies for psychometrics (sense perception), experimental 

psychology, and clinical psychological interventions. The physicians Ernst 

Heinrich Weber (1795-1878) and Gustav Fechner (1801-1878) combine 

medicine and physics to initiate a quantitative foundation for psychological 

phenomena through psychophysics. Weber–Fechner law supplies future 

experimental psychology with a quantitative axiom where measurement of 

stimuli and psychological events occur. This law relies on just-noticeable 

difference (JND) where a difference between things carries along measurable 

28 

 



comparisons. The road toward measuring physiology leads from the 

mathematical expression in Weber and Fechner to pathology seen through 

instrumental observation of neuroanatomy by Cajal (1852-1934) awarded the 

1906 Nobel Prize Medicine for his detailed illustrations on the microscopic 

structure of brain. Another advancement for pathological research is the 

discovery on chemical nerve function and the electrical function in cell 

neurophysiology by Otto von Loewi (1873-1961) 1936 Nobel Prize Medicine.. 

The psychologist Donald O. Hebb (1904-1985) combines behavior, Lorente de 

No’s neural anatomy, and firing neural networks (Hebb, 1980). The 

neuroanatomical structural mappings in Cajal and the neurosphyiology 

contributions of Loewi and Hebb establish a version of behavior within a 

neurobiological foundation.  

Along with mathematical-physics and neurobiology there is a strand of 

measurement quantifying behavior for behavior modification and behavioral 

psychology John B. Watson (1878-1958), Skinner behavioral psychology (1904-

1990), Arnold Gesell (1880-1961) behavior or educational standards on child 

development and metrics for school readiness: motor, cognitive, linguistic 

modification psychology pediatrics. Completion of a subject design protocol 

combines physiology and pathology to assess behavior. The influence of 

developmental child psychology Jean Piaget (1896-1980) and Heinz R. Prechtl 

(1927-2014) provided the foundation for the assessment of general movement 
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and modern developmental neurology, 

 An alternative form of quantitative measurement integrates: subject-

design, neurophysiology, and clinical objectives (experimental psychology) 

appears in Hebb's research. In the Essay on Mind (Hebb, 1980) maintains the 

claim “cells that fire together wire together” a theoretical framework on 

excitatory/inhibitory functions during psychological process. Hebb's well-

accepted theoretical framework brings to experimental practice biological 

process. The psychophysics in Fechner codifies quantitative practices physics-

like measurement standard with formula precision. Hebb's research method 

integrates biological, psychological, and scientific inquiry according to low 

level scales of function (neurological operations, genetic operators) and 

behavioral states (concentration and high-level functioning). The methodology 

in this project aligns with Hebb's research method by pursuing empirical 

interactions across scales (cellular and behavioral) while subject-design does not 

minimize biological uncertainty in behavioral research. 

 There are several cornerstones in early measurement practices including: 

Frank Gilbreth (1886-1924) pioneering motion study devices or computational 

models  based on Nikolai Bernstein (1896-1966) dynamics of motor mechanics 

(Pellis, 2010; Thelen, 1995). In each of these cases instrumentation facilitates 

subject design research to conduct quantitative research. An instrumental 

measurement standard has the opportunity to use advanced technologies 
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(nanoscience and neuroscience) to monitor biomarkers and behavioral markers. 

The point of demarcation for advanced measurement standards revolves around 

instrumental measurement standards. Clinical CMS researchers are left with 

fitting into behavioral, physiological, and pathological measurement protocols 

dating back to Weber-Fechner's psychometric measurement standards or Lilian 

and Frank Gilbreths' motion analysis photography to measure work 

productivity. Research on animal models introduce advanced measurement 

standards to monitor behavior and neurobiological interface. Feng et al. (2004) 

introduce phenotypic parameters to monitor c. elegans behavior. An advanced 

instrumental measurement standard isolates markers (biomarkers and behavioral 

markers) to improve motion analysis to capture functionality (Weber-Fechner) 

or competency (Gessell). Markers appear as a missing key registered by 

advanced instrumental measurement standards to bring a novel computational 

perspective: functional-structural measurement across two scales. 

Avenues between Psychometric and Diagnostic Measurement Standards 

 Since early standards of quantitative measurements in Weber and 

Fechner's psychometric measures depend increasingly on subject-design 

oriented protocols diagnostic assessments in motor stereotypies are observations 

of the presentation of CMS, to make determinations on behavior, physiology, 

and pathology. A substitute for subject observation would investigate 

equilibrium as a function of variability occurring at a level of biological 
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automation, regulation, and switching. Behavioral and clinical views of 

repetition maintain a psychological perspective of compulsion or rigidity with a 

formal representation in terms of prevalence (Lewis & Bodfish, 1998). But 

prevalence does not offer time data. Kelso's (2012) biological theory accounts 

for multistability and multifunctionality. In two cases (psychometric and 

multistability) quantitative research examines some degree of behavior, 

physiology, and pathology. The development of translational quantitative 

research might point toward the fulfillment of variability under distinct 

biological contexts of multistability without waiting for the presentation of a 

subject's CMS. Visual formalisms (e.g, the punnett square and self-similar 

patterns) and literature on bioengineering (Bahn & Guest, 2011) and 

nanoscience (Das et al., 2006) establish a demarcation from subject-design 

oriented protocols to move toward the granularity (multi-resolution), that is, a 

drill-down variability of biological systems (Figures 10,11).  

In anatomical behavioral descriptions repetitive restrictive behaviors 

display switching and granularity warranting precise computational 

measurements in the time domain rather than viewing repetitive behavior in 

terms of the individual's performance competency or behaviors as compulsive. 

To frame standards of measurement based on the literature, this project 

introduces the following: (1) limitations of definitions of hyperkinetic 

movements within subject-design protocols (Sanger et al., 2010); (2) the 
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application of MeSH taxonomy as an investigative biological resource when 

examining an organism's complexity; (3) MeSH as an interdisciplinary peer-

reviewed resource provides a drill-down hierarchy pre-empting the need for 

initial subject observation and, (4) the use of time analysis (Pincus, 1991; 

Pincus & Goldberger, 1994) to promote research on equilibrium and regulation.  

 Alongside the general quantitative measure of behavior and in subject 

design there is a specialized area of research: motion capture. Motion capture is 

essential to understand one of the basic aspects of activity of whole body 

movement namely to quantify the core dataset in the time domain. Along with 

the protocol outlined in Chapter 1 and Chapter 3 the literature review plays an 

essential role to present best practices, new advances in the body of knowledge 

in bioengineering, and the neurobiology of motor activity. 

 Kelso's (2012) multistability theory observes “many different muscle 

configurations can produce the same outcome.” This alone supports a 

description of variability in a behavior without measuring the relationship 

between  (Kelso et al., 1981) and experimental study on Kelso’s multistability. 

In another example Kelso points out “the same network activity in central 

pattern-generating circuits can be produced using many different combinations 

of synaptic strengths and neuron properties.” The example of the central pattern 

generator's flexibility and modularity complements behavioral research 

observation in an instance where the dynamic of biological movement is less 
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literal than what eye-witness research reports or data-driven point-set 

evaluations. 

 Indexing behavioral markers as they occur in time define a mechanism 

to monitor Kelso's biological theory on equilibrium articulated by two concepts: 

degeneracy and multifunctionality. Early quantitative measurement standards 

establish the conventions of psychometric and subject-design without 

addressing the regulatory function (time function) or incremental organization 

of CMS as degrees of severity within measures of involuntary engagement. 

According to the literature review below biomedical definitions of CMS 

(Hadders-Algra, 2010; Maurer & Damasio, 1979, 1982; Prechtl 1999; Sanger et 

al., 2010) go as far as awaiting for behavior to present to CMS.  

 Early measurement standards in psychometrics pioneered by Weber and 

Fechner point to the importance of physiological grounding of behavioral 

measurement. The empirical contributions by Nobel Prize researchers Cajal's 

illustrations of neuroanatomy and Loewi's experiment confirm chemical and 

electrical synapses in neurophysiology suggest an empirical basis absent from 

definitions of hyperkinetic movement. The absence of time data on hyperkinetic 

movements guides the literature review in this project. MeSH is a hierarchical 

taxonomy with a systematic overview of several facets of CMS research: 

behavioral, physiological, and pathology absent from clinical research CMS 

research (Appendices A,B). This includes the recent definitions of hyperkinetic 
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movement (Sanger et al., 2010). Biomedical definitions of repetitive restrictive 

behaviors (Maurer & Damasio, 1979, 1982) underestimate the dynamics of 

behavioral plasticity and repetitive movement sequences. Since Chalfie's et al. 

(1985) c. elegans research precise nanoscience measurement (Ardiel & Rankin, 

2008; Chronis et al. 2007; Kawano et al.,2011; Larsch et al., 2013; Nagy et 

al.,2011; Salvador et al., 2014; Wen et al., 2012) and imaging of techniques 

with neurobiological evidence (Feng, 2004) would provide additional data to the 

coarse video analysis (Campbell et al., 1990; Loh et al., 2007;; MacDonald, 

2007 ;Richler et al., 2007; Teitelbaum, 1998) or clinical stereotypies with some 

empirical methodology (Bodfish, 2001; Lamoth et al., 2009; Lewis et al., 1984; 

Memari et al., 2013; Ross et al., 1998; Yamada, 1995). 

Diagnostics and Definitions for Clinical Motion Analysis 

A taxonomy for clinical motion analysis is a starting point to calibrate 

biosensors for granular motion capture. Instrumentation houses the working 

logic necessary to conduct measurement procedures (Table 5). For the proposed 

diagnostic instruments design there is two missing ingredients: diagnostics 

criteria and definitions of hyperkinetic movements in childhood. 

 A diagnostic criteria might bring to motion capture a bridge between the 

absence of biomarkers indicative of involuntary movements and comprehensive 

terminology on hyperkinetic movements found in Sanger et al., (2010). Some 
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biomedical CMS researchers organize methodical investigation of CMS. Maurer 

and Damasio (1982) attempt to conduct time-measurement studies but only 

looked at an isolated movement without indexing adjacent or complementary 

movement evident during data collection on the targeted movement. Gao and 

Singer's (2013) study signal the importance of neurobiological markers related 

with pathways corticostriatal-thalamocortical measured using neurotransmitters 

to understand the neurophysiology in CMS.   

 The morphological level presents a possible observation practice to 

consider: (1) CMS in the time domain; (2) severity of CMS; and, (3) regulation 

of CMS. Myoclonus, a hyperkinetic movement, according to the Sanger and 

collaborators' review illustrates how instrumental design might conduct 

complex motion capture with detailed time data. The alignment of behaviors on 

the morphological scale and the proposed switching on the cellular scale the 

proposed indexing system introduces a measurement standard across scales. 

 Bioengineering diagnostic instrument design has two levels of motion 

capture: (1) computational layer input processing; and, (2) timekeeping of 

clinical behaviors output processing. The computational layer hosts 

mathematical expectation (Figure 8) in a hierarchical tree. Clinical definitions 

and biological systems (MeSH) provide variables to formalize data capture 

contributing to diagnostics registration of the behavior. The stronger the index 

of MeSH variables the stronger the instrument's diagnostic potential. While the 
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sensitivity of the diagnostic instrument depends on the strength of MeSH 

variables and the engagement of the instrument's modules while monitoring 

repetitive restrictive behaviors. 

Clinical Research without Reconstructive Diagnostics 

 A provisional revision of diagnostic assessment phenomena without 

etiological recognizes three definitions for diagnostic measurement. First, there 

is the non-equilibrium diagnostics using data points to statistically characterize 

a behavior. Second, what is the data range for the functional characterization? 

Lastly, there is the biological isolation for interactive characterization Arber’s 

(2012) use of viral tools. The development of diagnostic instrument represents 

an exploratory (motion capture) research practice rather than quantifying 

behavioral output. Variables monitor CMS input and establish a system to 

record and reconstruct repetitive restrictive behavior. A systematic diagnosis 

will monitor the networks of engaged variables (Table 7), various inactive 

variables, and documenting the sequential results of the repetitive restrictive 

behavior. A systematic diagnostic protocol would distinguish between 

sequential build-up of mirco-rhythyms in the CMS (en route) and results of the 

behaviors’ (chronological order).  

 Measurement standards with a precise approximation bring a measurable 

terminology to index restrictive behaviors missing from narrative 
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characterizations of repetitive restrictive behaviors found in the Autism 

Diagnostic Interview-Revised (ADI-R) (Lord et al., 1994). The narrative 

characterizations include the following: repetitive use of objects, unusual 

sensory interests, hand/finger mannerisms, compulsions and rituals.  

 Ability measurement in clinical CMS research remains goal-oriented in 

terms of the measurement as a competency without a neurobiological metric. 

The literature on the measurement of planned motor activity looks at the inner 

working of behavior as cortical potentials associated the planning (Dirnberger et 

al., 1998). Non-literal observation of planned motor activity is missing from 

clinical CMS measurement. Future CMS research informed by Dirnberger and 

collaborator's insight into planned motor activity might investigate the 

regulation of repetitive restrictive behaviors and the equilibrium at points 

critical to the sequential unfolding of repetitive restrictive, in sustained or cyclic 

repetitive patterns. Substituting anatomical positions for the competency based 

(goal-oriented metric) promotes a diagnostic research criteria absent from 

clinical CMS research. While CMS researchers maintain ability as a research 

objective future research might explore a taxonomy of repetitive restrictive 

behaviors under the skin or the functional regulation of repetitive behaviors 

within the time domain as micro-rhythms already discussed in the clinical CMS 

literature (Lewis et al., 1984). 
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 Diagnostic measurement of precise variability at highly granular time 

intervals might clarify the low variability hypothesis assigned by the 

neurological literature on CMS. To clarify the low variability hypothesis there is 

the proposition: repetition is more than redundancy. This view of repetition 

defines repetition as configurations in a granular dataset as an individual's 

movement transitions. These transitions appear through a methodical 

visualization system (Figure 18) where there are several neighborhoods: (1) 

sustained repetition or the next-step in a cyclic sequence.; (2) lateralized 

movement (ipsi-, bi-, contra-); and, (3) mapping behavioral plasticity as turn-

taking in the transition of (from- to) distinct forms of lateralized movement.  

Instrumental Design a Methodology 

Since, Edward Muybridge's (1830-1904) photographic motion studies (if 

all feet leave the ground during a horse's gallop) motion capture technologies 

with markers (Pentland et al., 1998; Peikon et al., 2009; Rosenhan et al., 2006; 

Wren, 2005) or markerless (Mündermann et al., 2006; Rosenhan et al., 2006) 

remain on the surface of biological movement. These motion capture techniques 

resort to frame analysis where granular movement (independent or 

coordinated) receive no asynchronous time processing within the frame. To 

observe CMS anatomical behavior descriptions revise analytic criteria for future 

motion capture technologies based on transitions (from-, to-) in biological 

movement. Anatomical behavior descriptions supply motion capture with a 
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four-way observational criteria: anatomical (posture), behavior (postural 

engagement), descriptions (scenarios of engagement), and the combination of 

anatomical behavior descriptions (sequelae). A descriptive language of behavior 

markers (laterality, extension, flexion, independence, coordination, touching, 

etc.) registers transitions as a paired time-behavior function:  

T'{t(from- behavior marker, time), t(to- behavior maker, time)}. 

 In the proposed motion capture protocol anatomical behavior 

descriptions index time-behaviors while bio-sensors capture independent 

interlimb activity and local time complexes within a network of biosensors. A 

spatial distribution of bioengineered sensors report on local time data, kinematic 

data (movement direction, skin innervation, and surface tension-pressure) 

modeled on Lowe (2011) in Bahn and Guest's (2011) report on the state of the 

art of biosensor development. Other sensor options include electronic skin 

sensors (Parasuraman & Wilson, 2008) would contribute to data collection of 

local directional movement, surface pressure (skin), and electrophysiological 

variables (EMG, EEG). The electronic skin sensors would require interfacing 

local time-behavior indexing data with the chronological biometric data from 

electronic skin sensors. Anatomical behavior descriptions act as time indexing 

process to keep pace with local patterns outside of the one-way chronological 

order of succession. 
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CMS functions as an expressive mobile boundary system and as a 

medium to further understand temporal dynamics of behavioral function under 

the skin. A missing link in known motor wire modeling is behavior recording 

over the time course of rhythmic motor circuits. The bridge between rhythmic 

motor circuits and repetitive restrictive behaviors points to an instrumental 

problem, without waiting for subject data. Research on CMS will study local 

time complexes in concurrent behavior markers (laterality, transitions, touching, 

and switching rates in behavioral plasticity) en route to the engagement and the 

allocation of resources in the time domain. Anatomical behavior descriptions 

provides observational criteria to observe visual evidence missing from current 

data collection of repetitive behaviors (Appendices F,G). Absence of visual 

evidence in motion capture techniques owes to seeing repetition as redundant, 

an absence of a rigorous model of behavior in the time domain, and an absence 

of a comprehensive “instrument model.” Anatomical behavior descriptions 

formalizes guidelines on “where data comes from” in terms of instrument 

design and mathematical expectation to address the variability of the 

presentation of CMS. 

 Anatomical behavior descriptions as a behavior-time approach responds 

to the low variability hypothesis (Hadders-Algra, 2010; Prechtl, 1974, 1990, 

2001) and the challenge to monitor variability in complex motor stereotypies 

(CMS). The absence of high behavioral resolution in CMS reflects limitations in 
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the observation of CMS rather than confirming low variation in CMS' structure 

and function. Three questions guide the development of an instrumental 

proposition to quantify CMS: (1) Is repetitive restrictive behavioral plasticity 

asymmetric (i.e., between series of forward-touch movement and backward-

touch movement)? (2) Will time analysis support the association of ipsilateral 

movement with excitatory motor circuitry, contralateral movement inhibitory 

motor circuitry, and bilateral movement with excitatory/inhibitory motor 

circuitry? (3) How does the complexity of processing rates at several levels of 

behavioral resolution differentiate morphological timing and cellular 

processing? ... or, Does behavioral plasticity in high behavioral resolution yield 

a measure indicative of the allocation of resources in CMS between the 

morphological and the cellular? The instrumental proposition moves toward 

how to read visual evidence through motion capture at lower levels behavioral 

activity in CMS through time analysis. 

 Chronological time series are incomplete measures of CMS. Consider 

the visualization of a c. elegans' backward movement in Figure 5. Movement 

reflects more than the chronological order following time's arrow (one-way). 

Figure 5 visualizes a local time setting with flow patterns. To illustrate the flow 

of movement, the blue highlight suggests the step-by-step translation of 

engagement of side walls (the arc in orange reflects transitions in time along the 

length of the creature and is not a spatial displacement as the creature moves 
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posterior-to-anterior). Anatomical behavior descriptions serve a time-behavior 

protocol to monitor local microevents in CMS as more than a completion of 

chronological order. 

 

 
 

Figure 5 Visualization of local timing of posterior-to-anterior undulatory 
movement 
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Figure 6 Basic detection model for complex motor stereotypies  

Systematic indexing of time-behavior data in CMS, might differentiate 

sequelae's behavioral resolution. Indexing transitions (from-, to-). CMS as a 

boundary system with repetitions and perpetual sequelae patterns serve as a 

real-time conduit to study plasticity assigned to the central pattern generator 

(Briggman & Kristian, 2008; Marder, 2000; Marder & Calabrese, 1996; 

Selverston, 1980) and multi-stablity (Kelso, 2012) along morphological lines. 

This systematic observational protocol provides transition data to differentiate 

CMS repertoire or CMS sequelae. 

 Using natural observation of CMS is consistent with Siegler and 

Cowley's (1991) microgenetic protocol. Collecting data to measure general 

movement variability in CMS requires sufficient time to observe the behavior, 
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rather using an arbitrary observation duration. Sufficient observation duration 

would is a function of the depth of the repertoire to project the potential 

duration of the sequelae. To index time-behavior data there are several time 

variables in anatomical behavior descriptions: transition (from- evacuation of a 

posture, to- entry into a posture), switching rate in lateralized movement's 

phase, and regulation of sequelae transitions. Sensor distribution is central to 

acquire motion data within local neighborhoods (Figures 10, 11) absent in video 

analysis and motion capture with markers. A science of behavior markers 

registers local (micro-events) within the chronological order of a CMS 

sequence. 

 Local motion capture quantifies sequelae in several fractional series 

found during observation of intermediate transitions en route to completing the 

chronological order in a CMS sequelae.  A fractional series of behavior markers 

CMS (Figure 8) details the chronological order of sequelae into a local 

measurement of from series (frombackward,  ipsilateral ) or the forward series 

(toforward  , ipsilateral). Observing CMS sequelae through recursion (Figures 10,  

11) drill down into a broad (from-, to-) time-behavior pairing. Figure 10 

illustrates behavior marker datasets through a local perspective within the 

chronological order: (frombackward, tobackward) or  (frombackward, skin innervation). 

Anatomical behavior descriptions taxonomy contributes to the study of how 

CMS work within a transitional time-complex. Observations on the low-
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variation hypothesis confirm assessments as a complete time setting. But, to 

map time complexity within an interval, that is, local time neighborhoods 

observations will pursue a high behavior resolution model.  

 Instrumental-design builds upon Harel's claim, “Visual formalisms – 

diagrammatic displays with well-defined semantics for expressing relations” (as 

cited in Nardi & Zarmer, 1993). For computational enhancement a visual 

formalism renders increasing granularity (Figure 12), modular functions with 

varying controllability in multi-dimensional configurations (Figure 13), multi-

resolution configuration (18,19), or short-lived local time relationships in a 

chronological sequence (Figures 12,13). Heightened visual symbolic 

expressivity takes on a functional role for algorithmic control of motion sensors' 

motion capture, scientific workflows in CMS research (Figure 15), or variability 

in heterogeneous datasets (Marder, 2011). As in video movement analysis the 

goal in instrument-design uncovers visual evidence but with increased research 

complexity, (e.g. formation of families of instruments).  

 Since Teitelbaum et al. (1998) researchers use video recording to 

differentiate repetitive behaviors.  Visual evidence parsed through the lens of a 

strong visual semantics is a computational problem. CMS researchers progress 

with a logic to differentiate repetitive behaviors. The next step is logic-based 

differentiation of repetition. Table 6 based on Deleuze's (1994) intensity of 

difference outlines two granular series differentiate repetition behavior markers 
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in high behavioral resolution and time markers in behavioral plasticity. In both 

granular series appears criteria for motion capture or time series analysis within 

the anatomical behavior descriptions taxonomy (Table 7). Observing repetitive 

behaviors is a sequential-temporal problem as much a postural phenomenon 

documented in subject-design studies (Appendices A,B) using camera-based 

motion capture. Instrument-design introduces a computational layer absent from 

camera-based motion capture. No longer dependent on literal reading of visual 

evidence a biomedical knowledge base, MeSH taxonomy (curated at the United 

States National Medical Library) offers robust research evidence. The topic of 

regulation and metabolic process in this project is an outgrowth of cross- 

referencing metabolic aspects of movement disorders with psychological and 

neurological MeSH keywords (Appendix B) and the two groupings: (1) 

musculoskeletal and neural physiological phenomena; and, (2) nervous system 

and physiological phenomena (Appendix C). Anatomical behavior descriptions 

function as a computational protocol based on MeSH taxonomy to formalize 

motion capture. The anticipated result is a core CMS dataset with local timing 

data and time signatures (Figure 16) to replace clinical assessment of ability 

with the physiological and behavioral aspects of how CMS works in terms of a 

morphological regulatory measurement(Kelso et al., 1981) and the trace of 

motor circuitry's multi-stability (Kelso, 2012).  
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 This project proceeds with the need for mathematical hypothesis on time 

series analysis in biomedical research (Pincus & Goldberger, 1994). Visual 

formalism act as a conduit to apply computational literature: (1) biological 

dimensionality (Bellman, 1961); (2) regularity in time series (Deffeyes et al., 

2011; Pincus, 1991; Pincus & Goldberger, 1994); and, (3) fractal movement 

analysis (Chau, 2001; Hausdorff et al., 1995, 1996,1997; Ihlen & Vereijken, 

2013).  

Toward a Science of Behavior Markers 

A science of behavior markers points toward the exploratory rules based 

(taxonomy) and the local cross-section of chronological order. Rapin (1996) 

notes neurological assessments rely upon soft observations. A change in 

research objectives carries the eventuality to revise basic relationships on 

difference, repetition, and measurement. 

Kohn et al., (2006) molecular interaction mapping (MIM) diagram the 

complexity of pathways and networks in biological substrates occur under two 

conditions: (1) heuristic MIM possible interactions; or, (2) explicit MIM 

particular models from the possible interactions. The structure of the Kohn 

MIM resides in a “canonical map by deleting the molecules that are not 

expressed as well as the interactions that do not occur because of lack of 

colocalization.” CMS a movement disorder without an etiological explanation 
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warrants the objective to map the regularity of the time series as a systematic 

behavioral markers (Figures 13,14) flowing (jerky or continuous) within local 

time series (backward or forward) and the allocation of resources over the time-

course: onset (initial postural configuration), engagement (present), and 

replenishment (future) (Figure 17). Defining behavior as an engagement of 

resources extends Kohn and collaborators annotation of molecular interactions 

through absence or expression. A novel definition of CMS in the time domain 

follows: 

Regularity in CMS is a problem of monitoring high behavioral 

resolution in the time domain and the regulation of behavioral plasticity. In all 

non-episodic CMS cases there is a perpetual pacing of a repetitive circuitry. 

CMS occur as whole-body flow patterns. To advance CMS motion capture 

anatomical behavior descriptions mark time-behavior pairing when using 

technologies with direct biological interface (wearable bio-sensors or 

nanoscience assays).  

In CMS extension-flexion movements punctuate an extended duration 

marked by lateralized movement occurring as three behavioral markers 

(ipsilateral, bilateral, and contralateral). Diagramming the quantitative 

complexity of these categories of movement remains a systems biology question 

with specialized interest for CMS research (e.g., if ipsilateral (uni-independence 
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or bi-independence) movements differentiate bilateral/contralateral 

(coordination) movements in the time domain).  

Detailing descriptions of morphological behaviors contribute time data 

leading to investigative questions: Are repetitive circuitry inhibitory or 

excitatory under lateralized conditions or sequelae patterns? How does ionic 

conductance function within sensorimotor transfer when ipsilateral conditions 

modify the time series in CMS sequelae? Do behavior-time pairings extend 

morphological measurement to trace a cellular allocation of resources within 

innervated skin? How do behavioral markers provide visual evidence of posture, 

skin, and time settings rippling within the whole body? 

The study of pathological conditions and variability on mathematical 

grounds finds limited attention outside of Torres et al., (2013) and Gowen and 

Hamliton (2013). Pincus (1991) develops a “preliminary mathematical 

development of a family of formulas and statistics, approximate entropy 

(ApEn), to quantify the concept of changing complexity. We ask three basic 

questions: (i) Can one certify chaos from a converged dimension (or entropy) 

calculation? (ii) If not, what are we trying to quantify, and what tools are 

available? (iii)” The clinical researcher's goal has less to do with developing a 

mathematical tool and more to do with a statistical reading of a behavior 

(CMS). Pincus recognizes “if we are trying to establish that a measure of 
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system complexity is changing, can we do so with far fewer data points needed, 

and more robustly than with currently available tools?” But Pincus’ 

contribution requires a data collection protocol. The question of Where does the 

data come from? reappears in terms of the source data used to conduct time 

series analysis. 

Behavioral markers bring to CMS precise measurement criteria with a 

working model to mark intensity of difference. The relationship of difference 

and repetition (Deleuze, 1994) brings a new standard for designing target data 

in motion capture technology, namely visual test to determine increasing levels 

of granularity (Figure 12) based upon a taxonomy (Figure 14). Increased 

resolution presents a granular dimensional data collection (sensorimotor) 

(Figure 13a) and differentiation of power process (regulation) during the 

sequence of repetitive restrictive behaviors (Figures 13, 18). The first method 

based on anatomical behavior descriptions would index time-behavior 

transitions to determine asymmetries in behavior plasticity and gradations of 

regularity CMS behaviors in the time domain. 

Anatomical behavior descriptions introduce a universal standard. This 

descriptive system starts with a comprehensive measure (from-,to-) transitions. 

Science of behavior markers quantifies transitions through an intensity of 

difference (Deleuze, 1994) with increasing granular observations (Table 6). 

Deleuze (1994) proposes in Difference and Repetition the world is a fractional, 
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a 'remainder', and understood in terms of fractional or even incommensurable 

numbers. This claim anticipates repetition has additional differentiation: 

“Intensity is the form of difference so far as this is the reason of 
the sensible. Every intensity is differential, by itself a difference. 
Every intensity is E-E', where E itself refers to an e – e' , and e to ε 

– ε' etc. : each intensity is already a coupling (in which each 
element of the couple refers in turn to couples of elements of 
another order), thereby revealing the properly qualitative content 
of quantity.” (Deleuze, 1994, p.222), (Table 6). 

To translate this philosophical statement for quantitative researchers 

substitute authenticity (fidelity with behavior) for sensible clarifies the utility of 

intensity of difference as a series (Figure 12). Table 6 applies Deleuze's theory 

on difference and repetition to anatomical behavior descriptions and behavior 

markers used to observe high behavioral resolution and behavioral plasticity 

CMS. 
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Table 6 Intensity of Difference and Repetitive Restrictive Behaviors 

Intensity 
(E-E') 

Behavior Marker 
(High Behavioral Resolution) 

Time Marker 
(Behavioral Plasticity) 

E refers 
to... 

e – e' 

laterality →   (ipsi-, bi-, contra-) > 

musculoskeletal → extension | flexion  >  

interlimb activity → independence | 
coordination >  

geography touch fields → dorsal | ventral  

Transition → t(from-, to-)> 

repetition → serial, cyclic> 

switching rate → en route> 

perpetuation →local time  

e refers 
to… 
ε – ε' 

{(ipsi-, bi-, contra-)} → {(from- | to-) 

{extension | flexion } → sensorimotor transfer 

independence | coordination →  backward 
                                                      |forward 

{ dorsal | ventral } →  geography touch 
                                       receptors 

t(from-, to-) → fractional series 

serial, cyclic →  excite  | inhibit 

en route → multi-function  

local time → flow patterns  

 Behavioral markers qualify repetition with greater quantitative detail 

(granularity) within a cascading series: (1) laterality; (2) (laterality → 

musculoskeletal); (3) (laterality → musculoskeletal → interlimb activity). 

Within each of these features there is a phase turning the feature into a detailed 

variable: laterality(ipsi-), laterality(bi-), laterality(contra-). In turn the grouping 

of {(laterality
independence

 ,ipsi-)} contrasts with {(laterality
coordinated

 , bi-| 

contra)}. An application in motion capture would implement a visual tests to 

differentiate {(laterality
independence

 ,ipsi-)}. A researcher would want to look 

for contexts addressing how {(laterality
coordinated

 , bi-)} and 
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{(laterality
coordinated

 , contra-)} occur in sequelae of varying severity for 

asymmetry or symmetry. An intensity of difference marks repetition allowing 

for differentiation of repertoire or sequelae in CMS in terms of inclusion or 

exclusion. To arrive at empirical findings this morphological differentiation 

contribute time data to neurobiological and motor circuitry in vitro studies is 

essential. The time-behavior pairing data evident through identification of 

intensities of difference starts as an observational criteria for motion capture. 

Clinical researchers and neurologists agree repetitive restrictive 

behaviors occur as general movements without purpose. The activity in CMS 

may present sensory integration (touch and movement). Recently, Karch et al. 

(2012) call for objective descriptions in movement stereotypies and empirical 

measurement (Torres et al., 2013). What remains unclear is the consequence of 

a universal description for CMS data collection?  Three potential areas of 

develop include: (1) a taxonomy handle descriptive applications; (2) symbolic 

systems to recursive.  A recursive implementation of anatomical behavior 

descriptions reveals a series where one description (computable) leads to a 

series of laterality related events:  

Several cases describe how CMS work in a behavioral recording. In 

CMS when a lateral movement occurs there is a transition (from-, to-). When 

there is a lateral movement there is an interlimb activity (coordinated, 
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independent). When a transition occurs there is a switching rate. Within the 

setting of CMS there is additional time data: repetition, perpetuation, transitions, 

and switching rates. Anatomical behavior descriptions of laterality act as a 

taxonomy of behavioral resolution and reveals a degree of recursion in CMS 

behavioral plasticity (e.g. backward, forward movements) to measure severity 

of CMS.  

Anatomical behavior descriptions use lateralized conditions (ipsi-, bi-, 

and contra-) to identify observational criteria for motion capture of CMS and to 

trace the regulation of sequential patterns. Looking for local neighborhoods in 

CMS or the rates at which local neighborhoods vanish assist in quantifying 

sequelae regulation. Following such a standard of measurement revises the low 

variability hypothesis in the developmental neurological literature (Hadders-

Algra, 2010; Prechtl, 1990, 2001; Touwen, 1978, 1979, 1993) by arguing each 

CMS repertoire or sequelae exhibits a kind of optimality : (1) decomposes into a 

differentiated behavior-time relationships within a personalized space; (2) local 

optimality characterized by a behavior marker or time marker; (3) 

differentiating point more toward exclusion, that is, poorly differentiated 

transitions; or, (4) randomness in marking intensity of difference.. Anatomical 

behavior descriptions approach measures the regulation and regularity in CMS 

sequential patterns. A decision-tree (Figure 14) maps mathematical expectation 

to document sequelae in CMS. Behavioral markers qualify repetition with 
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greater quantitative detail (granularity). An intensity of difference marks 

repetition allowing for differentiation of repertoire or sequelae in CMS.  
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Table 7 Anatomical Behavior Descriptions Taxonomy 

CMS Visual Evidence >  
rules >  

observational > 
> kinematic (non-spinning) rule: movement → counter movement 
> cinematic rule: (sequelae) sustained series | next-step cyclic 
> dynamic rule: perpetual repetition | repetitive pace 
> filtration rule: asymmetric (non-commutative) | symmetric 
 

CMS high behavioral resolution > 
time markers  

> fractional series (local)  
> repetition > sustained series | next-step cyclic 

behavior markers  
> laterality phases (ipsi-, bi-, contra-) 
> musculoskeletal (extension | flexion)  
> interlimb activity (independence | coordination  
> geography touch fields (skin innervation) 
 

CMS behavioral plasticity (time domain) >  
supply-side >  

> allocation of resources  
> regulation 

> severity (regularity) 
 

multi-stability >  
> transition (sequelae) 
> switching (transition)  
> excitatory | inhibitory circuitry (switching rate) 
> laterality phases (en route) 

 

CMS occur as a repetitive stream of sensorimotor movements of the 

whole body occurring in 3-D space. CMS functions as a boundary system with 

phases marked by lateral movement at three levels: (1) descriptive on the 

regulation of movement; (2) quantitative measurement and pathology on 

regularity of repetitive movement; and, (3) visualization system. First, behavior 

markers describe movement with granularity: behavioral resolution (laterality, 

extension/flexion, touch patterns, skin innervation, and geography of touch 

fields); and, behavioral plasticity (transitions in laterality, switching rates in 
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sequelae, independence/coordination interlimb activity; depth 

repertoire/sequelae). Next, there is the quantitative measurement and pathology 

a mathematical protocol frames regularity in time series to define variability 

under pathological conditions. Finally, in Figures 13a,13d, and 18 a 

visualization system maintains fidelity with the source behavior by 

approximating the reconstruction of the source behavior by isolating local 

neighborhoods and displaying engagement/inactive units  during whole body 

movement. The visualization system in Figure 18 reconstructs the original 

behavior used during motion capture in a static version or an animated version. 

The engagement of resources in the repetitive stream has temporal complexity. 

The following proposes observational criteria for motion capture.  
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Table 8 Anatomical Behavior Descriptions Protocols and Scientific Workflows 

 Protocols > 
> motion capture  

> flow patterns 
> recursion  
> severity (regularity) 
 

Tools >  
visual formalisms 

> multi-dimensional  
> mathematical expectation  
> multi-resolution display 
 

Tools > graphing  
> time series analysis > multi-resolution 
> comparison & differentiation > local neighborhoods 
 

Tools > visualization  
> analysis 

> sequelae > transition complexity 
> fractal > local optimality  
>heterogeneous > local neighborhoods 
 

Neurobiology & Plasticity > 
> cross-reference 

> c. elegans wiring (behavioral plasticity) 
> bending leeches (lateralization & motor circuitry (inhibitory | excitatory) 
> laterality phases 
> multi-functional pattern architecture 
> central pattern generator (rhythmic circuitry, neuronal oscillators,  

               synaptic strength 

 Behavioral recording applies the resvised definition of CMS. Along 

with rules for observation (Table 7) and computation practices (Table 8) to 

conduct data collection in terms of cross-referencing neuroscience knowledge 

on motor function (Table 9) and MeSH taxonomy (Tables 18-21). Modularity 

and configurability of visual formalisms (Figures 13-14) visualize local 

neighborhoods in CMS with levels of behavioral resolution (local, 

chronological) depending on the severity of the CMS. The selection of 

observational criteria cross-references what neuroscience knows about motor 

59 

 



function (Tables 9-12).  Cross-referencing known neurobiology (Table 9) and 

the medical MeSH taxonomy (Tables 18-21) the taxonomy in Table 4 has a 

scientific basis. The indexing of time-behavior data is a systems problem 

addressed through several visual formalisms (Figures 13a, 14, 18). Behavioral 

plasticity from c. elegans research since Chalfie et al. (1985) further supports 

differentiation of repetitive movement as asymmetric (e.g., backward and 

forward movement) (Ardiel & Rankin, 2008; Chronis et al. 2007; Kawano et 

al.,2011; Larsch et al., 2013; Nagy et al.,2011; Salvador et al., 2014; Wen et al., 

2012). These researchers use nanoscience microfluidic channels to improve 

accuracy in data collection and purity of test environments. Behavioral plasticity 

in CMS  to specify behavioral engagement in motion capture technology in 

terms of under the skin dynamics (bio-engineered for wearable sensors or 

nanoscience tools).  

 

 Figure 7 Measuring laterality (graphing system or weight system) 
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Table 9 Anatomical Behavior Descriptions and Research Antecedents 

Low variation hypothesis  
in CMS (Prechtl, 1990, 2001) 

High behavioral resolution Configuration and filtration of 
input data during biological 
movement  

Repertoire, Sequelae 
(Hadders-Algra, 2010; Prechtl, 
1990, 2001; Touwen 1978, 1979, 
1993) 

Behavior markers 

  

Behavioral plasticity 

 

Visual evidence (time domain) 
 1. Indexing biological movement, 
transitions, sequential types; 

2. Data collection: rates, switching 

3. Populates a lateralized 
movement multi-dimensional grid 
(punnett square) 

Reflex arc (interneuron, motor 
neuron, proprioceptive neuron) 

Extended reflex arc 
(Repetitive Restrictive 
Behavior) 

Visual evidence (morphological) 
 1. Pairing {time, (behavior → 
circuit)} 

Cortical potentials pre-motor 
Planning (Dirnberger et al., 1998; 
Hallett, 2007, 2010; Houdayer et 
al., 2013; Shibasaki & Hallet, 
2006) 

CMS a boundary system 
and behavioral plasticity  

 

Visual formalisms (data capture) 
 1. Regulation (lateralized 
movement, extension/flexion) 

2. Regularity (fractal, self-
similarity) 

Multi-functional architecture 
(Briggman & Kristan, 2008; 
Kelso, 2012) 

Enumeration (sequential, 
transition from-to) 

 

Visual formalisms (visualization) 
 1. Sequential comparison  

2. Granular analysis 

Sensory information in motor 
function (Salinas & Abbott, 
1995) 

Geography of touch fields; 
sub-sec dissipative data  

Local time  
1. second-behavior pathways 

2. sub-second-behavior pathways 

3. sub-second dissipative-behavior 
pathways 

 Behavioral recording applied to motion capture observes the following: 

behavioral resolution, transitions (from-, to-), sequential repetitions (sustained 

or next-step in a cycle), and switching rates (independence/coordination or 

lateral conditions). Observing CMS investigates the presence of additional 

gradations within sequelae (e.g., behavior-time patterns in bilateral and 
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contralateral conditions defining coordinated engagement with separate 

conductances: (1) bilateral limb interactivity (visually tested by separated limb 

movement); or (2) contralateral limb interactivity (visually tested by 

overlapping limb movement). Anatomical behavior descriptions in this case is a 

preliminary workbench requiring in vitro experimentation.  

Table 10 Multifunctional Circuits and Anatomical Behavior Description Terminology 

ABD Terminology Taxonomy Unit Briggman & Kristan (2008) Studies 

 

biological boundary 
systems 

neural network 
generates  multiple 
output patterns 

Circuit reconfiguration/fusion 
← external inputs 

 

Switch between multiple states 
← modifying circuit's elemental 
intrinsic properties  

(Bem et al. 2005) 

behavioral plasticity multistability biophysical mechanisms by 
which a single network can 
generate multiple output 
patterns 

(Kelso, 2012) 

 Anatomical behavior descriptions provide a taxonomy to characterize 

behavior-time pairing CMS presentation with multifunctional circuitry (Table 

25). Briggman and Kristan (2008) discuss a variety of animal models with 

“multifunctional circuit architectures, including unifunctional and 

multifunctional neuron pools, uni/multifunctional muscle groups, behavioral 

modules, and muscle synergies. Inputs coordinating behaviors include sensory 

input, proprioception, neuromodulation, and command inputs.”  
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Table 11 Anatomical Behavior Descriptions and Neuroscience 

ABD Terminology Briggman  
& Kristan (2008) 

Observation Conditions Studies 

taxonomy of 
motor behaviors 

behavior 
plasticity 

behavior selection can 
involve a behavioral 
hierarchy, in which 
decisions are 
sequentially made, 
resulting in the selection 
of a motor program. 

 (Kristan & Gillette, 
2007) 

high behavioral 
resolution and 
granularity 

multifunctional 
architecture 

putting together all the 
pieces—the influence 
of sensory pathways, 
descending commands, 
and multifunctional 
circuit pattern 
selection—is necessary 
to elucidate further the 
complex mechanisms of 
behavioral choice. 

(Bem & Rinzel 2004, 
Chow & Kopell 2000, 
Lewis & Rinzel 2003, 
Pfeuty et al. 2003, 
Wang & Rinzel 1992) 

Cross-referencing known neurobiology (Tables 11) and the medical 

MeSH taxonomy provides a systematic basis extend indexing of behaviors in 

time as descriptive expressions of the anatomical behavior descriptions 

taxonomy, symbolic transformation of descriptions into formalisms (e.g., 

recursive), or graphs for time series analysis. 
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Table 12 New Motor Circuitry Techniques and Anatomical Behavior   

ABD Terminology Briggman & Kristan 
(2008) 

Practice Studies 

conditions leading 
to behavioral 
plasticity 

new approaches to neural 
circuit reconstruction will 
help identify these 
elements  

recent development 
population-imaging 
techniques (bulk loading 
of calcium indicators and 
voltage-sensitive dyes), 
characterize a population 
is multifunctional  

(Briggman & Denk 
2006) 

 (Bonnot et al. 2005, 
O’Donovan et al. 
2005).  

transitional 
pathway 
asymmetric 

motor 
circuitry and 
lateralized 
movement 

ability to excite and 
inhibit many specific 
neurons simultaneously 
may be the crucial step 
toward identifying the 
mechanisms of 
multifunctionality in 
larger nervous systems 

 (Zhang et al. 2007). 

As a descriptive system emergence of new techniques (Table 12) might 

further support instances where cross-scale studies between time-behavior pairs 

in CMS and neurobiology. Identify barriers where subtle events hard to 

decipher (e.g. Luo and collaborators report on transient inputs without change in 

biophysical properties (as cited in Briggman and Kristan, 2008) form part of a 

list of exceptions).  

Implementing anatomical behavior descriptions includes visual 

formalism (Figures 13a, 14) to communicate the complexity of behavior 

markers for visualization of local neighborhoods (Figures 12, 13) within the 

framework of a taxonomy (Table 7). Visual formalisms contribute to collecting 

granular datasets (Figures 13, 14). While as a generative taxonomy (anatomical 

behavior descriptions) with rule-based components offer the prospect to frame 
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relationship for symbolic computing or graphing local neighborhoods. A 

systematic description launches quantitative research and enlarges the 

instrumental proposition by organizing a en route relationships, local 

relationships, or interactivity for  the purposes of motion capture or time series 

analysis.  

Symbolic Computation in CMS Research 

The computational accuracy of a diagnostic instrument's capacity to sense the 

complexity of a hyperkinetic movement requires equal modeling of a 

computational layer in a taxonomy. The flexibility of a taxonomy enables the 

filtration, zoom-in capacity as local neighborhoods might further render 

diagnostic data. A diagnostic instrument's design with increased sensitivity 

attempts to conduct motion capture of hyperkinetic movement's behavioral 

plasticity within an organism's biological system. Quantitative measurement 

shifts from eye-witnessing behaviors to define the diagnostic mapping the 

potential configurations populated by the ensemble of engaged/non-engaged 

resources. To develop a computational layer the design of diagnostic 

instruments point-set data is less viable to a taxonomical methodology (Table 7) 

where a formalism is capable of anticipating descriptive expressions 

(combinatorial or multi-resolutional complexity to analyze modularity and 

configurability), a functional taxonomy to process depth of markers (behavioral 

or temporal), or a generative taxonomy (rule system producing observation 
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criteria for motion capture). Cross-referencing biological knowledge with a 

taxonomy (Tables 9-12, 26) formalizes observation criteria enabling modularity 

and configurability for systematic CMS data collection. 

From Descriptive to Symbolic Quantitative Research 

Implementation of anatomical behavior descriptions function on a 

descriptive or symbolic basis as transitions in behavior markers relate to multi-

function architecture in rhythmic circuitry during CMS. Rule-based quantitative 

research anticipates grounds for diagrammatic analysis (Figure 2) and visual 

formalisms (Figure 13) to identify if sequelae patterns or lateralized movement 

might reveal neighborhoods with patterns (self-similarity or fractal analysis). 

Anatomical behavior description fulfill several functions: (1) documenting 

behaviors, (2) quantifying time-behavior pairings in sequelae, and, (3) monitor 

neighborhood relationships in each behavior’s granular components. 

  

66 

 



Multi-stability:  

behavior resolution > movement > phase 

     repetitive behavior > lateral move > ipsi-, bi-, contra- 

lateral move > extension, flexion 

 lateral move > touch (toward release) 

plasticity > sequelae > transition  

 sequelae > transition pattern > ipsi-, bi-, contra- 

sequelae > switching > phase 

sequelae > switching rate > excitatory, inhibitory 

sequelae > whole body > coordination,   independence 

The motion capture would include monitoring classes of variables: (1) temporal 

(onset, duration, exit); (2) local position (dorsal, ventral); (3) posture 

(ipsilateral, bilateral, contralateral); and, (4) equilibrium (thermal). It is beyond 

the scope of this project to discuss the implementation of thermal and under the 

skin dynamics. Visual formalisms play a role in translational practices where 

scientific workflows locate: self-similarity, heterogeneity, and local optimality.  

  

67 

 



Motion capture:  

repetitive behavior> extended reflex arc  

 rules > visual evidence > phase 

visual evidence > movement, counter movement; non-    
spinning 

visual evidence > repetitions (sustained serial, next-step 
cyclic) 

visual evidence > perpetual pace (sequelae) 

visual evidence > transitions asymmetric (non-
commutative)  
 

 

Figure 8 Transition of laterality (ipsi-, bi-, contra-) in sequelae.(Top) 
Chronological order of lateral transitions. (Bottom) Grouping of local 
pathways (red boxes) approximate the chronological lateral transitions. 
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The combination of high behavioral resolution and behavioral plasticity 

offer observation criteria to organize analysis of behavior markers within a 

multi-resolution display encoded using Figures 13d). 

The transitions in lateral movement differentiate timing across the whole 

body and local neighborhoods pinpointing neighborhoods between sequelae. A 

model of (from-, to-) transitions based upon anatomical behavior descriptions 

occur within a sequelae. Punctuated by extension/flexion and touch patterns 

behavior-time patterns occur. A single transition has three layers of timing: (1) 

three time scales for local neighborhood activity in (from-, evacuation) in 

orange; (2) three time scales for local neighborhood activity in (to-, entry) in 

blue; and, (3) whole body time scale in black. Below indentation reflect timing 

and parallel events. Each block of time-events represents a re-framing and 

reformation of the organism's resources.  

time (onset, local) > seconds 

strata 1 (from-, lateral state) 

time (episodic, local neighborhood) < sub-second 

 sub-strata 1a (continuous-motor... dissipative-touch) 

 sub-strata 1a' (continuous-motor... extension...flexion) 

time (planning/pre-reengage, local neighborhood) < sub-second  

 sub-strata 1b  (sustain repetition, next-step repetition) 
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 sub-strata 1b  (strength next-step repetition) | sub-strata 1 

(strength    sustain repetition) 

   time (offset, local neighborhood) 

time (duration, whole-body) 

 strata 2 (inclusion, next-step) | strata 2 (exclusion-off state) 

time (onset, local neighborhood) 

 strata 3 (to-, lateral state) 

 time (episodic, local neighborhood) < sub-second 

  sub-strata 3a (continuous-motor... dissipative-touch) 

  sub-strata 3a' (continuous-motor... extension...flexion) 

 time (planning/pre-reengage, local neighborhood) 

  sub-strata 3  (sustain repetition, next repetition) 

 sub-strata 3  (strength next repetition) | sub-strata 3 

(strength sustain repetition) 

   time (offset, local neighborhood) 

time (duration, whole-body) 

 strata 4 (inclusion, next-step) | strata 4 (exclusion, off-state) 
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Comparing chronological time and local time functions in a transition 

(from-, to-) provides a global (chronological) and cross-section (local) view of 

sequelae. Observing CMS cycles through facets while precise fractional series 

replace chronological order. In the anatomical behavior description taxonomy 

CMS are a repetitive environment staging recursion.  

Figure 9 Retrospective models of sequelae.  

Interlimb activity from backward and recursive model of skin 
innervation. 

Quantifying the sequelae occurs in several fractional series. Each series 

has a primary facet (toforward, ipsilateral) or (frombackward,  ipsilateral) and 

secondary facets (secondary transition, sensorimotor process: toward_touchventral 

, touchventral | dorsal, releaseventral | dorsal). Each behavioral-time pairings are non-zero 

(fractional). A fractional series of behavior-time pairings evaluates descriptive 
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facets (high behavioral resolution or behavioral plasticity). Anatomical behavior 

descriptions facilitate a recursive assessment of CMS as local timings within a 

primacy facet and neighboring secondary facets. Observing a CMS sequelae 

recursions from multiple viewpoints drills down into a broad behavioral-time 

pairings or the reversal of a very brief behavior-time pairing. A precise model of 

CMS captures patterns in time series under several conditions: (1) when an 

unexpected strength occurs during the gearing down of sub-second micro-

events (e.g. touching) as a motor hiccup (burst);(2) the bi-directional 

perspective of a facet taking a primary role followed by secondary facets; or, (3) 

anomalous behavior-time patterns in switching or whole-body events 

(independence or coordination). Framed by an onset-completion interval 

observations for low-variation hypothesis but within onset-completion interval 

there is a transitional complexity in CMS. 
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Figure 10 Recursive expansion of pair (from-, to-) 

In Figure 10 is the backward time series detailing behavior options: 

repetition (sustain, next-step), whole body movement (independence, 

coordinated), skin innervation (dorsal, ventral). 

 

Figure 11 Example of an expansion of a recursion pairing (from-, to-). 
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In Figure 11 (top) is the next-step pathway in green and in the bottom is the 

sustained pathway in blue. 

Symbolic to Graphing Formalisms 

Graphing the CMS monitors lateral movement with variations in 

interlimb activity, touch patterns, extension/flexion patterns. Figure 18 

documents CMS as each movement in the sequelae marks a plane a shape with 

a color (indicating timing onset while the cycling through hexagons show 

movement in time) in a hexagon cycling in a clockwise manner depending on 

the sequelae's complexity and the depth of the repertoire. A repetitive sequence 

becomes like a sundial revealing visual evidence (posture), time variables 

(transition patterns or switching) within the course of regulation of movement 

rippling across the whole-body. This process marks interrelationships in the 

configurability of the visualization pointing and marks the CMS modularity as 

compartmentalization of neighborhoods at larger shapes in a complex CMS. A 

field of differentiated shapes with the same color indicates coordinated 

movements. A field of adjacent shapes in distinct clusters of hexagons indicates 

independent movements (same time with distinct interlimb activity). The sparse 

or serialized sustained repetition remain expressive through what is not 

engaged, that is, what is not marked. Configuration and modularity appear in the 

visualization of the CMS point toward the ingredients for compiling the core 

CMS dataset.  The visualization system monitors behavior resolution (phase 
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transitions) and flow of plasticity while assigning repetitive restrictive behavior 

to the following variables: behavior-time pairing, interlimb activity engaged, 

touch patterns, and details of behavioral plasticity (switching in transitions, 

switching rates, coordination/independence patterns) in Figure 18 motion 

capture data yields a jagged contour. Analysis of the jagged contours found in 

the populated visualization system define: regulation, regularity, intensity of 

pathology, the repertoire of behavior markers, innervation patterns, generalized 

sequelae, and the combination of spurious movements plus the generalized 

sequelae. 
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Table 13 Visualization and Progression of Shape Encoding in 3 Time-Series 

Time-Scale Region Measure  Local Transition Pattern  

1st  trapezoid (0) rate movement between 
states (laterality: ipsi-, bi, 
contra-) 

(from-, ) 
(to-,  ) 
- sustained series (no change) 
- next step 

2nd  Hexagon (0) duration (forward, backward) 

3rd Transition (0)   

 

1st  Trapezoid (1) rate movement between 
states (laterality: ipsi-, bi, 
contra-) 

(from-, ) 
(to-, ) 
- sustained series (no change) 
- next step  

2nd  Hexagon (1) duration (forward, backward) 

3rd Transition (1)   

 

1st  Trapezoid (5) rate movement between 
states (laterality: ipsi-, bi, 
contra-) 

(from-, ) 
(to-, ) 
- sustained series (no change) 
- next step paired l 
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Figure 12 Increasing granularity (morphological and cellular) 
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CHAPTER TWO LITERATURE REVIEW  

& TRANSLATIONAL REPORT 

 The low variability hypothesis (Hadders-Algra, 2010; Prechtl, 1990, 

2001) contributes to diagnostic assessments without precise assessment. Support 

for this claim appears when reviewing data from a CMS research study. CMS 

research provides insufficient information to reconstruct the whole body 

movement (independent and coordinated). The absence of a methodology to 

quantify CMS and the reliance on narrative descriptions support the need for 

computational analysis to capture variability in CMS.  

 A review targeting the quantitative methodologies in CMS research is a 

gateway to develop instrumental design. CMS merits a rigorous model to 

identify how CMS works rather than how individual's with CMS work. 

Instrument design in CMS research would investigate CMS the problem of 

registering complex behaviors rather producing an accounting system to 

measure performance competency for sub-groups of CMS, typical vs. atypical 

individuals presenting CMS (Appendices A,B), or CMS compared with another 

hyperkinetic motor dysfunction. The absence of time data and prospect of 

defining a core dataset would supply clinical researchers with an indexing 

system consistent with MeSH taxonomy (NLM, 2015) and application of 

wearable bioengineered sensory technology or in vitro assays for precise time 

analysis. Video analysis provides clinical CMS researchers with coarse 
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processing of visual evidence. Coarseness in clinical CMS research in this 

project occurs based on three observations: (1) inability to reconstruct CMS 

with current research data; (2) absence of a model of variables to capture a core 

dataset during the presentation of CMS; and, (3) absence of time data 

characterizing: (i) behavioral plasticity, (ii) sustained repetitive sequences and 

cyclic repetitive sequences in CMS, or, (iii) the network of engaged/non-

engaged resources in a CMS repertoire/CMS sequelae.   

 Advanced technologies grounded in nanoscience and bioengineering 

clarify aspects of the clinical CMS literature where video analysis shape 

quantitative research leaving out biological systems. This review discusses 

diagnostic criteria (DSM) and definitions of movement disorders. Researchers 

Van Beveren and Hoogendijk (2011) offer a revision of diagnostic criteria on 

biomedical grounds and point to weakness in the DSM regarding mental 

disorders. Van Beveren and Hoogendijk's research is a recent consequence of 

the NIH's (NAMHC, 2009) call for new a translation field of study: 

translational developmental neuroscience. The implementation of biosensors in 

mental disorders in Bahn and Guest's (2011) comprehensive review anticipates 

the use of next-generation diagnostic instruments for diagnostic measurements 

with biomedical grounding. Lowe's (2011) prediction on the future of 

biosensors in mental and psychiatric disorders informs the translational criteria 

used in this project. A literature review on quantitative measurement in clinical 
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CMS would be incomplete without discussion of the new call to revise 

diagnostic measurement standards on bio-molecular grounds (NAMHC, 2009).  

 The clinical CMS literature cites an APA DSM without further 

exploration of the disorder's definition or researching diagnostic criteria 

(Appendices A, B). But, the clinical CMS literature gives negligible account for 

the absence of an etiological explanation when discussing the DSM criteria and 

a definition of CMS. The objective of this review informs an audience of 

clinicians and bioengineers how scientific literature might integrate diagnostic 

criteria within a poorly understood disorder. Translational discussion of 

diagnostic instrumentation and definitions of movement disorders (hyperkinetic) 

bring to this literature review direct biological interface in nanoscience and 

bioengineering. But these advanced technologies require their own quantitative 

research methods. Otherwise, a watering down of the potential of advanced 

technologies would occur. New tools applied under the assumptions of old 

questions underestimate the challenge to isolate a phenomena poorly understood 

(Table 2). Direct biological interface might promote discovery of diagnostic 

criteria and empirical relations to reduce etiological uncertainty. Novel tools 

carry along with a quantitative potency a need for advanced methodologies to 

reconcile instrumentation with novel phenomena. 
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Literature Review Procedures 

 This literature review argues quantitative research methods function on 

two levels: generalized and specialized. The historical general methods on 

subject design psychometric in Fechner-Weber, behavior by Watson and 

Skinner,or phenomenological Lewis and Bodfish (1998) guide specialized 

methodology clinical-pathology (ASD and developmental neurology) 

stereotypies research (Appendices A,B). For a more systematic review of 

human knowledge on CMS there is the MeSH browser rather than the 

chronological development of isolated bibliographical citations. The MeSH 

Browser encapsulates an interdisciplinary research taxonomy developed at 

National Institutes of Health National U.S. Library of Medicine (NLM). A 

complex knowledge base MeSH is a taxonomy with drill-down capacity. 

Systematic drill-down biological knowledge clarifies concurrent and potential 

interactions underestimated by clinical researchers on biomedical grounds and 

biological researchers on behavioral grounds. The introduction of cross-scale 

methods (morphological and cellular) might serve as a corrective procedure to 

maintain details evident when drilling down the MeSH taxonomy (Tables 16-

18).  

 In this project a search procedure used several keyword pairings to 

identify methods rather than behavioral findings. In the initial search (Google 

Scholar) preliminary keyword selection inquired into the following: Is there a 
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presence or absence of time data on CMS? Does CMS research reflect the 

assignment of time variables to measure repetitive restrictive behaviors? How 

close is CMS research to defining a core dataset for repetitive restrictive 

behaviors within several pairings: (1) oscillatory behaviors and video analysis; 

(2) neuronal network and repetitive restrictive behaviors; (3) "motor 

stereotypies" and sequence analysis; (4) “repetitive restrictive behaviors” and 

postural control; and (5)“repetitive restrictive behaviors” and time analysis? 

These cases would offer time data contributing to a core dataset. 

Multi-Dimensional Keyword Search 

 A multi-dimensional keyword search organizes the conjecture on the 

absence of time data in clinical research on CMS. Surveying definitions related 

with CMS the literature breaks down into the following: (1) neurological 

definitions of CMS (Maurer & Damasio, 1979, 1982); (2) diagnostic 

terminology on hyperkinetic movements in early childhood by a national task 

force (Sanger et al.,2008); and, (3) the reliance of current specialized research 

(CMS) using generalized quantitative methods dating back to Weber (1795-

1878) and Fechner (1795-1878). CMS-centric definitions do not incorporate 

direct biological interface tools found in nanoscience research (Ardiel & 

Rankin, 2008; Chronis et al. 2007; Das et al., 2006; Kawano et al.,2011; Larsch 

et al., 2013; Nagy et al.,2011; Salvador et al., 2014; Smith et al. 2013, 2014; 

Sung et al., 201; Wen et al., 2012) or neurobiology (Arber, 2012; Ugolini, 
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2010). Clinical definitions of CMS remain limited by subject-design protocols 

without addressing variability at work in the biophysical regulation (Kelso et 

al., 1981) and equilibrium registered under Kelso's multistability theory (2012). 

Bellman (1961) offers a mathematical foundation to guide a systematic 

investigative framework to consider restrictive repetitive behaviors in terms of 

sensorimotor integration and the regulation of supporting process. 

Table 14 Multi-Dimensional Keyword Search with Zero Search Results 

Search 
Keywords 

Parameter 
Generalized 

Parameter 
Specialized 

Parameter 
Subdivision 

Parameter Instancy 

Instrument & 

“time analysis" 

Dystonia,  
dyskinesias, 

bradykinesia 

rates of severity 
in “motor 
stereotypies” 

 “oscillatory 
patterns” in 
severity of rates 
in “motor 
stereotypies” 

“oscillatory onset 
patterns” motor 
stereotypies 

Instrument & 

“time analysis"  

in “motor 
stereotypies” 

rates of severity 
in “motor 
stereotypies” 

"repetitive 
circuit"   

"cellular repetitive 
circuit" 

“time data"  in “motor 
stereotypies” 

"repetitive 
circuit"   

"central pattern 
generator" 

"central pattern 
generator" timing in 
touch patterns 

“video analysis” timing in “motor 
stereotypies” 

synchronism in 
“motor 
stereotypies” 

time series in 
“motor 
stereotypies” 

 time frames in “motor 
stereotypies” 

“video analysis” periodicity in 
“motor 
stereotypies” 

oscillatory 
behaviors in 
“motor 
stereotypies” 

 time frames in 
“motor 
stereotypies” 

asymmetry in backward 
and forward series in 
repetitive circuitry 

 The absence of results in the keyword search (Table 14) in the CMS 

literature suggest future time domain study would investigate several issues: (1) 

local optimality: How do repetitive restrictive behaviors work within 
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personalized time signatures? Are time signatures in CMS differentiated as a 

potential indicator of CMS severity?; (2) regulation: Does the transitional 

complexity present in CMS characterize a time signature?; (3) differentiation of 

severity in CMS: Do lateralization patterns differentiate the severity of sequelae 

patterns in CMS? This line of inquiry follows up on Kelso et al.’s (1981) 

physical models of movement analysis. Literature relevant to studying behavior 

in time appear in neurobiological studies on multistability during the switching 

of function in repetitive motor function (Briggman & Kelso, 2008). Table 19 

from the MeSH browser taxonomy supports the credibility of  cross-referencing 

several biological units in CMS research: (1) psychological phenomena and 

process [F02]; (2) musculoskeletal and neural physiological phenomena [G11]; 

and, (3) nervous system physiological phenomena [Gll.561]. This MeSH cross-

reference would provide a biological model on repetitive behavior within 

several levels of a biological system’s laterality.  

Describing CMS as a sequence of (from-, to-) transitions is a point of 

interest for tracing cross-scale measurement of morphological transition and 

multifunctional exchanges in the CPG during repetitive sequences. The 

combination of morphological transitions and multi-functional switching 

represent a merging of research topics. Quantifying transitional complexity in 

CMS sequelae might combine quantitative research within an observational 

metric (from-, to-) and several neurobiological resources: (1) multifunctionality 
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in pattern-generating circuitry (Briggman & Kristan, 2008); and, (2) CPG 

research (Marder, 2000; Marder & Buchner, 2001, 2007; Marder & Calabrese, 

1996; Selverston, 1980). The cell recording practices discussed in Marder and 

Calabrese’s (1996) review on CPG leave unspecified a taxonomy of behavioral 

variability within the multi-functional patterns in CPG. The central pattern 

generator is one part of the timing mechanisms to monitor the switching in 

rhythmic circuitry or repetitive behavioral sequences? Along with substrates 

active in cellular switching there is the architecture useful instrumental design, 

that is, the multifunctional architecture in motor activity. 

Involuntary movements in CMS remain unrecorded. Kelso et al.'s 

(1981) presentation of several physical models (linear, non-linear, 

homoeostasis, and feed-back) to characterize information and power process. 

Central to CMS the biophysical context is the neurobiological research on the 

central pattern generator  

Evidence on the Absence of Time Data in CMS Research  

 A clinical view of repetition maintains a psychological perspective of 

compulsion. The evaluation of repetitive patterns as a compulsion reduces the 

behavior to a statistical measure of frequency. The psychological explanation of 

CMS contributes less to a physical visualization of the behaviors having at least 

two positions (fron-, to-). Otherwise the movement would be a continuous 
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movement circling perpetually. Any non-spinning repetitive behavior has a to 

and a fro component. The coarseness in clinical CMS research starts with the 

failure to recognize subdivisions within a realistic model of repetitive 

movement. The observation by Lewis and Bodfish (1998) on repetitive 

restrictive movements results in an absence of precise timekeeping data on CMS 

in clinical CMS research. The construct behavior in time (Deffeyes et al., 2011) 

reflects point for further CMS research. The absence of time-data on CMS 

occurs in part due to clinical research on prevalence of CMS and the definition 

of CMS as repetitive restrictive behavior, that is, a rigidity with a formal 

representation (Figures 13, 14). 

 Ross et al. (1998) measure repetitive restrictive behavior as rhythmicity 

without applying precise temporal regularity. “Periodic behavior occurs at fixed 

intervals...successive occurrences are constant. Average rate of behavior 

constant if the interval is constant. But, constant rates do not imply constant 

intervals.” In another time related study Campbell et al. (1990) studied 

stereotypies using the Timed Stereotypies Rating Scale and dyskinesia 

Abnormal Involuntary Movement Scale. Some researchers come close to 

gathering temporal data (Bodfish et al., 2000). Ross et al. (1998) maintain 

partial accuracies in the measurement of periodicity. Lewis et al. (1984) study 

using spectral methods but this only addresses the rocking body without 

studying the whole-body. Each of these studies provide no standard for the 
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measurement of time function in CMS. Other studies stray from precise time 

data collection in CMS studies. There is the Lewis et al. (1984) study on 

correlating repetitive behaviors with cardiac function. In this case the time data 

maintains a coarse treatment without the ability to reconstruct the complexity of 

the movement from the research data.  

Despite the objectives to design instruments designed for automation 

(Goodwin et al., 2014; Gonclaves et al., 2012) or improvement universal data 

characterization Karch et al., 2011) these studies remain weak in their collection 

of precise time data collection. These three studies recognize the need to map 

transitions and establish sequential pattern recognition using a classifier system 

dynamic time warping (Sankoff & Kruskal, 1983) in the Gonclaves and Karch 

studies or the classifier in the Goodwin study. Given the measurement of 

sequential patterns the opportunity to measure timing in the transition 

contributes to quantifying the repetitive restrictive behavior and motion capture 

of a core CMS dataset. Monitoring evidence on regulation and repetitive 

sequence in the time domain offers a chance to establish how repetitive 

movements work with varying levels of severity in motor stereotypic behavior. 

 Clinical researchers analyze the severity of CMS based on ability rather 

than how CMS works empirically. Richler et al. (2007) recognize repetition as 

common in a child's early reading behavior. These researchers consider 

repetitive behaviors as common to individuals with developmental or 
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psychiatric disorders. Following a common practice Richler and collaborators 

base their research assumptions on repetitive motor mannerisms, inflexible tics, 

or routines (rituals) found in the DSM. Diagnostic assessments based on CMS 

establish a basis for Richler and collaborators to investigate methods to: (1) 

examine individual restrictive repetitive behaviors in very young children with 

ASD in addition to consider repetitive restrictive behaviors as a category; (2) 

determine the rates of different repetitive restrictive behaviors in a sample of 

children with broadly defined ASD in order to obtain a clearer picture of 

repetitive restrictive behaviors in ASD across a range of abilities and to 

compare subgroups of children with ASD. These research topics overlook the 

presentation of the physiology (touch, motor activity, and the cyclic or sustained 

sequential patterns) as an extended case of the reflex arc's architecture 

(interneuron, proprioceptive sensory neuron, and motoneuron). Some form of 

goal-oriented measurement of ability is a common metric in clinical research on 

CMS (Appendices A, B). An individual's ability is the central research question 

in clinical CMS research and results in the absence of time data in CMS 

research especially in terms of power process, that is, the regulation of repetitive 

behaviors. 

Clinical Research on CMS  

 A systematic discussion of behavior and quantitative measure of 

complex motor stereotypies appear as two options: computational approaches 
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and diagnostics inventory related with performance competency. Existing motor 

assessment tools appear in Jongmans et al. (1997) Touwen's examination of the 

child with minor neurological dysfunction and the movement Assessment 

Battery for Children (movement ABC: 8 items sample manual dexterity, ball 

skills, and balance). The diagnostic contribution of developmental neurologists 

(Hadders-Algra 2000, 2007, 2010; Hadders-Algra et al., 1997) and Touwen 

(1978, 1979, 1993) include posture, balance, balance of trunk, fine manipulative 

ability, dyskinesia/kinesia, gross motor functions, quality of motility, and 

associated movements. 

A move away from imprecise surveys appears in the recent research (Gowen &  

Hamilton, 2013; Torres et al., 2013). These researchers argues in favor of 

empirical practices based on computational practices (Todorov, 2004; Wolpert 

& Ghahramani, 2000) to replace the surveys found in clinical movement 

research.  
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 Clinical studies use several methods: (1) retrospective video analysis to 

conduct assessments for early diagnosis and early trajectories (Baranek, 1997; 

Lord, 1995; Lord  et al., 2012); (2) use multiple settings (conversational, 

waiting, TV, lego play) to study self-stimulatory behaviors (Smith &Van 

Houten, 1996); (3) stereotypies as pathological and physiological (Mahone et al. 

(2004); (4) comparative studies on CMS appear in Lewis and Bodfish (1998); 

and, (5) biomedical review differentiates stereotypies in typical and atypically 

developing children (Muthugovindan & Singer, 2009). In a routine CMS 

assessment descriptive qualifiers of CMS occur under a 5-minute under 

conditions to assess gross/fine motor activity or obvious/subtle behavior. While 

empirical studies of sensory-motor function (Appendix B) might reveal 

potential behavioral markers of autism. Studies close to addressing sensory 

integration (Smith & Van Houten, 1996) fall short of discussing the reflex arc 

with its combination of sensory neurons, motorneurons, and the organizing 

neurons in the central nervous system. An extensive review of the literature on 

behavior and quantitative measurement remains a daunting challenge beyond 

the scope of this project.   

 In clinical CMS research at best temporal evaluation occur within a 

fixed framework. Campbell (1985) added timed stereotypies rating scale , 30 

sec intervals one or more stereotypies observed in 10-minute period  while 

studying haloperidol-related dyskinesias.  Campbell's implementation of a time 
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scale offers little insight into the complexity of repetitive movement discussed 

by Mahone et al. (2004). Mahone and collaborators conduct descriptive 

comparison of tics (abrupt movements that involve either a cluster of simple 

motor tics or more coordinated sequence of movements) and stereotypies. A 

review of the Mahone study suggests a lack of time data to differentiate 

repetitive or sequential patterns.  Loh et al.(2007) in a pilot study on 

stereotypies use posture (dyskinesia, etc), competency, functional movement, 

and time characterization criteria flexion/extension. Other researchers pursue 

measurement standards of motor activity as in De Kieviet et al.'s (2009) meta-

analysis compares several measures: Alberta Infant Motor Scale, Peabody 

Developmental Motor Scale, Griffiths Test, Bayley Scales of Infant 

Development version II, Bruinsky-Oseretsky Test for Motor Proficiency. The 

ingredients to measure CMS in the time domain appear as a next step following 

Memari et al. (2013) study of postural sway defined as “postural stability ability 

to maintain and keep projected center of mass (COM).” A methodical study 

Poizner (1990) develops a visual motion capture system meeting several 

objectives: (1) spatial temporal accuracy in skilled movement; (2) extend this 

accuracy to general movement; (3) two-camera setup; (4) spatial orientation 

camera; and, (5) arm movement illustrations.  

 To improve current literature on CMS equal interest in the ability to 

quantify the severity of CMS in the time domain would extend the focus on 
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subject-design discussed in the literature: (1) typical and atypical repetitive 

behaviors (Richler et al, 2007);  (2) age and the onset of repetitive behaviors 

(MacDonald et al., 2007); (3) ability and repetitive behavior (Lewis, 1984); (4) 

comparison individuals with stereotypies and dyskinesias (Bodfish et al., 2001); 

(5) stereotypies behaviors humans and other species (Thelen, 1979); and, (6) 

postural control and sway (Memari et al., 2013). These research topics emerge 

from subject-design without raising further insight into diagnostic designation. 

Meanwhile these empirically inspired CMS research provide few methodologies 

outside of subject-design protocols to increase empirical research standards 

(Gowen & Hamilton, 2013; Torres et al., 2013).  Even biomedical researchers 

(Mahone et al., 2004; Muthugovindan & Singer, 2009) revert to clinical 

terminology of typical and atypical in the categorization of motor stereotypies. 

When Gao and Singer (2013) propose a CMS neurobiological research agenda 

using the corticostriatal-thalamocortical pathway there is no methodology to 

examine a behavioral component in a neurobiological research agenda.  

Definitions on Hyperkinetic Movements and  
Taxonomical Foundations of Diagnostic Observations 

 Along with the NIH Taskforce on Childhood Movement Disorders there 

are similar international reports from World Health Organization (2002) defined 

the (International Classification of Function) and the National Center for 

Medical Rehabilitation Research (NCMRR) established a hierarchy of chronic 

diseases (Campbell, 1996). These two frameworks contribute to systematic 
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diagnosis prior to the formation of the Taskforce on Childhood Movement 

Disorders. The Sanger and collaborators' review differentiates two or more 

classes of motor dysfunction with a focus on behavioral observations or to 

conduct studies as behavioral observation maximize biological models.  

Already, NCMRR has proposed a framework for chronic diseases including 

interactions between health condition, body functions and structure, activity, 

and participation provide their own criteria for motor terminology the NCMRR 

maintain (1) pathophysiology (underlying disease process), (2) impairment 

(clinically observable signs and symptoms), (3) functional ability (effect on task 

performance), (4) disability (effect on daily activities), and (5) societal 

participation (effect on lifetime opportunities). These definitions leave 

additional room for behaviorally oriented characterizations of hyperkinetic 

movements. Along with a consolidation of terminology there is the need of a 

taxonomy with a systematic biological overview of motor function, e.g. MeSH. 

  Observations of motor dysfunction within clinical-behavioral 

methodologies characterize without musculoskeletal details cross-referenced 

within relevant branches of the MeSH taxonomy. Clinical differentiation of two 

presentations of motor dysfunction (Rhett's syndrome and autism disorders) 

studies occur in Goldman and Temudo (2012). The MeSH taxonomy offers a 

cross-referencing and drill-down characterization of biological phenomena 

beyond a purely behavioral assessment. A protocol with musculoskeletal 
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phenomena provides additional precision to differentiate the characterization of 

CMS and Tourette syndrome (Singer, 2013) using three motor circuits in 

cortical-straital pathways. Coarse behavioral observations do not minimize 

biological factors. Goldman and Temudo's methodology relies upon ‘‘hand-

washing’’ stereotypies, “as girls with Rhett's syndrome have many other 

stereotypies, like flapping and pacing, observed in children with autism 

disorders. Conversely, hand stereotypies are, in fact, far from specific to Rhett's, 

as they can be observed rather often in children with AD.” In another study 

Singer (2013) employs a study on motor control within cortical-striatal-thalamo-

cortical interactions during goal-directed and habitual behavior. The 

introduction of musculoskeletal levels of observation might improve motor 

observation in clinical CMS research as in the Canales and Graybiel (2000) 

study. Currently, clinical CMS research behavioral observations of visual 

evidence overshadow exploration of hidden (under the skin) evidence supplied 

by the MeSH taxonomy (e.g. metabolic regulation) to develop an empirical 

model of hyperkinetic movements in early childhood. 

  The hyperkinetic terminology in Sanger et al. (2010) establish 

pathological descriptions with varying degrees of success to formalize 

behavioral and biophysical underlying factors. Such clinical readings of motor 

activity address the presentation of CMS and clues on the pathology in a motor 

dysfunction. Definitions of hyperkinetic movement disorders in Sanger and 
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collaborators' review provide computational parameters for systematic 

observation of hyperkinetic movements in childhood.  

 Applying a taxonomy to hyperkinetic movements might further organize 

clinical terminology. A sensitive diagnostic instrument might capture 

expressivity of biological systems. The immediate display of data in 

hyperkinetic movement partially records the complexity of hyperkinetic 

behaviors. Several terminological catalogues (NCMRR, WHO, and Taskforce 

on Childhood Movement Disorders) devise signs and symptoms on childhood 

movement disorders without a taxonomy to translate descriptive relationships 

into spatial, temporal, or biological formalisms. Sanger and collaborators 

establish a formal model without arriving at a functional taxonomy capable of 

manipulation along with the variability of biological system in hyperkinetic 

movements. To summarize the consensus found in Sanger and collaborators on 

childhood motor dysfunctions suggest observations for CMS within a hierarchy 

of motor dysfunction: (1) musculature miscues; (2) posture shaping; and, (3) 

functional miscues (e.g. repetitive). Integration of these factors in CMS research 

or each hyperkinetic movement in a systematic taxonomy might provide an 

expressivity of biological systems (e.g. multistability evident in motor activity).  
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Biomedical Terminology for Hyperkinetic Movements 

 Descriptions of hyperkinetic childhood movements occur as 

individuated pathologies in Sanger et al. (2010). A systematic comparison 

would monitor insertions (posture, movement, muscle configurations) and 

degrees of temporal patterns or temporal irregularities. Characterization of 

dystonia, chorea, athetosis, tremors, and tics contribute to a more informed 

modeling of CMS research. Consistent terminology on hyperkinetic movement 

discussed by (Sanger et al., 2010) provides a reference point to estimate 

assumptions on CMS within the time domain. This taskforce of clinicians and 

researchers address CMS as a subset of hyperkinetic movements in terms of 

signs and symptoms. A reading of Sanger and collaborator's review leads to a 

line of inquiry: Instrumental design provides addition insight on the basis of 

improvement in diagnostic data collection. 

 Sanger and collaborators' definitions of hyperkinetic movements support 

measurements of temporal relationships: (1) phenomenologically: duration, 

speed, amplitude, jerkiness,repeatability, or stereotyped quality, and identifiable 

movements or postures; and (2) time-course: rhythmicity, intermittent with 

intervening normal movement, presence of discrete sub-movements or 

movement fragments or whether the movement appears to be continuously 

flowing. The taskforce's review definitions arecompatible with time analysis. 

Comparisons between athetosis and chorea is a first step toward establishing 
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metrics within the temporal domain for stereotypies. Sanger and collaborators 

maintain chorea is distinguished from athetosis by the ability to identify discrete 

movements or movement fragments within the ongoing sequence of chorea 

movement fragments in chorea are brief and often appear jerky.  

 In the Sanger et al. (2010) report their consensus for the definition of 

hyperkinetic movement disorders using spatial analytic terms (overflow, 

postural combinations, inserted postures) and functional activity (descriptive 

postural dystonic, voluntary). Definitions on dystonia illustrate how the clinical 

CMS research literature (Appendices A,B) might refine CMS diagnostic 

criteria. Sanger and collaborators repoert a dystonia occurs in the presence of 

abnormal postures. These postures superimpose upon or substitute for voluntary 

movements. The Sanger and collaborators review claims at a given point in 

time, dystonic postures in each child repeat as particular patterns or postures. 

Along with behavioral description in the Sanger review a physiological 

characterization introduces grounds for quantitative measure. Sanger and 

collaborators point out there is a behavior, unnecessary co-contractions, and 

maintenance of a stable posture in two cases (voluntary postures or dystonic 

postures). In dystonia the Sanger review maintains muscles activated are 

different from those normally appropriate for a goal-directed action.  

 The dystonic characterization in Sanger and collaborators' review 

introduces the overflow triggering a dystonic posture by a voluntary movement 
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despite an absence of data to support the relation between overflow and postures 

in dystonia. An illustration of the overflow attempts to move  hands may lead to 

neck extension suggesting an ‘‘overflow’’ from the muscles of the forearm to 

the posterior cervical muscles. Overflow provides an observational criteria to 

guide observation of a movement disorder at a lower level. 

 The collection of hyperkinetic movements in Sanger and collaborators' 

report presents guidelines for observing behavioral biomarkers beyond the 

intuitive (eye-witness) observations of hyperkinetic movement. Sanger and 

collaborators define athetosis, a hyperkinetic movement, as: (1) slow, 

continuous, involuntary writhing movement without maintaining a stable 

posture; (2) continuous smooth movements, appearing random and without 

recognizable sub-movements or movement fragments; and, (3) same regions of 

the body are repeatedly involved. A sustained repetitive movement in athetosis 

act as behavioral markers within configurations of the whole body and to 

quantify time patterns in local neighborhoods.  

Systematic Time Measure and Complex Motor Stereotypies Regulation 

 Indexing CMS motion capture might replace low variance hypothesis 

with time patterns between the engaged limbs and inactive limbs while 

configuring time signature classifiers. The systematic analysis of transitions 

between sequences would monitor in a repetitive restrictive: 
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{time variable, (behavioral condition, motor circuitry → inhibitory, excitatory}. 

This model replaces a single sequence with a behavioral condition (a backward 

series and a forward series).  

 Mapping “behavior with time” brings CMS research closer to combining 

morphological transitions (repetitive restrictive behaviors) with cell function 

(innervation dorsal,ventral) anticipated in (Chalfie et al., 1985; Forssberg & 

Hirschfeld, 1994; Hadders-Algra et al.,1997; Kristan, 1982; Kristan et al., 2005, 

2007; Kristan & Gillette, 2007).  

 Table 15 Core CMS Dataset and Computation 

Protocol Measure Visual Formalism Standard 

Morphological 
Characterization  

behavioral resolution  Decision tree (onset, 
next-step) 

depth of local 
neighborhoods number 
adjacent orbits at 
higher resolution 

sequelae to repertoire  Punnett square 
multidimensional 

survey lateralized 
movement; touch-
movement patterns; 
geography of touch 
fields & distribution of 
touch 

behavioral plasticity  Fractal display  
(multi-resolution) 

quality of transitions  
(sustained/cyclic; 
independent/coordinate
d) 

 
Metabolic  
Regulation  

behavioral plasticity Fractal display  
Figure 12 
 

independent/coordinate
d 

sequelae   Graph  (from, to) 
Figure 7 

multi-resolution 

behavioral resolution Transitional 
complexity Figure 8 
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The core CMS dataset (Tables 15,17) appears as a multi-dimensional 

configuration of time data, morphological characterization, and cellular 

function. Although there are data point-sets found in motion capture the core 

CMS dataset is a hierarchy of variables with specific motion capture routines 

(Tables 8, 16). 

 

  

Table 16 Taxonomy Motion Capture Routines 

 

Core CMS Dataset 
 

1st Test-Set  
(motion-capture)  
 
Data Capture 
   

2nd Test-Set 
(post motion-
capture) 
Repurposing  

Routine Data Collection Observation Target 
     

Recording  
Summary 
 

behavioral plasticity check 
(fractal encoded | 
reconstructive) 

 enumeration 

1st Zoom-in sustained repetitions | 
cyclic(Next-Step) 

Visual  

2nd Zoom-in whole body movement 
(engaged limbs, inactive 
limbs) 

Visual 
 

enumeration; 
time 

3rd Zoom-in  
whole body movement 
(lateral, lateral-touch, 
lateral...) 

Visual 
 

enumeration; 
time 

 
Post- 
Recording 
 

Summary switching in sequence 
 

  

1st Zoom-in transition (occupy-from, 
evacuate-from| occupy-to, 
evacuate-to) 

Visual enumeration 

2nd Zoom-in regulation_independent 
(ipsi-) 

 Time 

3rd Zoom-in regulation_coordination   
(bi-) | (contra-) 

 Time 

4th Zoom-in regulation ← [transition 
(inhibitory), transition 
excitatory)] 

 Time 
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Table 17 Visual Atlas Core CMS Dataset 

Routine Visualization Protocol Behavioral Measures  

  

Record-Keeping 
(whole body) 

 

local neighborhood & 
enumeration 

 
lateralized states  
(ipsi-, bi-, contra-) 

 

 behavioral plasticity (nesting)  
behavioral characterization 

 

   
* lateralized sequences 
(independent, coordinated) 
 
* lateralized movements 
(sensory integration) touch ← 
Reflex arc 
 

  

 anatomical disposition * geography of touch fields 
 
* touch-movement patterns 
 

 

 
Time-Keeping duration (from, to)   

 sequential analysis in 
transition (from, to)  

    

 turn-taking in the transition 
from- to (lateralized 
movement) 

  

 The core CMS dataset includes empirical modeling within skin 

innervation (dorsal or ventral) and the time transitions (from, to) within 

sustained (serial) repetition or cyclic (next-step) repetition. The case of 

sustained sequences requires precise monitoring since repetitive movements 

have a sub-division unless there is a perpetual circling movement. Sustained 

repetitive movements warrant additional monitoring to identify complementary 

whole body movements (independent or coordinated) suggesting subtle 
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transitions in the unfolding of sequential data. The core CMS dataset 

accumulates sequential transitions (from-, to-) between lateralized movement 

and the timing of sequential patterns found while mapping whole body 

movement. The precision of core CMS dataset in the time domain extends the 

documenting oscillatory movements, phases of a behaviors, micro-rhythms, and 

sequential mappings. Along with precise time data there are accompanying 

morphological characterizations as visual evidence of skin innervation in 

several parameters (ventral/dorsal, anterior/posterior) supply a researchers with 

time-data. Finally, the morphological characterization of skin innervation in 

movement with time-data points toward cellular functions: switching, central 

pattern generator, and other multifunctional architecture in repetitive restrictive 

behaviors. The assembly of motion capture forms a core CMS dataset in 

preparation to assign time signatures for  whole body regulation of repetitive 

movements derived from data based upon (Figures 14, 17) and visualization of 

time-flow patterns (Figure 13, 18) as local neighborhoods define aspects of the 

behavioral plasticity (Figures 13 bottom, 18 left; Table 13) in the CMS 

sequential transitions.  

 Promoting empirical CMS research follows the theme of direct 

biological interface. Canales and Graybiel (2000) conduct striated muscle fiber 

to identify a relationship between striatal function and stereotypies. But, 

Canales and Graybiel’s chemically induced study is less likely to maintain a 
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consistent model of time data within CMS. Wearable sensors and in vitro 

cellular studies in CMS research would follow Loewi's pioneering experiment 

establishing electrical and chemical responses within neurobiological function. 

Wearable biosensors and in vitro assays offer a less invasive environment to 

conduct precise motion capture of time data.  

Table 18 MeSH Keywords Mental Disorders 

Mental Disorders [F03] 

Mental Disorders Diagnosed in Childhood [F03.550] 

Sub-levels 
(...500...) 

dev disabilities 
550.362 

motor skill 
disorders 
550.650 

stereotypic 
movement 
disorders  
550.787 

tic disorders 

550.825 
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Table 19 MeSH Keywords on Psychological and Neural Physiology Phenomena 

Psychological Phenomena and Processes [F02]  
Psychophysiology [F02.830] 

1st Sub-levels 
(...830...) 

Cerebral dominance 
830.297 

--------------------------------------------------------------------------------------------------- 

2nd Sub-levels 
(...830.297.) 

Functional laterality 
830.297.425 

 

Annotation restrict to neurological & psychological sense; sidedness or 
 laterality of disease, index the disease with / pathology 
 (MeSH qualifier data) or / physiopathology (MeSH qualifier data); 
for unilateral or bilateral surgery, index the surgical technique 
 with/ methods (MeSH qualifier data) if pertinent 

Entry terms Laterality motor function behavioral laterality handedness, etc .
  

 

Cross-Ref  
[G11] 
See below 

Functional laterality 
G11.561.225.425 

Ref [E04] Split brain procedure  

E04.525.770 

 

Musculoskeletal and Neural Physiological Phenomena [G11] 

Nervous System Physiological Phenomena [G11.561] 

1st Sub-Levels Cerebral dominance 

2nd Sub-level Functional laterality 
G11.561.225.425 
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MeSH Taxonomy Implementation for Reading Biomarkers Selection  

 Quantitative measurement and behavioral analysis conduct data 

collection to make predictions useful in the diagnosis, explanation, or 

comparison of individuals. But the criteria for making observation has no 

governing hierarchical rationale to support using one data feature over another 

in psychometric measurement other than the researcher's expertise, 

measurement facility in available instruments, or prior trends in data analysis in 

prior research.  

 The MeSH taxonomy functions as a repository of thematic variables 

rather that associating variability with data points. The measurement of the 

thematic variables occurs within the norms of biological research. The MeSH 

taxonomy presents variability on biological terms and composition of the black-

box evident in clinical research (Fischer et al., 2010). In the simple example of 

Table 18 are constructs on mental disorder. A practical use of the MeSH would 

map mental disorders (Table 18) followed by psychological phenomena and 

neurological physiology (Table 19), metabolic and chemical phenomena (Table 

20), and musculoskeletal phenomena (Table 21). Tables 18-20 suggest the 

expressivity of the MeSH taxonomy for developing diagnostic constructs and 

components related with involuntary movement.  

105 

 



Moving from observable data features in a psychometric methodology to 

data provided by biomarkers in a biologically-inspired methodology a basic 

question persists: What criteria promotes a systematic overview in quantitative 

measurement and behavioral analysis? A cross-referenced measurement criteria 

in the MeSH taxonomy would replace current observational data collection 

where there is no auto-monitoring (internal check) and computational check 

outside of an initial observation of visual evidence. To improve data collection a 

multi-level and multi-scale data selection the research starts with a hierarchy 

(Figures 13-15, 17). 
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Table 20 MeSH Keywords Phenomena: Metabolic and Chemical 

Metabolic Phenomena [G03] 

Brain      Chemistry G03.200 

1st Sub-levels 
(...200...) 

Brain 
Chemistry 

200.000 

   

Annotation differentiate from BRAIN / metab; consider also / chem with specific parts 
of the brain but probably as NIM with BRAIN CHEMISTRY (IM) if site is 
merely locational & illustrative 

 

Cross-Ref 

[G02.111.100 

Brain 
Chemistry 

   

1st Sub-levels 

(...495...) 

Metabolism 
(descriptive)  

 495.000 

Metabolic networks and 
pathways 

495.553 

  

 

Chemical Phenomena [G02] 

Biochemical Phenomena G02.111  

1st Sub-levels 

(...111...) 

Brain 
Chemistry 

111.100 
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Table 21 MeSH Keywords Musculoskeletal 

Musculoskeletal and Neural Physiological Phenomena G11] 

Musculoskeletal Physiological Phenomena [G11.427] 

1st Sub-levels 
(...427...) 

musculoskele
tal 
physiological 
process   

427.590 

motor skill disorders 
427.650 

stereotypic 
movement 
disorders  
427.787 

tic disorders 
427.825 

--------------------------------------------------------------------------------------------------- 

2nd Sub-levels 

(...427.590...) 

movement 

427.590.530 

muscle contraction 

427.590.540 

musculoskeletal 
427.590.560 

 

 

Nervous System Physiological Phenomena ([G11.561] 

1st Sub-levels 
(...561...) 

Evoked 
potentials 

561.270 

Membrane 
potentials 

561.570 

Nervous system 
physiological 
processes 

561.600 

Psychomotor 
performance  

561.623 

Reaction 
time  

561.677 

Shifting Behavior into Measurement Standards 

 Behavior and quantitative measurement have been subjects of 

investigation while contributing to human performance, education theory, and 

developmental science. Further specialization in behavioral and quantitative 

measurement includes analysis of severity of biological movement in the time 

domain (time series).   

 Quantifying variability on biological grounds includes the plasticity 

evident in multifunctional motor activity discussed in (Briggman & Kristan, 
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2008). Meanwhile, variability in clinical research confines quantitative 

measurement to data points in a sample population. Rather than assembling 

data points to deduce variables in quantitative research measurement standards 

in behavioral research might shift measurement of variables to a pre-existing 

biological taxonomy (MeSH). 
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CHAPTER THREE DESIGN AND METHODS 

 A universal observational standard in CMS research establishes a four-

way measurement protocol using: anatomical (posture), behavior (postural 

control), descriptions (expression of paired transitions: to-, from-), and 

anatomical behavior descriptions while recording a temporal complex in real-

time: {onset; engagement of resources (present); and replenishment of resources 

(future)}. In CMS research systematic observation practices remain an 

instrument problem. While an indexing protocol would define three aspects of 

CMS: scoring lateralized movement (time-behavior pairings), classifying 

sequelae, and cross-referencing behavior (e.g., sustained serialized 

repetition/next-step cyclic repetitions; independence/coordinated movements; 

touch-movement (sensorimotor information)/regulation of sequelae (ipsi-, bi-, 

contra-). Already, Kohn et al. (2006) implement diagraming to monitor the 

universe of biological pathways (actual and potential) in molecular interactions. 

 Anatomical behavior descriptions function as a novel observation 

standard for motion capture using the capacity of advanced technologies 

(nanoscience and wearable bioengineered sensors).  Anatomical behavior 

descriptions define protocols for signal monitoring within whole body 

movement with guaranteed approximation of an original behavior. To 

implement a reconstruction protocol hexagonal porous-solid-fractals (Bobbitt, 
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2002; Perrier et al., 2000, 2002) and content addressable memory (Kohonen, 

1989) (Figure 7d) encode motion capture data.  

 In addition to chronological time series there are local temporal 

conditions found within a recursive treatment of minute series of micro-events 

(e.g., to backward ,lateralized phase) and (from backward, lateralized phase). A 

recursive treatment of anatomical behavior descriptions records transitions in 3-

d space, switching in behavior plasticity, and multi-functional allocation of 

motor activity within high behavior resolution. Given the precision of direct 

biological interface through wearable bioengineered sensors (Lowe, 2011), 

nanoscience assays used in wiring studies of repetitive restrictive behaviors in c. 

elegans (Ardiel & Rankin, 2008; Chronis et al. 2007; Kamano et al.,2011; 

Larsch et al., 2013; Nagy et al.,2011; Salvador et al., 2014; Wen et al., 2012), 

in vitro nanoscience assays (Das et al., 2006; Smith et al., 2013); and, brain chip 

interfacing (Fromherz, 2006; Pais-Vieira et al., 2013). Video analysis offer 

coarse and incomplete treatment of visual evidence without capturing 

neurobiological plasticity (behavioral or cellular), the dynamics of central 

pattern generator, the interleaving architecture of motor function (2012), multi-

functional pattern architecture (Brigmann & Kristian, 2008). 
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Visual Formalisms and Behavior Recording  

 Design. To a present taxonomy for CMS two formalisms map multi-

dimensional scale (Figure 13a) and a decision tree maps transitions (from-, to-) 

in Figure 8. Several observational rules guide the formation of the multi-

dimensional mapping in Figure 13a and the decision tree in Figure 14. The 

formation of a descriptive taxonomy for CMS relies on several observational 

rules: (1) every movement has a counter movement (non-spinning) to conduct a 

repetitive behavior; (2) repetitions appear as sustained or next-step in a cycle; 

and, (3) transitions in a repetition are asymmetric (non-commutative) repetitive 

cycles are perpetual. Data capture for CMS research relies upon observational 

rules and analysis. The analytic foundation for the symbolic system examines 

regularity in a time series (approximate entropy), self-similarity in local 

neighborhoods (fractal analysis), and evidence of local optimality. The literature 

pointing to the origins of the symbolic system appears in Tables 10-12. Figures 

8-19 introduce a novel of symbolic system for translational development of 

motion capture in CMS research. 

 Listed below is a catalogue of the working parts of a proposed protocol: 

to provide adequate variability to design visual test for motion capture (high 

behavioral resolution and behavioral plasticity), characterize behavior-time 

pairings, and to analyze dynamics of CMS (behavioral plasticity) in the 

temporal domain. Measurement of how CMS work leads to a methodical 
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measurement of flow patterns (Figure 12) absent from the clinical literature on 

CMS. How the symbolic system works graphs variability to measure local 

optimality of local neighborhoods within each presentation of CMS across 

levels of behavioral resolution. The novelty of heterogeneity in variability motor 

circuitry (Marder, 2011) suggest the need of a symbolic system to visually 

graph the potential of varying parameter combinations to produce similar 

behaviors. Future CMS research would benefit from quantifying flow patterns 

in CMS.  

 Behavioral markers in CMS leads to symbolic representations and visual 

formalisms. The behavioral markers (lateralized movement) occur at distinct 

timings measured at time scales. A multi-resolution display (Figure 18) reports 

on linear time (within any hexagon) or side-by-side measurement in a collection 

of sequences (clusters of hexagons, (Figure 13d) when backward/forward 

movement and laterality in the display system act as content addressed memory 

(Kohonen, 1989) in Figure 13d. Fidelity with CMS in the multi-resolution 

display movement encode CMS movements as jagged contours representing 

time signatures to differentiate behaviors. The jagged contour shows behavioral 

markers as either an active conditions of lateralized movement (Figure 13d) or 

the proliferation of a hexagon due to absent conditions of lateralized movement.  

A multi-resolution display system acts as a mechanism to conduct comparisons 

within universal descriptions to differentiate behaviors.  
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 Fidelity with the original behavior records: independence/coordinated 

movements, laterality, touch patterns, extension/flexion patterns, and 

switching/transition in sequelae. Figure 13 encodes lateral conditions (ipsi-, bi-, 

contra-) in two trapezoids representing forward movement and backward 

movement. Given non-spinning movement all CMS have a minimum of two 

phases (e.g. forward and backward movement). The expressivity of monitoring 

repertoire in a series of sheets (Figure 13a) and the sequelae as behavior-time 

pairings (color coded) appears in Figure 18 based on Figures 13d-13f. 

 The configuration of shapes (hexagon, trapezoid, hourglass, 

parallelogram, equilateral triangle) graph CMS at a granular level.  An enhanced 

visual semantics supports monitoring flow of plasticity by differentiating active 

limb-by-limb scoring: transition patterns in Figure 13a; intensity of timing, 

switching rates in transitions (color coded) in Figure 18.  Configurability in a 

hexagonal symbolic system (Figures 13, 18) expresses several hexagonal 

pairings: (1) trapezoid (backward movement, forward movement); (2) hourglass 

(cross-reference laterality in backward series and laterality in a forward series); 

(3) adjacent equilateral triangles postural transitions (backward movement, 

forward movement); and, (4) parallelogram (backward movement, forward 

movement). 
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Figure 13 Visual formalisms for motion capture.  

In Figure 13 is memory and reconstruction using three levels of 

transition mapping (from-, to) for time-behavior pairings Figure 13a (Top) 

Multi-dimensional to quantify variability in sequential patterns in CMS. 

Figure 13d (Middle Top) Simple pathways of movement (one-way phase, 

two-way phase, three-way phase). Figure 13c (Middle Bottom) Module 

for granular pathways for movements with complex phases. Figure 13d 

(Bottom Left) Shape and address of lateral movements. Figure 13e 

(Bottom Center) Sequence of forward-backward movement. Figure 13f 

(Bottom Right) Flow of sequelae. 

 Structure. Figure 13a records the sequelae (sustained repetition or next-

step in repetitive cycle). Multi-dimensional scaling of transitions in sequelae 
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appear as a feature (from-, to-). To document the features in a sequelae's 

transition there are ordered lists and asymmetric intervals appear in (Figure 20). 

Figure 13d visualizes an instance of the sequelae in Figure 13a. Fidelity with the 

original behavior occurs based upon recording flow patterns (Figures 13c, 13d) 

and the expansion of Figure 13 into a graphing and visualization system (Figure 

18, Table 13). Flow diagramming in Figure 18 occurs on multiple levels: 

subject of repetitive movement (forward, backward); unfolding of the sequelae; 

and the unfolding of cyclic patterns of the sequelae over time. Encoded in 

Figure 13d and Figure 18 are flow patterns occurring at levels of behavioral 

resolution in anatomical behavior descriptions measured showing switching 

rates, rates of lateralized conditions, and unfolding of sequelae/cycles. 

 Automation. An animated version of Figures 13d, 18 approximate the 

original movement patterns while parsing movement in classified 

neighborhoods based upon encoding in Figure 13d. Application. Based on the 

punnett square allelic discovery continuous/jerky behavioral phenotype in twins 

or families with a tendency toward CMS and autism.  
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Figure 14 Mathematical expectation in complex motor stereotypies 
sequelae.  

Mathematical expectation of lateralized movement and extension/flexion 

patterns 

 Structure. Figure 14 organizes complexity in behavior-time pairing in a 

sequelae as an onset moving toward an extension and the next-step moving 

toward a flexion. Details of the decision-tree present a mathematical expectation 

of CMS: lateralized movement, behavioral plasticity (independent, 

coordinated), and association of excitatory/inhibitory underpinning in 

lateralized movement condition. Application. Mapping of time series data for 

sequelae analysis and comparison. Brings additional behavioral mapping of 

time series for approximate entropy analysis. Scientific workflow found in 

Figure 15 relies on motion capture data organized in Figure 13. 
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Figure 15 Complex motor stereotypies as a boundary system. 

 Several scientific workflows emerge to examine CMS as a boundary system. 

Structure. Figure 15 summarizes CMS as a boundary system. When 

observing visual evidence in CMS there are several methods to assess CMS: (1) 

anatomical behavior descriptions; (2) quantifying the complexity of CMS; (3) 

compartmentalizing CMS into time data and occupying 3-D space; and, (4) 

comparisons of behavioral recording through physiological relevancy. 
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Figure 16 Time signatures and complex motor stereotypies.  

Time signature assembly from data collection and data analysis. 

Figure 17 Temporal complexity in CMS morphology 

 

 Porous-solid-fractals provide a framework to compare and compute CMS 

(time signatures, sequelae, transitions) in local neighborhoods, cyclic patterns, 

and multi-loops of the CMS sequelae. The engagement of lateral movement 
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during forward or backward phase appear as a shaped contour leaving the 

excluded lateral movements colorless/unlined. This produces a jagged shape 

contour at each instance of the sequelae. Reading a geometry of hexagons 

(porous-solid-fractals) anatomical behavior descriptions (Figure 13d). The 

individualize movements appear as articulated intervals of planes and nested 

configurations at multiple resolution. The rotation within nested rings define the 

actual time sequence with color coding each instance of movement to indicate 

numerical duration (intensity) and sequential order rotating (clockwise) to 

document limb activity, interlimb activity, or a region in the individual's 

anatomy.  

 Starting with innervation (Figure 18a left) measurement of rotation 

(Figure 12c right) occurs within a ring of hexagons as an arc in a clockwise 

movement. Facets of lateralized movement appear as shaped subdivisions of the 

hexagon (Figure 13d, Table 13). The transition of sequelae appear as a ring of 

hexagons (Figure 18 left).  For management purposes a center hexagon (Figure 

18 center) maintains location and general numerical data for each ring (Figure 

18a right). The configuration of shapes facilitate the analysis of transitions 

(rotation Figure 18a right) or parallel comparison of recurrence of movement 

within a position within the sequelae via side-by-side comparison (Figure 18a 

center). This configuration (Figures 13d, 18a, 18b) follows in defining sets of 

120 

 



higher resolution. When Figure 18a center acts as a facet in a higher resolution 

pattern.  

 The graphing capacity of the visualization system conducts comparisons 

with high behavioral resolution of interlimb activity or time signatures between 

multiple cases of CMS. There are several applications of this visualization 

system: (1) plotting transitions using ApEn where (from-, to-_intervals replace 

point-by-point graphing; (2) parallel analysis of facets in the same position in 

sequelae overtime; and, (3) parallel analysis of clusters of facets to compare 

time variation between CMS with ipsilateral or contralateral tendency. 

 The visualization system serves as a preliminary assessment tool for 

conducting ApEn analysis. Future research will implement ApEn using the 

visualization system. Using shape analysis of time-behavior pairings in 

repetitive movement conducts analysis with increased granularity while 

maintaining zoom-in and zoom-out view of sequelae. 
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 Figure 18 Porous-solid-fractal visualization system 

 (Left) systematic encoding forward/backward, ventral/dorsal, and clockwise flow; (Center) multi-resolution 
mapping of flow patterns and synchronization in CMS; (Right) mapping flow patterns in CMS time analysis. 
Key components (1) content-encoding and processing components (formatted shapes representing morphological 
characterization); (2) data collection component (outer shell of nested hexagons); (3) local optimality and 
transitions component (inner core of hexagons representing cycling time-events; (4) animated record-keeping 
sequencing component (clockwise representation of micro-events and transitions). 

Parallel Comparison 
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Figure 19 Porous-solid-fractal visualization framework from Bobbitt (2002) 
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Figure 20 Approximate observation duration for motion capture 

 

 Structure. Figure 14 organizes lists of potential events in CMS: (1) 

repertoire complexity (micro-rhythms) as a matrix of 18 events with 6 matrices 

yielding 108 events; (2) sequelae complexity with 108-648 events. Application. 

Population models for numerical simulation of CMS and sensory information 

transfer (Salinas & Abbott, 1995). 

 

Figure 21 Three conditions for the observation of CMS  
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Mathematical Origins of Anatomical Behavior Descriptions  

 The streams of behaviors in CMS lend themselves to a mathematical 

description. Motion capture of repetitive restrictive behaviors is consistent with 

the presence of motor-touch engagement, oscillatory patterns, and recurrent 

patterns. Mathematical grounding of a descriptive taxonomy (anatomical 

behavior descriptions) provides a mechanism to methodically explore a disorder 

without an etiological explanation. Lewis and Bodfish (1998) characterize 

repetitive research in terms of prevalence and a psychological oriented construct 

(e.g., compulsion). Clinical CMS researchers work from the vantage point of 

what leads to an intervention at the expense of empirically defined research 

frameworks. Appraising repetitive regularity in CMS starts with how well a 

research practice maintains fidelity with the CMS in the time domain and 

whole-body movements within an increasing granularity (Figure 6). There is a 

mathematical complexity when quantifying CMS in terms of the expression of 

repetitions in sensorimotor scenario punctuated by a touch or extension/flexion 

pattern, the articulation of a sequence (series of transitions) supplied by a motor 

circuitry in lateralized movement, the isolation of behavioral resolution and 

behavioral plasticity during motion capture. Observational variables define the 

instrument while identifying performance variables (behavior-time pairings). 

Anatomical behavior descriptions is a protocol where mathematical tools define 

instrument design and scientific workflows to quantify performance variables in 

CMS. 
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 Mathematical tools support the capacity to drill-down into behavioral 

levels (descriptions, time measurements, and behavioral plasticity) and the 

cellular level (innervated skin, allocation of resources, and functional 

processing/switching rates). Using several questions related with diagnostic 

assessment the mathematical complexity in CMS becomes clearer. (1) Is there 

an asymmetric differentiation between (ipsi-, bi-, contra-) in the time patterns in 

phases (forward-touch induced movement, backward-touch-induced movement) 

in a sequelae?; (2) Does the synchronized time of independent (ipsilateral) 

movement or coordinated (contra-) movement differentiate severity in 

sequelae?; (3) What configuration of lateralized movement in the repertoire of 

CMS serve as indicators of severity of CMS?; and, (4) Does coordinated 

lateralized movement in bi- or contra- maintain a common time signature? 

These questions pursue a progressive observation and analysis with increasing 

granularity to differentiate between behavior and sequence, phases in the 

behavior, a level of behavioral plasticity. In anatomical behavior descriptions 

mathematical norm follows a pursuit of difference in repetition. 

 As a boundary system CMS with membrane dynamics and interlimb 

activity anatomical behavior descriptions investigates quantitative measurement 

within several mathematical frameworks: fractal, heterogeneous, and biological 

mathematics in the time domain. Before discussing biological phenomena 

relevant to CMS mathematical observations inform the analysis of repetition as 
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a product of a pathological condition and the impact of pathological conditions 

on motor systems. 

 The mathematical origins of anatomical behavior descriptions draw 

upon several collections of research: (1) time series analysis used to define 

regularity within a pathological condition; (2) advances in empirical 

(neurobiological) research on variability; and, (3) the absence of behavioral 

recording in neuronal recording techniques. To conduct an analysis of the 

severity of CMS a mathematically grounded methodology contributes to the 

formation of a core CMS dataset and scientific workflows for collaborative 

research. A schematic mapping of a functional behavior (CMS) describes, 

quantifies, and visualizes neighborhoods of interrelationship. Clarifying local 

neighborhoods is a mathematical symbolic problem when considering the 

heterogeneous space as membranes, sensorimotor circuits, and networks occur 

with plasticity. Mathematical principles act as a framework where repetition and 

plasticity function in a sequential expression. 

Mathematical Concepts for Anatomical Behavior Descriptions  

 Increasing behavioral fidelity in motion capture warrants mathematical 

tools to model data collection. From an instrumental standpoint the closer 

anatomical behavior descriptions come to differentiating sequelae and repertoire 

in CMS the more a mathematical basis will become apparent. The mathematical 

origin for anatomical behavior descriptions constructs observational practices to 

target two aspects of CMS: the regulation of transitions in CMS and regularity 
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of behavior-time pairings in CMS. Marking differences in a time varying 

assembly implements a visual indexing of streams of sensorimotor information 

and the regulation of the transition (from-, to-) in sequential patterns would 

contribute to a mathematical basis. Behavior-timing pairs will need to 

differentiate circuitry plasticity (synaptic and interneuron 

transform/coordination), network plasticity (circuitry partnerships, switching-

complexes, compensation, modulation), and innervation geography (touch 

fields, motoneurons). Looking at behavioral ensembles present in the CMS 

functions as a reduced network with physiological, a repertoire of 

engaged/excluded interlimb activity, and touch movement. The timing regime in 

the anatomical behavior descriptions taxonomy opens the opportunity to arrive 

at neighborhoods approximating variability within a heterogeneous dynamic. 

Self-similarity and heterogeneous complexity are central to detection of features 

and behavioral phenotypes within a biological-behavioral setting. The 

alternative approach conducts diagnostic readings within a biological black-box. 

Improvements in direct biological interface support maximizing behavioral 

regulation and minimizing biological uncertainty. Marder and Calabrese (1996) 

provide evidence on central pattern generator relating single neuron oscillators, 

motor circuitry, and networks relating rhythmic circuitry in a physiological 

expression of behaviors. 

 Anatomical behavior descriptions serve as a system further explore 

Hadders-Algra model of repertoire and sequelae to quantify. Motor circuitry's 
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engagement, inhibition, and exclusion from a repetitive sequence have their 

place in a mathematical model. Application of a mathematical basis improves 

computational capacity using known neurophysiological relationships. 

Comparing levels of severity in CMS mathematical concepts of self-similarity, 

heterogeneity, and multi-resolution extend the use of biological mathematics 

and fractal analysis. 

 Regularity is central to the low variability hypothesis on CMS. How 

visual evidence functions in defining regularity in CMS prompts a mathematical 

formalism building upon several topics: (1) novel forms of analysis (self-

similarity, heterogeneity, and multi-resolution) based fractal analysis (Chau, 

2001; Hausdorff et al., 1995, 1996, 1997; Ihlen & Vereijken, 2013); (2) 

experimental research with a stronger general mathematical protocol to envision 

bio-medical measurement (Chau, 2001; Deffeyes et al., 2011; Pincus & 

Goldberger, 1994); and, (3) a novel visual graphing of multi-resolution. A 

granular display (Figures 7,12) facilitates visualizing side-by-side and rotation 

through nested steps quantifying degrees of local optimality (in sequelae 

transitions) anticipates marking difference to compare levels of severity. A 

system of planar relationships (Figure 7b) and a detailed behavior fidelity 

(timing, interlimb descriptions, and sensorimotor engagement) is in a position to 

identify potential pre-conditions or pre-requisites as types of lateral movement 

patterns.  
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 The application of ApEn serves as an example to standardize repetitive 

behavior research. Pincus argues ApEn functions as an indicator of pathology 

across a range variables (complex, randomness, and chaotic). There are a 

number of medical fields with the investigative use of ApEn (cardiology, 

endocrinology, anesthesiology, traumatic brain injury, Parkinson’s disease, and 

orthopedics) (Deffeyes et al., 2011). Examination of research on ApEn further 

establishes the role of novel scientific workflows in motor research. The long-

range correlations through fractal analysis (Hausdorff et al., 1995, 1996, 1997) 

illustrate variability measure to differentiate CMS repertoire and sequelae in 

CMS (Figures 7,8, 9). The utility of ApEn is the measurement of oscillatory or 

repetitive movement.  

 ApEn is an alternative mathematical model to statistical mean and 

variance in time series analysis. Used as an analytic tool ApEn defines 

regularity in a behavior under pathological conditions through a time series 

analysis. Pincus and Goldberger (1994) use ApEn to investigate “compromised 

physiology” in many systems with more regular and normative physiology with 

greater irregularity (randomness, complexity). In a study on infant movement 

and cerebral palsy Deffeyes et al. (2011) apply ApEn. Deffeyes and 

collaborators experimentally compare data from infant movements and physical 

simulations (single pendulum periodic activity and double pendulum chaotic 

activity) using an ApEn assessment of regularity. Deffeyes and collaborators' 

research investigates the lack of regularity for a dynamic system considering 
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two hypotheses on complexity in pathology. First, complexity in an organism 

will decrease with increase pathology in the loss of complexity hypothesis. 

Second, optimal movement variability hypothesis complexity my increase or 

decrease from an intermediate optimal value. This argues a pathological 

condition with regularity can maintain complex or chaotic characterization. 

 Self-similarity is a measurement criterion and measures details in 

variability. Chau's (2001) review on gait analysis includes fractal dynamics. The 

fractal dimension quantifies self-similarity Chau considers two reasons for the 

significance of self-similarity in physiological analysis. Chau maintains fractal 

dimension reveals deeply embedded correlations (self-similarities) and 

heterogeneities (dissimilarities) in signals. This claim according to Chau argues 

information undetected through standard statistical analysis when signal 

fluctuations usually assumed to be random. Second, knowledge of the 

correlation structure informs physiological mechanisms generated by observed 

signals. In a review on computational gait analysis Chau (2001) fractal analysis 

characterizes gait over long-range correlations in human gait fluctuations 

(Hausdorff et al., 1995, 1996, 1997) produces a “new characteristic feature of 

normal gait patterns can be exploited in the quantitative diagnosis of 

neurological pathologies.” The utility of fractal analysis in gait research appears 

to assist “a new breed of correlated central pattern generators endowed with 

memory.” Observing general movement using self-similarity through a 
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taxonomy of movement (anatomical behavior descriptions) opens the possibility 

of granular differentiation in repetitive behavior. 

 Two theories on motor control and variability: (1) component-oriented as 

specific sources and underlying mechanisms of the motor control system  

movement pattern and the environmental context in which the movement 

appears; or, (2)  interaction-oriented variability to be evidence of a self-

organized and meta-stable motor control system common across all movement 

patterns and environmental contexts (Ihlen & Vereijken, 2013). Computational 

neuroscience promises to conduct an ability to generate accurate and 

appropriate motor behavior relies on tailoring our motor commands to the 

prevailing context movement. Torres et al. (2013) define non-stationary 

stochastic patterns of minute fluctuations (micro-movements) as patterns of 

behavioral variability with re-entrant sensory feedback's contribution to motor 

output with autonomous regulation and coordination. Operational practice used 

by Torres and collaborators detect changes in micro-movements aligned with 

kinesthetic re-afference in tandem with stimuli variations. A component based 

motor behavior method governs research on empirical standards discussed in 

psychological discussions of performance ability found in ASD (Gowen & 

Hamilton, 2013; Torres et al., 2013).  

 Optimal control theory models autonomy and generality defines motor 

activity as tasks defining behavior (Wolpert, 1995; Wolpert & Ghaharmani, 

2000). Optimal control theory's challenge predicts a nonlinear dynamics is 
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useful to observe a new task (Todorov, 2004). Replacing surveys used in 

clinical CMS research Torres et al., (2013) introduce aspects of computational 

neuroscience in clinical research on CMS in ASD. Computational neuroscience 

research relies upon numerical computations to organize an optimal control 

theory. Optimal control theory mimics motor activity. Torres (2011) holds 

understanding the statistical properties of physical movements using a 

probabilistic framework. What is the point of departure for mapping physical 

movements: performance parameters or anatomical-physiological parameters? 

 Neuroscience research on rhythmic circuitry (Marder, 2011) has  

mathematical implications. Advancing personalization or heterogeneity would 

have intermediate steps related with biological evidence. Brown (1914) 

proposes rhythmic movements are centrally generated and alternation between 

functional antagonists depends on reciprocal inhibition between flexors and 

extensors (as cited in Marder, 2000) introduces an extensive study of central 

pattern generation to understand rhythmic circuits. The dynamic interplay 

between central and sensory mechanisms in the generation of adaptive 

movements is seen in all preparations. In some preparations, sensory 

information may be used primarily to initiate or terminate ongoing movements 

or to modulate cycle period and amplitude in a graded fashion. In others sensory 

information provides critical timing cues (Marder & Calabrese, 1996). This 

translational research avoids layering advanced technologies upon conventional 

research methods. Claims on a signature unique to each individual to address 
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the heterogeneity of ASD (Torres, 2011). This suggests the need to formalize 

heterogeneity and uniqueness are mutually exclusive. Heterogeneity opens one 

state to many conditions or many states to many conditions. 

 The rhythmic study of motor circuitry in Marder's laboratory attempted 

to tune models of the STG motor circuitry. Out of Marder's neurobiology 

laboratory emerged studies on the lobster model STG research reviewed 

(Marder, 2011) examine the pyloric rhythm a tri-phasic motor pattern according 

to three neuron types (pyloric dilator, lateral pyloric, and pyloric neurons) 

appear in a stereotyped and repeating sequence. Disparate parameters produce 

the same network of pyloric rhythms. Marder's laboratory contribution to 

neurobiology of motor function proposes variability in known parameters result 

in a pyloric rhythm. Recording neuronal membrane conductances (K+, Na+) and 

spike bursts lead to measurement based upon variability, compensation, and 

modulation. Quantitative research using populations of models is essential to 

capture the variability in motor function. Compensation in the dynamics of 

motor circuitry in STG Marder's research points to “similar changes in network 

performance can result from changes in different network parameters.” 

Modulation in motor circuitry in Marder suggests “perturbations that will 

differentiate among circuits with different sets of underlying parameters even if 

they produce similar behaviors.”  Granularity in neurobiological research leads 

to a novel form of analysis where heterogeneity requires a systematic trapping 

of relationships foregoing one-to-one relationships. There is a heterogeneity 
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motor circuitry captured through additional interactivity in terms of 

compensation and modulation that further define variability. 

 Following the conjecture on sequelae measurement through paired 

transitions research on ApEn (Pincus, 1991) serves as a mathematical starting 

point for the use of anatomical behavior descriptions. Also, the conjecture on 

lateralized movement follows motor circuitry (excitatory, inhibitory) has a 

cross-scale (morphological and cellular) mathematical formalization of central 

pattern generator (Forssberg & Hirschfield, 1994) in addition to evidence from 

animal model studies. The biological evidence on cellular function aligned with 

repetitive motor circuitry (central pattern generator) and the prospect of 

behavioral study on how CMS works find in mathematical protocols the 

prospect to define scientific workflows. 

 Anatomical behavior descriptions present levels of observation within 

the setting of CMS. To differentiate repertoire or sequelae mathematical tools 

revisits diagnostic assessment solely on the basis of low variation. Mathematical 

tools (ApEn and fractal analysis) combined with anatomical behavior 

descriptions (sequential transitions, local neighborhoods in motion capture data, 

sustained/next-step repetition, and pacing perpetual sequencing). Classifying 

subtypes in CMS clarifies the low variation hypothesis by pursuing a multi-

resolution conjecture on CMS severity (repertoire or sequelae).    

 Establishing protocols with advanced mathematics supports porting 

visual evidence into translational scientific workflows. Already, Marder's 
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(2011) research on rhythmic circuitry illustrates variability in parameters 

generate the same network of tri-phase oscillatory patterns in pyloric rhythm. 

Marder and Taylor (2011) discuss the importance for research practices using 

families of models for quantitative research to keep pace with heterogeneity in 

rhythmic circuitry.  A mathematical foundation for quantitative research would 

equally investigate scientific workflows (tunability and families of models) as 

well as phenomena poorly understood. CMS research based on mathematical 

techniques is in a position to arrive at data capture practices where the presence 

of CMS in heterogeneity and multi-resolution avoid generalization. The 

reduction of CMS' functional complexity appears in two cases: (1) absence of 

touch and skin innervation data reduces the possibility to quantify sensorimotor 

dynamics, behavioral plasticity, and whole-body activity; and, (2) quantifying 

perpetuation of repetitive restrictive behaviors within sequential analysis. 

Observations informed by Kelso’s (2012) multi-stability contributes to data 

collection supported by physiological and neurobiological evidence. 

 A diagnostic methodology uses mathematical complexity to promote the 

identification of configurations across behaviors (postures and musculoskeletal), 

switching (during the unfolding sequence), and perpetuations (maintaining a 

cycle). Based upon description, quantitative measurement and pathological 

conditions anatomical behavior descriptions addresses a biological function 

multi-functionality plasticity, that is, transformation of the same unit for re-

purposing. Re-purposing occurs on a literal level when comparing variability of 

136 



the presentation of CMS during shifts in lateralized movement patterns in each 

individual's sequelae. Re-purposing on a neurobiological level monitors the 

switching and regulation patterns during interlimb activity within an individual's 

sequelae. Anatomical behavior descriptions consider mathematical complexity 

within the context of three levels of observation: behavioral, diagrammatic, and 

neurophysiology. The instrumental investigation of CMS stands for a 

mathematical inquiry to analyze behavioral transitions in a time series (ApEn), 

diagrammatic organization of behavior-time pairings using multi-resolution 

display (shape logic) and self-similarity fractal analysis of sequential transitions, 

and the neurophysiology of lateralized movement's plasticity in the interleaving 

organization of motor function (Arber, 2011), multi-functional pattern 

architecture of musculoskeletal motor function (Briggman & Kristan, 2008), 

and literature on central pattern generator (Marder 2000, 2011; Marder & 

Calabrese, 1996; Marder & Taylor, 2011; Selverston, 1980). 

 The strength of observation for motion capture would benefit by 

descriptions capable of quantitative and biological expressivity. Mechanistic 

models of movement would benefit from the observation of several layers as 

Arber's (2012). 

 Identifying a network contributes to a visualizing more of the 

complexity within biological movement. Additionally, the tools used to quantify 

repetitive movement will compute while observing layers of variability in the 

description of visual evidence in repetitive restrictive movement as an 
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expression of probability over time framed within a self-expressing framework 

of repetition. Repetitive movement may serve as an anchor to identify network 

complexity by analyzing the recurrence in repetitive movement. Taking visual 

evidence into a mathematical organization is central for anatomical behavior 

descriptions to explore how an individual occupies 3-D space and the 

distribution of whole- 
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CHAPTER FOUR DISCUSSION 

 In this project scientific workflows are more than ad hoc investigative 

tools. The scientific workflows (e.g. motion capture) help to cross-reference 

biological knowledge (Table 22) and empirical observational criteria (rules).  

Gauging direct biological interface through scientific workflows replace the 

acquisition of datasets, that is, an interactive paradigm replaces the component-

paradigm found in psychometric methodology.   

Table 22 Observation criteria to visualize CMS 

Morphological 
Characterization Criteria 

Antecedent Relevant Research 

Innervation pattern → Multi-cell recording 
(somatosensory) 

Nicolelis et al., (1995, 
1997) 

 Spinal circuits in motor  
function 

Barbeau et al. (1999) 

Ipsilateral movement →  Contralateral movement  Kristan, 1982; Marin-
Burgin et al., 2005, 2008 

Integrated cell types →  Touch-induced movement  Chalfie et al. (1985) 

Ardiel and Rankin (2008), 
Chalfie et al. (1985),  

Kawano et al. (2011) 

Forward circuitry |  
backward circuitry → 

Behavioral plasticity in c. 
elegans 

Dorsal/ventral  
touch-movement data →  

Innervation pattern,  
behavioral plasticity, touch-
induced movement pattern  

Sequelae time series 
analysis, unknown 

Independence in movement → 

 

Ipsilateral movement, 
behavioral plasticity 

Sequelae time series 
analysis, unknown 

 The proposed instrumental design methodology reflects several 

investigative perspectives: (1) a translational shift in research agenda (NAMCH, 

2009; Roco & Bainbridge, 2003; Shonkoff & Levitt, 2010); (2) families of tools 
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to monitor heterogeneous complexity in biological phenomena (Marder, 2011; 

Marder & Taylor, 2011); and, (3) platforms to regulate high throughput 

instrument analysis. 

Calls for translational research agenda lead to a renewal of instrument 

design. The NAMCH’s (2009) report set an agenda for advanced research 

validated (e.g., contextual fear conditioning, face processing, object recognition) 

across multiple levels of analysis to develop and validate new tools and 

procedures, including imaging tools, that can be used in multiple species and 

across all developmental stages. The National Science Foundation- Department 

of Commerce report organized by Roco and Bainbridge (2003) calls for the 

integration of converging technologies (nanoscience, biotechnology, computer 

sciience, and cognitive science). Shonkoff and Levitt (2010) argue in favor of 

integrated research as stress-factors appear during early stages of development 

and biomolecular evidence. The development of families of instruments 

provides an alternative quantitative research methodology to conduct analysis of 

heterogeneous complexity in three-phase pyloric rhythmic circuitry (Marder 

2011, Marder & Taylor, 2011). Researchers have implemented a tool 

development strategy by quantifying biological movement through high-

throughput.  

 High throughput assays reflects one aspect of the renewal of instrument 

design. Examples of novel tool development strategies include: (1) 

bioinformatics and imaging tools to identify behavioral phenotypes along side c. 
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elegans' biological movement (Feng et al., 2004; Brown & Schafer, 2013; 

Schafer, 2011); (2) computational spatial analysis in biophysical studies of c. 

elegans' undulatory movement (Stephens et al., 2008, 2009, 2011); and, (3) 

nananosciene use of tiny channel systems (microfluidics) to register motor 

behavior (Ardiel & Rankin, 2008; Chronis et al. 2007; Kawano et al., 2011; 

Larsch et al., 2013; Nagy et al.,2011; Salvador et al., 2014; Wen et al., 2012).  

 But to implement high-throughput studies increased granularity in 

observation criteria. Processing a taxonomy (anatomical behavior descriptions) 

provide systematic descriptions to conduct motion capture across multiple 

scales. Already, behavior research documents neurobiological evidence in 

bending leeches (Kristan 1982; Langen et al., 2011, 2011a; Lockery & Kristan, 

1990; Murin-Burgin et al., 2005, 2007) and the developmental study of 

swimming zebra fish (Drapeau et al., 2002). Meanwhile, clinical researchers 

replace self-reporting surveys with empirical and stochastic analysis in autism 

research (Guigon & Hamilton, 2008; Torres et al., 2013).  

 Instrumental-based research in this project removes high level motor 

programs or component models of motor function (Gowen & Hamilton, 2013; 

Torres et al., 2013; Todorov, 2004 ; Wolpert, 1995; Wolpert & Ghaharmani, 

2000) given the pathology in CMS and temporal complexity discussed in this 

project. A pointing gesture discussed through experimental research lacks the 

temporal and sequential complexity of CMS. This project proposes methods to 

monitor the cascading, repetitive, and perpetuated movements in CMS. 
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Research on how CMS works uses an instrument-based methodology. It is 

anticipated empirical observation and a rules system to support precise motion 

capture and data collection. Otherwise, variability in CMS at local levels 

(temporal) and granular levels (behavioral) will remain hidden from view in 

chronological time series analysis. An instrument design using a rules-

taxonomy interface attempts to keep pace with granularity and potential 

heterogeneous complexity in repetitive behaviors.  

How does a dysfunction work within an individualized biological 

context? This line of inquiry leads to a series of questions: (1) degree of severity 

of the dysfunction; (2) specialized data collection in the spatio-temporal 

domain; and, (3) behavioral assessments of the allocation of sensorimotor 

resources. These topics establish new forms of scientific workflows while 

investigating a population with motor dysfunction and How is a dysfunction 

locally-optimal? Visual formalism used to compute fractional series might 

provide a metric to identify local optimality, that is, how the sequelae works for 

each individual’s equilibrium.   

 CMS research in this project introduces instrumental-design to configure 

diagnostic assessment methods. A set of rules (empirical observation) provides 

observational criteria to guide programming motion capture tools (e.g. postural 

transitions (from-, to-) to differentiate lateralized movement in a sequence).  A 

neighborhood of sensors register interlimb activity through anatomical behavior 

descriptions programmed in a motion capture system. The combination of 
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observational criteria and descriptive markers of CMS activity (anatomical 

behavior description) generate data collection instruments (motion capture). The 

protocol (anatomical behavior descriptions) anticipates an instrumental standard 

for measurement in complex motor stereotypies (CMS) research. 

 A novel quantitative research reconciles interactive modeling where 

local neighborhoods of movement mark musculoskeletal dimensions and skin 

innervation registered during direct biological interface. Literature on biological 

psychiatry (Bahn & Guest, 2011) and the bioengineering pharmacological 

sensor development (Patel, 2012) suggest a systematic integration of technology 

with system biology. 

 Anatomical behavior descriptions suggest new criteria to identify 

signatures in CMS based on variation during sequential analysis, that is, the 

differentiation of phases of lateralized movement. This leads to several key time 

based questions: 

1. Is behavioral plasticity in CMS asymmetric (forward-touch induced 

movement, backward-touch-induced movement) 

2. Will time analysis support the association of ipsilateral movement 

with excitatory motor circuitry, contralateral movement inhibitory motor 

circuitry, and bilateral movement with excitatory/inhibitory motor 

circuitry? 

3. How does the complexity of processing rates at local levels of 

behavioral resolution differentiate morphological timing and cellular 
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processing? Does this yield a measure indicative of the allocation of 

resources between the morphological and the cellular? 

 These questions arise from taking undulating movement in animal models 

and the purposeless repetitive restrictive movement.  

CMS severity measurement would compare time-behavior pairings in 

sequential transition patterns (from-, to-). This would yield a standardized 

measurement and diagnostic classifiers to monitor behavioral plasticity to detect 

pre-conditions or prerequisites for levels of CMS severity. The absence of high 

behavioral resolution in CMS reflects limitations in the observation of CMS 

rather than confirming low variation in CMS' structure and function. 

Anatomical behavior descriptions bridge a gap between behavioral 

measurement and the instruments to conduct behavioral observation. 

To quantify variability in CMS quantitative research, one might pursue a 

generative taxonomy to detect variability at granular levels of behaviors in time. 

Positioning quantitative research within a descriptive taxonomy with rules on 

the observation of repetition parallels a linguistic formalization of a generative 

taxonomy and rules to analyze language families. Measurement of CMS is a 

quantitative measurement challenge to: detect time-behavior data, time 

characterization of regulation of repetitive behaviors, and conduct motion 

capture without losing sight of the “physiological relevancy” in motor behavior. 

Physiological relevancy is a construct to validate a nanoscience tool's behavioral 

authenticity. Physiological relevancy attempts to further define a behavior 
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within in vitro or brain chip interfacing (Fromhertz, 2006). Implementation of a 

generative taxonomy in motion capture derives from advancement in 

instrumental protocols: in vitro nano tools (Das et al., 2006); brain-to-brain 

interface (Pais-Vieira et al.,2013); brain chip interface (Fromhertz, 2006). These 

advanced tools frames behaviors in time at levels of granularity hard to capture 

through camera-based observation. 

Barriers to direct biological interface have been broken using levels of 

material manipulation: (1) chemically synthesized genome (Gibson et al., 2010); 

(2) novel behavioral experimentation brain-to- brain (Pais-Vieira et al.,2013); 

and, (3) computation and olfactory circuits (Rhodes, 2008; Rhodes & Anderson, 

2012). Methodologies guide a researcher to conduct innovative tool-use (e.g. 

olfaction research by Buck and Axel (1991)). Coarse data collection remains a 

problem when considering a condition without an etiological explanation (e.g., 

complex motor stereotypies). Such a claim differentiates the prior inability to 

chemically synthesis a genome and the J. Craig Venture Institute breakthrough 

on the manufacturing of genome in Gibson et al. (2010).The brain-to-brain 

shared real- time work in Pais- Vieira et al., (2013) illustrates a form of 

empirical research improving upon conventional behavioral standards precision 

and interface. Setting aside behavior as we know it there is the supply-side view 

of behavior, that is, the manner each individual allocates their resources: 

biologically and temporally. Advanced methodologies and novel toolkits revise 

what behavior encompasses.  
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The call for insights in challenging pathologies (autism) requires 

instrumental solutions for neuroscience and nanoscience to keep pace with 

computational complexity in living systems. Methodologies for direct biological 

interface prompt a methodical definition of diagnostic instrument design in 

cases where etiological explanations are weak. Diagnostic assessment of CMS 

in the time domain might report on behaviors in time, the perpetuation and 

pacing  of repetitive sequences to compute and replace the coarse 

characterization (jerky and continuous) of hyperkinetic motor disorders in 

children discussed in Sanger et al. (2010). 

Outside Readers and Next Steps 

 Outside readers for this project include multiple disciplines: kinesiology, 

behavioral neuroscience, infant behavior, neuroscience, and biomedical 

pharmacology. A methodical assessment of anatomical behavior descriptions 

will need to evaluate the empirical basis (4 rules used to characterize data 

collection). Factor analysis might assess variables and system integrity but 

several methodical improvements would be overlooked (Figure 22). A 

comparison between wearable sensors used within an interactive paradigm 

(direct biological interface) and wearable sensors within a component paradigm 

is a substitute for factor analysis. The comparison of between each wearable 

sensor methodology would focus on a rubric to analyze the steps reproduce 

behavioral fidelity. A neurobiological assessment of the anatomical behavior 

protocol using cellular preparations is a long term objective. 
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Figure 22 Configuration to compare CMS research methodologies   

 A comprehensive analysis of distributed sensor network based on 

anatomical behavior descriptions and wearable markers (data collection in a 

psychometric methodology) might contribute to assessing gains in data 

collection from a translational perspective. Assessing anatomical behavior 

descriptions would evaluate several topics: (1) the quality of investigative 

questions raised. due to a novel methodology; (2) scientific workflows designed 

to promote direct biological interface; and (3) symbolic-visual formalisms used 

to address heterogeneous complexity. 

Future research will present algorithms for motion capture: (1) local 

timing; (2) regulation of sequelae; and, (3) visual tests for data collection of 

high behavior resolution. A set-logic is essential to formalize the visual logic 

introduced in this project in Figures 13, 14. The application of the anatomical 

behavior descriptions taxonomy in time series analysis using ApEn and fractal 

analysis would contribute to the proposed methodology. Using a mathematical 
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formalism would examine CMS within an interactive paradigm, that is, to 

advance direct biological interface within two levels of research: rhythmic 

circuitry and repetitive circuitry when examined using nanoscience tools and in 

vitro preparations.  

To develop the architecture and symbolic system for next generation 

biological machines CMS movement analysis might provide spin-off 

technology. First, applying the scientific workflows presented in this project 

model Bellman’s dimensional problem to study sensory integration and 

regulation of repetitive sequences as a power process. Second, conducting 

research on transitional complexity study Kelso’s multistability (repurposing of 

motor circuitry). Finally, CMS data functions as an engine for the proposed 

visualization system. The engagement of repetitive movements functions as an 

animated display showing repetition as flow patterns defined by lateralized 

movement.. 

Unconventional Computation 

 CMS appears to be a conduit to advance direct biological interface due 

to the perpetual repetition evident in CMS. CMS as a boundary system serves as 

a model for biological computational machines. Increasing behavior fidelity in a 

quantitative methodology requires side-by-side (juxtaposed) local 

neighborhoods. A universal description of a time varying behavior (CMS) has 

consequences in developing observation criteria for motion capture or framing 

time series analysis.  
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Anatomical behavior descriptions taxonomy is in a primitive stage. A 

formal presentation would document anatomical behavior descriptions as a 

taxonomy with descriptive precision to conduct comparative analysis,  

functional measure of variability, and a generative system to define 

observational criteria. Establishing the syntax (set-theory) for visual formalisms 

in transition complexity would model high resolution behaviors or model the 

interactivity of behavioral plasticity in CMS.  
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APPENDIX A CLINICAL STUDIES REALTED WITH 

MOTOR STEREOTYPIES FROM AUTISM RESEARCH 
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    Table 23 Clinical Studies Related with Motor Stereotypies from Autism Research 

Type of  Study Methodology Study 

Systematic Systematic Study (atypical repetitive behaviors)  

Review of Methodology (repetitive behaviors in autism) 

Bodfish et al. (2000) 

Lewis & Bodfish (1998) 

Typical Dev. Self-Stimulatory Behaviors (video recording at home) Smith & Van Houten (1996) 

Neurological Assessments (Case Studies) 

Video recording 

Tan et al. (1997)  

Thelen (1979) 

Young 
Children 
Atypical 
Dev 

Neurological Assessment (primary stereotypies TD, secondary 
stereotypies ASD etc.) Neural Circuitry & Neurotransmitters 

Multhugovindan & Singer 
(2009) 

Biomedical Clinical Assessment Campbell et al.(1990) 

Behavioral Assessment of Repetitive Motor Behaviors. Video 
recording (manual encoding of based upon Thelen (1979). 

Loh et al. (2007) 

Direct Observation (play behavior, stereotypies) 
Continuous duration measurement (real-time measurement method 
Miltenberger (1999). 30 minute assessments, used 5 min. sample 
free-play, 5 min. sample assessment trials (NECC Early Core Skills) 

MacDonald et al. (2007) 

Parental Report (Autism Diagnostic Interview-Revised) 
Repetitive Restricted Behaviors (Repetitive sensory motor, 
Insistence on sameness). Factor Analysis- Repetitive Restricted 
Behaviors: (Prevalence, Severity: ASD, TD). Determine if behaviors 
that cluster show similar patterns (prevalence or severity) in ASD, 
TD young children. 

Richler et al. (2006) 
(Part of longitudinal study) 

Pre-term  
Infants 

Literature Review (early motor development, spectrum of major 
motor disabilities) 

Bracewell & Marlow (2002) 

Meta-Analysis (pre-term and low birth weight) de Kieviet et al. (2009) 

Touwen Examination of the Child with Minor Neurological 
Dysfunction,  

  Jongmans et al.(1997) 

Early on-set 
ASD 

Retrospective Video Analysis (sensory-motor and social behaviors) Baranek (1999) 

Microgenetic Observation  Lord et al. (2012) 
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APPENDIX B EMPIRICAL DESIGN ON MOTOR 

STEREOTYPIES FROM AUTISM SPECTRUM DISORDERS 
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Table 24 Empirical Studies on Repetitive Behaviors 

Stereotypies
/ 
Other 

Instrumentation Modeling System 

Memari et 
al., (2013) 

Bertec force plate  
records the ground 
reaction forces by an 
individual  

Postural sway, directional oscillations in each axis 
separately: anteroposterior (AP) or mediolateral 
(ML)  and composite measures; mean velocity in AP, 
ML composite measures; range in AP and ML 
directions, mean frequency and sway area  
 
Measures postural sway parameters; root mean 
square, numerical computations Excel macros.  

Karch et al. 
(2012). 

Electromagnetic tracking 
system, dynamic warp 
timing pattern (sequence 
comparison)  

Representation of lower as well as the upper limb in 
all degrees of freedom of the corresponding joints  
Numerical computation algorithm for biological 
movement 

Lamoth et 
al.,  (2009) 

Accelerometer Postural sway patterns of three populations that 
differ with respect to their athletic skill level. 
Stochastic-dynamical analyses of body sway 
acceleration signals can discriminate the postural 
sway patterns  

Bodfish et 
al. (2001) 

Formal dynamic analysis 
of movement  

Drug-induced dyskinesia in postural task (goal 
oriented); dyskinesia vs. stereotypies; postural 
dynamics (anterior-posterior, side-to-side, vertical 
directions) 
Measures (amp, freq of motion); organizational 
properties periodicity and complexity characterizing 
motion changes in time and space. Postural stability 
frequent adjustments of center of pressure through 
sequential low amplitude whole-body postural 
movement 

Ross et al., 
(1998) 

Video recording (home, 
school, or workshop) 

Definition of periodicity in stereotypies instead of 
rhythmicity. Spectral analysis  

Yamada 
 (1995) 

Accelerometer,Mathemat
ica 

Self-determined finger tapping. Variation in 
stereotyped human movement cannot be modeled as 
Brownian motion or noise separated from a 
deterministic movement system  

Lewis et al. 
(1984) 

Accelerometer 
(Frequency domain 
analysis)FFT Tukey-
Hanning window 

Cyclical properties: stereotypied body-rocking 
(rhythmic/repetitive patterns),cardiac activity (ECG) 
Numerical analysis of physiological and behavioral 
data (coupled oscillatory systems: heartbeat and 
sway); Spectral Analysis (time series) variance 
decomposition/partitioning 
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APPENDIX C MEASURES ON THE SEVERITY  

ON MOTOR STEREOTYPIES (1967-2010) 
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Table 25 Measures on the Severity of Motor Stereotypies 

Assessment Tool Reference  Measurement & 
Psychometric Measures 

Bayley Scales of Infant 
Development  III 

Albers & Grieves (2007) 

Bayley (1993) 

Fine motor subtest 66 
items, Gross motor subtest 
72 items in an infant 
toddler developmental 
battery of subtests 

Movement Assessment 
Battery for Children 

Henderson et al. (1992)  Children (ages 3-6,7-10, 
11-16) eight tasks are 
grouped under three 
headings: manual dexterity, 
aiming and catching, and 
balance  

Bruininks-Osevetsky Test of 
Motor Proficiency 

Bruininks & Oseretsky (1978) Measures fine and gross 
motor skills of children age 
4-21. Characterizes motor 
performance, specifically in 
the areas of fine manual 
control, manual 
coordination, body 
coordination, and strength 
and agility 

Examination of the Child 
with Minor Neurological 
Dysfunction 

Touwen (1979) Development assessment of 
sitting, standing, walking, 
and lying 

Developmental Test of 
Visual-Motor Integration 

Bernstein (2010) 

 

Wuang & Su (2009) 

standardized form-copying 
examination of integration 
visual and motor abilities 
3-17 years   

Beery-Buktenica 
Developmental Test of 
Visual-Motor Integration 

Beery & Buktenica (1967) 

Rutter Scales Elander & Rutter (1996)  Rutter scales are a pair of 
short questionnaires for 
collecting information from 
parents  

and teachers about the 
behaviour of children aged 
about nine to thirteen years. 
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They focus  

on emotional and conduct 
disorders and were 
designed as screening 
instruments for ... 

Timed Stereotypies Rating-
Scale  

Campbell et al. (1985) Isolated measure of timing 
of stereotypic behaviors 

Abnormal Involuntary 
Movement Scale 

Guy (1976) 4 point rating scale of 
movements: facial/oral, 
extremity, trunk, and global 
judgments 

Repetitive Behavior Scale 
Revised 

Miller et al. (2006) 4 point rating scale of 
movements 

Vineland Adaptive Behavior 
Scale 

Matson et al. (1997) Measures Communication, 
Daily Living Skills, 
Socialization, Motor Skills, 
and Maladaptive Behavior 
domains. 

Alberta Infant Motor Scale Schemer & Sexton (1991) Measures gross motor 
maturation of infants from 
birth through the age of 
independent walking within 
neuromaturational concept 
and the dynamical systems 
theory   

Peabody Development 
Motor Scales 

Folio & Fewell (1974) 

 

 

Wang et al. (2006) 

six subtests (reflexes, 
stationary, locomotion, 
object manipulation, 
grasping, visual motor 
integration) that measure 
interrelated abilities in 
early motor development. It 
was designed to assess 
gross and fine motor skills 
in children from birth 
through five years of age. 
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APPENDIX D EVIDENCE FROM  

MUTLIFUNCTIONAL CIRCUITS 
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Table 26 Evidence from Multifunctional Circuits 

Thesis Terminology Briggman & Kristan 
(2008) 

Evidence on Motor Circuits 

Switching variability in motor 
behaviors 

Neuronal network function 
and selective engagement of 
motor circuits 

Truly independent neurons within a defined circuit are those that are active, either 
hyperpolarized or depolarized, during one behavior and inactive during other 
related behaviors (Selverston, 1980) 

Cross-scale morphological and 
cellular 

Behavior module generates 
multiple behaviors 

Behavioral module refers to single neurons or groups of neurons that coordinate a 
particular muscle synergy (Briggman & Kristan, 2008). 

Independence  Remarkably, short-term adaptation of the right or left leg does not gen eralize 
between forward and backward stepping (Briggman & Kristan, 2008).  

This lack of generalization implies that the networks underlying walking are both 
leg and direction specific, consistent with the idea of discrete behavioral modules 
(Choi & Bastian 2007). 

Sustained repetitive restrictive 
behavior  

Phase-locked ineterneuron 
and motorneuron 

Modules can be either movement specific (phase-locked to a movement used in 
multiple behaviors) or behavior specific (phase-shifted depending on the behavioral 
context).  Neurons in the turtle spinal cord during three forms of hindlimb 
scratching are often phase-locked (e.g., to hip flexion), regardless of changes in 
motor neuron coordination (Berkowitz, 2001, 2005). 

 Behavior specific, movement 
specific  

Despite shared-phase relationship, different neurons elicit two closure phases, again 
indicating behavior-specific modules (Jing et al. 2004).  

 Biting and swallowing are similar ingestive patterns; both require a closure of the 
food grasper, the radula, during the retraction phase of both behaviors. Despite this 
shared-phase relationship, different neurons elicit two closure phases, again 
indicating behavior-specific modules (Xin et al. 1996, 2000). 

Granularity in switching 
behavior  

Switching behind motor 
circuits 

(a) sensory or projection neurons providing input from the periphery or via 
descending and ascending inputs from higher-level networks 

(b) the effects of neuromodulatory substances on intrinsic membrane properties and 
synapses 

(c) biomechanical constraints imposed by the body, detected by sensory feedback 
as the body moves. (Briggman & Kristan, 2008) 

 Neuromodulation 
(monoamines) 

Studies on the neuromodulation of in vitro vertebrate nervous systems use bath 
application of modulatory cocktails to elicit behaviors (Whelan et al. 2000). 

 Contex-Sensitive Muscles Biomechanical proper- ties of musculature and joints and the transformation of motor 
neuron spikes into muscle con- tractions further constrain the behaviors that these 
patterns generate (Chiel & Beer 1997). 

  Nonlinear properties of individual muscles and variability between ani- mals, 
predicting behavioral responses from mo- tor neuron (Hooper et al. 2006, Hooper & 
Weaver 2000). spike trains is difficult  

 Development of 
quantitative models  

How neurons control muscles is necessary ultimately to determine the behavioral 
relevance of patterns produced by multifunctional circuits (Brezina et al. 2000, Brezina 
& Weiss 2000). 
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APPENDIX E CROSS-REFERENCING 

 MULTI-FUNCTIONAL CIRCUITRY  

FOR BEHAVIORAL RESEARCH 
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 Table 27 Cross-Referencing Behaviors and Multifunctional Architecture  

ABD Terminology 
 
 
Behavioral fidelity 
 

Briggman & Kristan 
(2008)  
 
Versatility: (1) central 
nervous systems → 
producing and 
modifying behaviors. 

 

Research Topics 
 
 
Neuronal level showed combination of the synaptic connectivity and intrinsic 
membrane properties generates → activity patterns in multifunctional circuits 
(Kristan et al. 2005, Marder & Bucher 2001, Marder & Calabrese 1996). 

Activity level of descending interneurons in the goldfish spinal cord can 
modulate the strength of escape behavior in goldfish and zebrafish (Bhatt et al. 
2007; Fetcho 1992). 

Number of recruited interneurons increases the strength of escape behaviors in 
fish and frogs (McLean et al. 2007, Sillar & Roberts 1993). 

Richer set of capabilities can be captured by viewing the neural activity as a 
dynamical system in a phase space diagram (Briggman & Kristan, 2008). 

 Circuit capable of generating more than one stable pattern is termed 
multistable, which is one form of multifunctionality (Briggman & Kristan, 
2008). 

Phase space diagram captures both the dimen- sionality of stable patterns 
(indicating which parameters must be measured) as well as the dynamics of the 
system in response to stimuli (Briggman & Kristan, 2008). 

Phase space plots can also indicate when transitions between stable states occur 
at different time scales, from abrupt transitions (Figure 1) to the slow evolution 
of one pattern into another (Briggman & Kristan, 2008). 

Phases of some rhythmic behaviors are generated by a distributed network of 
neurons oscillating in unison (Grillner 2006). 

Series of basic building blocks, made of neuronal pools dedicated to 
coordinating the activity of a muscle group (Briggman & Kristan, 2008). 

Motor primitives can be combined to generate spatially and temporally precise 
force fields and the corresponding body and limb movements, for example, 
reaching, grasping, or kicking (Flash & Hochner 2005). 

Multifunctional circuits implementing this architecture can potentially drive 
unifunctional muscles to generate two or more behaviors simultaneously, as in 
the crab STG (Bucher et al. 2006; Weimann et al. 1991). 

Multifunctional circuits may drive a common set of multifunctional muscles 
reconfigure to drive a variety of different inspiratory and expiratory rhythms 
and two forms of locomotion in the leech (Lieske et al. 2000). 

Swimming and crawling, are controlled by a multifunctional circuit activating 
multi- functional muscles (Briggman & Kristan 2006).  

Many of the behaviors generated using this architecture are mutually 
exclusive—a leech can- not both swim and crawl at the same time 

Behaviors driven primarily by multifunctional circuits can also include 
apparently dedicated neurons (Berkowitz 2002; Briggman & Kristan 2006). 

Characterizing the activity of single neurons and relating their activity to two or 
more behaviors can lead to new insights about their multiple functions, knowing 
the complete anatomical circuit is invaluable(Hooper & DiCaprio 2004, Marder 
& Bucher 2007) 

 Switching the roles of neurons to support multiple simultaneous rhythms 
produces important behavioral consequences (Clemens et al. 1998, Heinzel et 
al. 1993, Thuma et al. 2003). 

 (Versatility) (2) reconfigure 
anatomically defined 
circuits into many 
distinct functional 
circuit 

 Multifunctional 
networks → generate 
discrete behaviors  

Behavioral markers Behavioral phases 
(flexion, extension) 

Transition and 
switching 

 Switching 

Precision (visual 
formalism) 

Phase space diagram 

Visual formalism  Phase space plot 

 Phase in rhythmic 
behaviors  

Morphological 
characterizations 

Behavioral modules 

 Multifunctional 
architectures 

 Multifunctional 
architecture 

(Example respiratory 
circuits in mammals) 

  

 Exclusion 
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